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Executive Summary 

While certain levels of nutrients are essential for healthy aquatic ecosystems, excess 

nutrients can degrade the condition of water bodies worldwide, and in lakes and reservoirs 

(hereafter, referred to only as “lakes” unless noted otherwise), the effects of excess nitrogen (N) 

and phosphorus (P) may be particularly evident. High levels of nutrient loading commonly 

stimulate excess growth of algae, which can limit the recreational use of lakes. Overabundant 

algae also increase the amount of organic matter in a lake, which, when decomposed, can 

depress dissolved oxygen (DO) concentrations below the levels needed to sustain aquatic life. In 

extreme cases, the depletion of DO causes fish kills. Nutrient pollution can stimulate the excess 

growth of nuisance algae, such as cyanobacteria, which can produce cyanotoxins that are toxic 

to animals and humans. Elevated concentrations of cyanotoxins can reduce the suitability of a 

lake for recreation and as a source of drinking water.

Numeric nutrient criteria provide an important tool for managing the effects of nutrient 

pollution by providing nutrient goals that ensure the protection and maintenance of designated 

uses. The United States (U.S.) Environmental Protection Agency (EPA) published recommended 

numeric nutrient criteria for lakes and reservoirs in 2000 and 2001 for 12 out of 14 ecoregions of 

the conterminous U.S. Those criteria were derived by analyzing available data on the 

concentrations of total nitrogen (TN), total phosphorus (TP), chlorophyll a (Chl a), and Secchi 

depth. 

Scientific understanding of the relationships between nutrient concentrations and 

deleterious effects in lakes has increased since 2001, and standardized, high-quality data 

collected from lakes across the U.S. have become available. In this document, the EPA describes 

analyses of these new data and provides draft models from which numeric nutrient criteria can 

be derived. The draft criteria models would, if finalized, replace the recommended numeric 

nutrient criteria of 2000 and 2001. The draft criteria models are provided in accordance with the 

provisions of Section 304(a) of the Clean Water Act (CWA) (Title 33 of the United States Code 

[U.S.C.] § 1314(a)) for the EPA to revise ambient water quality criteria from time to time to 

reflect the latest scientific knowledge. CWA Section 304(a) water quality criteria serve as 

recommendations to states and authorized tribes for defining ambient water concentrations 

that will protect against adverse effects to aquatic life and human health. The ecological and 

health protective responses on which the draft criteria models are based were selected by 
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applying a risk assessment approach to explicitly link nutrient concentrations to the protection 

of designated uses. 

The draft criteria models are nonregulatory. When they are finalized, states may use the 

recommended models to derive candidate nutrient criteria for each applicable designated use 

and, after demonstrating that the criteria protect the most sensitive designated use, adopt the 

criteria into their state standards. States may also modify the criteria to reflect site-specific 

conditions or establish criteria based on other scientifically defensible methods (Title 40 of the 

Code of Federal Regulations [CFR] 131.11(b)). When finalized, the updated recommended CWA 

Section 304(a) nutrient criteria for lakes will not compel a state to revise current EPA-approved 

and adopted criteria, total daily maximum load nutrient load targets, or N or P numeric values 

established by other scientifically defensible methods. As part of their triennial review, if a state 

uses its discretion to not adopt new or revised nutrient criteria based on these CWA Section 

304(a) criteria models, then the state shall provide an explanation when it submits the results of 

its triennial review (40 CFR 131.20(a)). 

Following the risk assessment paradigm, the EPA first defined water quality 

management goals for numeric nutrient criteria, and then defined assessment endpoints and 

metrics that are associated with achieving these goals and are sensitive to increased nutrient 

concentrations. The water quality management goals are articulated as designated uses in 

Section 101(a)(2) of the CWA (33 U.S.C. § 1251) (i.e., the protection and propagation of fish, 

shellfish, and wildlife [aquatic life] and recreation in and on the water). Another common 

designated use for lakes is to serve as drinking water sources. Excess loads of nutrients can lead 

to excessive growth of phytoplankton that can adversely impact designated uses in different 

ways, described below as assessment endpoints and metrics. The EPA modeled stressor-

response relationships using these endpoints and metrics to derive draft recommended numeric 

nutrient criterion models (Table 1). 

For aquatic life, the EPA identified two assessment endpoints. The first endpoint is 

zooplankton biomass, and the risk metric is the relationship between zooplankton and 

phytoplankton biomass, which quantifies the degree to which energy produced by 

phytoplankton at the base of the food web is transferred to zooplankton and subsequently to 

higher trophic levels. When excess nutrients are available, phytoplankton biomass can increase 

at rates that exceed the capacity of zooplankton to consume. The draft risk metric is one in 
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which the rate of change of zooplankton biomass relative to phytoplankton biomass is 

approximately zero. This condition describes a lake in which the biomass of grazing biota (i.e., 

zooplankton) does not increase with increases in food (i.e., phytoplankton), and primary 

production at the base of the food web is weakly linked to production at higher trophic levels. 

This endpoint applies to all lakes in the conterminous U.S. 

The second aquatic life endpoint is cool- and cold-water fish, and the risk metric is the 

DO concentration in deep water that protects against mortality of these fish. Excess nutrients 

typically increase primary productivity, which then increases the amount of organic matter in a 

lake. Then, in the deep waters of a lake, DO is consumed as this organic matter is decomposed, 

leading to hypoxic and anoxic conditions. The draft risk metric is the daily DO concentration, 

calculated as a depth-averaged value below the thermocline, which can be reduced to 

concentrations insufficient to support some fish species during the critical period of the summer 

when they require deep, cold waters to escape high temperatures at shallower depths. This 

endpoint applies to seasonally stratified, dimictic lakes harboring cool- and cold-water fish. 

For recreational uses and drinking water sources, the assessment endpoint is human 

health. For recreational uses, the EPA selected the risk metric as the concentration of 

microcystin associated with adverse effects on children (specifically, liver toxicity) from 

incidental ingestion of water during recreation. When excess nutrients are available, 

phytoplankton communities can shift toward a greater abundance of cyanobacteria that can 

release cyanotoxins, and microcystins are the most commonly monitored and measured 

freshwater cyanotoxin in the U.S. The threshold for the draft risk metric is 8 micrograms per liter 

(μg/L), based on recently published national recommendations for human health recreational 

water quality criteria and swimming advisories for cyanotoxins (US EPA 2019). For the drinking 

water use, the EPA selected as the risk metric the concentration of microcystins associated with 

adverse effects on children resulting from oral exposure to drinking water (0.3 μg/L), consistent 

with the health advisory for microcystins (US EPA 2015b). This microcystin concentration from 

the health advisory applies to finished drinking water; however, the EPA is aware that states or 

authorized tribes apply water quality standards for protecting drinking water sources to either 

the ambient source water before treatment or to the finished drinking water after treatment. 

The ability of treatment technologies to remove microcystin is too variable for the EPA to set a 

national recommendation for a protective ambient source water concentration that would yield 
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a protective concentration after treatment. If a state or authorized tribe applies the health 

advisory standard to finished drinking water, then they can account for the expected treatment 

in their facilities and select a higher microcystin concentration in the ambient source water that 

would result in the targeted microcystin concentration in the finished drinking water. 

Table 1. Summary of designated uses and associated measures of effect and exposure 

Designated 
use Assessment endpoint Risk metric Applicability 

Aquatic life Zooplankton biomass 
Rate of change of zooplankton 

biomass relative to 
phytoplankton biomass 

All lakes 

Aquatic life Cool- and cold-water fish Daily depth-averaged DO below 
the thermocline  

Dimictic lakes with 
cool- or cold-water 

fish 

Recreation Human health Microcystin concentration to 
prevent liver toxicity in children All lakes 

Drinking water Human health Microcystin concentration to 
prevent liver toxicity in children All lakes 

Data used in this analysis were collected in the EPA’s National Lakes Assessment (NLA), 

which sampled lakes across the conterminous U.S. in 2007 and 2012. Most of the sampled lakes 

were selected randomly so the resulting data represent the characteristics of the full population 

of lakes in the conterminous U.S. At each lake, standardized protocols were used to collect 

extensive measurements of biotic and abiotic characteristics. 

This document describes statistical stressor-response models that relate Chl a 

concentrations to each of the risk metrics and that relate TN and TP concentrations to Chl a. A 

hierarchical Bayesian network is specified for each model to represent the effects of different 

variables on the relationship of interest. For example, microcystin is related to cyanobacteria 

biovolume, which is then linked to Chl a concentration. The Bayesian network models can 

directly represent the processes that govern the relationships of interest and facilitate the use 

of other data sets in conjunction with data from the EPA’s NLA. When coupled with the targets 

for each response, the draft models provide candidate Chl a, TN, and TP criteria 

recommendations that states may then use with state risk management decisions to 

demonstrate they are protective of different designated uses. For lakes with multiple use 

designations, the states shall adopt criteria that protect the most sensitive use. 
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Models provided in this document are based on national data, but states often collect 

extensive data during routine monitoring. Incorporating local data into the national models can 

refine and improve the precision of the stressor-response relationships. In the appendices of 

this document, the EPA describes three case studies in which state monitoring data have been 

combined with national data, yielding models that can be used to derive recommended numeric 

nutrient criteria that account for both unique local conditions and national, large-scale trends. 
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1 Introduction and Background 

While certain levels of nutrients are essential for healthy aquatic ecosystems, nutrient 

pollution, or the excess loading of nitrogen (N) and phosphorus (P), can degrade the conditions 

of water bodies worldwide, and in lakes the effects of nutrient pollution are often most 

evident. One visible consequence of nutrient pollution in lakes and reservoirs (hereafter, 

referred to only as “lakes” unless noted otherwise) is cultural eutrophication, an increase in 

primary productivity and algal abundance that increases the amount of organic matter in a 

water body (Smith et al. 2006, Smith and Schindler 2009). Decomposition of organic matter 

reduces dissolved oxygen (DO) concentrations in the water column, especially in deeper waters 

under stratified conditions. These hypoxic conditions are inhospitable to most aquatic species 

and reduce their ability to survive within a particular lake (Jones et al. 2011, Scavia et al. 2014).

Nutrient pollution also favors the growth of undesirable, nuisance algae (e.g., 

cyanobacteria), some of which produce cyanotoxins (Paerl and Otten 2013). Many species of 

cyanobacteria are superior competitors for light compared to other phytoplankton. Hence, in 

lakes with nutrient pollution, cyanobacteria can dominate by reducing the light available to 

other phytoplankton (Carey et al. 2012). A number of other mechanisms, including superior 

uptake rates for carbon dioxide and an ability to migrate vertically in the water column, also 

may explain the frequent occurrence of cyanobacteria dominance in eutrophic systems (Dokulil 

and Teubner 2000). Cyanobacteria dominance can interfere with the designated uses of a lake 

because cyanobacteria not only can form unsightly and odorous surface scums (reducing the 

aesthetic appeal of the lake for recreation) (Paerl and Ustach 1982), but also can produce 

cyanotoxins that can limit the use of the lake as both a source of drinking water and for 

recreation (Cheung et al. 2013). Many species of cyanobacteria are also less palatable than 

other algae to grazing organisms, and so, increases in cyanobacterial abundance can alter lake 

food webs and reduce the efficiency with which energy from primary production is transferred 

to higher trophic levels (Elser 1999, Filstrup et al. 2014a, Heathcote et al. 2016). 

Nutrient pollution in lakes and resulting adverse environmental effects are widespread 

in the United States (U.S.). Nutrient pollution occurs in lakes of different sizes, in catchments 

with varying land uses, and in different climates. The U.S. Environmental Protection Agency 

(EPA) has long recognized the effects of nutrient pollution and has recommended that states 
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and authorized tribes (hereafter, “states”), acting under their Clean Water Act (CWA) 

authorities, adopt numeric nutrient criteria as one way to facilitate the management of these 

effects. A state’s numeric nutrient criteria (1) provide nutrient goals to protect and maintain the 

designated uses of a water body (Title 33 of the United States Code [U.S.C.] § 1313(c)), (2) 

provide thresholds that allow the state to make accurate water quality assessment decisions (33 

U.S.C. § 1313(d)), and (3) provide targets for restoration of water bodies that can guide waste 

load allocation decisions (33 U.S.C. § 1313(d)). To assist states and authorized tribes in deriving 

numeric nutrient criteria, the EPA has published a series of technical support documents on 

methods for deriving criteria for lakes and reservoirs (US EPA 2000a), streams and rivers (US EPA 

2000b), wetlands (US EPA 2008), and estuaries and coastal waters (US EPA 2001). A technical 

support document on using stressor-response relationships for deriving numeric nutrient 

criteria has also been published (US EPA 2010a). In 2000 and 2001, under its authority described 

in Section 304(a) of the CWA (33 U.S.C. § 1314(a)), the EPA issued 12 documents that provided 

recommended numeric nutrient criteria for lakes, streams, and rivers in different ecoregions of 

the U.S. These criteria were derived by using available monitoring data to estimate the 

concentrations of total nitrogen (TN) and total phosphorus (TP) that were expected to occur in 

least-disturbed reference water bodies in different nutrient ecoregions. 

