

Landscape Influences on Cyanobacteria Harmful Algal Blooms

Wilson Salls¹,

John liames², Megan Mehaffey², Maliha Nash², Jay Christensen², Blake Schaeffer²

Great Plains and Midwest Harmful Algal Blooms Conference

February 5, 2020

¹Oak Ridge Institute for Science and Education (ORISE) Research Fellow at EPA

²Environmental Protection Agency, Office of Research and Development

Background

- HAB factors why do we care?
 - causes
 - mitigation
- We know underlying factors
 - nutrients

• temperature

• light

- stagnant water
- How does landscape determine these?

Background

- HAB factors why do we care?
 - causes
 - mitigation
- We know underlying factors
 - nutrients
- temperature

light

- stagnant water
- How does landscape determine these?
- Objective: develop a model to reveal major landscape factors

Study Area

Study Area

Modeling to rank factors

88 factors considered:

- Climate
- Nutrient application
- Landscape hydraulics
- Soil
- Lake morphology
- Land class
 - entire watershed
 - lake and stream buffers

Results

Results

Of top 20 factors:

• 14 agriculture

- ↑ cyanos
- 4 of top 8: nutrient or manure application
- ◆ 4 natural vegetation
 ↓ cyanos
- 5 buffer zone

Ecozones

Plains Ecozone

Plains Ecozone

Of top 20 factors:

• 9 agriculture

- 1 cyanos
- 3 natural vegetation
- ↓ cyanos

• 4 buffer zone

Wooded Ecozone

Wooded Ecozone

Of top 20 factors:

• 1 agriculture

- 1 cyanos
- 2 natural vegetation
- ↓ cyanos
- 10 naturally occurring
- \uparrow \downarrow

• 4 buffer zone

Conclusions

- Agricultural inputs and runoff
- Natural vegetation
 - placement within watershed
- Factors vary

Acknowledgements

- CyAN and EPA Collaborators
- NASA Ocean Biology and Biogeochemistry Program/Applied Sciences Program (proposal 14-SMDUNSOL14- 0001)
- NOAA
- U.S. Geological Survey Toxic Substances Hydrology Program

Thank you! Questions?

Full Study Area

Rank	Variable
1	% artificially drained
2	Soil erodibility of ag. land
3	% area crop
4	% area total forest
5	Sub-surface N-NH3 app. rate
6	Surface mineral Papp. rate
7	Surface N-NH3 app. rate
8	Manure app. rate
9	% of ag. untreated by sink
10	Soil clay %
11	% area ag., row crops in 90 m stream buffer
12	% area wetland in 90 m lake buffer
13	% of sinks that treat ag.
14	% area deciduous forest
15	Runoff
16	% area hay
17	% area ag., hay in 90 m stream buffer
18	% area shrub in 90 m lake buffer
19	% area ag., row crops in 90 m lake buffer
20	Surface N-NO3 app. rate

Agriculture
Vegetation

Plains Ecozone

Vegetation

Development

Rank	Variable
1	% artificially drained
2	Manure app. rate
3	% area crop
4	Surface N-NH3 app. rate
5	% of ag. untreated by sink
6	Soil erodibility of ag. land
7	Runoff
8	Soil clay %
9	Sub-surface N-NH3 app. rate
10	Longitude
11	% area shrub/scrub
12	% area ag., row crops in 90 m stream buffer
13	% area shrub in 90 m lake buffer
14	% area wetland in 90 m lake buffer
15	avg. dist. of ag. to stream through buffers
16	Water table depth
17	% area herbaceous in 90 m stream buffer
18	Road density
19	% area deciduous forest
20	Surface mineral P app. rate

Wooded Ecozone

Vegetation

Development

Rank	Variable
1	Soil erodibility
2	Precip., max. 72-hour period
3	Organic matter content
4	% area wetland
5	Water table depth
6	% area shrub/scrub
7	Soil clay %
8	Mean Lake Depth
9	Road-stream intersection density
10	Housing unit density
11	Population density
12	Precip., total seasonal
13	Ratio of lakeshed to lake area
14	% area ag., hay in 90 m lake buffer
15	Lake Volume
16	% lithological N content
17	% area developed: low + medium intensity in 90 m lake buffer
18	% area evergreen forest in 90 m lake buffer
19	% area deciduous forest in 90 m lake buffer
20	% area deciduous forest