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Nutrient issues persist in the UMRB 
Excess nutrients (nitrogen, phosphorus) 
eutrophication and harmful algal blooms along the 
freshwater to marine continuum 

Source: T Marsee, Michigan Sea Grant Source: 2011 Algal Bloom Lake Erie Credit: MERIS/NASA; processed by NOAA/NOS/NCCOS 
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Landscape surface water storage as a solution 

Existing or 
restorable 

surface water 
storage features 

Paerl et al. (2016) Harmful Algae 
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(a) mporary 
e Capacity 

(b) Potential 
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Storage Capacity 

Non-floodplain wetlands (NFWs): primary surface water
storage features 
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CN Jones et al. (2018) Hydrological Processes 

Source: Thinkstock.com 



    

   

Cum u 1.ative N, P 
effects from NI FWs --+ Surface-Water Flowpath 

----- +- Groundwater Flowpath 

Inputs N, P 
(atmospheric deposition) 

Removal 
(e.g. denitrific.ation) 

In . , 
l utputs , P 

__ (overland to 
(runoff) 

_/ 
llnputs N, P 
( groundwater) 

Outputs N, IP 
(groundwater) 

surface waters) 

Conceptual model: NFWs for mediating nutrients at watershed scales 

Golden et al. 2019, Environmental Science & Technology 5 



  

     
      

  

      
     

Landscape water storage and watershed nutrient 
conditions 

• Limited understanding of how landscape water storage features (wetlands, 
floodplains) interact with nutrient sources to affect stream nutrient loading, 
particularly in large river basins 

• Research Question: How do wetlands, as landscape water storage features, 
mediate water quality across a range of land use and environmental gradients? 
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A first glimpse: 

Relationships among 
riverine nitrate, 
wetland cover (%),
and crop cover (%) 
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Our data agree! 

(A teaser for the 
forthcoming slides…) 
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EXPLANATION 

Yields, 
in killogrnms 
per square kilometer 
peryear 
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Upper Mississippi River Basin (UMRB) 
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Mississippi River Basin (UMRB is outlined in solid black) 

TN 

USGS Fact Sheet 105–03 (2003) 

UMRB contributes more TN and TP to the Gulf 
of Mexico than other portions of the Mississippi 
River Basin. 



Annual average [TN], [TP] 
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Legend 

"'- Gages with >25 TN Records (1995-2007) 

Gages with TN Records (1995-2007) 0 
D UMRB Watersheds 

D UMRB Boundary 

Kilometers 
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Legend 

"'- Gages with >25 TP Records (1995-2007) 

Gages with TP Records (1995-2007) 

0 UMRB Watersheds 
0 

D UMRB Boundary 

Kilometers 
75 150 300 

EXPLANATORY RESPONSE VARIABLES 
VARIABLES 

Geospatial Data 
e.g., land cover, 
agriculture and 

atmospheric N and P 
inputs 

[TN] [TP] 

Climate Data 
e.g., precipitation 

Wetland and Wetland 
Flowpath Metrics 
e.g., area & type, 

flowpath frequency & 
magnitude 

123 gages >= 
88 gages >= 25 records 
25 records 32 were used 

Mengistu et al. (In prep) 



   

 

 
  

 
     

  

  

  

0 We tl and f l o wpath me tr ics to ne are st sur face wate r 
NFWs 

Fl owpath 

Fro m Ra i n s et al . (2016) H y drol ogi c al Proc esses 

• Type – Riparian (bidirectional), 
non-riparian surface, non-riparian 
subsurface 

• Magnitude – Very fast, fast, 
moderate, slow, very slow travel 
times 

• F req uen cy – H igh , m oder at e, l ow 

• I mp act – Non e, l ow, h igh 

Leibowitz et al. (Submitted) 11 



 
      

   

   
  

      
     

  

Summary of Results 
• Agriculture is statistically related to elevated TN and TP in UMRB watersheds. 

• Wetland flowpath metrics improved the prediction of TN and TP concentrations. 

• Wetlands and their water flow path-associated characteristics revealed mediating 
roles to reduce TN and TP concentration in streams. 

• Wetland transport metrics related to attenuating flows along the wetland to stream 
flowpath (e.g., high porosity, Manning’s N) and variables such as the density of 
wetlands were related to lower TN and TP concentrations. 
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Next, we are… 

…Integrating NFWs into large-scale process-based watershed 
models for future water quality projections 

What does this mean, exactly? We’re considering NFWs and 
surface depressions in models to predict flood, drought, and 
nutrient conditions across watersheds. This typically does not 
happen. 
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Landscape and Floodplain Storage 
Improved accuracy with spatially explicit inclusion of landscape water storage capacity 

High-resolution SWAT model 
10m DEM and Surface storage: Spatially explicit inclusion in~ 16,000 river reaches 

Water body inventories area and volume a modified SWAT model ~ 0.5 million sq km basin 

Floodplain 

~ nearly 0.9 million modeled surface depressions 
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impacts on nutrients 
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• Streamflow 
calibration 

A. Streamflow and nutriert 
calibration 

Streamflowand nutriert 
veri ficati m 

Cl 

Integrating NFWs into watershed models: 

Cedar River Watershed 
Iowa, US 

16,000 km2 

SWAT Model 

Golden et al. 2019, Environmental Science & Technology 
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a) Model w1 hou non-floodp ains we lands 
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a) Model without non-floodplains wetlands b) Model with non-floodplains wetlands 

Average annual NO3-N 
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Golden et al. 2019, Environmental Science & Technology 17 



       
       

  

      
         

      

Take-home 

• Water storage features, and specifically NFWs, show promise for 
mediating watershed-scale aquatic nutrient conditions but more 
research is needed 

• Integrating NFWs into process-based watershed models is critical 
for getting the “best” water quality projections for climate 
variations, land cover change, and other future management 
scenarios 
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What’s next? 
• Asking questions such as: Where in the UMRB can nutrients be most efficiently 

processed and removed for decreased N and P loading to surface waters? 

• Applying data mining approaches to wetland flowpath metrics with TN and TP as 
response variables 

• Linking SWAT floodplain/wetland and hydrological modeling to nutrients across the 
river basin to do this 

• Begin transferring what we learned to other large river basins 

• Thoughts and feedback welcome! golden.heather@epa.gov; lane.charles@epa.gov; 
christensen.jay@epa.gov 
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