2020 – 1st Quarter Report

Support for Conducting Systems & Performance Audits of Clean Air Status and Trends Network (CASTNET) Sites and National Atmospheric Deposition Program (NADP) Monitoring Stations - II

EPA Contract No. EP-W-18-005

Prepared for:

U. S. Environmental Protection Agency

Prepared by:

4577E NW 6th St Ext. Gainesville, FL 32609

Report Submitted
April 2020

Table of Contents

1.0 CAS	STNET Quarterly Report	1
1.1	Introduction	1
1.2	Project Objectives	2
1.3	CASTNET Sites Visited First Quarter 2020	4
1.4	Audit Results	5
2.0 NAD	DP Quarterly Report	6
2.1	Introduction	6
2.2	Project Objectives	6
2.3	NADP Sites Visited First Quarter 2020	6
2.4	Survey Results	7
Appendia Appendia	ix B CASTNET Site Spot Report Forms	
List of Ta	ables	
Table 1.	Performance Audit Challenge and Acceptance Criteria	2
Table 2.	Site Audit Visits	4
Table 3.	TTP Pollutant PE Visits	4
Table 4.	Sites Surveyed – First Quarter 2020.	7

List of Acronyms and Abbreviations

% diff percent difference

A/D analog to digital converter
ARS Air Resource Specialists, Inc.

ASTM American Society for Testing and Materials

BLM-WSO Bureau of Land Management – Wyoming State Office

CASTNET Clean Air Status and Trends Network
CMAQ Community Multiscale Air Quality

DAS data acquisition system

DC direct current

deg degree

DVM digital voltmeter

ECCC Environment and Climate Change Canada

EEMS Environmental, Engineering & Measurement Services, Inc.

EPA U.S. Environmental Protection Agency
ESC Environmental Systems Corporation

FSA Field Systems Audit FSAD Field Site Audit Database

GPS geographical positioning system

lpm liters per minute
MLM Multilayer Model
m/s meters per second

mv millivolt

NIST National Institute of Standards and Technology NOAA National Oceanic and Atmospheric Administration

NPS National Park Service
PE Performance Evaluation

QAPP Quality Assurance Project Plan SOP standard operating procedure

TDEP Total Deposition

TEI Thermo Environmental Instruments
USNO United States Naval Observatory

V volts

WRR World Radiation Reference

1.0 CASTNET Quarterly Report

1.1 Introduction

The Clean Air Status and Trends Network (CASTNET) is a national air monitoring program established in 1988 by the US EPA. Nearly all CASTNET sites measures weekly concentrations of acidic gases and particles to provide accountability for EPA's emission reduction programs. Most sites measure ground-level ozone as well as supplemental measurements such as meteorology and/or other trace gas concentrations.

Ambient concentrations are used to estimate deposition rates of the various pollutants with the objective of determining relationships between emissions, air quality, deposition, and ecological effects. In conjunction with other national monitoring networks, CASTNET data are used to determine the effectiveness of national emissions control programs and to assess temporal trends and spatial deposition patterns in atmospheric pollutants. CASTNET data are also used for long-range transport model evaluations and critical loads research.

Historically, CASTNET pollutant flux measurements have been reported as the aggregate product of weekly measured concentrations and model-estimated deposition velocities. The Multi-layer Model (MLM) was used to derive deposition velocity estimates from on-site meteorological parameters, land use types, and site characteristics. In 2011, EPA discontinued meteorological measurements at most EPA-sponsored CASTNET sites.

Currently, CASTNET pollutant flux estimates are calculated as the aggregate product of weekly measured chemical concentrations and gridded model-estimated deposition velocities. Total deposition is assessed using the NADP's Total Deposition Hybrid Method (TDEP; EPA, 2015c; Schwede and Lear, 2014), which combines data from established ambient monitoring networks and chemical-transport models. To estimate dry deposition, ambient measurement data from CASTNET and other networks were merged with dry deposition rates and flux output from the Community Multiscale Air Quality (CMAQ) modeling system.

Since 2011 nearly all CASTNET ozone monitors have adhered to the requirements for State or Local Air Monitoring Stations (SLAMS) as specified by the EPA in 40 CFR Part 58. As such, the ozone data collected must meet the requirements in 40 CFR Part 58 Appendix A, which defines the quality assurance (QA) requirements for gaseous pollutant ambient air monitoring. The audits performed by EEMS under this contract fulfilled the requirement for annual performance evaluation audits of pollutant monitors in the network. The QA requirements can be found at: https://www.epa.gov/amtic/regulations-guidance-and-monitoring-plans

Currently 84 sites at 82 distinct locations measure ground-level ozone concentrations. Annual performance evaluation (PE), ozone audit data are submitted to the Air Quality System (AQS) database.

As of December 2019, the network is comprised of 97 active rural sampling sites across the United States and Canada, cooperatively operated by the Environmental Protection Agency (EPA), the National Park Service (NPS), Bureau of Land Management – Wyoming State Office (BLM-WSO) and several independent partners. Wood Environment and Infrastructure Solutions (Wood) is responsible for operating the EPA sponsored sites, and Air Resource Specialists, Inc. (ARS) is responsible for operating the NPS and BLM-WSO sponsored sites

1.2 Project Objectives

The objectives of this project are to establish an independent and unbiased program of performance and systems audits for all CASTNET sampling sites. Ongoing Quality Assurance (QA) programs are an essential part of any long-term monitoring network.

Performance audits verify that all reported variables are consistent with the accuracy goals as defined in the CASTNET Quality Assurance Project Plan (QAPP). The parameter specific accuracy goals are presented in Table 1.

Table 1. Performance Audit Challenge and Acceptance Criteria

Sensor	Parameter	Audit Challenge	Acceptance Criteria	
Precipitation	Response	10 manual tips	1 DAS count per tip	
Precipitation	Accuracy	2 introductions of known amounts of water	$\leq \pm 10.0\%$ of input amount	
Relative Humidity	Accuracy	Compared to reference instrument or standard solution	≤±10.0% RH	
Solar Radiation	Accuracy 1		≤±10.0% of daytime average	
Surface Wetness	Response	Distilled water spray mist	Positive response	
Surface Wetness	Sensitivity	1% decade resistance	N/A	
Temperature	Accuracy	Comparison to 3 NIST measured baths (~ 0° C, ambient, ~ full-scale)	≤± 0.5° C	
Temperature Accuracy Comparison to station temperature sensor		≤± 0.50° C		

Sensor Parameter		Audit Challenge	Acceptance Criteria
Shelter Temperature	Accuracy	Comparison to station temperature sensor	≤ ± 2.0° C
Wind Direction	Orientation Accuracy	Parallel to alignment rod/crossarm, or sighted to distant point	≤±5° from degrees true
Wind Direction	Linearity	Eight cardinal points on test fixture	≤±5° mean absolute error
Wind Direction	Response Threshold	Starting torque tested with torque gauge	< 10 g-cm Climatronics; < 20 g-cm R.M. Young
Wind Speed	Accuracy	Shaft rotational speed generated and measured with certified synchronous motor	$\leq \pm 0.5$ mps below 5.0 mps input; $\leq \pm 5.0\%$ of input at or above 5.0 mps
Wind Speed	Starting Threshold	Starting torque tested with torque gauge	< 0.5 g-cm
Mass Flow Controller	Flow Rate	Comparison with Primary Standard	≤ ± 5.0% of designated rate
Ozone	Slope	Linear regression of multi-	$0.9000 \le m \le 1.1000$
Ozone	Intercept	point test gas concentration as	-5.0 ppb ≤ b ≤ 5.0 ppb
Ozone	Ozone Correlation Coefficient measured with a certified transfer standard		0.9950 ≤ r
Ozone	Percent Comparison with Level 2 Difference standard concentration		$\leq \pm 15.1\%$ of test gas concentration and $\leq \pm 0.003$ ppm actual difference
DAS	Accuracy	Comparison with certified standard	≤ ± 0.003 VDC

Performance audits are conducted using standards that are traceable to the National Institute of Standards and Technology (NIST), or another authoritative organization, at least annually.