In accordance with the provisions of Section 304(a) of the CWA, which directs the EPA to 

revise ambient water quality criteria from time to time to reflect the latest scientific knowledge, 

the EPA is issuing draft revisions to numeric nutrient criteria recommendations for lakes based 

on analyses of newly available, national-scale data and reflecting advances in scientific 

understanding of the relationship between excess nutrients and adverse effects in lakes. The 

draft criteria recommendations are models that generate numeric nutrient criteria based on 

national data and state risk management decisions. State data, if available, can be incorporated 

into the national criteria models to compute relationships that more accurately represent local 

conditions. In deriving these draft models, the EPA uses a risk assessment framework (Norton et 

al. 1992, US EPA 1998, 2014) to identify assessment endpoints that relate directly to the water 

quality management goals for U.S. lakes specified by the CWA and that are sensitive to 

increased concentrations of N and P. Then, the EPA uses stressor-response analysis to estimate 

relationships between increased N and P (estimated by measurements of TN and TP) and 

different risk metrics directly linked to the assessment endpoints (US EPA 2010a). Draft national 

criteria models are provided for both TN and TP as the simultaneous control of both nutrients 
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provides the most effective means of controlling the deleterious effects of nutrient pollution (US 

EPA 2015a, Paerl et al. 2016). After the public comment period and any consequent revisions to 

the draft, the EPA intends to finalize the recommended stressor-response criteria models to 

replace the ecoregion-specific nutrient criteria recommended previously for lakes that were 

based on a reference distribution approach. 

The remaining sections of this document are organized broadly according to the steps of 

risk assessment: (1) problem formulation, (2) analysis, and (3) characterization. The purpose of 

this document is to provide the technical details underlying the estimation of relationships 

between increased nutrient concentrations and different responses, as well as details regarding 

the derivation of draft numeric nutrient criteria recommendations using the national models. 

Once the recommended criterion models are finalized, states may use them to derive candidate 

nutrient criteria and, after demonstrating that the criteria protect designated uses, adopt the 

criteria into their state water quality standards. States may also modify the criteria to reflect 

site-specific conditions or establish criteria based on other scientifically defensible methods (40 

CFR 131.11(b)). For waters with multiple use designations, the state shall adopt criteria that 

support the most sensitive designated use (40 CFR 131.11(a)(1)). Water quality standards 

adopted by states are subsequently subject to review by the EPA, pursuant to Section 303(c) of 

the CWA (33 U.S.C. § 1313(c)). 

2 Problem Formulation 

2.1 Management Goals 

The EPA focused on protecting uses that reflect management goals articulated in 

Section 101(a)(2) of the CWA (33 U.S.C. § 1251), which include maintaining conditions so 

different water bodies support aquatic life use (i.e., providing for the protection and 

propagation of fish, shellfish, and wildlife), recreation (i.e., providing for recreation in and on the 

water), and use of the water body as a source of drinking water. Under the CWA, it is a state’s 

responsibility to designate uses for its waters, and many states have designated uses that 

provide for aquatic life and recreation uses. Some states have also designated waters as sources 

of drinking water. The EPA focuses on aquatic life, recreation, and drinking water source 

because they represent uses that are particularly sensitive to increased concentrations of N and 
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P. States can derive candidate nutrient criteria for each of the applicable designated uses in 

their lakes and, by comparing these criteria, identify the most sensitive use. Water quality 

criteria adopted by states for waters with multiple use designations must support the most 

sensitive use (40 CFR 131.11(a)). 

2.2 Assessment Endpoints and Risk Metrics 

The next step in problem formulation is to define assessment endpoints that can be 

used to quantify attainment of the management goals. Each of the management goals 

expressed in terms of different designated uses was associated with different assessment 

endpoints. Protection of recreational uses and drinking water sources pertains to public health 

rather than ecological health, and hence, the assessment endpoint is human health for these 

two designated uses. For aquatic life, the procedures of ecological risk assessment were 

followed to select assessment endpoints defined as “explicit expressions of the actual 

environmental values that are to be protected” (US EPA 1998). Three considerations guided the 

selection of these endpoints: ecological relevance, susceptibility to the stressor of interest (i.e., 

increased nutrient concentrations in the present case), and relevance to management goals. 

After selecting the assessment endpoints, the EPA developed conceptual models that 

represented current understanding of the linkages between increased N and P concentrations 

and effects on the assessment endpoint and management goals (Figure 1). The conceptual 

models were used to select specific risk metrics that quantified key steps along the causal path 

linking increased N and P concentrations to deleterious effects on aquatic life and public health. 

The final selections for the draft recommendations were also influenced by the availability of 

data at the continental spatial scales considered in this analysis. These risk metrics were used as 

the response variables in stressor-response analysis. For a narrative description of the 

conceptual model, refer to Using Stressor-Response Relationships to Derive Numeric Nutrient 

Criteria (US EPA 2010a). 
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Figure 1. Conceptual model linking increased nutrients to aquatic life use (Source: US EPA 2010a). 

2.2.1 Aquatic Life Use 

Nutrient pollution and eutrophication can affect the health of the lake biological 

community via many pathways (Figure 1). As discussed earlier, increased nutrients typically 

stimulate primary productivity and increase the amount of organic matter in a lake. 

Decomposition of the organic matter depletes the DO in the water, reducing the suitability of 

deeper waters as habitat for fish and invertebrates (Cornett 1989). Increased production and 

respiration also can increase the range of acidity (pH) throughout the day-night cycle in some 

lakes (Schindler et al. 1985), reducing the suitability of shallow waters as habitat for certain 

species. Increased algal biomass also reduces water clarity, and the reduction in light availability 

limits the depths at which submerged aquatic vegetation can persist (Phillips et al. 2016). 

Reduced water clarity can also shift fish assemblage composition away from species that depend 

on sight for foraging (De Robertis et al. 2003). Further, high nutrient concentrations favor the 

growth of cyanobacteria, which are less palatable to grazing species than other phytoplankton, 

altering the food web of the lake (Haney 1987). 
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The EPA selected two assessment endpoints to characterize the health of aquatic life in 

lakes: (1) zooplankton biomass, which is applicable to all lakes, and (2) cool- and cold-water fish 

in dimictic lakes. For the second endpoint, the EPA selected depth-averaged DO concentration 

as the risk metric. In dimictic stratified lakes with cool-water fish, criteria based on zooplankton 

biomass and DO can be compared, and the more stringent criterion applied to ensure that 

aquatic life is protected. Collectively, the two assessment endpoints provide a broad assessment 

of the health of the lake biological community. Data were also available for each endpoint, and 

each endpoint quantified well-studied effects of nutrient pollution. 

2.2.1.1 Zooplankton biomass 

The rate of change of zooplankton biomass compared to the rate of change of 

phytoplankton biomass quantifies changes in the shape of biomass pyramids in lakes (Elton 

1927). Biomass pyramids provide a graphical depiction of the amount of biomass at different 

trophic levels, and typically, the biomass of primary producers (at the bottom of the pyramid) 

exceeds the biomass of herbivores and carnivores at successively higher levels of the pyramid. In 

lakes, the ratio of herbivore biomass (i.e., zooplankton) to primary producer biomass (i.e., 

phytoplankton) (Z:P) has been observed to decrease along eutrophication gradients (Leibold et 

al. 1997). Reasons for the decreasing trend in Z:P have been the subject of some debate, much 

of which centers on the relative importance of top-down versus bottom-up food web effects. 

For zooplankton, top-down forces consist mainly of the effects of planktivore fish consuming 

zooplankton biomass (Jeppesen et al. 2003) and bottom-up forces include changes in the 

quantity and quality of the phytoplankton assemblage on which zooplankton feed (Filstrup et al. 

2014a). With excess nutrients, one particularly relevant bottom-up mechanism is the decrease 

in the edibility of the phytoplankton assemblage associated with the increased dominance of 

cyanobacteria with increasing levels of eutrophication. Laboratory studies demonstrate that the 

lack of highly unsaturated fatty acids in the cyanobacteria negatively affects the growth rates of 

a common zooplankton species (Daphnia) (Demott and Müller-Navarra 1997, Persson et al. 

2007). Field observations (Müller-Navarra et al. 2000) and microcosm experiments (Park et al. 

2003) have added further support for this finding. Many cyanobacteria also present physical 

challenges to grazers, collecting in colonies or filaments that are too large to be consumed 

(Bednarska and Dawidowicz 2007), or surrounding themselves with gelatinous sheaths (Vanni 

1987). Altered elemental stoichiometry and, hence, nutritional quality of phytoplankton under 

different levels of eutrophication may also influence zooplankton biomass (Hessen 2008). 
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While Z:P has traditionally been used to compare biomass pyramids among different 

systems (Hessen et al. 2006), the rate of change of zooplankton biomass with respect to 

increasing phytoplankton biomass (ΔZ/ΔP) provides a more informative measure of the effects 

of eutrophication on food web function for the purposes of informing the derivation of numeric 

nutrient criteria (Yuan and Pollard 2018). This rate of change can be thought of as the slope of 

the relationship between Z and P. In most lake food webs, any increase in the basal resources 

(i.e., phytoplankton biomass) would be expected to be associated with a corresponding increase 

in the biomass of consumers of those resources (i.e., zooplankton biomass), and the slope 

between Z and P would be positive. In eutrophic lakes, however, increases in phytoplankton 

biomass often are not associated with an increase in zooplankton biomass, and the slope 

(ΔZ/ΔP) approaches zero (Leibold et al. 1997, Hessen et al. 2006, Heathcote et al. 2016). Based 

on this observation, the EPA used the rate of change in zooplankton biomass relative to changes 

in phytoplankton biomass (ΔZ/ΔP) as a measure of the effect of excess nutrients on lake food 

webs. 

2.2.1.2 Dissolved oxygen 

Excess nutrients typically increase primary productivity, which increases the amount of 

organic matter in a lake. Then, DO is consumed as the organic matter is decomposed, leading to 

hypoxic and anoxic conditions (Figure 1). Low concentrations of DO limit the extent to which 

habitat is available to fish and zooplankton (Colby et al. 1972, Tessier and Welser 1991, 

Vanderploeg et al. 2009), and oxygen availability is a key determinant of the quality and quantity 

of habitat available to aquatic biota in many lakes (Evans et al. 1996). Although hypoxia occurs 

naturally in a small number of systems (Diaz 2001), anthropogenic nutrient loads have greatly 

increased the occurrence of hypoxia worldwide (Jenny et al. 2016). Deoxygenation of lake water 

typically begins near the lake bottom and proceeds to shallower depths over the summer, 

especially in stratified, relatively deep lakes, where the replenishment of DO from surface 

mixing is restricted (Cornett 1989, Wetzel 2001). Therefore, an increasing proportion of the 

deeper waters of a lake can become uninhabitable for certain organisms over the course of the 

summer (Molot et al. 1992). Exclusion of deeper waters as viable habitat, in particular, can 

disproportionately affect particular species of adult and juvenile fish (Lienesch et al. 2005). 

Another strong determinant of the available habitat for fish and zooplankton is water 

temperature. Summer brings a longer photoperiod and more intense solar insolation, which 
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increases water temperatures near the surface of many lakes to levels harmful to certain species 

(Ferguson 1958, Eaton and Scheller 1996). The viable habitat for cool- and cold-water species, in 

particular, can be restricted by surface warming (Jacobson et al. 2010, Arend et al. 2011). In 

contrast to deoxygenation, warming starts at the surface of the lake and proceeds to deeper 

depths over the course of the summer. Therefore, certain species of fish are “squeezed” 

between increasing temperatures at shallow depths and decreasing DO at deeper depths 

(Coutant 1985, Stefan et al. 1996, Lee and Bergersen 1996, Plumb and Blanchfield 2009), 

requiring them to choose between suboptimal temperatures or oxygen (Arend et al. 2011). 

Under those conditions, the metalimnion and the upper edge of the hypolimnion can provide an 

important refuge, and even a thin layer of cool water with sufficient DO can provide an 

important habitat for supporting fish health through the warmest summer days. Because they 

often can tolerate lower DO concentrations than fish, zooplankton can retreat to deeper depths 

of the hypolimnion to escape fish predation, but are also limited ultimately by low DO 

concentrations (Tessier and Welser 1991, Stemberger 1995). 

Based on these considerations, the mean concentration of DO below the thermocline 

was identified by the EPA as an appropriate metric for assessing risks to cool- and cold-water 

fish in seasonally stratified, dimictic lakes. In those lakes during the summer, the availability of 

cool-water habitat is constrained by deepwater DO concentrations, and so, this risk metric links 

increased nutrient concentrations to deleterious effects on fish and zooplankton in deep lakes. 

2.2.2 Recreational Use 

The EPA selected the concentration of cyanotoxins as the risk metric linking increased 

nutrients to the suitability of lake water for primary and secondary contact recreation. Increased 

nutrient concentrations and an attendant increase in cyanobacterial abundance can increase 

concentrations of cyanotoxins (Figure 2), which cause adverse effects on the health of people 

exposed to the water (US EPA 2019). One of the most commonly occurring types of cyanotoxins 

in freshwaters is microcystins (based on available data). To protect recreational uses of lakes, 

the EPA identified microcystin concentration (MC) as the best risk metric because of the 

availability of NLA data (US EPA 2010b) and because MC thresholds for recreational exposures 

have recently been published (US EPA 2019). 
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2.2.3 Drinking Water Source 

Increased nutrient concentrations and an attendant increase in cyanobacteria can 

increase concentrations of cyanotoxins, which are toxic when consumed at certain 

concentrations and quantities (Figure 2) (Chorus 2001, Stewart et al. 2008, US EPA 2015b). As 

was done for recreational use, the EPA selected MC in lake source water as the relevant risk 

metric for the drinking water use. 

Figure 2. Conceptual model linking increased nutrient concentrations to public health endpoints. 

2.3 Risk Hypotheses 

The EPA specified risk hypotheses for each of the selected assessment endpoints. Based 

on a survey of available literature, the EPA concluded that increased concentrations of N and P 

increase the risk to both ecological and human health (Figure 3). For aquatic life, the risk 

hypotheses consist of the pathway in which increased nutrient concentrations increase 

phytoplankton biomass (measured as chlorophyll a [Chl a]). Then, as phytoplankton biomass 

increases, the relationship between zooplankton biomass and phytoplankton biomass changes  
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so that increases in phytoplankton biomass are no longer associated with increases in 

zooplankton biomass, and increases in primary production at the base of the lake food web are 

not transferred to higher trophic levels. For the case of deepwater DO concentrations, increased 

phytoplankton biomass increases organic matter in the lake, which when decomposed, 

consumes DO (Walker 1979). The decreased concentrations of DO then affect lake aquatic life. 

