

## Air Quality Sensor Technologies: Ozone Literature Findings

Ron Williams, Dave Nash, Gayle Hagler, Kristen Benedict U.S. EPA, RTP, NC

Ian MacGregor, Brannon Seay, Mitchell Lawrence Battelle

> Tim Dye TD Environmental Services

> > June 25-26th, 2018 Sensor Performance Deliberation Workshop



In support of the Performance Benchmarks Workshop, a literature review of relevant PM and select gas phase published research findings were investigated. This investigation included:

- Defined regulatory requirements (US, EU, China)
- Peer review journal and proceedings-based literature
- Journal focus was 2007-> 2017
- Performance characteristics were recovered and categorized
- Primary research was conducted by lan MacGregor and the Battelle group under an EPA-defined task order
- The investigation was ultimately limited by resources but is considered informative but not exhaustive or comprehensive

# **Literature Specifics**

- Computer-based search of key words reported ~ 20000 records pertaining to the area of interest
- Reduction in total number of titles to a resource-capable level was performed
- A total of 257 titles were graded for applicability and utility associated with performance characteristics or requirements
- The titles focused on air quality sensors because inclusion of research and regulatory-grade instrumentation would have exhausted the resources
- Each retained article was graded for information pertaining to 10 common performance attributes, then organized into 16 application types and then 4 use categories

# **Key Regulatory Documents**

- US Code of Federal Regulations in support of the NAAQS (FRM/FEM requirements)
- US EPA Performance Standard 18
- European Commission for Standardization (CEN) through their Air Quality Directive (2008/50/EC) and EU 2015/1480)
  - Working Group 42 directed to develop sensor-based performance classifications
    - Class 1 (Indicative measurements)
    - Class 2 (Objective estimation techniques)
    - Class 3 (research, environmental education,
- United Kingdom's MCERTS (Monitoring Certification Scheme)
- People's Republic of China (HJ 654-2013, HJ 653-2013, and GB 3095-2012)

## **Application Categories**

- Air quality forecasting
- Air quality index (AQI) reporting
- Community near-source monitoring
- Control strategy effectiveness
- Data fusion
- Emergency response
- Epidemiological studies
- Exposure reduction (personal)
- Hot-spot detection
- Model input
- Model verification
- Process study research
- Public education
- Public outreach
- Source identification
- Supplemental monitoring

### **Performance Descriptors**

- Accuracy/uncertainty
- Bias/trueness
- Completeness
- Detection limit
- Measurement duration
- Measurement frequency
- Measurement range
- Precision
- Response time
- Selectivity

Variation in use of terms, units and statistical approaches made systematic categorization difficult

# Literature by the Numbers

- Of the 257 documents, **48** contained quantitative performance information. A total of 8 contained qualitative performance info. A total of **56** documents provided the primary information shared today.
- Literature most often reported sensors being used for spatio-temporal investigations (n=40)
- Performance requirements were most often reported for ozone (52%) followed by NO2 (46%) and then PM2.5 (40%). SO2 reports were extremely limited (10%)
- Of the primary 48 references, 70% adjusted for measurement artifacts, 8% intentionally retained nonadjusted data. Adjustment for the remainder (22%) was not applicable
- Treatment of erroneous data was discussed in only 35% of the sources

| \$EF         |                                                                                                                | Certification                                                                                                                             | Program Req                                                                                                                                                  | uirements                                                                                                |
|--------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Program      | U.S. EPA<br>FRM/FEM<br>Program                                                                                 | European<br>Parliament and of<br>the Council<br>Ambient Air Quality<br>Directive<br>(2008/50/EC)                                          | Monitoring<br>Certification<br>Scheme (MCERTS)                                                                                                               | People's Republic of<br>China<br>National<br>environmental<br>monitoring standards                       |
| Organization | U.S. EPA                                                                                                       | European Committee<br>for Standardization                                                                                                 | Environment<br>Agency (UK)                                                                                                                                   | Chinese Ministry of<br>Environmental<br>Protection (MEP)                                                 |
| Туре         | Performance<br>Standards<br>Certification<br>(instruments)                                                     | Performance<br>Standards<br>(instruments)                                                                                                 | Certification<br>(instruments)                                                                                                                               | Performance<br>Standards<br>Certification<br>(instruments)                                               |
| Pollutants   | Ambient<br>$O_3$ , NO <sub>2</sub> , CO,<br>SO <sub>2</sub> , PM <sub>2.5</sub> ,<br>PM <sub>10</sub> , and Pb | Ambient<br>PM <sub>2.5</sub> , PM <sub>10</sub> , <b>O<sub>3</sub></b> , CO,<br>NO <sub>2</sub> , SO <sub>2</sub> , and NO <sub>3</sub> , | Ambient<br>PM <sub>2.5</sub> , PM <sub>10</sub> , CO,<br>NO, NO <sub>2</sub> , SO <sub>2</sub> , <b>O<sub>3</sub></b> ,<br>benzene, and<br>benzene-like VOCs | Ambient<br>PM <sub>2.5</sub> , PM <sub>10</sub> , CO, NO <sub>2</sub> ,<br>SO <sub>2</sub> , and $O_3$ , |