Site systems audits are intended to provide a qualitative appraisal of the total measurement system. Site planning, organization, and operation are evaluated to ensure that good Quality Assurance/Quality Control (QA/QC) practices are being applied. At a minimum the following audit issues were addressed at each site systems audit:

- Site locations and configurations match those provided in the CASTNET QAPP.
- Meteorological instruments are in good physical and operational condition and are sited to meet EPA ambient monitoring guidelines (EPA-600/4-82-060).
- Sites are accessible, orderly, and if applicable, compliant with OSHA safety standards.
- Sampling lines are free of leaks, kinks, visible contamination, weathering, and moisture.
- Site shelters provide adequate temperature control.

• All ambient air quality instruments are functional, being operated in the appropriate range, and the zero air supply desiccant is unsaturated.

- All instruments are in current calibration.
- Site documentation (maintenance schedules, on-site SOPs, etc.) is current and log book records are complete.
- All maintenance and on-site SOPs are performed on schedule.
- Corrective actions are documented and appropriate for required maintenance/repair activity.
- Site operators demonstrate an adequate knowledge and ability to perform required site activities, including documentation and maintenance activities.

1.3 CASTNET Sites Visited First Quarter 2020

This report consists of the systems and performance, and other audit results from the CASTNET sites visited during the first quarter (January through March) of 2020. The site locations, visit dates, and parameters audited are included in Table 2.

Table 2. Site Audit Visits

Side ID	Audit Type	Sponsor	Site Visit Date	Station Name		
SUM156	SUM156 Flow		3/3/2020	Sumatra		
SUM156	FSA	EPA	3/3/2020	Sumatra		
SUM156	SUM156 O ₃ PE		3/3/2020	Sumatra		

In addition to the sites listed in Table 2 that were visited for complete audits, the sites listed in Table 3 were visited to conduct Through-The-Probe (TTP) Performance Evaluations of gaseous pollutant monitors as indicated in the table.

Table 3. TTP Pollutant PE Visits

Side ID	PE Audit Type	<u>Sponsor</u>	Site Visit Date	Station Name		
ALC188	O ₃ PE	EPA	2/17/2020	Alabama-Coushatta		
BBE401	O ₃ PE	NPS	2/19/2020	Big Bend National Park – K-Bar		
PAL190	O ₃ PE	EPA	2/20/2020	Palo Duro		

1.4 Audit Results

The observations and results of the systems and performance audits are included in Appendix A, *CASTNET Audit Report Forms* by site, arranged by audit date. Photographs of site conditions are included within each system report where necessary. Copies of the spot reports that were sent following the audit of each site are included as Appendix B, *CASTNET Site Spot Report Forms*. The Ozone PE results and observations are included in Appendix C, *CASTNET Ozone Performance Evaluation Forms*.

Results of the PE audits of the gaseous pollutant monitors other than ozone were submitted immediately following the PE and are not included in this report. All TTP PE results of gaseous pollutant monitors are uploaded to AQS and are available there. All audit data and reports are available from the EPA CASTNET website.

2.0 NADP Quarterly Report

2.1 Introduction

The National Atmospheric Deposition Program (NADP) operates two precipitation chemistry networks and two atmospheric concentration networks. The National Trends Network (NTN) has been measuring acidic precipitation since 1978. The network currently has more than 250 sites. The precipitation event-based Atmospheric Integrated Research Monitoring Network (AIRMoN) began operation in 1992, and as of July 2019 is no longer in operation. The Mercury Deposition Network (MDN) measures total mercury in precipitation samples from approximately 90 stations. The MDN began operation in 1996 and includes sites throughout the US and Canada. The Atmospheric Mercury Network (AMNet) and the Ammonia Monitoring Network (AMoN) measure ambient concentrations of mercury and ammonia, respectively.

The NADP and other long-term monitoring networks provide critical information to the EPA regarding evaluating the effectiveness of emission reduction control programs from the power industry.

The NADP Program Office (PO) operates and administers the two precipitation chemistry networks (NTN and MDN), two atmospheric concentration networks (AMNet and AMoN), and two analytical laboratories located at the Wisconsin State Lab of Hygiene (WSLH) at the University of Wisconsin in Madison. The Mercury Analytical Laboratory (HAL) and the network equipment depot (NED) have been relocated to the WSLH.

2.2 Project Objectives

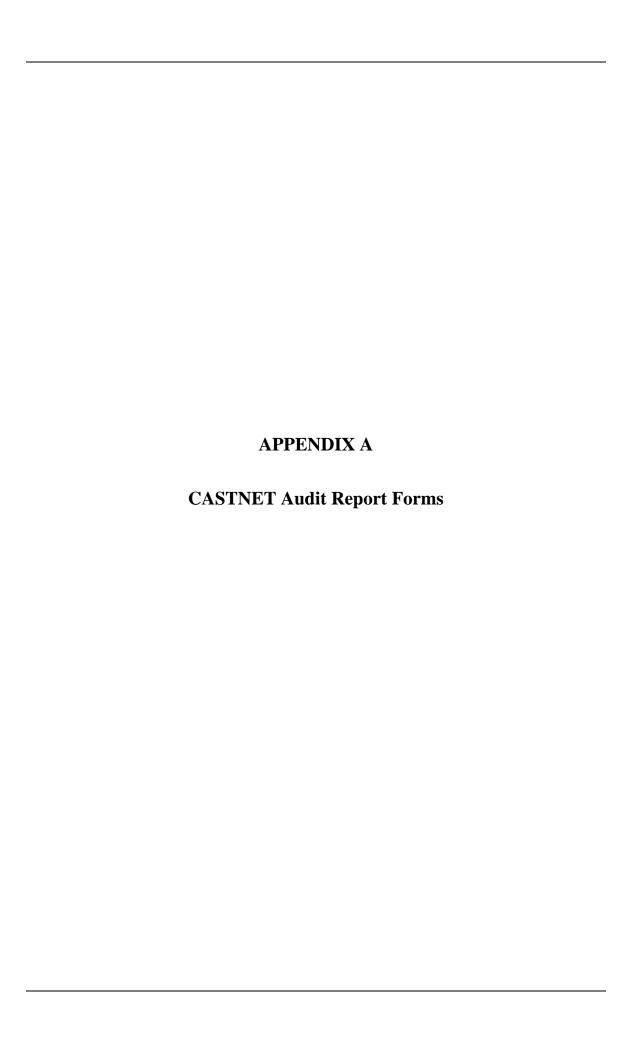
The objective of this project is to perform independent and unbiased evaluations of the sites along with its operations. These evaluations provide quality assurance pertaining to siting, sample collection and handling, equipment operation and maintenance, record keeping and field laboratory procedures.

More specifically, the surveys determine and report findings based on an established methodology consisting of completing a site questionnaire, testing the equipment and documenting with photographs the location, siting criteria, existing equipment, and any issues encountered that require such documentation.

2.3 NADP Sites Visited First Quarter 2020

This report presents the NADP sites surveyed during the first quarter (January through March) of 2020. The station names and dates of the surveys are presented in Table 4.

Table 4. Sites Surveyed - First Quarter 2020


Side ID	Side ID Network		Station Name
TX41	AMoN	AMoN 2/17/2020 Alabama-Coushatta	
TX43	AMoN	2/20/2020	Canonceta
FL23	NTN & AMoN	3/3/2020 Sumatra	
FL14	FL14 NTN 3/4/2020 Quincy		Quincy
CO13	NTN	NTN 3/10/2020 Fort Collins	

2.4 Survey Results

Site survey results are entered into a relational database. The database in turn generates Site Spot Reports which are distributed among the interested parties as soon as all the site data has been entered. Database tables with all the data collected and reviewed are then sent to the NADP Program Office and to the U.S. EPA Project Officers.