The risk hypotheses for recreation and drinking water source designated uses state that 

increased nutrient concentrations increase the biovolume of cyanobacteria and concentrations 

of microcystin. 

Figure 3. Simplified conceptual model showing pathways selected for analysis. 

2.4 Analysis Plan 

The analysis plan consists of acquiring appropriate data and estimating relationships 

between phytoplankton biomass and each of the risk metrics as well as between N, P, and 

phytoplankton biomass. The critical measurement in all these relationships is Chl a, which is 

closely associated with phytoplankton biomass. Stressor-response analysis was applied to 

available data to estimate relationships between nutrient concentrations and different risk 

metrics. Because Chl a concentration is the critical parameter for all risk metrics, the EPA 

developed different stressor-response models associating Chl a concentration with each of the 
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risk metrics (i.e., zooplankton biomass, deepwater DO concentration, and MCs). The models 

then yielded candidate criteria for Chl a corresponding to each of the risk metrics (and their 

associated endpoints). N and P are estimated in field measurements as TN and TP, and so, the 

EPA developed draft models relating TN and TP concentrations to Chl a concentrations that can 

translate each of the different Chl a criteria into draft recommended TN and TP criteria. 

Because different risk metrics have been identified for each of the three designated 

uses, these risk metrics lead to the derivation of different draft recommended numeric nutrient 

criteria. In general, a state’s water quality criteria for any single lake would need to protect the 

most sensitive use (i.e., the state should select the most stringent numeric nutrient criteria) (40 

CFR 131.11(a)(1)). 

3 Analysis 

Because stressor-response analyses for each of the risk metrics differed substantially 

from one another, most of this section is organized by models for the different risk metrics—

zooplankton biomass, deepwater hypoxia, and microcystin – followed by models relating TN, TP, 

and Chl a. Because the same data were used to fit each of these models, all the data used in the 

analyses are discussed first. 

3.1 Data 

The EPA analyzed data collected in the NLA in the summers (May–September) of 2007 

and 2012 to support the derivation of draft recommended numeric nutrient criteria. The NLA 

data were collected from a random sample of lakes from the continental U.S. In 2007, lakes with 

surface areas larger than 4 hectares and, in 2012, lakes larger than 1 hectare were selected from 

the contiguous U.S. using a stratified random sampling design (US EPA 2012b). The final data set 

was supplemented by a small number of hand-picked lakes identified as being less disturbed by 

human activities (US EPA 2010b). The additional lakes were included to increase the number of 

least-disturbed lakes for which data were available, and by helping ensure the full range of 

conditions was sampled, data from the additional lakes was expected to improve the accuracy 

of the estimated stressor-response relationships. The overall sampling design of the NLA was 

synoptic, but 10% of sampled lakes were randomly selected and resampled on a different day 

after the initial visit. The timing of the second visit varied among lakes, but on average, the 
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second sample was collected approximately 46 days after the first. Approximately 20% of the 

lakes were sampled in both 2007 and 2012. The sampling day of the year was recorded for each 

visit and used in subsequent analyses to account for temporal changes in deepwater DO 

concentration. Overall, data from approximately 1,800 different lakes are included in the data 

set, but the specific number of samples used to estimate each stressor-response relationship 

varies slightly based on data available at each lake. The specific number of samples is provided 

in the subsequent discussion of each model. 

During each visit to a selected lake, an extensive suite of abiotic and biological variables 

was measured. Only brief details on sampling protocols are provided here regarding the 

parameters used to derive these draft criteria; more extensive descriptions of sampling 

methodologies are available in the NLA documentation (US EPA 2007, 2011). A sampling 

location was established in open water at the deepest point of each lake (up to a maximum 

depth of 50 meters [m]) or in the mid-point of reservoirs. In 2012, an additional sampling 

location for collection of microcystin, algae, and Chl a data was established in the littoral zone 

approximately 10 m away from a randomly selected point on the shoreline. 

At the open water site, a vertical, depth-integrated methodology was used to collect a 

water sample from the photic zone of the lake (to a maximum depth of 2 m). Multiple sample 

draws were combined in a rinsed, 4-liter (L) cubitainer. When full, the cubitainer was gently 

inverted to mix the water, and an aliquot was taken as the water chemistry sample. That 

subsample was placed on ice and shipped overnight to the Willamette Research Station in 

Corvallis, Oregon. A second aliquot was taken to use in characterizing the phytoplankton 

community and was preserved with a small amount of Lugol’s solution. A Secchi depth 

measurement was also collected at this site. Two zooplankton samples were collected with 

vertical tows for a cumulative tow length of 5 m using fine- (50-micrometer- [-µm-]) and coarse- 

(150-µm-) mesh Wisconsin nets. In lakes at least 7 m deep, one 5-m deep tow was collected 

with each mesh. In shallower lakes, vertical tows over shorter depths were combined to reach 

the cumulative tow length of 5 m. 

At the littoral zone site, two grab water samples were collected 0.3 m below the surface 

where the lake was at least 1 m deep using a 2-L brown bottle. The first sample was split into 

two subsamples: one subsample for quantifying algal toxin concentration and the second 

subsample preserved with a small amount of Lugol’s solution and used to characterize the 
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phytoplankton community. The second grab sample collected with the 2-L bottle was used to 

quantify Chl a concentration. 

3.1.1 Biological Data 

Phytoplankton biovolume from the field samples was measured in the laboratory. 

Samples collected from both open water and littoral zone locations were examined by 

taxonomists, who identified at least 400 natural algal units to species under 1,000× 

magnification. Observations were aggregated and abundance was calculated as cells per 

milliliter. In each sample, the dimensions of the taxa that accounted for the largest proportion of 

the observed assemblage were measured and used to estimate biovolume. Biovolumes of the 

most abundant taxa were based on the average of measurements from at least 10 individuals, 

while biovolumes of the less abundant taxa were based on somewhat fewer measurements. The 

biovolume was reported as cubic micrometers per milliliter (μm3/mL) (US EPA 2012a), which 

was converted to cubic millimeters per liter (mm3/L). Approximately 5% of the phytoplankton 

samples were randomly selected and reidentified and measured by a second taxonomy 

laboratory. These reidentified samples provided a basis for estimating laboratory measurement 

error. Biovolume measurements were converted to biomass using a density of 1 gram per 

milliliter (g/mL) (Holmes et al. 1969). 

Zooplankton samples from the coarse- and fine-mesh net tows were processed 

separately. In each sample, zooplankton specimens were examined and counted under 100–

1,000× magnification, in discrete subsamples until at least 400 individuals were identified. In the 

coarse-mesh net samples, all taxa were identified and enumerated. In the fine-mesh net, only 

“small” taxa were identified and enumerated (Cladocera less than 0.2 millimeters [mm] long, 

copepods less than 0.6 mm long, rotifers, and nauplii). Zooplankton abundance was estimated 

based on the volume of sampled lake water used to identify the targeted count of 400 

individuals. Measurements of at least 20 individuals were collected for dominant taxa (i.e., taxa 

encountered at least 40 times in the subsample); at least 10 individuals were measured for taxa 

encountered from 20 to 40 times; and at least 5 individuals were measured for rare taxa 

(encountered less than 20 times in the subsample). Zooplankton biomass estimates were based 

on existing length and width relationships (Dumont et al. 1975, McCauley 1984, Lawrence et al. 

1987). Estimates from the coarse- and fine-mesh samples were added to yield a single 

zooplankton sample per lake visit. 
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3.1.2 Chemical Data 

For both 2007 and 2012 data, TN, nitrate-nitrite (NOx), ammonia, and TP concentrations; 

true color, dissolved organic carbon (DOC) concentration, turbidity, and acid-neutralizing 

capacity (ANC) were measured in the laboratory from the open water sample at prespecified 

levels of precision and accuracy (US EPA 2012a). Typical laboratory methods included persulfate 

digestion with colorimetric analysis for TN and TP, nephelometry for turbidity, comparison to a 

calibrated color disk for true color, and automated acidimetric titration for ANC. To measure Chl 

a concentration, 250 mL of lake water was pumped through a glass fiber filter in the field and 

quantified in the laboratory to prespecified levels of precision and accuracy. Examples of lower 

reporting limits include 20 µg/L for TN, 4 µg/L for TP, and 0.5 µg/L for Chl a. 

Microcystin sample processing began with three sequential freeze/ thaw cycles to lyse 

cyanobacteria (Loftin et al. 2008). Processed samples were filtered using 0.45 µm polyvinylidene 

difluoride membrane syringe filters and stored frozen until analysis. The concentration of 

microcystin in the filtered water sample was measured with an enzyme-linked immunosorbent 

assay (ELISA) using an Abraxis kit for Microcystin-ADDA, which employs polyclonal antibodies 

that are unique to microcystins and other similar compounds. The binding mechanism of the 

Microcystin-ADDA assay is specific to the microcystins, nodularins, and their congeners; 

therefore, results from that assay could include contributions from any compound within the 

ADDA functional group (Fischer et al. 2001). The minimum reporting level for the assay was 0.1 

µg/L as microcystin-LR. 

3.1.3 Dissolved Oxygen and Temperature Profiles 

At the deepest point of each lake (or in the midpoint of reservoirs), a multiparameter 

water quality meter was used to measure profiles of DO concentrations, temperature, and pH at 

a minimum of 1-m depth intervals (Figure 8). Profiles in lakes less than 3 m deep were sampled 

at 0.5-m depth intervals. Water temperatures were converted to estimates of water density 

(Jones and Harris 1992), and density gradient was estimated between all available depths below 

0.5 m as the difference in density between two successive measurements divided by the 

difference in the depths of the two measurements. Temperature gradients were computed with 

the same approach. Samples collected in the uppermost 0.5 m were excluded to limit the effects 

of surface warming on the gradient calculations. 
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3.1.4 Mapped Data 

Lake physical characteristics including lake surface area, geographic location (latitude 

and longitude), elevation, lake catchment area, and lake perimeter were estimated from 

mapped data. From these characteristics, the following composite variables were calculated: (1) 

the drainage ratio, which is defined as the ratio of catchment area to lake surface area and 

characterizes the degree to which the lake catchment influences the lake; (2) the shoreline 

development, which is defined as the ratio between the perimeter of the lake and the perimeter 

of a circle with the same area as the lake and characterizes the geometric complexity of the lake 

shore; and (3) the lake geometry ratio, which is defined as area0.25/depth, or the ratio between 

fetch and lake maximum depth, and has been shown to differentiate lakes that stratify 

seasonally (low values of the geometry ratio) from lakes that are polymictic (Gorham and Boyce 

1989, Stefan et al. 1996). Variables quantifying the mean annual precipitation and mean annual 

air temperature at the lake location were extracted from 30-year averaged climatic data (Daly et 

al. 2008). 

3.2 Stressor-Response Models 

3.2.1 Zooplankton Biomass 

3.2.1.1 Statistical analysis 

The EPA specified a Bayesian network model to estimate the relationship between 

phytoplankton and zooplankton biomass (Figure 4). A “Bayesian network” provides a unified 

framework for modeling the cascading relationships between different measurements and 

propagates estimation errors and model uncertainty correctly throughout the model (Qian and 

Miltner 2015; Yuan and Pollard 2018). 
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Figure 4. Schematic of network of relationships for modeling zooplankton biomass. Gray-filled ovals: 
available observations; other nodes: modeled parameters; numbers in parentheses refer to equation 
numbers in the text. 

The first set of relationships in the network estimated mean phytoplankton biovolume based on 

both Chl a concentration and measurements of phytoplankton biovolume. The two 

measurements provided independent estimates of phytoplankton biovolume, each with 

different sources of error. Chl a is measured precisely from field samples, but the Chl a content 

of phytoplankton can vary depending on environmental conditions and species composition 

(Kasprzak et al. 2008), so that a measured Chl a concentration in one sample might indicate a 

slightly different phytoplankton biovolume than the same Chl a measured in another sample. 

Hence, Chl a concentration is modeled as being directly proportional to the true phytoplankton 

biovolume in the sample (Psamp), but the constant of proportionality, b, (i.e., the Chl a content of 

phytoplankton in a sample) is allowed to vary among samples. The log-transformed version of 

this model equation is as follows: 

 log(𝐶𝐶ℎ𝑙𝑙𝑖𝑖) = log�𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖� + log(𝑏𝑏𝑖𝑖) (1) 

 log(𝑏𝑏𝑖𝑖) ~𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑙𝑙(𝜇𝜇𝑏𝑏 ,𝜎𝜎𝑏𝑏) (2) 

where the value of bi for each sample, i, is drawn from a single log-normal distribution 

characterized by a mean, µb, and a standard deviation, σb. This multilevel expression of the 

model equation allows the mean Chl a content of phytoplankton cells estimated for each 

sample to vary, but imposes the constraint that estimates of phytoplankton Chl a content for 

each sample must be drawn from a common log-normal distribution (Gelman and Hill 2007). 
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Direct measurements of phytoplankton biovolume generally provide an unbiased 

estimate of true phytoplankton biovolume. These direct measurements, however, are obtained 

by summing contributions from measurements taken from many different individual 

phytoplankton, each of which includes measurement error. Hence, the summed estimate of 

total biovolume includes a substantial amount of measurement error. That measurement error 

was explicitly modeled, and a second estimate of the true phytoplankton biovolume in a sample 

was expressed as follows: 

 log�𝑃𝑃𝑜𝑜𝑏𝑏𝑠𝑠,𝑖𝑖�~𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑙𝑙(log�𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖� , 𝑠𝑠1) (3) 

where Pobs,i is the observed phytoplankton biovolume in sample i. The standard deviation, s1, of 

the distribution is quantified using laboratory replicate measurements of phytoplankton 

biovolume. Final model estimates of Psamp,i were then consistent with both Chl a and observed 

phytoplankton biovolume, and by combining the two measurements, the accuracy of the final 

estimate was maximized. 