| <b>\$EPA</b> | Certifica                                 | tion Program Req                                                                                                                 | uirements                                                                                                      |
|--------------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Program      | U.S. EPA<br>Performance<br>Standard 18    | European Committee for<br>Standardization (CEN)<br>Technical Committee 264<br>(Air Quality)<br>Working Group 42 (Gas<br>sensors) | People's Republic of<br>China<br>Performance<br>Standards for Air<br>Sensors                                   |
| Organization | U.S. EPA                                  | European Committee for<br>Standardization                                                                                        | Chinese Ministry of<br>Environ-mental<br>Protection (MEP)                                                      |
| Туре         | Performance<br>Standards<br>(instruments) | Technical Specifications<br>(air sensors)                                                                                        | Performance<br>Standards<br>(air sensors)                                                                      |
| Pollutants   | Source<br>Hydrogen Chloride<br>(HCl)      | Ambient<br>$O_3$ , NO, NO <sub>2</sub> , CO, SO <sub>2</sub> ,O <sub>3</sub> ,<br>and CO <sub>2</sub>                            | Ambient<br>PM <sub>2.5</sub> , PM <sub>10</sub> , CO, NO <sub>2</sub> ,<br>SO <sub>2</sub> , $O_3$ , and tTVOC |

| <b>SEPA</b> Certification Program Requirements, Cont'd |                                                                                                         |                                                                                                                                         |                                                                                                       |                                                                                               |  |
|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--|
| Program                                                | U.S. EPA<br>FRM/FEM Program                                                                             | European<br>Parliament and<br>of the Council<br>Ambient Air<br>Quality Directive<br>(2008/50/EC)                                        | Monitoring<br>Certification<br>Scheme<br>(MCERTS)                                                     | People's<br>Republic of<br>China<br>National<br>environ-<br>mental<br>monitoring<br>standards |  |
| Applications<br>Tiers                                  | Single Tier                                                                                             | Three Tiers                                                                                                                             | Two tiers                                                                                             | Single Tier                                                                                   |  |
|                                                        | Designated<br>reference or<br>equivalent method<br>for use in regulatory<br>monitoring for the<br>NAAQS | <ol> <li>Fixed<br/>measurements<br/>(highest quality)</li> <li>Indicative<br/>measurements</li> <li>Objective<br/>estimation</li> </ol> | <ol> <li>Fixed<br/>measurements<br/>(highest quality)</li> <li>Indicative<br/>measurements</li> </ol> |                                                                                               |  |

| <b>\$EPA</b>          | Certificat                                                                                          | tion Program Require                                                                                                                                                                | ements, Cont'd                                                               |
|-----------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Program               | U.S. EPA<br>Performance Standard<br>18                                                              | European Committee for<br>Standardization (CEN)<br>Technical Committee 264<br>(Air Quality)<br>Working Group 42 (Gas<br>sensors)                                                    | People's Republic of<br>China<br>Performance<br>Standards for Air<br>Sensors |
| Applications<br>Tiers | Single Tier<br>Any instrumental<br>technology that can meet<br>performance criteria may<br>be used. | Three tiers<br>Class 1 - meets the DQOs<br>of Air Quality Directive<br>(2008/50/EC)<br>Class 2: meets DQOs of<br>objective estimation<br>Class 3: no mandatory<br>performance level | Single Tier                                                                  |