Other items gathered during the surveys (i.e., photographs, Belfort charts, etc.) are uploaded to the EPA Box account where the NADP PO and the U.S. EPA POs can access them and download them as needed.

Given the volume of data generated, and the fact that data is distributed and/or is available via the internet, no survey results are included in this report.

Site Inventory by Site Visit

Site V	isit Date	Parameter	Mfg	Owner ID	Model Number	Serial Number				
SUM156-Eric Hebert-03/03/2020										
1	3/3/2020	Computer	Dell	07013	Inspiron 15	Unknown				
2	3/3/2020	DAS	Campbell	000335	CR3000	2114				
3	3/3/2020	Elevation	Elevation	None	1	None				
4	3/3/2020	Filter pack flow pump	Thomas	00235	107CA18	00688001783				
5	3/3/2020	Flow Rate	Apex	000685	AXMC105LPMDPCV	illegible				
6	3/3/2020	Infrastructure	Infrastructure	none	none	none				
7	3/3/2020	Modem	Campbell	06353	COM220	1520				
8	3/3/2020	Ozone	ThermoElectron Inc	000619	49i A1NAA	1009241791				
9	3/3/2020	Ozone Standard	ThermoElectron Inc	000511	49i A3NAA	0922236888				
10	3/3/2020	Sample Tower	Aluma Tower	03542	Α	none				
11	3/3/2020	Shelter Temperature	Campbell	none	107-L	none				
12	3/3/2020	Siting Criteria	Siting Criteria	None	1	None				
13	3/3/2020	Temperature	RM Young	05043	41342VO	9639				
14	3/3/2020	Zero air pump	Werther International	06882	C 70/4	000815255				

DAS Data Form 0.03 **DAS Time Max Error: Serial Number** Site **Technician** Site Visit Date Parameter Use Desc. Mfg Campbell 2114 SUM156 Eric Hebert 03/03/2020 DAS Primary Das Date: 3 /3 /2020 **Audit Date** 3 /3 /2020 Datel **Parameter** DAS Mfg 09:15:02 09:15:00 **Das Time: Audit Time** 15510194 Tfer Desc. Source generator (D **Serial Number** Das Day: 63 **Audit Day** 63 Tfer ID 01320 **Low Channel: High Channel: Avg Diff: Max Diff: Avg Diff: Max Diff:** 1.00000 0.00000 Slope Intercept 0.0001 0.0002 0.0001 0.0002 2/13/2012 1.00000 **Cert Date** CorrCoff Fluke Parameter DAS Mfg **Serial Number** 95740135 Tfer Desc. DVM 01311 Tfer ID 1.00000 0.00000 **Slope** Intercept 1/28/2020 1.00000 **Cert Date** CorrCoff Channel Input **DVM** Output DAS Output InputUnit OutputUnit Difference 7 V 0.0000 -0.0001 0.0000 0.0001 7 0.0998 0.0999 V V 0.0001 0.1000 7 0.3000 0.2997 0.2996 V V -0.0001 7 V V 0.5000 0.4995 0.4995 0.0000 V V 7 0.7000 0.6995 0.6993 -0.00027 V V 0.9000 0.8993 0.8991 -0.0002 7 1.0000 0.9992 0.9990 V V -0.0002

Flow Data Form **Technician Owner ID** Mfg **Serial Number Tag Site** Site Visit Date Parameter SUM156 03/03/2020 000685 Apex Eric Hebert Flow Rate illegible Mfg BIOS Parameter Flow Rate 131818 Tfer Desc. BIOS 220-H **Serial Number** 01417 Tfer ID **Slope** 1.00032 **Intercept** -0.02240 2/17/2020 0.99997 CorrCoff **Cert Date** 0 **DAS 2: DAS 1: Cal Factor Zero** 1 A Avg % Diff: A Max % Dif A Avg % Diff A Max % Dif **Cal Factor Full Scale** 0.87% 1.96% 1.65 **Rotometer Reading:** Test type Input l/m Input Corr MfcDisp. OutputSignal Output S E InputUnit OutputSignall PctDifference Desc. primary pump off 0.000 0.0000.00 0.0000.00 1/m1/m leak check 0.01 0.000 0.02 1/m0.000 0.000 1/mprimary test pt 1 1.487 1.510 1.49 0.000 1.50 1/m1/m -0.66% primary 1.500 1.49 0.000 1.50 1/m0.00% primary test pt 2 1.478 1/m 1.49 test pt 3 1.505 1.530 0.000 1.50 1/m1/m -1.96% primary Sensor Component Leak Test Condition **Status** pass **Condition** Good **Status** pass **Sensor Component** Tubing Condition Sensor Component Filter Position **Condition** Good Status pass Sensor Component Rotometer Condition Status pass Condition Clean and dry Sensor Component Moisture Present **Condition** See comments Status pass Sensor Component Filter Distance Condition 4.5 cm Status pass

Condition 2.5 cm

Condition 315 deg

Condition

Sensor Component Filter Depth

Sensor Component Filter Azimuth

Sensor Component System Memo

Status pass

Status pass

Status pass

Ozone Data Form

Mfg		Serial Numb	er Tag Site		Te	chnician	Site Visit Date	Parame	eter	Owner ID
ThermoElec	tron Inc	1009241791	SUM15	56	Er	ic Hebert	03/03/2020	Ozone		000619
Slope: Intercept CorrCoff:	-		ercept	0.00000 0.00000 0.00000		Mfg Serial Number Tfer ID	ThermoElectron 1180030022 01114			ozone Ozone primary stan
DAS 1:		D	AS 2:			Slope	0.9995	50 Inte i	rcent	0.29010
A Avg % D	oiff: A M	Iax % Dif A	Avg %Diff A	Max %	b Dif	Slope			_	
	0%	0.0%				Cert Date	1/14/202	20 Cori	·Coff	0.99999
UseDescr	iption	ConcGroup	Tfer Raw	Tfe	r Corr	Site	Site Unit	RelPer	Dif	AbsDif
prima		1	0.38	C	0.08	-0.67	ppb			-0.75
prima	•	2	16.05		5.76	15.43	ppb			-0.33
prima		3	35.25		4.97	34.69	ppb		-0.8	
prima		4	69.33		9.07	70.21	ppb		1.64	
prima	•	5	109.49		9.25	112.40	ppb		2.84	
-		nt Audit Press				on 760.4 mmHg	PPO	Status		
		nt Sample Tra			Conditi	on Good		Status	pass	
	_		stance from roa			on True		Status		
	_	nt Inlet Filter (on Clean		Status		
	_									
	_		e unobstructed re			on False		Status		
	_		e >10m or belov			on False		Status		
Sensor C	ompone	nt Offset				on 0.000		Status	pass	
Sensor C	ompone	nt Span		(Conditi	on 1.048		Status	pass	
Sensor C	ompone	nt Zero Voltag	e	(Conditi	on N/A		Status	pass	
Sensor C	ompone	nt Fullscale Vo	oltage		Conditi	on N/A		Status	pass	
Sensor C	ompone	nt Cell A Freq	•		Conditi	on 96.4 kHz		Status	pass	
Sensor C	ompone	nt Cell A Nois	е		Conditi	on 0.9 ppb		Status	pass	
Sensor C	ompone	nt Cell A Flow			Conditi	on 0.72 lpm		Status	pass	
Sensor C	ompone	nt Cell A Pres	sure		Conditi	on 724.3 mmHg		Status	pass	
Sensor C	ompone	nt Cell A Tmp			Conditi	on 34.9 C		Status	pass	
Sensor C	ompone	nt Cell B Freq			Conditi	on 98.6 kHz		Status	pass	
Sensor C	ompone	nt Cell B Nois	e		Conditi	on 1.0 ppb		Status	pass	
Sensor C	ompone	nt Cell B Flow			Conditi	0.73 lpm		Status	pass	
Sensor C	ompone	nt Cell B Pres	sure		Conditi	on 723.7 mmHg		Status		
Sensor C	ompone	nt Line Loss			Conditi	on Not tested		Status		
	•	nt System Me	mo		Conditi			Status		
	Pone				, cardivi					