Psamp,i estimates phytoplankton biovolume within a single sample, but to model the 

relationship between phytoplankton and zooplankton biomass, the EPA was interested in 

seasonal mean values of phytoplankton biovolume for each lake. To estimate seasonal mean 

phytoplankton biovolume, the EPA used model estimates of Psamp,i corresponding to 

measurements collected at the same lake on different days and corresponding to 

measurements collected on the same day in the littoral zone and in the middle of the lake to 

provide a final estimate of the combined magnitude of temporal and sampling variability. 

Seasonal mean phytoplankton biovolume (P) can then be expressed as follows: 

 log�𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖�~𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑙𝑙(log�𝑃𝑃𝑗𝑗[𝑖𝑖]� ,  𝑠𝑠2) (4) 

 log�𝑃𝑃𝑗𝑗�~𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑙𝑙(𝜇𝜇𝑃𝑃,𝜎𝜎𝑃𝑃) (5) 

where j indexes different lakes and s2 is the standard deviation of the distribution representing 

temporal and sampling variations in Psamp,i about the seasonal mean value. The distribution of 

seasonal mean phytoplankton concentrations across all sites was then modeled as a log-normal 

distribution with mean, µP, and standard deviation, σP. 

Zooplankton abundance (A) and biomass (Z) were modeled as increasing functions of 

seasonal mean phytoplankton biovolume (or biomass, using the conversion factor of 1 g/mL). 

Previous studies in oligotrophic lakes found that zooplankton biomass increased as a constant 
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proportion of phytoplankton biomass (Rognerud and Kjellberg 1984, del Giorgio and Gasol 

1995). That is, after log-transforming, the relationship between P and Z should approach the 

following at low concentrations of P: 

 log(𝑍𝑍) = log(𝑘𝑘) + log (𝑃𝑃) (6) 

where the slope of the relationship between log(Z) and log(P) approaches 1. In contrast, in 

eutrophic lakes, minimal changes in Z were observed with changes in P, and the slope between 

log(Z) and log(P) approached zero (Yuan and Pollard 2018). Those patterns guided the selection 

of the following functional form for modeling the relationship between log(Z) and log(P): 

 𝐸𝐸[log�𝑍𝑍𝑗𝑗�] = 𝑓𝑓1 + 𝑓𝑓2log (𝑃𝑃𝑗𝑗) − 𝑓𝑓3q log �1 + exp �− log�𝑃𝑃𝑗𝑗�−𝑐𝑐𝑝𝑝
𝑞𝑞

�� (7) 

where, in general, E[.] indicates the expected value of the variable enclosed in the square 

brackets. The coefficients f1, f2, f3, cp, and q were estimated from observations of Zj and the 

estimated seasonal mean phytoplankton concentration, Pj, estimated in Equation (5). The slope 

of this function approaches f2 at large values of P and approaches a slope of f2 + f3 at low values 

of P. The a priori expectation for the value of f2 is zero to represent the weak relationship 

between log(Z) and log(P) in eutrophic lakes. So, a prior distribution for f3 was defined as a 

normal distribution centered at 1 with a standard deviation of 0.5. This distribution expresses 

the prediction (stated above) that, at low levels of phytoplankton (oligotrophic lakes), 

zooplankton biomass should increase as a constant proportion of phytoplankton biomass. 

A similar model was specified for zooplankton abundance (A) as follows: 

 𝐸𝐸[log�𝐴𝐴𝑗𝑗�] = 𝑁𝑁1 + 𝑁𝑁2 log�𝑃𝑃𝑗𝑗� +  𝑁𝑁3 log [1 + exp �− log (𝑃𝑃𝑗𝑗)−𝑐𝑐𝑝𝑝
𝑟𝑟

�] (8) 

where the parameters, a1, a2, a3, and r were estimated from the data, and the third term on the 

right side of the equation again introduces curvature in the fitted relationship. The change point 

for zooplankton abundance, cp, was estimated as being the same as for zooplankton biomass 

because of the strong influence of abundance on total biomass. In the case of zooplankton 

abundance, no a priori assumptions about the slope of the relationship at high or low levels of 

phytoplankton guided the choice of parameter values. 

Observed values of zooplankton abundance and biomass were then related to the 

estimated expected values as follows: 
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 log�𝐴𝐴𝑜𝑜𝑏𝑏𝑠𝑠,𝑖𝑖�~𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑙𝑙(E[log�𝐴𝐴𝑗𝑗[𝑖𝑖]�] , 𝑠𝑠3) (9) 

 log�𝑍𝑍𝑜𝑜𝑏𝑏𝑠𝑠,𝑖𝑖�~𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑙𝑙(E[log�𝑍𝑍𝑗𝑗[𝑖𝑖]�] , 𝑠𝑠4) (10) 

Similar to the model equations for phytoplankton, variability in the observations of zooplankton 

abundance and biomass relative to estimated mean values were modeled as log-normal 

distributions with standard deviations of s3 and s4. These error terms included contributions 

from temporal, sampling, and measurement error. 

Because the strength of the interaction of the zooplankton assemblage with benthic 

resources was expected to differ between shallow and deep lakes (Benndorf et al. 2002, 

Scheffer and van Nes 2007), different parameter values for a1, a2, a3, f1, f2, f3, and cp were 

estimated for each of three classes of lakes defined by depth. The curvature parameters q and r 

were fixed at 1. The number of lake classes was specified to balance between accounting for 

differences in lake depth and maintaining enough samples within each class to estimate 

relationships. Depth thresholds defining each class were selected to ensure that a similar 

number of samples was assigned to each class, yielding the following thresholds: less than 3.2 

m, 3.2–7.2 m, and more than 7.2 m. 

All model equations were fit simultaneously to data collected at each lake, including 

revisits on different days, littoral and mid-lake samples, and laboratory replicates of 

phytoplankton measurements. Weakly informative priors were specified for all model 

parameters except for f3 (Gelman 2006). Weakly informative prior distributions constrain 

parameter estimates away from extreme values, while allowing the data to determine the 

estimate for each parameter. All other statistical calculations were performed with R, an open-

source statistical modeling software (R Core Team 2017). Hierarchical Bayesian models were fit 

using the rstan library which implements the No-U-Turn sampler, a variant of a Hamiltonian 

Monte Carlo sampling approach (Duane et al. 1987, Stan Development Team 2016). 

3.2.1.2 Results 

Data collected at a total of 1,127 lakes were available for analysis, with approximately 

380 lakes assigned to each depth class. Estimated mean phytoplankton biovolume within each 

sample was much more strongly associated with Chl a concentration than with measured 

phytoplankton biovolume, because of the high measurement error associated with measured 

phytoplankton biovolume (Figure 5). Variance in laboratory replicate measurements accounted 
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for 38% of the total variance in observed phytoplankton biovolume, a percentage that was 

somewhat lower than the variance attributed to differences in seasonal means among sites 

(56%) and much higher than the percentage of variance attributed to temporal and sampling 

variability (6%). So, temporal and sampling variability accounted for only a small proportion of 

the variance in observations of phytoplankton biovolume. 

Figure 5. Relationships between measured biovolume, Chl a, and estimated mean phytoplankton 
biovolume. Solid lines: 1:1 relationship. 

Estimated relationships between phytoplankton biomass (as quantified by Chl a) and 

zooplankton abundance and biomass matched trends observed in the data (see Figure 6 for an 

example for lakes between 3.2 and 4.7 m deep in left and middle panels, respectively). The 

relationship between zooplankton biomass and phytoplankton biomass also was consistent with 

the initial assumption that, in oligotrophic lakes with low levels of phytoplankton biomass, the 

slope approached 1, and in eutrophic lakes with high levels of phytoplankton biomass, the slope 

approached zero (right panel, Figure 6). 

The models show the gradual change in the shape of the biomass pyramid along the 

eutrophication gradient. In oligotrophic lakes, the slope of the relationship between zooplankton 

and phytoplankton biomass is near 1, indicating that small increases in phytoplankton biomass are 

reflected in a proportional increase in zooplankton biomass. As Chl a increases, however, the slope 

decreases, and the increase in zooplankton biomass per unit of increase in phytoplankton 

biomass approaches zero. In eutrophic lakes, increases in phytoplankton biomass do not result 

in comparable changes in zooplankton biomass. These changes along the eutrophication 

gradient are consistent with other similar studies, as reviewed in Yuan and Pollard (2018). 
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Figure 6. Estimated relationships between zooplankton and Chl a for lakes > 7.2 m deep. Left panel: Chl a 
vs. zooplankton abundance; middle panel: Chl a vs. zooplankton biomass; right panel: Chl a vs. slope of 
the relationship between zooplankton biomass and Chl a. Solid lines: mean relationships; shaded areas 
(left and middle panels): 80% credible intervals about mean relationship; dashed lines (right panel): 50% 
credible intervals about mean relationship; open circles (left and right panels): average of five samples 
nearest the indicated Chl a concentration; dotted horizontal line (right panel): one example value of 
threshold for deriving a Chl a criterion. 

3.2.1.3 Chl a criterion derivation 

Calculating candidate criteria for Chl a based on this response requires the specification 

of two parameters—the value of the slope between log(Z) and log(P) and the credible interval 

(i.e., the Bayesian analog to a confidence interval). The selected value of the slope identifies the 

point at which food web connectivity between phytoplankton primary productivity and 

zooplankton grazing is likely too low to control excess primary productivity in the lake. A 

threshold slope of zero is the limit beyond which additional increases in phytoplankton biomass 

are not converted to zooplankton biomass, and that slope is the lowest target for the threshold 

slope. Higher threshold slopes might be selected for oligotrophic lakes in which a higher 

proportion of phytoplankton is expected to be consumed by zooplankton. Graphically, this 

threshold defines the horizontal line on which the Chl a criterion will be based (see the dotted 

line in the right panel of Figure 6). 

The selection of a threshold slope between log(Z) and log(P) (i.e., the targeted 

condition) can also be informed by computing the predicted increase in zooplankton biomass 

associated with an increase in phytoplankton biomass. More specifically, the change in 

zooplankton biomass can be expressed as follows: 

 𝑍𝑍2
𝑍𝑍1

= �𝑃𝑃2
𝑃𝑃1
�
𝑠𝑠

 (11) 

where m is the slope between log(Z) and log(P), P2 and P1 are two different phytoplankton 

biomasses, and Z2 and Z1 are the corresponding zooplankton biomasses. So, when the slope  
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between log(Z) and log(P) in a particular lake is 0.1, the predicted increase in zooplankton 

biomass with a doubling of phytoplankton biomass is 20.1, or 1.07. That is, only a 7% increase in 

zooplankton biomass is expected when phytoplankton biomass is doubled. Table 2 shows other 

predicted increases in zooplankton biomass. 

Table 2. Predicted proportional increase in zooplankton biomass with different increases in phytoplankton 
biomass (P2/P1) and different slopes, m, between log(Z) and log(P) 

m 1.5 
P2/P1 
2.0 3.0 

0.1 1.04 1.07 1.12 

0.2 1.08 1.15 1.25 
0.3 1.13 1.23 1.39 

 

Credible intervals express the statistical uncertainty about the position of the mean 

relationship and are directly comparable to confidence intervals used in frequentist statistics. 

The mean relationship between the slope and Chl a represents the best estimate for the slope 

of the stressor-response relationship; however, a lower credible interval provides additional 

assurance that the calculated criterion is protective, given the data and model uncertainty. That 

is, more protective criteria are based on lower percentiles of the credible interval. For example, 

selecting the 25th credible interval implies that 25% of estimated slopes, given the data, are less 

than the selected threshold. That is, at the calculated criterion value, a lake has a 75% chance of 

achieving the targeted condition. In contrast, selecting the 10th credible interval implies that a 

lake has a 90% chance of achieving the targeted condition. In statistical hypothesis testing, 

convention suggests that p-values of 1% or 5% are statistically significant results, which can also 

inform the selection of the credible interval. Selection of the value of the lower credible interval 

as the basis for the criteria is ultimately a management decision, and a range of credible 

intervals from 1% to 25% is provided in the associated interactive tool (see below). Illustrative 

criteria for Chl a for different combinations of management decisions are shown in Table 3 

(slope threshold = 0 is shown in Figure 6). The interactive tool, which uses posterior simulation 

with the estimated parameter distributions, computes candidate criteria for different 

combinations of the slope threshold and the credible interval (https://chl-zooplankton-

prod.app.cloud.gov). With this tool, a user can specify the value of the slope between log(Z) and 

log(P), lake depth, and the credible interval with sliders, and the associated criteria and stressor-

response relationship are updated to reflect those selections. 

https://chl-zooplankton-prod.app.cloud.gov/
https://chl-zooplankton-prod.app.cloud.gov/
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Table 3. Illustrative Chl a criteria (μg/L) for different credible intervals and a threshold value of 0 for Δ(log 
Z)/Δ(log P). Values shown for each lake depth class. 

 Depth class 
Credible 
interval < 3.2 m 3.2 – 7.2 m > 7.2 m 

10% 41 22 13 
25% 48 36 16 

 

3.2.2 Deepwater Hypoxia 

The EPA specified a model for deepwater DO that represents the temporal decrease in 

DO during summer stratification, while accounting for differences among lakes in eutrophication 

status, depth, and DOC concentrations (Yuan and Jones 2020a). 