| <b>\$EPA</b>   | Certifi                                                     | cation Progra                                                                                                                         | m Requireme                                                                                     | nts, Cont'd                                                                              |
|----------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| Program        | U.S. EPA FRM/FEM<br>Program                                 | European<br>Parliament and of<br>the Council<br>Ambient Air<br>Quality Directive<br>(2008/50/EC)                                      | Monitoring<br>Certification<br>Scheme<br>(MCERTS)                                               | People's<br>Republic of<br>China<br>National<br>environmental<br>monitoring<br>standards |
| Test Locations | Laboratory and Field                                        | Laboratory and<br>Field                                                                                                               | Laboratory and<br>Field                                                                         | Field                                                                                    |
| Outcomes       | Designated reference<br>or equivalent method<br>by U.S. EPA | Stamp of approval<br>for the use of<br>specific analyzers<br>(in their tested<br>configuration) in<br>national monitoring<br>networks | Product<br>Conformity<br>Certificate issued<br>for an instrument<br>and concentration<br>range. | Unknown                                                                                  |

| <b>\$EPA</b>   | Certi                                                                                    | fication Pro                                                                                 | gram Requireme                                                                                                                            | ents, Cont'd                                                                    |
|----------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| Program        | People's<br>Republic of<br>China<br>National<br>environmental<br>monitoring<br>standards | U.S. EPA<br>Performance<br>Standard 18                                                       | European<br>Committee for<br>Standardization<br>(CEN)<br>Technical<br>Committee 264<br>(Air Quality)<br>Working Group 42<br>(Gas sensors) | People's<br>Republic of<br>China<br>Performance<br>Standards for<br>Air Sensors |
| Test Locations | Field                                                                                    | Field                                                                                        | Laboratory and<br>Field                                                                                                                   | Field                                                                           |
| Outcomes       | Unknown                                                                                  | Any<br>instrumental<br>technology<br>that can meet<br>performance<br>criteria may<br>be used | Unknown                                                                                                                                   | Unknown                                                                         |

## **SEPA**

#### U.S., European Union and Chinese Regulatory Ozone Monitoring Performance Values

| Pollutant | Performance<br>Attribute | US                                     | EU                                    | China                                  |
|-----------|--------------------------|----------------------------------------|---------------------------------------|----------------------------------------|
|           | Accuracy/<br>uncertainty | 24-hr zero<br>drift: ±4 ppb<br>[1]     |                                       | 24-hr zero<br>drift: ±5 ppb<br>[5]     |
| Ozone     | Measurement<br>range     | Measurement<br>range: 0-500<br>ppb [1] | Measurement<br>range: ≤250<br>ppb [9] | Measurement<br>range: 0-500<br>ppb [5] |
|           | Detection limit          | Detection<br>limit: 5 ppb [1]          |                                       | Detection<br>limit: ≤2 ppb<br>[5]      |
|           | Response<br>time         | Lag & Rise<br>time: 120 sec<br>[1]     | Lag & Rise<br>time: ≤180<br>sec [9]   | Response<br>time: ≤5 min<br>[5]        |

[] indicates reference citation number

| \$EP/                   | <b>Percentage of Reports of DQOs/MQOs</b> |                                  |            |                     |           |                  |  |
|-------------------------|-------------------------------------------|----------------------------------|------------|---------------------|-----------|------------------|--|
|                         |                                           | 1                                |            |                     |           |                  |  |
| Pollutant               | Comparison                                | Spatio-<br>temporal<br>Variation | Trend      | Decision<br>Support | Other     | % All<br>Sources |  |
| Ozone (O <sub>3</sub> ) | 20%<br>(5)                                | 72%<br>(18)                      | 20%<br>(5) | 20%<br>(5)          | 0%<br>(0) | 52%<br>(25)      |  |