Temperature Data Form Serial Number Tag Site Technician Site Visit Date Parameter **Owner ID** Mfg 9639 SUM156 Eric Hebert 03/03/2020 Temperature 05043 RM Young Mfg Extech Parameter Temperature Tfer Desc. RTD H232734 **Serial Number** 01227 Tfer ID **Slope** 1.00797 **Intercept** 0.12950 **DAS 1: DAS 2:** 2/14/2020 1.00000 Abs Avg Err Abs Max Err Abs Avg Err Abs Max Err **Cert Date** CorrCoff 0.21 0.26 UseDesc. InputTmpRaw InputTmpCorr. OutputTmpSignal OutputSignalEng OSE Unit Difference Test type primary Temp Low Range 0.28 0.15 0.000 0.4 \mathbf{C} 0.24 C Temp Mid Range 27.00 26.66 0.000 26.5 -0.14 primary C primary Temp High Range 48.27 47.76 0.000 47.5 -0.26 Condition Moderately clean Status pass Sensor Component Shield **Condition** N/A Status pass **Sensor Component** Blower **Sensor Component** Properly Sited **Condition** Properly sited **Status** pass Sensor Component System Memo Status pass **Condition**

Shelter Temperature Data For Mfg **Serial Number Tag Site Technician** Site Visit Date Parameter **Owner ID** SUM156 03/03/2020 Shelter Temperature Campbell none Eric Hebert none **DAS 1: DAS 2:** Mfg Extech Parameter Shelter Temperature Abs Avg Err Abs Max Err Abs Avg Err **Abs Max Err** Tfer Desc. RTD H232734 **Serial Number** 0.21 0.33 01227 **Tfer ID** 1.00797 0.12950 **Slope** Intercept 2/14/2020 1.00000 **Cert Date** CorrCoff

UseDesc.	Test type	InputTmpRaw	InputTmpCorr.	OutputTmpSignal	OutputSignalEng	OSE Unit	Difference
primary	Temp Mid Range	25.29	24.96	0.000	25.1	C	0.18
primary	Temp Mid Range	25.21	24.88	0.000	25.0	C	0.12
primary	Temp Mid Range	25.99	25.66	0.000	25.3	C	-0.33
Sensor Cor	nponent System Memo)	Condition	Status pass			

Infrastructure Data For

Site ID	SUM156	Technician	Eric Hebert	Site Visit Date	03/03/2020

Shelter Make	Shelter Model	Shelter Size
Ekto	8810	640 cuft

Sensor Component	Sample Tower Type	Condition	Type A	Status	pass
Sensor Component	Conduit	Condition	N/A	Status	pass
Sensor Component	Met Tower	Condition	N/A	Status	pass
Sensor Component	Moisture Trap	Condition	Installed	Status	pass
Sensor Component	Power Cables	Condition	Good	Status	pass
Sensor Component	Shelter Temp Control	Condition	Functioning	Status	pass
Sensor Component	Rotometer	Condition	Installed	Status	pass
Sensor Component	Sample Tower	Condition	Fair	Status	pass
Sensor Component	Shelter Condition	Condition	Good	Status	pass
Sensor Component	Shelter Door	Condition	Good	Status	pass
Sensor Component	Shelter Roof	Condition	Good	Status	pass
Sensor Component	Shelter Floor	Condition	Good	Status	pass
Sensor Component	Shelter walls	Condition	Good	Status	pass
Sensor Component	Excessive mold present	Condition	No	Status	pass
Sensor Component	Signal Cable	Condition	Good	Status	pass
Sensor Component	Tubing Type	Condition	3/8 teflon	Status	pass
Sensor Component	Sample Train	Condition	Good	Status	pass
Sensor Component	System Memo	Condition		Status	pass

Site Visit Comments

Parameter	Site	Technician	S.V. Date	Component	Mfg	Serial No.	Hazard	Problem
Flow Rate	SUM156	Eric Hebert	03/03/2020	Moisture Present	Apex	4171		
				2				

The filter sample tubing has drops of moisture in low sections outside the shelter.

Field Systems Comments

1 Parameter: DasComments

The meteorological tower has been removed. The temperature sensor is mounted in a naturally aspirated shield on the sample tower which is not grounded.

2 Parameter: SitingCriteriaCom

The site is surrounded by pine trees on land managed by the forest service. One tree is within 5 meters and is 10 meters tall. A few trees are now >17 meters tall and within 17 meters of the sample tower. Most trees are 30 meters from the sample tower.

3 Parameter: ShelterCleanNotes

The shelter is clean and very well organized.. The site operator does an excellent job of organizing and maintaining the site.

4 Parameter: PollAnalyzerCom

There is water in the flow tubing outside the shelter. Trees to the north and east violate the siting criteria for ozone.

5 Parameter: MetOpMaintCom

The temperature sensor shield is moderately dirty.

Field Systems Data Form F-02058-1500-S1-rev002 Site Visit Date 03/03/2020 SUM156 Technician Eric Hebert Site ID Sumatra **USGS Map** EPA/USFS Site Sponsor (agency) Map Scale USFS/private **Operating Group Map Date** 12-077-9991 AQS# R.M. Young **Meteorological Type** Air Pollutant Analyzer Ozone **QAPP** Latitude dry, wet **Deposition Measurement QAPP** Longitude **Land Use** wetlands, woodland - evergreen **QAPP Elevation Meters** flat Terrain **QAPP Declination** Yes Conforms to MLM **OAPP Declination Date** (850) 670-8376 30.110226 **Site Telephone Audit Latitude** Rt 65 -84.99038 Site Address 1 **Audit Longitude** Apalachicola National Forest Site Address 2 **Audit Elevation** 16 Liberty **County Audit Declination** Bristol, FL City, State **Present** Fire Extinguisher 32321 New in 2015 Zip Code **Time Zone** Eastern First Aid Kit **✓ Primary Operator Safety Glasses** Safety Hard Hat Primary Op. Phone # none **Climbing Belt** Primary Op. E-mail **Backup Operator** none **Security Fence V Secure Shelter** Backup Op. Phone # Stable Entry Steps ✓ Backup Op. E-mail **Shelter Working Room** ✓ **Make** Model 8810 Ekto **Shelter Size** 640 cuft

Driving Directions

Shelter Clean

Site OK

✓ Notes

✓ Notes

and maintaining the site.

From Tallahassee take Hwy 20 west about 25 miles to Hosford. Turn left (south) on Hwy 65 at the intersection in Hosford. Continue about 22 miles on Hwy 65 past Wilma. Turn right on a dirt road and bear left continuing south parallel to Hwy 65. The site will be visible on the right.

The shelter is clean and very well organized.. The site operator does an excellent job of organizing

Field Systems Data Form

F-02058-1500-S2-rev002

Site ID SUM156 Eric Hebert Site Visit Date 03/03/2020

Potential Interferent	Minimum Distance From Measurement Apparatus	Distance	Pass = Checked
Large Point Source of SO2 or NOx	20 to 40 km		<u> </u>
Major industrial complex	10 to 20 km		✓
City > 50,000 population	40 km		✓
City 10,000 to 50,000 population	10 km		✓
City 1,000 to 10,000 population	5 km		✓
Major highway, airport or rail yard	2 km		✓
Secondary road > 100 vehicles/day	500 m		\checkmark
Secondary road < or = 100 vehicles/day	200 m		\checkmark
Feedlot operations	500 m		✓
Intensive agricultural ops (including aerial spraying)	500 m		\checkmark
Limited agricultural operations	200 m		✓
Large parking lot	200 m		\checkmark
Small parking lot	100 m		✓

Siting Distances OK

Siting Criteria Comment

The site is surrounded by pine trees on land managed by the forest service. One tree is within 5 meters and is 10 meters tall. A few trees are now >17 meters tall and within 17 meters of the sample tower. Most trees are 30 meters from the sample tower.