3.2.2.1 Data 

The EPA first restricted analysis to data collected from seasonally stratified lakes 

because hypoxic and anoxic conditions occur more consistently during stratified conditions. 

Lakes were identified that were likely to be seasonally stratified by computing the lake geometry 

ratio. This metric approximates the relative effects of lake fetch and depth on stability of 

stratification, and lakes with a geometry ratio less than 3 m-0.5 exhibit seasonal stratification 

(Gorham and Boyce 1989). Therefore, the EPA restricted NLA data to lakes with geometry ratios 

less than that threshold. Lakes likely to be dimictic (i.e., mixing fully in the spring and in the fall) 

were also identified based on latitude and elevation. This classification approach adjusts the 

lake latitude by elevation, and then identifies lakes with adjusted latitudes greater than 40˚ N as 

dimictic (Figure 7) (Lewis 1983). Finally, data were restricted to samples in which temperature 

profiles exhibited evidence of stratification (defined as a temperature gradient of at least 1 

degree Celsius per meter [°C/m]). 
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Figure 7. Lakes designated as seasonally stratified dimictic lakes from the NLA data set. 

Mean deepwater DO concentrations (DOm) in the selected NLA lakes were computed 

from temperature and DO profiles. First, measurements collected at depths less than or equal to 

0.5 m were excluded to minimize the effects of surface warming. In some profiles, duplicate 

measurements of DO and/or temperature were collected at each depth, and in these cases, the 

average was used in computations. The EPA used only profiles with measurements collected 

from at least half of the possible 1-m increments in the final analysis. 

The upper boundary of the metalimnion was identified as the shallowest depth at which 

the temperature gradient exceeded 1 °C/m (excluding the surface layer) (Figure 8) (Wetzel 

2001). DOm for each lake profile was computed as the mean of DO measurements estimated at 

all 1-m increments deeper than the upper boundary of the metalimnion. That estimate of DOm 

necessarily includes some measurements in the metalimnion, which might increase the 

estimates of DOm relative to studies that can focus only on the hypolimnion. In the NLA data set, 

the upper boundary of the metalimnion could be determined for most profiles. In contrast, 

many lakes in the NLA data set were too shallow to maintain a hypolimnion with small vertical 

temperature gradients (Jones et al. 2011), and therefore, no approach for consistently defining 

the hypolimnion for all lakes was available (Quinlan et al. 2005). Furthermore, inclusion of the 

metalimnion was consistent with the assumption that taxa can use this transitional region as a 

refuge from warmer temperatures in the mixed layer (Klumb et al. 2004). The depth of water 

below the thermocline was computed as the difference between the maximum depth recorded 

for each lake and the mean depth of the upper boundary of the metalimnion. Chl a and DOC  
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measurements from each lake were also used in the analysis. Prior to statistical analysis, all 

measurements were standardized by subtracting their overall mean values and dividing by the 

standard deviation. This standardization had no effect on the final model results, but helped the 

Bayesian models converge more efficiently (Gelman and Hill 2007). 

Figure 8. Illustrative examples of depth profiles of temperature, temperature gradient, and DO. Dashed 
horizontal line: estimated depth of the bottom of the epilimnion. 

3.2.2.2 Statistical analysis 

The EPA modeled the decrease in DOm as a linear function, an approximation that is 

appropriate for DOm concentrations higher than approximately 2 milligrams per liter (mg/L) 

(Burns 1995). This threshold reflects experimental evidence indicating that the rate of decrease 

of hypolimnetic DO is constant at relatively high ambient concentrations of DO, but can be 

affected by DO concentrations near zero (Cornett and Rigler 1984). The linearly decreasing 

function also precludes the possibility of episodic mixing events that transport DO from shallow 

waters to deeper depths of the lake. In some lakes, those mixing events are rare, but in other 

lakes, they might occur frequently. In the latter group of lakes, the model predicts DOm during 

extended periods of still weather, and the associated criteria would protect aquatic life in those 

scenarios. Below, the statistical model is first described followed by a description of the 

approach for addressing DOm measurements less than 2 mg/L. 



26 

Figure 9. Schematic of hypoxia model. Numbers in parentheses refer to equation numbers in the text. 

NLA data were fit to the following model equation: 

 𝐸𝐸[𝐷𝐷𝐷𝐷𝑠𝑠,𝑖𝑖] = 𝐷𝐷𝐷𝐷0,𝑗𝑗[𝑖𝑖] + 𝑉𝑉𝐷𝐷𝐷𝐷𝑗𝑗[𝑖𝑖]�𝑡𝑡𝑖𝑖 − 𝑡𝑡0,𝑘𝑘[𝑖𝑖]� (12) 

where DO0,j[i] is the value of DOm at the start of spring stratification in lake j corresponding to 

sample i, and volumetric oxygen demand (VODj) is the net imbalance in the volumetric oxygen 

budget for lake j, expressed as mg/L/day of DO (Burns 1995). That is, VOD estimates the rate of 

decrease in DOm per day. ti is the date that sample i is collected, and t0,k[i] is the date of the 

beginning of stratification for the lake-year k corresponding to sample i. Observed values of 

DOm,i were modeled as being normally distributed about the expected value, with a standard 

deviation of σ1. 

The first day of stratification (t0) was not measured for any of the lakes, and the precise 

day on which stratification occurs for a given lake and year depends on local wind speeds, 

temperatures, and lake morphology (Cahill et al. 2005). Previous work in northern temperate 

dimictic lakes found that the first day of stratification could be modeled as a function of mean 

annual temperature (Demers and Kalff 1993), so the EPA specified the following relationship for 

t0: 

 𝑡𝑡0,𝑘𝑘 = 𝑏𝑏1 + 𝑏𝑏2𝑇𝑇𝑇𝑇𝑁𝑁𝑇𝑇𝑗𝑗[𝑘𝑘] + 𝑇𝑇𝑘𝑘 (13) 

where Tempj[k] is the mean annual air temperature at the location for lake j corresponding to 

lake-year k, and b1 and b2 are coefficients that are fit to the data. The published relationship in 

Demers and Kalff (1993) provided initial estimates for b1 and b2, which were used to specify 

prior distributions for the two parameters. The error term ek is included in the model because 
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the first day of stratification varies substantially in different years for a given lake because of 

differences in weather. Data published by Demers and Kalff (1993) indicated that the standard 

deviation of residual error for this relationship was approximately 12 days, so this value was 

used to specify the prior distribution for the standard deviation of ek. 

The initial concentration of DO at the time of stratification, DO0, was also not measured 

for any of the lakes. Deepwater temperatures in many dimictic lakes are determined by 

temperatures prior to initiation of stratification (Hondzo and Stefan 1993), and so, deepwater 

lake temperatures at the time of stratification were approximated as the minimum annual air 

temperature at the lake location. Then, the saturated DO concentration at the minimum annual 

air temperature provided an estimate for DO0. Minimum air temperatures less than 4 degrees 

Celsius (˚C) were set to 4 ˚C, corresponding to water temperatures when the lake surface begins 

to freeze (Demers and Kalff 1993). 

Lake trophic status affects VOD because increased phytoplankton production in the 

epilimnion increases the quantity of organic material available for decomposition in the 

hypolimnion and in lake sediments (Hutchinson 1938). In many lakes, allochthonous sources 

also provide organic matter that fuels bacterial respiration and depletes oxygen in deep lake 

waters (Pace et al. 2004, Kritzberg et al. 2004). VOD has also been observed to decrease with 

increasing hypolimnion depth, a phenomenon attributed to a weaker overall influence of 

sediment oxygen demand as the volume of the hypolimnion increases (Cornett and Rigler 1980, 

Müller et al. 2012). Based on these mechanisms, the EPA modeled VOD as a linear function of 

the long-term mean Chl a concentration and depth below the thermocline in the lake. To 

account for the effect of allochthonous organic matter, DOC was also included as a third 

predictor variable for VOD (Hanson et al. 2003, Cole et al. 2011). The model equation for VOD 

can then be written as follows: 

 𝐸𝐸[𝑉𝑉𝐷𝐷𝐷𝐷𝑗𝑗] = 𝑑𝑑1 + 𝑑𝑑2 log�𝐶𝐶ℎ𝑙𝑙𝑠𝑠𝑚𝑚,𝑗𝑗� + 𝑑𝑑3𝐷𝐷𝑠𝑠𝑚𝑚,𝑗𝑗 + 𝑑𝑑3log (𝐷𝐷𝐷𝐷𝐶𝐶𝑠𝑠𝑚𝑚,𝑗𝑗) (14) 

where d1, d2, d3, and d4 are model coefficients estimated from the data; log(Chlmn,j) is the long-

term mean of the log-transformed Chl a concentration lake, j; Dmn,j is the mean depth of the lake 

below the thermocline; and log(DOCmn,j) is the seasonal mean of log-transformed DOC 

concentration in the lake. Variability in VOD across individual lakes about the mean value 

estimated from the predictor variables was modeled as a normal distribution. Because Chl a 

concentrations can vary substantially over the summer in a lake, the modeling approach used 
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with the zooplankton model provided a distribution of possible long-term mean log(Chlmn) 

values for each lake, given one or more instantaneous measurements of Chl a concentration. 

More specifically, seasonal mean log(Chlmn) values for different lakes were modeled as a normal 

distribution as follows: 

 log�𝐶𝐶ℎ𝑙𝑙𝑠𝑠𝑚𝑚,𝑗𝑗�~𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑙𝑙(𝜇𝜇𝐶𝐶ℎ𝑙𝑙 , 𝑠𝑠𝐶𝐶ℎ𝑙𝑙,1) (15) 

Then, individual log-transformed measurements from each lake were assumed to be drawn 

from a normal distribution with a mean value equal to the long-term mean as follows: 

 log(𝐶𝐶ℎ𝑙𝑙𝑖𝑖) ~𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑙𝑙(log (𝐶𝐶ℎ𝑙𝑙𝑠𝑠𝑚𝑚,𝑗𝑗[𝑖𝑖]), 𝑠𝑠𝐶𝐶ℎ𝑙𝑙,2) (16) 

where Chli is the Chl a concentration measured in sample, i, associated with the mean log(Chlmn) 

concentration in lake j[i]. (Note that Equations (15) and (16) are not shown in Figure 9.) Within-

year variability of DOC and depth below the thermocline were substantially less for Chl a, so 

long-term means for each of those parameters were estimated as the mean value of all available 

data for each lake. 

As noted earlier, DOm approaches zero asymptotically over time and modeling that 

relationship with the linear model described above would introduce biases to the model. To 

account for the asymptotic relationship, the EPA modeled samples with DOm less than 2 mg/L 

with methods used for measurements that are below a known detection limit. That is, the 

samples were modeled as if their “true” DOm values were unknown but their maximum values 

were 2 mg/L (Gelman and Hill 2007). This approach retained some information inherent in a 

sample with DOm less than 2 mg/L (i.e., Chl a, lake depth, DOC, and sampling day are consistent 

with low DOm), but allowed the use of linear relationships in the model to estimate the rate of 

DO depletion. More specifically, the model fits a linear trend in time to DOm observed from lakes 

with similar Chl a, DOC, and depth. By assuming that measurements of DOm less than 2 mg/L are 

unknown, the estimates of the linear relationship are more strongly determined by the higher 

DOm concentrations, and samples with DOm less than 2 mg/L exert a weak influence that is still 

consistent with the overall relationship. Retaining samples with DOm less than 2 mg/L in the 

model prevents biases that would be introduced by considering only lakes with relatively high 

DOm. 
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3.2.2.3 Results 

A total of 477 samples collected at 381 lakes were available for analysis. DOm 

concentrations in 165 samples were less than 2 mg/L and were modeled as unknown values that 

were less than 2 mg/L. The asymptotic relationship can be seen in the plot of Chl a versus DOm 

(Figure 10), in which DOm decreases steadily up to a Chl a concentration of about 4 μg/L. At 

higher Chl a concentrations, the magnitude of the slope of the relationship between DOm and 

Chl a decreases and approaches zero. 

Figure 10. Chl a vs. DOm. DOm values. Gray-filled circles: values < 2 mg/L; solid line: nonparametric fit to 
the data shown to highlight asymptotic relationship. 

The majority of the estimates for the first day of stratification ranged from day 30 to day 

120 (Figure 11). In most lakes, the Demers and Kalff (1993) estimate for the first day of 

stratification was later than the value of t0 estimated by the model. This systematic difference is 

consistent with the fact that most of the lakes considered in Demers and Kalff (1993) were 

located north of the mean latitudinal location of the NLA lakes. The strong association between 

the Demers and Kalff (1993) estimates and the current estimates indicates that the overall 

formulation of the model, in which stratification day is a function of mean annual temperature, 

is valid. 
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Figure 11. Demers and Kalff (1993) predicted stratification day vs. model mean estimate. Solid line: the 1:1 
relationship. 

Relationships estimated between DOm and different predictors were consistent with the 

hypothesized effects of each of the predictors (Figure 12). DOm decreased strongly with 

increases in DOC and Chl a, reflecting the increased organic material available in lakes with high 

concentration of the two parameters. Conversely, DOm increased with increasing depth below 

the thermocline, consistent with observations in other studies. Substantial uncertainty is 

associated with the relationship between DOm and day of the year, reflecting the inherent 

uncertainty in estimating the first day of stratification for different lakes. 
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Figure 12. Relationships between individual predictors and DOm, holding other variables fixed at their 
mean values. Solid line: mean relationship; gray shading: 90% credible intervals. 

The root mean square (RMS) error on model predictions for samples with DOm higher 

than 2 mg/L was 1.5 mg/L. Slightly greater residual variability in the observations about the 

mean predictions were observed at high values of DOm (Figure 13). 