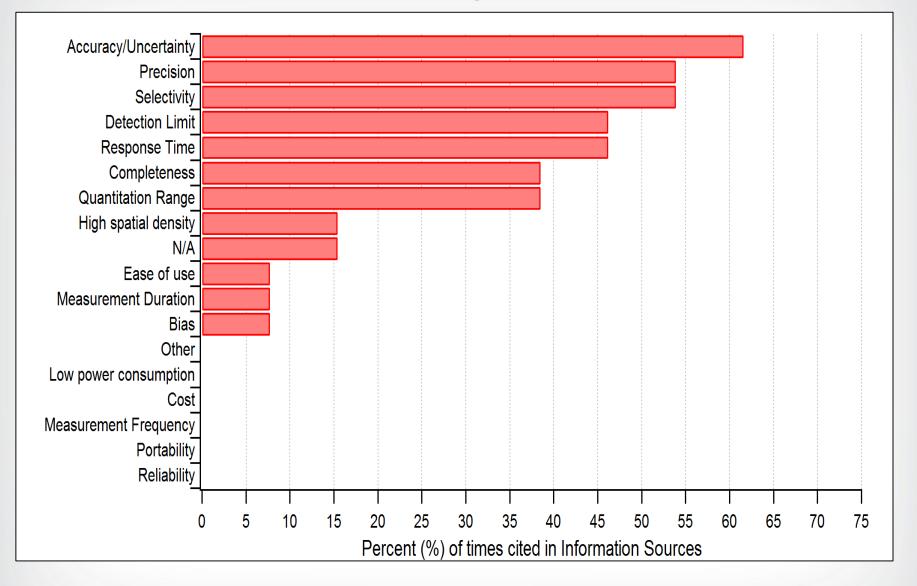
() represents the number of references used in the statistic



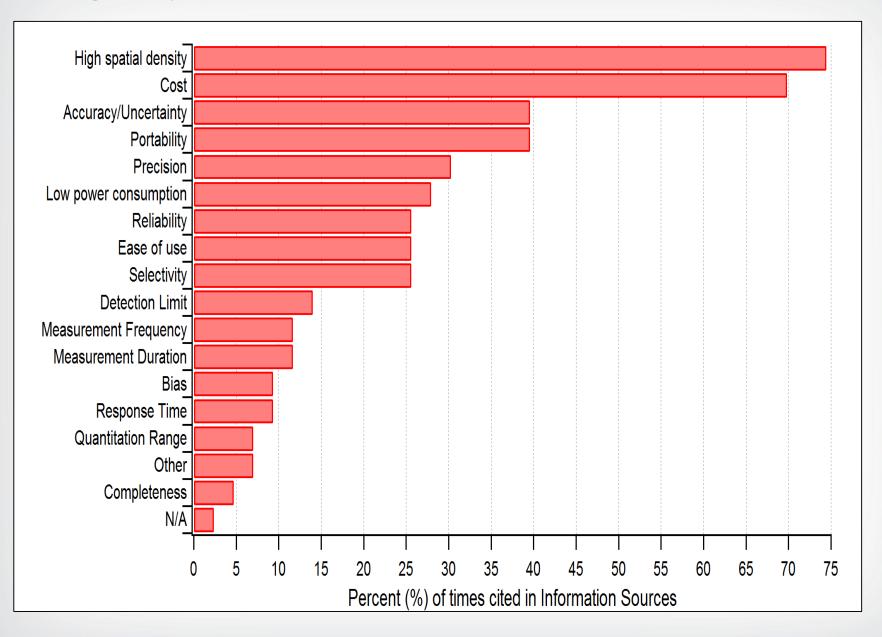
### **Frequency of Monitoring Applications**

| Application                      | Ozone (O <sub>3</sub> ) |
|----------------------------------|-------------------------|
| Air Quality Forecasting          | 8% (2)                  |
| Air Quality Index Reporting      | 16% (4)                 |
| Community Near-Source Monitoring | 48% (12)                |
| Control Strategy                 | 24% (6)                 |
| Data Fusion                      | 8% (2)                  |
| Emergency Response               | 8% (2)                  |
| Epidemiological Studies          | 28% (7)                 |
| Exposure Reduction               | 20% (5)                 |
| Hot Spot Detection               | 20% (5)                 |
| Model Input                      | 8% (2)                  |
| Model Verification               | 16% (4)                 |
| Process Study Research           | 8% (2)                  |
| Public Education                 | 16% (4)                 |
| Source Identification            | 20% (5)                 |
| Supplemental Monitoring          | 56% (14)                |
| Other                            | 12% (3)                 |
| % All Information Sources        | 52% (25)                |