Fi	eld Systems Data Form		F-02058-1500-S3-rev002
Site	SUM156 Technician Eric Hebert		Site Visit Date 03/03/2020
1	Are wind speed and direction sensors sited so as to avoid being influenced by obstructions?	✓	N/A
2	Are wind sensors mounted so as to minimize tower effects? (i.e. wind sensors should be mounted atop the tower or on a horizontally extended boom >2x the max diameter of the tower into the prevailing wind)	✓	N/A
3	Are the tower and sensors plumb?	✓	N/A
4	Are the temperature shields pointed north or positioned to avoid radiated heat sources such as buildings, walls, etc?	✓	
5	Are temperature and RH sensors sited to avoid unnatural conditions? (i.e. ground below sensors should be natural surface and not steeply sloped. Ridges, hollows, and areas of standing water should be avoided)	✓	
6	Is the solar radiation sensor plumb?	✓	N/A
7	Is it sited to avoid shading, or any artificial or reflected light?	V	N/A
8	Is the rain gauge plumb?	✓	N/A
9	Is it sited to avoid sheltering effects from buildings, trees, towers, etc?	✓	N/A
10	Is the surface wetness sensor sited with the grid surface facing north?	✓	N/A
11	Is it inclined approximately 30 degrees?	~	N/A

Provide any additional explanation (photograph or sketch if necessary) regarding conditions listed above, or any other features, natural or man-made, that may affect the monitoring parameters:

Site ID SUM156 Technician Eric Hebert Site Visit Date 03/03/2020 1 Do all the meterological sensors appear to be intact, in good condition, and well maintained? 2 Are all the meterological sensors operational online, and reporting data? 3 Are the shields for the temperature and RH sensors clean? Moderately clean 4 Are the aspirated motors working? N/A 5 Is the solar radiation sensor's lens clean and free of scratches? 6 Is the surface wetness sensor grid clean and undamaged? N/A 7 Are the sensor signal and power cables intact, in good condition, and well maintained? 8 Are the sensor signal and power cable connections protected from the elements and well maintained?	
condition, and well maintained? 2 Are all the meteorological sensors operational online, and reporting data? 3 Are the shields for the temperature and RH sensors clean? 4 Are the aspirated motors working? 5 Is the solar radiation sensor's lens clean and free of scratches? 6 Is the surface wetness sensor grid clean and undamaged? 7 Are the sensor signal and power cables intact, in good condition, and well maintained? 8 Are the sensor signal and power cable connections protected	
reporting data? 3 Are the shields for the temperature and RH sensors clean? 4 Are the aspirated motors working? 5 Is the solar radiation sensor's lens clean and free of scratches? 6 Is the surface wetness sensor grid clean and undamaged? 7 Are the sensor signal and power cables intact, in good condition, and well maintained? 8 Are the sensor signal and power cable connections protected	
4 Are the aspirated motors working? 5 Is the solar radiation sensor's lens clean and free of scratches? 6 Is the surface wetness sensor grid clean and undamaged? 7 Are the sensor signal and power cables intact, in good condition, and well maintained? 8 Are the sensor signal and power cable connections protected	
5 Is the solar radiation sensor's lens clean and free of scratches? 6 Is the surface wetness sensor grid clean and undamaged? 7 Are the sensor signal and power cables intact, in good condition, and well maintained? 8 Are the sensor signal and power cable connections protected	
scratches? 6 Is the surface wetness sensor grid clean and undamaged? 7 Are the sensor signal and power cables intact, in good condition, and well maintained? 8 Are the sensor signal and power cable connections protected	
7 Are the sensor signal and power cables intact, in good condition, and well maintained? 8 Are the sensor signal and power cable connections protected	
condition, and well maintained? 8 Are the sensor signal and power cable connections protected	
o little time semisor signer and power cause commences proceed	
Provide any additional explanation (photograph or sketch if necessary) regarding conditions listed above, or any other featur natural or man-made, that may affect the monitoring parameters:	es,
The temperature sensor shield is moderately dirty.	

Field Systems Data Form F-02058-1500-S5-rev002 SUM156 Technician Eric Hebert Site Visit Date 03/03/2020 Site ID Siting Criteria: Are the pollutant analyzers and deposition equipment sited in accordance with 40 CFR 58, Appendix E **~** Do the sample inlets have at least a 270 degree arc of unrestricted airflow? **~** Are the sample inlets 3 - 15 meters above the ground? Are the sample inlets > 1 meter from any major obstruction, and 20 meters from trees? Pollutant analyzers and deposition equipment operations and maintenance **~** Do the analyzers and equipment appear to be in good condition and well maintained? **V** Are the analyzers and monitors operational, on-line, and reporting data? Describe ozone sample tube. 1/4 teflon by 15 meters Describe dry dep sample tube. 3/8 teflon by 15 meters At inlet only Are in-line filters used in the ozone sample line? (if ves indicate location) Moisture in tubing only Are sample lines clean, free of kinks, moisture, and obstructions? **V** Is the zero air supply desiccant unsaturated? Flow line only Are there moisture traps in the sample lines? Clean and dry Is there a rotometer in the dry deposition filter line, and is it clean? Provide any additional explanation (photograph or sketch if necessary) regarding conditions listed above, or any other features,

natural or man-made, that may affect the monitoring parameters:

There is water in the flow tubing outside the shelter. Trees to the north and east violate the siting criteria for ozone.

Field Systems Data Form

F-02058-1500-S6-rev002

Site	e ID	SUM156	Technician	Eric Hebert		Site Visit Date	03/03/2020)	
	DAG								
	DAS, se	nsor translators, and j	<u>peripheral equi</u>	oment operation	ns ar	<u>id maintenance</u>			
1		OAS instruments appe intained?	ar to be in good	condition and	✓				
2		the components of the backup, etc)	DAS operationa	al? (printers,	✓				
3		nalyzer and sensor sig g protection circuitry?		hrough	✓	Temperature only			
4		signal connections pro intained?	tected from the	weather and	✓				
5	Are the	signal leads connected	to the correct l	DAS channel?	✓				
6	Are the grounde	DAS, sensor translatoed?	rs, and shelter p	oroperly	✓				
7	Does the	e instrument shelter ha	ave a stable pow	ver source?	✓				
8	Is the in	strument shelter temp	erature control	led?	✓				
9	Is the m	et tower stable and gr	ounded?			Stable		Grounded	
10	Is the sa	imple tower stable and	grounded?			<u> </u>			
11	Tower o	comments?					1		

Provide any additional explanation (photograph or sketch if necessary) regarding conditions listed above, or any other features,

The meteorological tower has been removed. The temperature sensor is mounted in a naturally aspirated shield on the sample tower which

natural or man-made, that may affect the monitoring parameters:

is not grounded.