Figure 13. Model predicted DOm vs. observed DOm. Open circles: individual samples; solid line: 1:1 
relationship. 
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The statistical model described for DOm is consistent with the mechanisms of DO 

depletion in the deep waters of a lake, in which available DO below the thermocline is 

progressively depleted after the initiation of spring stratification. The estimated effects of 

eutrophication, DOC, and lake depth on the rate of oxygen depletion were consistent with 

trends observed in other studies. 

3.2.2.4 Chl a criteria derivation 

As described earlier, warm temperatures in the shallow mixed layer of a lake act 

together with deepwater hypoxia to constrain the available habitat for cool- and cold-water 

taxa. Therefore, to derive criteria based on deepwater hypoxia, estimates of changes in water 

temperature over the course of the summer are required to identify periods of time during 

which mixed layer temperatures are too high for different taxa. Those periods of time then 

determine when deepwater DO concentrations need to be sufficiently high to support different 

organisms. 

Water temperature in the lake mixed layer depends on a variety of factors, including the 

local climate, solar insolation, lake morphology, and the day of the year (increasing in the spring 

and summer and decreasing in the fall). To identify temperatures in different lakes that were 

likely to limit available habitat for different fish, the EPA first developed models to predict 

temperature in the shallow, mixed layer of different lakes. NLA data collected at all lakes in the 

conterminous U.S. were used to fit the model. At each lake, maximum temperature (excluding 

the top 0.5 m of the surface layer) observed in vertical profiles collected in each lake were 

modeled as a function of lake geographic location, elevation, and sampling day of the year with 

a generalized additive model (Wood 2006) of the following form: 

 𝐸𝐸[𝑇𝑇𝑖𝑖] = 𝑓𝑓1 + 𝑓𝑓2𝐸𝐸𝑙𝑙𝑇𝑇𝐸𝐸𝑗𝑗[𝑖𝑖] + 𝑠𝑠(𝑦𝑦𝑑𝑑𝑁𝑁𝑦𝑦𝑖𝑖 ,𝑑𝑑𝑓𝑓 = 8) + 𝑠𝑠�𝐿𝐿𝑁𝑁𝑡𝑡𝑗𝑗[𝑖𝑖],  𝐿𝐿𝑁𝑁𝐿𝐿𝑗𝑗[𝑖𝑖],𝑑𝑑𝑓𝑓 = 20� (17) 

where E[Ti] is the expected value of the maximum temperature in the lake observed in sample i. 

Elevj[i] is the elevation of the lake, j, corresponding to sample i. The variable ydayi is the day of 

the year that the sample was collected, and Latj[i] and Lonj[i] are the latitude and longitude of the 

lake. The relationship between temperature and elevation was modeled as a simple linear 

relationship, characterized by two regression coefficients, f1, and f2. Relationships between lake 

temperature and sampling day and between lake temperature and location were modeled as 

nonparametric splines, represented in Equation 17 as s(.), with the maximum degrees of 
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freedom, df, as indicated. Observed values of Ti were assumed to be normally distributed about 

the modeled expected value. 

Lake temperature generally decreased with increased latitude, as would be expected 

(Figure 14), but deviations from that latitudinal pattern were observed on the west coast of the 

U.S., where lake temperatures were substantially lower than lakes at a similar latitude in the 

eastern U.S. This trend likely arises from the moderating influence of the coastal waters on air 

temperatures. Lake temperatures in eastern Texas and Louisiana were warmer than lake 

temperatures at the same latitudes elsewhere. Lake temperatures decreased with elevation, as 

expected, and exhibited a unimodal pattern with sampling day, with maximum temperatures 

occurring on average on Day 204, or July 22 (Figure 15). Overall, the model predicted lake 

temperature with an RMS error of 1.9 ˚C. 

Figure 14. Contours of modeled mean lake temperature computed at the overall mean elevation and 
mean sampling day. 
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Figure 15. Relationship between lake temperature and sampling day (left panel) and elevation (right 
panel). Variables that are not plotted are fixed at their mean values. Gray shading: 90% confidence 
intervals; solid lines shows the mean relationships. 

The pattern of temperature changes with time (Figure 15) provides insight into the 

critical period during which the severity of deepwater hypoxia can influence aquatic life in lakes. 

For most lakes, mixed layer temperatures increase in the spring and exceed critical 

temperatures for different species, at which point cool- and cold-water obligate species must 

move to deeper depths. Then, in the fall, decreasing mixed layer temperatures allow those 

species to move back to shallower waters. Models for DOm indicate that, in dimictic lakes after 

the onset of spring stratification, DOm decreases monotonically over time until fall turnover 

(Figure 12). Therefore, the length of time between spring stratification and when mixed layer 

temperatures decrease below the critical temperature thresholds in the fall is a key factor for 

deriving a protective Chl a criterion. 

The EPA used existing temperature thresholds defined for cool- and cold-water fish as 

examples of critical mixed layer temperatures (Coker et al. 2001). For cool-water species, the 

EPA identified a critical temperature of 24 °C. Walleye, striped bass, and yellow perch are 

examples of lake fish that are members of that group (McMahon et al. 1984). For cold-water 

species, the EPA identified a critical temperature of 18 °C. Lake trout is one example of a cold-

water obligate species (Marcus et al. 1984). Then, given a lake’s location and elevation, the lake 

temperature model predicts the day of the year that the mixed layer temperature would 

decrease below the critical temperatures. For cool-water species, mixed layer temperatures 

decreased below the critical temperature of 24 °C on days 210–260 (Figure 16), taking into 

account the fact that the dimictic lakes considered in this analysis are located in the northern  
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half of the country (see Figure 7). Lakes in which mixed layer temperatures increased above 24 

°C at some point during the year were predominantly located in the eastern U.S., as high 

elevations and climate in the western U.S. moderate lake temperatures. For cold-water species, 

mixed layer temperatures decreased below the critical temperature of 18 °C on days 220–280 

(Figure 17). Temperatures in many lakes in the southeast part of the U.S. rarely decrease below 

the critical threshold in the summer, but those lakes also generally do not harbor cold-water 

fish. 

Figure 16. Days of the year that mixed layer temperatures decrease below the critical temperature for 
cool-water species. Small dots: lakes in which mixed layer temperatures never exceed 24 °C. 

Figure 17. Days of the year that mixed layer temperatures decrease below the critical temperature for 
cold-water species. Small dots: lakes in which mixed layer temperatures do not decrease below 18 °C 
during the summer; contours: effects of large differences in elevation across lakes in the western U.S. 
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Draft criterion values for Chl a are calculated from the model equation for DOm, 

rewritten here: 

 𝐷𝐷𝐷𝐷𝑠𝑠 = 𝐷𝐷𝐷𝐷0 + [𝑑𝑑1 + 𝑑𝑑2 log(𝐶𝐶ℎ𝑙𝑙𝑠𝑠𝑚𝑚) + 𝑑𝑑3𝐷𝐷 + 𝑑𝑑4 log(𝐷𝐷𝐷𝐷𝐶𝐶𝑠𝑠𝑚𝑚)](𝑡𝑡 − 𝑡𝑡0) (18) 

Deepwater DO concentrations depend not only on Chl a concentration, but also on the depth of 

the lake below the thermocline (D), DOC concentration (DOCmn), and length of time that has 

elapsed since the establishment of stratification (t – t0). A procedure for computing the day of 

the year, tcrit, at which mixed layer habitat is cool enough for different species to move to 

shallower water is also described above, highlighting the influence of lake location and elevation 

as additional factors to consider. Based on these models, Chl a criteria for different lakes vary 

considerably depending on each lake’s specific characteristics. 

Prior to calculating a Chl a criterion, a threshold value for DOm must be selected. Existing 

EPA recommendations specify that the mean minimum DO concentration should be at least 5 

mg/L to support cold-water fish (US EPA 1986). This threshold is also consistent with DO 

concentrations that fish have been observed to avoid in field studies (Coutant 1985, Plumb and 

Blanchfield 2009). A thin layer of cool water with sufficient DO provides a critical refuge for fish 

during the warmest periods of the year, and fish have been observed to seek out those cool 

water refuges. Observations of fish in warm lakes during the summer have indicated that they 

will congregate in cold water refuges as shallow as 30 cm (Coutant and Carroll 1980, Snucins and 

Gunn 1995, Baird and Krueger 2003, Mackenzie-Grieve and Post 2006). Hence, maintaining a DO 

concentration of at least 5 mg/L at a depth of 30 cm below the thermocline can provide a 

sufficient refuge for certain fish species and be protective of aquatic life. To convert this 

condition to a value of DOm, the EPA considered a simplified case in which DO linearly decreases 

from saturated conditions above the thermocline (DO = 8.4 mg/L at 24 °C) to a concentration of 

zero at some deeper depth (Figure 18). The linear decrease in DO is consistent with a steady-

state solution of the diffusion equation, assuming a constant eddy diffusivity (Stefan et al. 1995). 

Based on this DO profile and the requirement that DO is 5 mg/L at 30 cm below the thermocline, 

an illustrative threshold value for DOm can be computed as 1.6 mg/L for a lake that is 2 m deep 

below the thermocline. That is, when the temperature profile is as depicted in Figure 18, depth-

averaged DO computed for the water column below the thermocline is 1.6 mg/L. Other 

thresholds for DOm specific to different species of fish and different depths can also be 
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calculated. For example, the threshold value for DOm for a lake that is 10 m deep below the 

thermocline would be 0.3 mg/L. 

Figure 18. Simplified DO profile used to compute threshold for DOm. Open circle: the targeted condition of 
DO at 5 mg/L, 30 cm below the thermocline. 

The influence of different factors on Chl a criterion can be visualized by computing 

criteria at median values of all covariates and then examining changes in criteria that occur with 

the change in a single covariate. The relationship between Chl a and DOm at median values for 

all other covariates are shown as solid lines in each panel of Figure 19. Lakes in which covariate 

values differ from the medians of the data set cause changes in the candidate Chl a criteria. For 

cool-water species, the median number of days between spring stratification and release of the 

temperature constraint in the mixed layer was 135 days. The 75th percentile of this day range, 

corresponding to lakes in warmer climates, was 151 days, whereas the 25th percentile, 

corresponding to lakes in cooler climates, was 116 days. When the critical window for 

maintaining sufficient DO in the deeper waters decreases to 116 days, the corresponding Chl a 

criterion increases to 11 µg/L, whereas in lakes in which the critical window is 151 days long, the 

Chl a criterion is 2 µg/L (left panel, Figure 19). 
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Figure 19. Effects of other predictors on Chl a criteria. Solid lines: relationship between Chl a and DOm at 
median values for all other variables; dashed line: DOm = 0.3 mg/L; dotted lines: 25th and 75th percentiles 
of days elapsed since stratification (left panel), 25th and 75th percentiles of mean DOC concentrations 
(middle panel), and depth below thermocline of 4 m and 20 m (right panel). 

Similar ranges of criteria can be calculated for changes in DOC and the lake depth below 

the thermocline. The median concentration of DOC in the available data was 5 mg/L, but in lakes 

in which DOC is 3 mg/L (the 25th percentile of observed DOC in the data), the Chl a criterion 

increases to 8 µg/L; and in lakes in which DOC is 7 mg/L (the 75th percentile), the Chl a criterion 

decreases to 2 µg/L (middle panel, Figure 19). Finally, the median lake depth below the 

thermocline was 9 m. In a deeper lake, with 20 m of water below the thermocline, the Chl a 

criterion increases to 7 µg/L; but in a shallower lake, with only 4 m of water below the 

thermocline, the Chl a criterion decreases to 3 µg/L (right panel, Figure 19). 

To better understand the possible range of criteria, the EPA computed draft Chl a criteria 

for each of the dimictic lakes sampled in the NLA. Because those lakes represent a random sample 

of the population of lakes in the U.S., the resulting Chl a criteria are a representative distribution 

of criteria, providing insight into likely criteria for different types of lakes. For dimictic lakes 

harboring cool-water species, the median Chl a criteria is 3.4 µg/L, and the range defined by the 

25th and 75th percentiles is 1.3–10.6 µg/L. For lakes harboring cold-water species, the median 

Chl a criterion is 1.8 µg/L, with a range of possible values extending from 1 to 7.6 µg/L. 

In states where measurements of profiles of DO are available, these data can be readily 

modeled in conjunction with the national data (see Appendix B). In the example shown in 

Appendix B, modeling temporally resolved DO profiles from one state with the national data 

improved the precision of estimates of the first day of stratification. Because of this 

improvement in model precision, the results of the combined state-national model are provided 

in the interactive criterion derivation tool. 
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The interactive tool used for estimating candidate Chl a criteria is provided at 

https://chl-hypoxia-prod.app.cloud.gov. With this tool, the user can specify lake physical 

characteristics that influence the relationship between Chl a and DOm as well as management 

decisions about targeted conditions that affect the criterion. Lake physical characteristics that 

are specified include the lake location (latitude and longitude) and lake elevation. That 

information is converted to an estimate of mean annual air temperature and, coupled with the 

model results, these data provide an estimate of the date of spring stratification. Other lake 

physical characteristics that are specified are lake depth below the thermocline and average 

lake DOC concentration, factors that influence DOm. 