() represents the number of references used in the statistic


## **SEPA**

### **Frequency of DQOs/DQIs Reported**


| Performance Characteristic/DQI | Ozone (O <sub>3</sub> ) |
|--------------------------------|-------------------------|
| Accuracy/Uncertainty           | 76% (19)                |
| Bias                           | 16% (4)                 |
| Completeness                   | 16% (4)                 |
| Detection Limit                | 24% (6)                 |
| Measurement Duration           | 20% (5)                 |
| Measurement Frequency          | 32% (8)                 |
| Measurement Range              | 40% (10)                |
| Precision                      | 32% (8)                 |
| Response Time                  | 20% (5)                 |
| Selectivity                    | 16% (4)                 |
| Other                          | 8% (2)                  |
| % All Information Sources      | 52% (25)                |

() represents the number of references used in the statistic

### **Decision Reporting Based References**



#### Non-Regulatory Use-Based References (Spatio-temporal, Comparisons, Trends)



### **Sensor Comparison with Reference Monitors**

# Ozone (O<sub>3</sub>)

# r<sup>2</sup> = 0.12-0.99 (0.9)

() represents median values

| Performance<br>Attributes/DQIs | Spatiotemporal<br>Variation* | Comparison | Trend | Decision<br>Support* |
|--------------------------------|------------------------------|------------|-------|----------------------|
|                                |                              |            | Trend |                      |
|                                |                              |            |       |                      |

| Performance<br>Attributes/DQIs | Spatiotemporal<br>Variation* | Comparison | Trend | Decision<br>Support* |
|--------------------------------|------------------------------|------------|-------|----------------------|
|                                |                              | Comparison | Irend |                      |
|                                | [64]                         |            |       |                      |

| Performance<br>Attributes/DQIs | Spatiotemporal<br>Variation*                                                                   | Comparison*                          | Trend*                | Decision<br>Support* |
|--------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------|----------------------|
| Bias                           | Bias (%): (<20,<br><50) [10]                                                                   | Bias (%):<br>(<30, <30,<br><50) [10] | Bias (%): <50<br>[10] |                      |
|                                | Standard error<br>(ppb): (3±2, 6)<br>[57], (<5, 5) [58]<br>Mean bias (ppb):<br>-1 [57], 0 [58] |                                      |                       |                      |
|                                |                                                                                                |                                      |                       |                      |

|                                |                                                                                                                   | <u> </u>                                     |                                            |                                                                                          |
|--------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------|------------------------------------------------------------------------------------------|
| Performance<br>Attributes/DQIs | Spatiotemporal Variation*                                                                                         | Comparison*                                  | Trend*                                     | Decision<br>Support*                                                                     |
| Completeness                   | Completeness (%): (≥50,<br>≥80) [10]                                                                              | Completeness<br>(%): (≥50, ≥75,<br>≥80) [10] | Completeness<br>(%): ≥50 [10], ≥75<br>[90] | Completeness<br>(%): <u>&gt;90 [9]</u>                                                   |
|                                | Sample frequency: >75%<br>of available hourly data<br>collected [92]<br>Time: 8 years in a 10 year<br>period [92] |                                              |                                            |                                                                                          |
| Detection Limit                | Detection limit (ppb): 5<br>[70], (1, 20) [97]                                                                    |                                              |                                            | Detection limit<br>(ppb): <b>5[1]</b> , ≤2<br><i>[</i> 2]                                |
|                                | Resolution: 1 ppb [66]                                                                                            |                                              |                                            | Noise, σ<br>(ppb): <b>2.5[1]</b> ,<br>(≤1 <sub>zero</sub> , ≤5 <sub>range</sub> )<br>[2] |