Field Systems Data Form F-02058-1500-S7-rev002 SUM156 Technician Eric Hebert Site Visit Date 03/03/2020 Site ID **Documentation** Does the site have the required instrument and equipment manuals? No N/A Yes Yes No N/A П **V** Wind speed sensor **Data logger** П **V V** Wind direction sensor Data logger ✓ **V** П **Temperature sensor** Strip chart recorder **✓ V** Relative humidity sensor Computer **V** П **Solar radiation sensor V Modem** П **V V Printer Surface wetness sensor ✓ V** Wind sensor translator Zero air pump **V** Filter flow pump **Temperature translator V** \checkmark **~ Humidity sensor translator Surge protector** П **V ~ UPS Solar radiation translator ~ V** Tipping bucket rain gauge **Lightning protection device** ~ \checkmark **Shelter heater** Ozone analyzer **V** \checkmark Filter pack flow controller Shelter air conditioner **~** Filter pack MFC power supply □ Does the site have the required and most recent QC documents and report forms? **Present Current Station Log V V SSRF ✓ V ✓ Site Ops Manual** Oct 2010 **HASP ✓** Oct 2010 **Field Ops Manual Calibration Reports V ✓** Ozone z/s/p Control Charts **V** Preventive maintenance schedule **V** 1 Is the station log properly completed during every site visit? ✓ Are the Site Status Report Forms being completed and **V** current? Are the chain-of-custody forms properly used to document **V** sample transfer to and from lab? Control charts not used Are ozone z/s/p control charts properly completed and current? Provide any additional explanation (photograph or sketch if necessary) regarding conditions listed above, or any other features, natural or man-made, that may affect the monitoring parameters:

Field Systems Data Form F-02058-1500-S8-rev002 SUM156 Technician Eric Hebert Site Visit Date 03/03/2020 Site ID Site operation procedures Trained on-site in 1989 Has the site operator attended a formal CASTNET training ✓ course? If yes, when and who instructed? Has the backup operator attended a formal CASTNET training course? If yes, when and who instructed? Is the site visited regularly on the required Tuesday **~** schedule? **✓** Are the standard CASTNET operational procedures being flollowed by the site operator? Is the site operator(s) knowledgeable of, and able to perform ✓ the required site activities? (including documentation) Are regular operational QA/QC checks performed on meteorological instruments? **QC Check Performed** Frequency Compliant **✓ V** N/A **Multipoint Calibrations V V** N/A **Visual Inspections V** N/A **Translator Zero/Span Tests (climatronics) ✓ V** N/A **Manual Rain Gauge Test V V** N/A **Confirm Reasonableness of Current Values V V** N/A **Test Surface Wetness Response** Are regular operational QA/QC checks performed on the ozone analyzer? Compliant **QC Check Performed** Frequency **Multi-point Calibrations V V** Semiannually **V V Automatic Zero/Span Tests** Daily **V V** As needed Manual Zero/Span Tests **V ~** Daily **Automatic Precision Level Tests V Manual Precision Level Test** As needed **V V** Weekly **Analyzer Diagnostics Tests V** Every 2 weeks **In-line Filter Replacement (at inlet) V** N/A In-line Filter Replacement (at analyze **V V** Sample Line Check for Dirt/Water Weekly **~ Zero Air Desiccant Check** Weekly

1 Do multi-point calibration gases go through the complete sample train including all filters?

- 2 Do automatic and manual z/s/p gasses go through the complete sample train including all filters?
- 3 Are the automatic and manual z/s/p checks monitored and reported? If yes, how?

□ Unknown

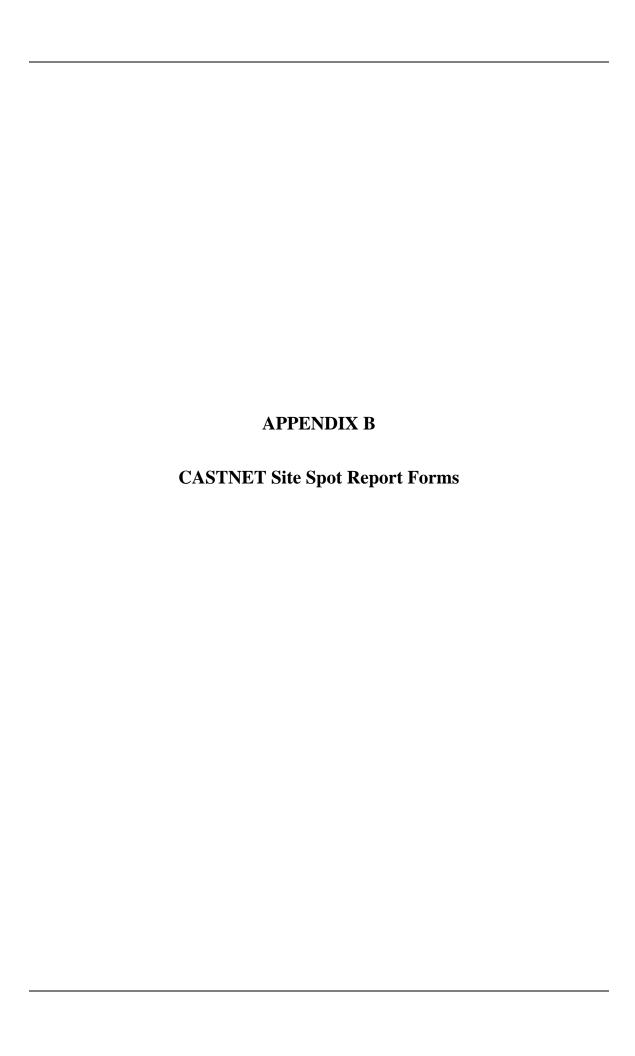
✓

Provide any additional explanation (photograph or sketch if necessary) regarding conditions listed above, or any other features, natural or man-made, that may affect the monitoring parameters:

✓

SSRF, logbook, call-in

Fi	eld Sy	stems Data Form				F-02058-	1500-S9-rev002
Sit	e ID	SUM156 Te	chnician Eric Hebert		Site Visit Dat	e 03/03/2020	
	Site ope	ration procedures					
1	Is the fi	ter pack being changed ever	ry Tuesday as scheduled	!? ✓	Filter changed mo	rinings	
2	Are the correctl	Site Status Report Forms boy?	eing completed and filed	V			
3	Are dat	a downloads and backups bo	eing performed as		No longer required	b	
4	Are gen	eral observations being mad	le and recorded? How?	✓	SSRF, logbook		
5	Are site fashion	supplies on-hand and reple	nished in a timely	✓			
6	Are san	pple flow rates recorded? Ho	ow?	✓	SSRF, logbook, ca	all-in	
7	7 Are samples sent to the lab on a regular schedule in a timely fashion?						
8		ers protected from contamin oping? How?	ation during handling	✓	Clean gloves on a	nd off	
9		site conditions reported reg ons manager or staff?	ularly to the field	✓			
QC	Check P	erformed	Frequency			Compliant	
I	Multi-poi	nt MFC Calibrations	✓ Semiannually			✓	
I	Flow Syst	em Leak Checks	✓ Weekly			✓	
1	Filter Pac	k Inspection	✓ Weekly			✓	
I	Flow Rate	Setting Checks	✓ Weekly			✓	
•	Visual Ch	eck of Flow Rate Rotometer	Weekly			✓	
1	In-line Fil	ter Inspection/Replacement	Semiannually			✓	
5	Sample Li	ne Check for Dirt/Water	✓ Weekly			✓	
		dditional explanation (phot in-made, that may affect the			y) regarding condi	tions listed above, or	any other features,


Field Systems Data Form

F-02058-1500-S10-rev002

Site ID SUM156 Eric Hebert Site Visit Date 03/03/2020

Site Visit Sensors

Parameter	Manufacturer	Model	S/N	Client ID
Computer	Dell	Inspiron 15	Unknown	07013
DAS	Campbell	CR3000	2114	000335
Elevation	Elevation	1	None	None
Filter pack flow pump	Thomas	107CA18	00688001783	00235
Flow Rate	Apex	AXMC105LPMDPC	illegible	000685
Infrastructure	Infrastructure	none	none	none
Modem	Campbell	COM220	1520	06353
Ozone	ThermoElectron Inc	49i A1NAA	1009241791	000619
Ozone Standard	ThermoElectron Inc	49i A3NAA	0922236888	000511
Sample Tower	Aluma Tower	A	none	03542
Shelter Temperature	Campbell	107-L	none	none
Siting Criteria	Siting Criteria	1	None	None
Temperature	RM Young	41342VO	9639	05043
Zero air pump	Werther International	C 70/4	000815255	06882

EEMS Spot Report

Data Compiled:

4/20/2020 16:04:27

 SiteVisitDate
 Site
 Technician

 02/17/2020
 ALC188
 Martin Valvur

Records with valid pass/fail criteria

Line	Audited Parameter	DAS	Ch. #	Criteria +/-	Counts	QaResult	Units	Pass/Fail
1	Ozone Slope	P	0	1.1	4	0.99031	unitless	P
2	Ozone Intercept	P	0	5	4	-0.30602	ppb	P
3	Ozone correlation	P	0	0.995	4	1.00000	unitless	P
4	Ozone % difference avg	P	7	10	4	2.0	%	P
5	Ozone Absolute Difference g1	P	7	3	1	-0.14	ppb	P
6	Ozone Absolute Difference g2	P	7	1.5	1	-0.57	daa	P

EEMS Spot Report

Data Compiled:

4/20/2020 16:03:32

 SiteVisitDate
 Site
 Technician

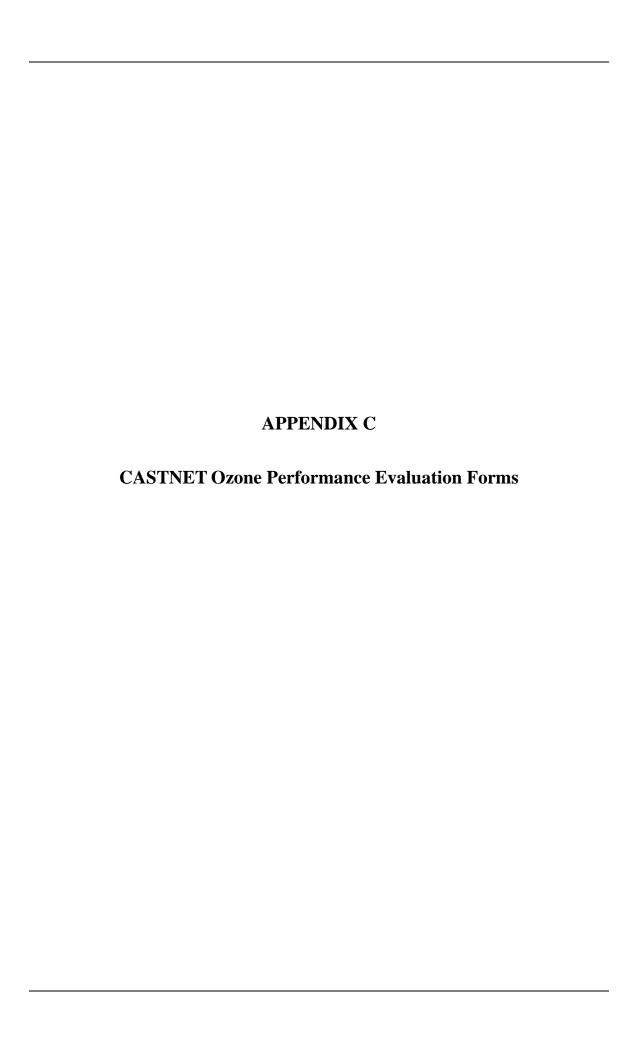
 02/19/2020
 BBE401
 Martin Valvur

Records with valid pass/fail criteria

Line	Audited Parameter	DAS	Ch. #	Criteria +/-	Counts	QaResult	Units	Pass/Fail
1	Ozone Slope	P	0	1.1	4	1.00051	unitless	P
2	Ozone Intercept	P	0	5	4	-0.07487	ppb	P
3	Ozone correlation	P	0	0.995	4	0.99999	unitless	P
4	Ozone % difference avg	P	7	10	4	0.7	%	P
5	Ozone Absolute Difference g1	P	7	3	1	0.13	ppb	P
6	Ozone Absolute Difference g2	P	7	1.5	1	-0.3	daa	P

EEMS Spot Report

Data Compiled:


4/20/2020 16:02:15

 SiteVisitDate
 Site
 Technician

 02/20/2020
 PAL190
 Martin Valvur

Records with valid pass/fail criteria

Line	Audited Parameter	DAS	Ch. #	Criteria +/-	Counts	QaResult	Units	Pass/Fail
1	Ozone Slope	P	0	1.1	4	0.99309	unitless	P
2	Ozone Intercept	P	0	5	4	-0.13399	ppb	P
3	Ozone correlation	P	0	0.995	4	0.99999	unitless	P
4	Ozone % difference avg	P	7	10	4	0.9	%	P
5	Ozone Absolute Difference g1	P	7	3	1	-0.11	ppb	P
6	Ozone Absolute Difference g2	P	7	1.5	1	-0.11	pph	P

Site Inventory by Site Visit

Site	Visit Date	Parameter	Mfg	Owner ID	Model Number	Serial Number
ALC	188-Martir	ı Valvur-02/17/2020				
1	2/17/2020	DAS	Campbell	000422	CR3000	2523
2	2/17/2020	Ozone	ThermoElectron Inc	000629	49i A1NAA	1009241784
3	2/17/2020	Ozone Standard	ThermoElectron Inc	000694	49i A3NAA	1030244815
4	2/17/2020	Zero air pump	Werther International	06886	C 70/4	000815259

Ozone Data Form

Mfg		Serial Numb	er Tag	Site		Te	chnician	Site Visit Date	Parame	eter	Owner ID
ThermoElec	tron Inc	1009241784		ALC188	3	M	artin Valvur	02/17/2020	Ozone		000629
Slope: Intercept CorrCoff:	-		oe: ercept erCoff:		0.0000	0	Mfg Serial Number	ThermoElectron			ozone Ozone primary stan
correon.		1.00000	reon.		0.0000	<u> </u>	Tfer ID	01110			
DAS 1:		D	AS 2:				Slope	1.002	60 Inte i	rcept	0.03590
A Avg % D	oiff: A N	Max % Dif A	Avg %	Diff A	Max 9	% Dif	Cout Date	1/14/20	20 Corı	- - C - CC	0.99999
0.0	0%	0.0%					Cert Date	1/14/20	ZO Cori	Con	0.99999
UseDescr	iption	ConcGroup	Tfeı	Raw	Tf	er Corr	Site	Site Unit	RelPer	Dif	AbsDif
prima	ry	1		.12		0.08	-0.06	ppb			-0.14
prima	ry	2	17	7.27		17.18	16.61	ppb			-0.57
prima	ry	3	38	3.83		38.69	37.95	ppb		-1.93	
prima	ry	4	65	5.02		64.81	63.76	ppb		-1.63	
prima	rv	5	10	8.67	1	08.35	107.10	ppb		-1.16	
-	•	ent Audit Press					on 753.5 mmHg		Status		
Sensor C	ompone	ent Sample Tra	iin			Conditi	on Good		Status	pass	
	_	ent Minimum d		rom road	d met	Conditi			Status		
	_	ent Inlet Filter (on Moderately cle	ean	Status		
	_	ent 26.6 degree			مار	Conditi			Status		
	_										
	_	Tree dewlin	ie >10m	or below	/ inlet	Conditi			Status		
Sensor C	ompone	Offset				Conditi			Status		
Sensor C	ompone	ent Span				Conditi	on 1.010		Status	pass	
Sensor C	ompone	Zero Voltaç	je			Conditi	on N/A		Status	pass	
Sensor C	ompone	Fullscale V	oltage			Conditi	on N/A		Status	pass	
Sensor C	ompone	ent Cell A Freq				Conditi	on 87.5 kHz		Status	pass	
Sensor C	ompone	ent Cell A Nois	е			Conditi	on 0.8 ppb		Status	pass	
Sensor C	ompone	Cell A Flow	,			Conditi	on 0.72 lpm		Status	pass	
Sensor C	ompone	ent Cell A Pres	sure			Conditi	on 715.5 mmHg		Status	pass	
Sensor C	ompone	ent Cell A Tmp				Conditi	on 32.7 C		Status	pass	
Sensor C	ompone	Cell B Freq				Conditi	on 91.0 kHz		Status	pass	
Sensor C	ompone	ent Cell B Nois	e			Conditi	on 0.9 ppb		Status	pass	
Sensor C	ompone	Cell B Flow				Conditi	on 0.71 lpm		Status	pass	
Sensor C	ompone	ent Cell B Pres	sure				on 714.9 mmHg		Status		
	•	ent Line Loss					dition Not tested			pass	
	•	ent System Me	mo			Conditi			Status		
2011001	- Inoile						~ <u></u>		24440		