Water quality management decisions that influence the calculated criterion include the 

critical maximum temperature for fish species in the lake, the threshold DO concentration, the 

depth of the summer refugia, and the lower credible interval. The critical maximum 

temperature for fish species in the lake is used to calculate the average day of the year that 

temperature constraints are released in the epilimnion. That is, the annual temperature model 

(Figure 15) is used to identify the date that fish can potentially move to oxygen-rich shallower 

waters. The threshold DO concentration for the fish (e.g., a DO concentration of 5 mg/L for cold-

water fish) and the desired minimum thickness of the refugia (e.g., 30 cm) are used to compute 

the targeted condition for DOm. That targeted value of DOm is the minimum concentration 

required on the days prior to the release of temperature constraints. Credible interval 

selections, as with other criteria, provide additional assurance that the calculated criterion is 

protective, based on the data and model uncertainty. For example, selecting the 25th credible 

interval implies that, at the estimated Chl a criterion, only 25% of predicted mean values of DOm, 

based on the data, were less than targeted value. In statistical hypothesis testing, convention 

suggests that p-values of 1% or 5% are statistically significant results, which can also inform the 

selection of the credible interval, but selection of the value of the lower credible interval as the 

basis for the criterion is ultimately a water quality management decision. 

The interactive tool uses posterior simulation with model parameter distributions to 

predict the DOm on the critical day prior to a release from temperature constraints in the surface 

layer for different Chl a concentrations. These model results can be used to help derive criteria 

for a specified threshold DOm. Samples with covariate values similar to those selected by the 

user are highlighted in the provided plots in the app. 

https://chl-hypoxia-prod.app.cloud.gov/
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3.2.3 Microcystin Concentration 

3.2.3.1 Statistical analysis 

A network of relationships can be specified that reflects current understanding of the 

linkage between lake eutrophication (as represented by Chl a) and increased concentrations of 

microcystin in individual samples (Figure 20). At the bottom of the diagram, cyanobacterial 

biovolume is directly associated with MC. Cyanobacterial biovolume is then expressed as the 

product of total phytoplankton biovolume and the proportion of the biovolume that is 

cyanobacteria (i.e., the relative biovolume of cyanobacteria), which clarifies the nature of the 

relationship between Chl a and cyanobacterial biovolume. More specifically, Chl a is directly 

proportional to phytoplankton biovolume (repeating the relationship used in the zooplankton 

model) (Kasprzak et al. 2008), and, as Chl a increases, the relative biovolume of cyanobacteria 

has been observed to increase (Downing et al. 2001). 

Figure 20. Schematic showing relationship between different variables predicting MC. Numbers in 
parentheses: refer to equation numbers in the text. 

Each of the relationships in the network described above is expressed mathematically in 

the Bayesian network. First, phytoplankton biovolume, Pi, is modeled as being directly 

proportional to Chl a concentration (Chli), in sample i: 

 𝑃𝑃𝑖𝑖 = 𝑘𝑘𝑐𝑐,𝑖𝑖𝐶𝐶ℎ𝑙𝑙𝑖𝑖 (19) 

The reciprocal of the parameter kc,i is the average amount of Chl a per unit biovolume of 

phytoplankton. Because the Chl a content of phytoplankton can vary with environmental 

conditions and assemblage composition, different values of this parameter are estimated for 
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each sample, i. The overall distribution of the set of values for kc,i is assumed to be log-normal 

with a mean value of µk and a standard deviation of σk. 

Exploratory analysis indicated that a quadratic function provided a reasonable 

representation of the relationship between the expected relative biovolume of cyanobacteria, 

pc, and Chl a as follows: 

 𝐸𝐸[𝑙𝑙𝑁𝑁𝑙𝑙𝑙𝑙𝑡𝑡�𝑇𝑇𝑐𝑐,𝑖𝑖�] = 𝑓𝑓1 +  𝑓𝑓2𝑐𝑐ℎ𝑙𝑙𝑖𝑖 + 𝑓𝑓3𝑐𝑐ℎ𝑙𝑙𝑖𝑖2 (20) 

where f1, f2, and f3 are coefficients estimated from the data. 

Because laboratory replicates of Pi and pc,i were available, uncertainty associated with 

measuring phytoplankton and relative biovolume of cyanobacteria was estimated as follows: 

 log�𝐵𝐵𝑁𝑁𝑗𝑗�~𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑙𝑙(log�𝐵𝐵𝑖𝑖[𝑗𝑗]� , 𝑠𝑠1) (21) 

 𝑙𝑙𝑁𝑁𝑙𝑙𝑙𝑙𝑡𝑡�𝑇𝑇𝑁𝑁𝑐𝑐,𝑗𝑗�~𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑙𝑙(𝑙𝑙𝑁𝑁𝑙𝑙𝑙𝑙𝑡𝑡�𝑇𝑇𝑐𝑐,𝑖𝑖[𝑗𝑗]�, 𝑠𝑠2) (22) 

where Bmj and pmc,j are the laboratory measurements of phytoplankton biovolume and 

proportion cyanobacteria, respectively, and the index j maps replicate measurements to the 

corresponding estimate of the true value of the measurement for sample i. These laboratory 

replicates are assumed to be normally distributed about their respective estimates of the 

transformed sample means, with standard deviations of s1 and ss, respectively. 

Cyanobacterial biovolume (C) can then be expressed as the product of the relative 

biovolume of cyanobacteria and total phytoplankton biovolume. After log-transforming, the 

expression is as follows: 

 log(𝐶𝐶𝑖𝑖) = log�𝑘𝑘𝑐𝑐,𝑖𝑖� + log�𝑇𝑇𝑐𝑐,𝑖𝑖� + log(𝐶𝐶ℎ𝑙𝑙𝑖𝑖) (23) 

where cyanobacterial biovolume in sample i is the sum of a log-transformed parameter kc, the 

log-transformed cyanobacterial relative biovolume in the sample, and the log-transformed Chl a 

concentration. 

The final component of the model relates cyanobacteria biovolume to MC. Initial 

exploration of the data indicated that MC increases at a rapid rate relative to cyanobacterial 

biovolume at high levels of cyanobacteria. At low levels of cyanobacteria, however, microcystin 

increases at a somewhat lower rate. To account for this change in rate, microcystin was 

modeled with a piecewise linear model as follows: 
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 log (𝜇𝜇𝑀𝑀𝐶𝐶,𝑖𝑖) = 𝑙𝑙(log (𝐶𝐶𝑖𝑖)) (24) 

where the response variable in this relationship is μMC,i, the estimated mean concentration of 

microcystin in sample i. The function g(.) is the piecewise linear function, which is characterized 

by four parameters: the intercept, d1, and slope, d2, of the first segment; the point along the 

gradient at which the slope changes, cp; and the slope of the second segment, d3. 

The distribution of observed MCs about the mean value was then modeled as a negative 

binomial distribution as follows: 

 𝑀𝑀𝐶𝐶𝑖𝑖~𝑁𝑁𝐵𝐵(𝜇𝜇𝑀𝑀𝐶𝐶,𝑖𝑖 ,𝜑𝜑) (25) 

where MCi is the MC observed in sample i and NB(.) is a negative binomial distribution with 

overdispersion parameter, ϕ. Because the negative binomial distribution specifies only 

nonnegative integer outcomes, before fitting the model, the EPA multiplied microcystin 

measurements by 10 and rounded to the nearest integer. Microcystin measurements below the 

detection limit of 0.1 µg/L were set to zero (Yuan and Pollard 2017). 

3.2.3.2 Results 

A total of 2,352 observations of MC, cyanobacterial and phytoplankton biovolume, and 

Chl a were available from the NLA data set for analysis. Those measurements were collected 

from 1,116 different lakes spanning the conterminous U.S. An additional 112 samples of 

laboratory replicates of phytoplankton and cyanobacterial biovolume measurements were 

available to quantify measurement variability. 

Three different relationships were estimated in the national model: (1) Chl a and 

phytoplankton biovolume, (2) Chl a and cyanobacterial relative biovolume, and (3) 

cyanobacterial biovolume and MC. (The relationship between phytoplankton biovolume, 

cyanobacterial relative biovolume, and cyanobacterial biovolume required no statistical 

estimation.) The observed relationship between Chl a and phytoplankton biovolume was 

accurately represented as a line with a slope equal to 1 on log-log axes (left panel, Figure 21), 

similar to the relationship estimated in the zooplankton model. 

Cyanobacterial relative biovolume exhibited an increasing relationship with Chl a 

(middle panel, Figure 21). The quadratic functional form allowed the model to represent the 

steepening of the relationship at higher concentrations of Chl a. Mean MC increased with 

cyanobacterial biovolume (right panel, Figure 21). The slope of the relationship increased at a  
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cyanobacterial biovolume of 1.9 mm3/L, but the 90% credible intervals on the location of this 

changepoint ranged from 0.5 to 5 mm3/L. At cyanobacterial biovolumes greater than the 

changepoint, the slope of the mean relationship was statistically indistinguishable from 1, 

whereas at cyanobacterial biovolumes less than the changepoint, the slope was 0.61, with 90% 

credible intervals ranging from 0.51 to 0.69. Overall, the credible intervals about the 

cyanobacteria-MC relationship were narrow compared to those estimated for the Chl a-

cyanobacterial relative biovolume relationship as shown. 

Figure 21. Modeled relationships for the microcystin model. Left panel: relationship between Chl a and 
phytoplankton biovolume; open circles: observed measurements of Chl a and phytoplankton biovolume; 
solid line: has a slope of 1. Middle panel: relationship between Chl a and cyanobacterial relative 
biovolume; open circles: average cyanobacterial relative biovolume in ~20 samples at the indicated Chl a 
concentration; solid line: estimated mean relationship; gray shading: 90% credible intervals about the 
mean relationship; vertical axis: has been logit-transformed. Right panel: relationship between 
cyanobacterial biovolume and MC; open circles: average MC in ~20 samples at the indicated 
cyanobacterial biovolume; solid line: estimated mean relationship; gray shading: 90% credible intervals 
about the mean relationship; small filled circles: Chl a bins in which MC in all samples was zero. 

3.2.3.3 Chl a criteria derivation 

Draft Chl a criteria to protect recreational uses and drinking water sources can be 

derived from the estimated network of relationships by combining the model equations for total 

phytoplankton biomass, cyanobacterial-relative biovolume, and microcystin and the uncertainty 

inherent in each of the relationships (Figure 22). More specifically, based on a threshold 

concentration for microcystin and an allowable exceedance frequency of that threshold, 

Equation (25) can be used to compute the mean predicted MC that would be associated with 

these values. Then, Equations (23) and (24) can be used to calculate the Chl a concentration 

associated with this mean MC. This model is based on instantaneous measurements of Chl a, 

cyanobacterial biovolume, and MC. To relate instantaneous Chl a concentrations to a seasonal 

mean Chl a concentration, the EPA computed the variance of Chl a concentrations within lakes  
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over the summer sampling season using repeat visits included in the NLA data set. Then, the 

variance was used to estimate the probability of exceeding an instantaneous Chl a 

concentration, based on the seasonal mean Chl a concentration. 

Threshold concentrations for microcystin have been published, and those targeted 

conditions can guide the use of the models to derive Chl a criteria. To protect sources of 

drinking water, the EPA Health Advisory recommends a threshold concentration for microcystin 

of 0.3 µg/L for preschool children less than 6 years old (US EPA 2015b). This threshold to protect 

human health applies to finished drinking water; however, the EPA is aware that states or 

authorized tribes apply water quality standards for protecting drinking water sources to either 

the ambient source water before treatment or to the finished drinking water after treatment. 

The ability of treatment technologies to remove microcystin is too variable (Westrick et al. 2010, 

US EPA 2015c) for the EPA to set a national recommendation for a protective ambient source 

water concentration that would yield a protective concentration after treatment. If a state or 

authorized tribe applies the health advisory standard to finished drinking water, then they can 

account for the expected treatment in their facilities and select a higher microcystin 

concentration in the ambient source water that would result in the targeted microcystin 

concentration in the finished drinking water. This will result in a concentration of Chl a in the 

ambient source water that will protect human health from the effects of microcystin in the 

finished drinking water. To protect recreational uses, the EPA recommends a threshold 

concentration for microcystin of 8 µg/L to protect children (US EPA 2019). 
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Figure 22. Example of derivation of Chl a criterion to protect recreational uses based on targeted MC of 8 
μg/L and exceedance probability of 1%. Top panel–open circles: observed values of microcystin and Chl a 
for samples in which MC was greater than the detection limit; solid line: predicted MC that will be 
exceeded 1% of the time for the indicated Chl a concentration; gray shading: 50% credible intervals about 
mean relationship; solid vertical and horizontal line segments: candidate Chl a criterion based on targeted 
MC. Bottom panel: proportion of samples for which microcystin was not detected in ~100 samples 
centered at the indicated Chl a concentration. 

After selecting the designated use of interest, calculating the corresponding Chl a 

criterion requires two additional management decisions: selection of the allowable exceedance 

probability of the threshold and selection of a credible interval of the model output. These 

decisions are combined with a posterior simulation using the estimated distributions of the 

model parameters to estimate Chl a criteria. The allowable exceedance probability can be 

interpreted directly in terms of environmental outcomes as the probability of observing a 

specified MC in a sample for a given seasonal mean Chl a concentration. For example, after 

accounting for model uncertainty by selecting the 25th credible interval, MC in lakes with a 

seasonal mean Chl a concentration of 22 μg/L would be expected to exceed a threshold of 8 

μg/L in 1% of samples (Table 4) (solid vertical line in Figure 22). The credible intervals express 

the uncertainty in the model predictions of different exceedance probabilities. So, the shaded 

area in Figure 22 shows the range over which at least 50% of the possible curves would be  
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located that describe MCs that have a 1% probability of exceedance. Selection of lower credible 

intervals yields more conservative criteria in terms of model uncertainty. An interactive tool 

allowing the user to examine Chl a criteria associated with different combinations of microcystin 

threshold, probability of exceedance, and the credible interval is available at https://chl-

microcystin-prod.app.cloud.gov. 

