UDWQ HAB Advisory Process

Monitoring

Routine

DWQ and partners monitor prioritized lakes on a monthly basis

Response

DWQ and partners monitor lakes on advisory on a <u>weekly</u> basis

Data Collected

Microcystin and Anatoxin -a Cell Count (Taxonomy)

Detection

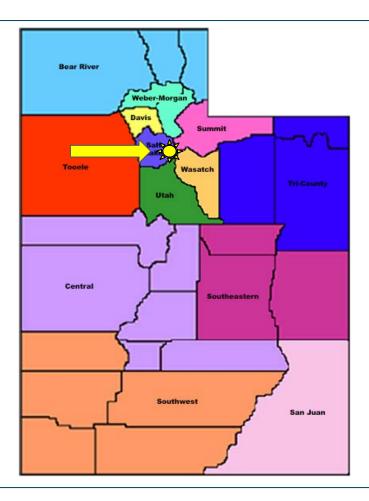
Inform LHD

Present data collected along with DWQ recommendation. Assist in answering site specific questions

Communication

Phone call with all stakeholders (i.e. DNR, USFS, etc.) for site specific context

Advisory


Signs

Work with LHD and partners to post signs, make sure signs get posted

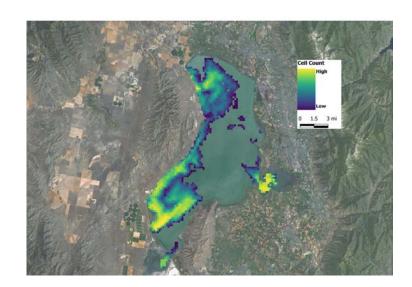
Communication

Alert stakeholders to advisory decision. Post information, maps, and narrative about advisory on habs.utah.gov

Software used for initial extraction:

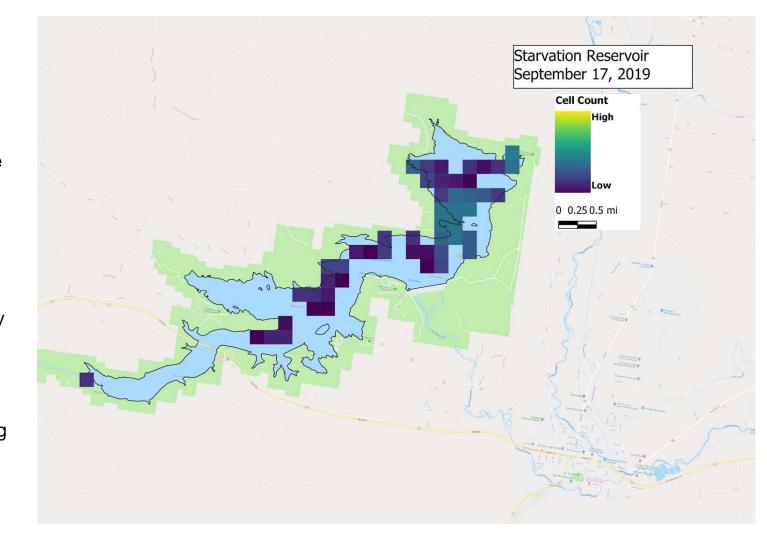
- Python
- **PyCharm** (Python IDE)
- ArcPy (ArcGIS Python site package)

Basic Steps:

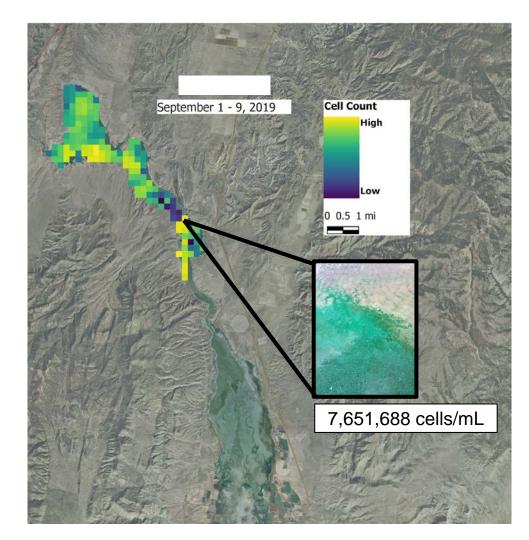

- Extract and unzip raw Tarball from CyAN directory
- 2. Extract Utah specific tiles (4 of them for UT)
- 3. Build tile mosaic for UT
- Extract pixels that have a hit for cyanobacteria detection
- 5. Using shapefile of Utah Lakes (contains name, designation, ect.), extract pixel information and merge them into Lakes shapefile

```
CYAN_WorkFlow_DailyInform_CSV.py
        day num = '343'
        days = int(day_num)
        formDate = str(datetime.datetime(year, 1, 1) + datetime.timedelta(days - 1))
        ##Download and unzip daily data##
        #https://oceancolor.gsfc.nasa.gov/CYAN/OLCI/2019/156/L2019156.L3m DAY S3A CYAN CI cyano CYAN CONUS 300m.tgz
        ur1 = "https://oceancolor.gsfc.nasa.gov/CYAN/OLCI/2019/%s/L2019%s.L3m DAY S3A CYAN CI cyano CYAN CONUS 300m.tgz" % (day num, day num)
        dl_path = r"D:\Kate\NASA_CYAN\Daily\2019\Raw_Images\L2019%s.L3m_DAY_S3A_CYAN_CI_cyano_CYAN_CONUS_300m.tgz" % (day_num
        wget.download(url, dl path)
        fname = r"D:\Kate\NASA CYAN\Daily\2019\Raw Images\L2019%s.L3m DAY S3A CYAN CI cyano CYAN CONUS 300m.tqz" % (day num
        os.chdir(r"D:\Kate\NASA CYAN\Daily\2019\Raw Images")
        def extract_file(path, to_directory='.'):
            if path.endswith('.zip'):
                opener, mode = zipfile.ZipFile, 'r'
            elif path.endswith('.tar.gz') or path.endswith('.tgz'):
                opener, mode = tarfile.open, 'r:gz'
            elif path.endswith('.tar.bz2') or path.endswith('.tbz'):
                opener, mode = tarfile.open, 'r:bz2'
                raise ValueError, "Could not extract '%s' as no appropriate extractor is found" % path
            cwd = os.getcwd()
            os.chdir(to directory)
                file = opener(path, mode)
                    file.extractall()
                    file.close()
            finally:
        extract file(dl path)
        print 'Raw TAR Data Downloaded'
```

Information output in shapefile and CSV format:


- Maximum, minimum, mean estimated cell counts for a given lake
- 2. How many cyan pixels in a lake
- 3. HAB area in square miles
- 4. Optional: designated use (high recreation, drinking water, impaired, etc)

В	С	D	Е	F	G
AU_NAME	MAX_Cyan_A	MEAN_Cyan_	MIN_Cyan_A	COUNT_Cyan	HAB_Area
Bear Lake	28840.30078	20376.35059	11912.40039	2	0.0694984
Bear River-1	2208000	659932.2075	7046.930176	137	4.7606401
Bear River-3	2535130	2092163.333	1870680	3	0.104248
Bear River Bay	2535130	977257.6521	11272	46	1.59846
Beaver River-2	2333460	1089412.9	270396	30	1.04248
Chalk Creek1-Coalville	135519	54705.51465	9289.660156	4	0.138997
Colorado River-2	346737	149992.3327	16143.59961	3	0.104248
Cottonwood Creek Lower	199526	199526	199526	1	0.0347492
Currant Creek Lower	366438	340542.75	301995	4	0.138997


Information emailed out to local health departments and other partners depending on their map preference. Some prefer satellite baselayer, some prefer roads.

- Imagery alone is not used for making recreational health advisory decisions.
- Allows UDWQ staff and partners to target sampling areas and signage and communicate scale of bloom

Example 1: Yuba Lake Sept. 2019

- High recreation State Park with no history of past HAB advisories
- Week long composite of imagery helped Park managers visually see that there was a significant bloom occurring in the northern end
 - Bloom was prone to dispersing through the water column during the day -- rangers and managers were missing peak bloom and thought advisory was initially not necessary (despite toxins and cell counts)

Date Posted:

Contact the Utah the Utah Poison Control Center if you or your animals have unexplained sickness or signs of poisoning.

(800) 222-1222

Visit habs.utah.gov for more info.

Report an algae bloom: (801) 536-4123

Example 3: Pineview Reservoir, October 2019

- 3000 acres
- High recreation in all areas of reservoir
- LHD reported bloom was isolated in specific beach areas
- Imagery helped LHD target sampling and advisory signs as the bloom moved around the reservoir

UDWQ HAB Advisory Process Detection Inform LHD Present data collected along with DWQ recommendation. Assist in **Monitoring** answering site specific questions 02 Communication Routine Phone call with all stakeholders DWQ and partners monitor (i.e. DNR, USFS, etc.) for site prioritized lakes on a monthly specific context hasis Response DWQ and partners monitor **Advisory** lakes on advisory on a weekly Signs basis Work with LHD and partners to **Data Collected** 03 01 post signs, make sure signs Microcystin and Anatoxin -a get posted Cell Count (Taxonomy) Communication Alert stakeholders to advisory decision Post information, maps, and narrative about advisory on habs.utah.gov