Site Inventory by Site Visit

Site Visit Date		Parameter	Mfg	Owner ID	Model Number	Serial Number
BBE	401-Martir	ı Valvur-02/19/2020				
1	2/19/2020	DAS	Environmental Sys Corp	90767	8816	4592
2	2/19/2020	Ozone	ThermoElectron Inc	90565	49C	49C-59285-322
3	2/19/2020	Ozone Standard	ThermoElectron Inc	90831	49C	0520012325
4	2/19/2020	Zero air pump	Twin Tower Engineering	none	TT70/4E	526293

Ozone Data Form

Mfg		Serial Numb	er Tag	Site		Te	chnician	Site Visit Date	Parame	eter	Owner ID
ThermoElec	ctron Inc	49C-59285-3	22	BBE401		Ma	artin Valvur	02/19/2020	Ozone		90565
Slope: Intercept CorrCoff:	-		pe: ercept erCoff:	(0.00000	D	Mfg Serial Number	ThermoElectron 49CPS-70008-3			ozone Ozone primary stan
							Tfer ID	01110			
DAS 1:			AS 2:				Slope	1.0020	60 Inter	rcept	0.03590
		Max % Dif A	Avg %	Diff A	Max %	% Dif	Cert Date	1/14/20	20 Cori	·Coff	0.99999
0.	0%	0.0%									
UseDescr	iption	ConcGroup	Tfe	r Raw	Tf	er Corr	Site	Site Unit	RelPer	Dif	AbsDif
prima	•	1	_	.02		-0.01	0.12	ppb			0.13
prima	•	2	_	5.55		16.47	16.17	ppb			-0.3
prima	•	3	_	5.45		36.31	36.11	ppb		-0.55	
prima	•	4	_	5.54		56.33	66.52	ppb		0.29	
prima	ry	5	10	6.60	1	06.28	106.20	ppb		-0.08	
Sensor C	ompone	ant Audit Press	ure			Condition	on 679.5 mmHg		Status	pass	
Sensor C	ompone	nt Sample Tra	iin			Condition	on Good		Status	pass	
Sensor C	ompone	nt Minimum d	stance f	from roac	l met	Condition	on True		Status	pass	
Sensor C	ompone	nt Inlet Filter (Conditio	n		Condition	on Moderately cle	ean	Status	pass	
Sensor C	ompone	nt 26.6 degree	e unobst	tructed ru	ıle	Condition	on True		Status	pass	
Sensor C	ompone	nt Tree dewlin	ie >10m	or below	inlet	Condition	on True		Status	pass	
Sensor C	ompone	ont Offset				Condition	on -0.2		Status	pass	
Sensor C	ompone	nt Span				Condition	on 1.011		Status	pass	
Sensor C	ompone	nt Zero Voltag	je			Condition	on -0.0003		Status	pass	
Sensor C	ompone	Fullscale V	oltage			Condition	on 0.9999		Status	pass	
Sensor C	ompone	cell A Freq				Condition	on 106.5 kHz		Status	pass	
Sensor C	ompone	cell A Nois	е			Condition	on 1.8 ppb		Status	pass	
Sensor C	ompone	Cell A Flow	,			Condition	0.61 lpm		Status	pass	
Sensor C	ompone	Cell A Pres	sure			Condition	on 666.0 mmHg		Status	pass	
Sensor C	ompone	cell A Tmp				Condition	on 37.3 C		Status		
Sensor C	Sensor Component Cell B Freq.					Condition	on 73.2 mmHg		Status	pass	
Sensor C	Sensor Component Cell B Noise					Condition	on 1.0 ppb		Status		
Sensor C	ompone	cnt Cell B Flow				Condition	on 0.62 lpm		Status		
Sensor C	ompone	cell B Pres	sure				on 665.5 mmHg		Status		
Sensor C	ompone	Line Loss				Condition	on Not tested		Status	pass	
Sensor C	ompone	System Me	mo			Condition	on		Status	pass	

Site Inventory by Site Visit

Site Visit Date		Parameter	Mfg	Owner ID	Model Number	Serial Number		
PAL190-Martin Valvur-02/20/2020								
1	2/20/2020	DAS	Campbell	000343	CR3000	2122		
2	2/20/2020	Ozone	ThermoElectron Inc	000726	49i A1NAA	1105347314		
3	2/20/2020	Ozone Standard	ThermoElectron Inc	000735	49i A3NAA	0726124696		
4	2/20/2020	Zero air pump	Werther International	06922	C 70/4	000836217		

Ozone Data Form

Mfg		Serial Number	er Tag	Site		Te	chnician	Site Visit Date	Paramo	eter	Owner ID
ThermoElec	etron Inc	1105347314		PAL190		Ma	artin Valvur	02/20/2020	Ozone		000726
Slope: Intercept CorrCoff:	-(oe: [rcept [rCoff: [(0.00000		Mfg Serial Number	ThermoElectron 49CPS-70008-3			ozone Ozone primary stan
		_					Tfer ID	01110			
DAS 1:	A 3		AS 2:	D. 66 Y	3.7 0	/ D.e	Slope	1.002	60 Inter	rcept	0.03590
		Iax % Dif A	Avg %	Diff A	Max %	6 Dif	Cert Date	1/14/20	20 Cori	:Coff	0.99999
0.	0%	0.0%									
UseDescr	iption	ConcGroup	Tfer	Raw	Tfe	er Corr	Site	Site Unit	RelPer	Dif	AbsDif
prima	ry	1		10		0.06	-0.05	ppb			-0.11
prima	ry	2		.76		7.67	17.56	ppb			-0.11
prima	-	3		.27		6.14	35.76	ppb		-1.06	
prima	ry	4		.64		7.42	66.45	ppb		-1.45	
prima	ry	5	113	3.66	1	13.32	112.60	ppb		-0.64	
Sensor C	ompone	nt Audit Press	ure			Conditi	on 688.0 mmHg		Status	pass	
Sensor C	ompone	nt Sample Tra	in			Conditi	on Good		Status	pass	
Sensor C	ompone	nt Minimum di	stance f	rom road	l met	Conditi	on True		Status	pass	
Sensor C	ompone	nt Inlet Filter C	Condition	1		Conditi	on Clean		Status	pass	
Sensor Component 26.6 degree unobstructed rule			Conditi	Condition False			Fail				
Sensor C	Sensor Component Tree dewline >10m or below inlet			Conditi	ondition True			pass			
Sensor C	ompone	nt Offset				Conditi	on -0.4		Status	pass	
Sensor C	ompone	nt Span				Conditi	ondition 1.005			pass	
Sensor C	ompone	nt Zero Voltag	е			Conditi	on N/A		Status	pass	
Sensor C	ompone	nt Fullscale Vo	oltage			Conditi	on N/A		Status	pass	
Sensor C	ompone	nt Cell A Freq				Conditi	on 79.3 kHz		Status	pass	
Sensor C	ompone	nt Cell A Noise	е			Conditi	on 0.9 ppb		Status	pass	
Sensor C	ompone	nt Cell A Flow				Conditi	on 0.69 lpm		Status	pass	
Sensor C	ompone	cell A Pres	sure			Conditi	on 663.2 mmHg		Status	pass	
	_	nt Cell A Tmp.				Conditi	on 31.0 C		Status		
Sensor C	Sensor Component Cell B Freq.					Conditi	Condition 78.9 kHz			pass	
Sensor C	Sensor Component Cell B Noise						Condition 0.9 ppb			pass	
Sensor C	ompone	nt Cell B Flow				Conditi	ndition 0.70 lpm			pass	
Sensor C	Sensor Component Cell B Pressure						on 662.9 mmHg		Status		
Sensor C	ompone	nt Line Loss				Conditi	on Not tested		Status	pass	
Sensor C	ompone	System Me	mo			Conditi	on		Status	pass	