| Performance<br>Attributes/DQIs | Spatiotemporal<br>Variation*                                                                                                                                                                                         | Comparison*                                                        | Trend*                                                                                | Decision<br>Support*                                                                                    |
|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Measurement<br>Duration        | Measurement duration:<br>1 min [60], 1 min [71], 1<br>min [66]                                                                                                                                                       |                                                                    | 1-hr daily maximum<br>values averaged<br>quarterly [86]                               |                                                                                                         |
| Measurement<br>Frequency       | Sample time: 10 s<br>[88], 1 min [59], (1<br>min, 1 min) [88], 1 min<br>[57], 1 min [58], hourly<br>[89], 5 minutes [70], 5<br>min [55], 30 min [94]<br>Averaging time: >4<br>times the sensor<br>response time [84] | Sample Time:<br>(10 s, 1 min,<br>1 min) [88]                       | Sample Time: (10 s,<br>1 min, 1 min) [88]                                             |                                                                                                         |
| Measurement Range              | Measurement range<br>(ppb): (2-10000, 10-<br>250, 0-500, 0-150, 10-<br>1000) [88], 0-100 ppb<br>[60], 0-150 [66], (0-<br>250, 0-500) [97]                                                                            | Measurement<br>range (ppb):<br>(2-10000, 0-<br>500, 0-150)<br>[88] | Measurement<br>range (ppb): (2-<br>10000, 10-250, 0-<br>500, 0-150, 10-<br>1000) [88] | Measurem<br>ent range<br>(ppb <b>): 0-</b><br><b>500[1]</b> , <i>0-</i><br><i>500 [5]</i> ,<br>≤250 [9] |

| Performance<br>Attributes/<br>DQIs | Spatiotemporal<br>Variation*                                                              | Comparison*                                 | Trend*                                                | Decision Support*                                                                                      |
|------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Precision                          | Precision (ppb):<br>(0.5, 0.6, 2.0, 5.0,<br>6.0, 10, 10.3) [88]                           | Precision (ppb):<br>(2.0, 5.0, 6.0)<br>[88] | Precision (ppb):<br>(2.0, 5.0, 6.0,<br>10, 10.3) [88] |                                                                                                        |
|                                    | CV: (<20%, <50%)<br>[10]                                                                  | CV: (<30%,<br><30%, <50%)<br>[10]           | CV: <50% [10]                                         |                                                                                                        |
|                                    | Precision: 4% at<br>95% confidence<br>level [59]                                          |                                             |                                                       | σ <sub>20%URL</sub> : <b>2%[1]</b> , ≤5 ppb [5]<br>σ <sub>80%URL</sub> : <b>2%[1]</b> , ≤10 ppb<br>[5] |
|                                    | Mean absolute<br>deviation: 1.3 [0.6-<br>3.1] ppb [66]<br>R <sup>2</sup> = 0.9±0.06 [67], |                                             |                                                       | Repeatability standard deviation at zero [concentration] $(\leq 1.0 [3.0]$ ppb) [9]                    |
|                                    | 0.9995 [70]                                                                               |                                             |                                                       | σ: <u>(≤ 5.0% of 3-month</u><br><u>avg) [9]</u>                                                        |
|                                    |                                                                                           |                                             |                                                       | %Diff <sub>SampleCalibrationPort</sub> : ≦<br><u>1.0% [9]</u> , <i>±1% [5]</i>                         |

| Performance<br>Attributes/<br>DQIs | Spatiotemporal<br>Variation*  | Comparison* | Trend* | Decision Support*                                                                                                                                                                                                                                                                                                           |
|------------------------------------|-------------------------------|-------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Response<br>Time                   | Response time:<br>65 sec [97] |             |        | Response time: $\leq 5 \text{ min}$<br>[5]<br>Lag time (sec): <b>120</b> [1]<br>Rise time (sec): <b>120</b> [1],<br>$\leq 180$ [9]<br>Fall time (sec): <b>120</b> [1],<br>$\leq 180$ [9]<br>Difference in rise and fall<br>time: $\leq 10 \text{ sec}$ [9]<br>Residence time inside<br>analyzer: $\leq 3.0 \text{ sec}$ [9] |

## **Ozone- Key Findings on Performance** Attributes

Ozone  $(O_3)$ 

- Precision no pattern present
- Accuracy/uncertainty inconsistent information
- Response time faster response times are needed for non-regulatory purposes such as spatiotemporal trends monitoring; note that data are limited (one spatiotemporal study, three regulatory monitoring methods)
- Measurement duration spatiotemporal variations requires shorter measurement durations as compared to longer-term trends monitoring, in accord with expectations

## **Ozone- Key Findings on Performance** Attributes

## Ozone $(O_3)$

- Measurement frequency similar across comparison, spatiotemporal, and trends monitoring applications
- Measurement range higher measurement ranges are required for non-regulatory air monitoring work (all but decision support-related applications)
- Completeness requirements are most stringent for air monitoring for decision support