Table 4. Illustrative Chl a criteria (μg/L) for different exceedance probabilities using the 25th credible 
interval 

Probability of 
exceedance 

Microcystin threshold = 8 μg/L 
to protect recreational uses 

1% 22 
5% 29 

10% 35 
 

3.2.4 Phosphorus-Chlorophyll a 

A TP measurement is comprised of P contained within different compartments, 

including P bound in phytoplankton, P bound to suspended sediment, and dissolved P (i.e., 

chemically dissolved P and P bound to particles small enough to pass through a filter) (Effler and 

O’Donnell 2010). In many lakes, much of measured TP is associated with phytoplankton, and so, 

differences in phytoplankton biomass among lakes can be associated with differences in both 

Chl a and TP, yielding a strong correlation between the two (Lewis and Wurtsbaugh 2008). In 

other lakes, high concentrations of suspended sediment can contribute to TP and affect 

observed TP-Chl a relationships (Jones and Knowlton 2005). When TP-Chl a relationships are 

being estimated, lakes with high concentrations of suspended sediment show low Chl:TP ratios 

relative to the average pattern (Hoyer and Jones 1983, Jones and Knowlton 2005). 

The EPA modeled the relationship between TP and Chl a by explicitly accounting for the 

contributions of different compartments to observed TP, resulting in the positions of TP and Chl 

a being reversed from the typical model formulations: The model explained variations in TP in 

various compartments, rather than explaining variation in Chl a (Yuan and Jones 2020b). 

https://chl-microcystin-prod.app.cloud.gov/
https://chl-microcystin-prod.app.cloud.gov/
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3.2.4.1 Statistical analysis 

The EPA specified a model that estimates contributions to TP from different 

compartments, where TP is modeled as the sum of contributions from dissolved P, P bound to 

nonphytoplankton sediment, and P bound in phytoplankton (Figure 23). 

Figure 23. Schematic representation of compartment model for TP. Pdiss: dissolved P; Chl: Chlorophyll a; 
Turb: total turbidity; Turbnp: turbidity attributed to nonphytoplankton sources. Shaded box for Turbnp: a 
variable inferred by the model; numbers in parentheses: refer to equation numbers in the text. Equations 
(28)–(30) and equations (33)–(35) describe the distributions of turbidity and TP measurements and are 
not shown in the schematic. 

Direct measurements of nonphytoplankton sediment were not collected during the NLA. 

Instead, turbidity measurements were available that are associated with total suspended solids 

and include contributions from both nonphytoplankton and phytoplankton components. 

Because an estimate of nonphytoplankton sediment is needed to model TP, turbidity is modeled 

as the sum of two components: (1) turbidity that is directly associated with phytoplankton 

biomass, or autochthonous suspended sediment (Turbaut) and (2) turbidity associated with all 

other sources, or nonphytoplankton turbidity (Turbnp). The second component of turbidity 

includes turbidity associated with allochthonous sediment and sediment resuspended from the 

lake basin (Hamilton and Mitchell 1996). The EPA modeled Turbaut as being directly proportional 

to Chl a (Jones et al. 2008), a measure of algal biomass and, therefore, the components of 

turbidity were expressed as follows: 

 𝐸𝐸[𝑇𝑇𝑇𝑇𝑁𝑁𝑏𝑏] = 𝑇𝑇𝑇𝑇𝑁𝑁𝑏𝑏𝑚𝑚𝑠𝑠 + 𝑇𝑇𝑇𝑇𝑁𝑁𝑏𝑏𝑠𝑠𝑎𝑎𝑎𝑎 = 𝑇𝑇𝑇𝑇𝑁𝑁𝑏𝑏𝑚𝑚𝑠𝑠 + 𝑓𝑓𝐶𝐶ℎ𝑙𝑙 (26) 

where E[Turb] indicates that the model applies to the expected value of turbidity (Turb). The 

amount of Turbaut associated with each unit of Chl a is expected to vary with algal composition. 

For example, small phytoplankton species would tend to scatter light differently than larger 

species. Assuming that algal composition changes with trophic conditions (Godfrey 1982), the  
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change in algal composition can be modeled by expressing the coefficient f as an unknown 

function of Chl a. Also, assuming that f(Chl) can be modeled as a power function (f = bChlm), the 

product of f(Chl) and Chl a can be written as follows as bChlk without any loss of generality: 

 𝐸𝐸[𝑇𝑇𝑇𝑇𝑁𝑁𝑏𝑏] = 𝑇𝑇𝑇𝑇𝑁𝑁𝑏𝑏𝑚𝑚𝑠𝑠 + 𝑓𝑓(𝐶𝐶ℎ𝑙𝑙)𝐶𝐶ℎ𝑙𝑙 = 𝑇𝑇𝑇𝑇𝑁𝑁𝑏𝑏𝑚𝑚𝑠𝑠 + 𝑏𝑏𝐶𝐶ℎ𝑙𝑙𝑘𝑘 (27) 

where the exponent, k, is equal to m+1. 

Exploratory analysis indicated that concentrations of Turbnp varied with different lake 

characteristics, but the predictor that accounted for the most variability was lake depth. 

Therefore, 30 classes of lakes based on maximum depths were defined, and the value of Turbnp 

within each of the classes was modeled as a log-normal distribution about a mean value specific 

to that depth class as follows: 

 log�𝑇𝑇𝑇𝑇𝑁𝑁𝑏𝑏𝑚𝑚𝑠𝑠�~𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑙𝑙(𝜇𝜇𝑠𝑠,𝑖𝑖 ,  𝜎𝜎𝑠𝑠) (28) 

where µa,i is the mean value of log(Turbnp) for depth class i, and σa is the standard deviation of 

the distribution of individual measurements of Turbnp. The set of values for µa,i was then 

assumed to be drawn from a single normal distribution as follows: 

 𝜇𝜇𝑠𝑠,𝑖𝑖~𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑙𝑙(𝜇𝜇,  𝜎𝜎𝜇𝜇) (29) 

where µ and σµ are the mean and standard deviation of this distribution. The mean distribution 

loosely constrains the possible values of µa,i , while allowing lakes with smaller amounts of data 

to “borrow information” from lakes with larger amounts of data (Gelman and Hill 2007). 

Finally, sampling variability for Turb was assumed to be log-normally distributed as 

follows: 

 log(𝑇𝑇𝑇𝑇𝑁𝑁𝑏𝑏) ~𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑙𝑙(𝐸𝐸[log(𝑇𝑇𝑇𝑇𝑁𝑁𝑏𝑏)],𝜎𝜎𝑇𝑇) (30) 

where E[log(Turb)] is the expected value of log(Turb) expressed in Equation (27). 

The EPA used results from the model for turbidity simultaneously to estimate 

contributions to different components of TP. Recall that TP is modeled as being composed of 

contributions from dissolved P (Pdiss), P bound to suspended sediment, and P bound to 

phytoplankton. Based on this assumption, the following model equation can be written: 

 𝐸𝐸[𝑇𝑇𝑃𝑃] = 𝑃𝑃𝑑𝑑𝑖𝑖𝑠𝑠𝑠𝑠 +  𝑙𝑙1𝑇𝑇𝑇𝑇𝑁𝑁𝑏𝑏𝑚𝑚𝑠𝑠 + 𝑙𝑙2𝐶𝐶ℎ𝑙𝑙 (31) 
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where the concentration of P bound to nonphytoplankton suspended sediment is modeled as 

being directly proportional to Turbnp, and P bound to phytoplankton is modeled as being directly 

proportional to Chl a. The coefficient g1 quantifies the P content of Turbnp, while the coefficent 

g2 expresses P concentration relative to Chl a concentration. P content is expected to vary with 

the level of turbidity and the composition of the phytoplankton assemblage, so, similar to the 

model for turbidity, the coefficients g1 and g2 were allowed to vary as power functions of Turbnp 

and Chl a, respectively. So, the final model equation can be written as follows: 

 𝐸𝐸[𝑇𝑇𝑃𝑃] = 𝑃𝑃𝑑𝑑𝑖𝑖𝑠𝑠𝑠𝑠 +  𝑑𝑑1𝑇𝑇𝑇𝑇𝑁𝑁𝑏𝑏𝑚𝑚𝑠𝑠𝑠𝑠 + 𝑑𝑑2𝐶𝐶ℎ𝑙𝑙𝑚𝑚 (32) 

Exploratory analysis indicated that dissolved P was associated with lake depth, so, 

similar to Turbnp, different values of Pdiss were estimated for each of 30 lake depth classes as 

follows: 

 log�𝑃𝑃𝑑𝑑𝑖𝑖𝑠𝑠𝑠𝑠,𝑠𝑠𝑚𝑚,𝑖𝑖�~ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑙𝑙(𝜇𝜇𝑑𝑑𝑖𝑖𝑠𝑠𝑠𝑠,  𝜎𝜎𝑑𝑑𝑖𝑖𝑠𝑠𝑠𝑠) (33) 

where Pdiss,mn,i is the mean dissolved P concentration in lake depth class i, and the overall mean 

value of log(Pdiss,mn,i) is µdiss with a standard deviation of σdiss. 

Exploratory analysis also indicated the P associated with each unit of Turbnp and Chl a 

(i.e, the values of the coefficients d1 and d2) varied most strongly with geographic location. 

Because of that trend, the coefficients were allowed to vary among Level III ecoregions. 

Ecoregion-specific values for these parameters were assumed to be drawn from log-normal 

distributions as follows: 

 log�𝑑𝑑1,𝑖𝑖�~ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑙𝑙(𝜇𝜇𝑑𝑑1,  𝜎𝜎𝑑𝑑1) 

 log�𝑑𝑑2,𝑖𝑖�~ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑙𝑙(𝜇𝜇𝑑𝑑2,𝜎𝜎𝑑𝑑2) (34) 

where the index, i, refers to values of each parameter for different ecoregions. 

Finally, sampling variation for TP was assumed to be log-normally distributed as follows: 

 log(𝑇𝑇𝑃𝑃) ~ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑙𝑙(𝐸𝐸[log(𝑇𝑇𝑃𝑃)],𝜎𝜎𝑇𝑇𝑃𝑃) (35) 

All the relationships described in this section on statistical analysis were fit 

simultaneously to the available data with a hierarchical Bayesian model (Stan Development 

Team 2016). Prior distributions for all model parameters were assumed to be non-informative. 
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3.2.4.2 Results 

Observations of turbidity were correlated with Chl a, and a distinct lower boundary in 

the scatter of data was evident (Figure 24). The model relationship defining this lower boundary 

can be computed by setting Turbnp to zero in Equation (27). Then, after log-transforming, the 

equation can be written as log(𝑇𝑇𝑇𝑇𝑁𝑁𝑏𝑏) = log(𝑏𝑏) + 𝑘𝑘𝑙𝑙𝑁𝑁𝑙𝑙(𝐶𝐶ℎ𝑙𝑙). In other words, when Turbnp is 

negligibly small, the relationship between Turbaut and Chl a is a straight line in the plot of 

log(Chl) vs. log(Turb) (solid line in Figure 24). Deviations in sampled values above that line show 

the contribution of Turbnp to the overall turbidity measurement. Mean values of b and k 

estimated from the model were 0.67 (0.62, 0.73) and 0.67 (0.65, 0.69) (90% credible intervals 

shown in parentheses). Based on the functional form that was assumed for the relationship 

between turbidity and Chl a, the contribution of phytoplankton to turbidity (i.e., Turbaut/Chl a) 

was estimated as being proportional to Chl-0.33. That is, as Chl a increases, the amount of 

turbidity associated with each unit of Chl a decreases, a trend that is consistent with a shift from 

small-bodied, diatom-dominated assemblages to colonies of cyanobacteria cells (Scheffer et al. 

1997). 

Figure 24. Turbidity vs. Chl a. Solid line: the limiting relationship between Chl a and turbidity when 
contribution of allochthonous sediment is negligible. 

Estimates of Turbnp and mean dissolved P both exhibited decreasing relationships with 

increasing depth (Figure 25). Turbnp decreased from approximately 1.4 nephelometric turbidity 

units (NTU) in shallow lakes to nearly zero in deep lakes, while Pdiss varied from approximately 

2.6 µg/L in shallow lakes to 1.6 µg/L in deep lakes. Both of these relationships are consistent with 

a mechanism by which fine sediment from the lake bottom is likely to be collected in surface  
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water samples in shallow lakes. In the case of Pdiss, the trend indicates that measurements of 

dissolved and particulate components of TP are determined by filter size and P bound to 

sediment fine enough to pass through the filter contributes to estimates of dissolved P. 

Figure 25. Relationship between Turbnp, Pdiss, and lake depth. Open circles: mean estimate of parameter 
value in each of 30 lake depth classes. 

The quantity of P bound to nonphytoplankton suspended sediment expressed by the 

coefficient d1 exhibited substantial geographic variation (Figure 26). Coherent spatial patterns 

could be discerned in the variation of d1 among different states, with relatively high levels of P 

content in the upper midwest region of the country (e.g., Montana, North Dakota, and South 

Dakota) as well as in parts of the western mountains. Comparatively lower levels of P content 

were observed in the northeast region of the U.S. Mechanisms for these large-scale variations in 

P content are likely related to the underlying geology of soils in each region (Olson and Hawkins 

2013). Values of d2, the amount of P within phytoplankton, spanned a much narrower range 

than estimated for d1, only ranging from 1.6 to 4.5 per unit of Chl a. The relative difference in 

regional variability in the coefficients indicates that spatial differences in the amount of P bound 

to nonphytoplankton suspended sediment account for more of the variability in TP-Chl a 

relationships than spatial differences in P within phytoplankton, and the amount of P residing in 

phytoplankton is relatively constant. 
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Figure 26. Ecoregion-specific values of loge(d1), P bound to nonphytoplankton suspended sediment. 

Limiting relationships that estimate the P content of phytoplankton biomass and Turbnp 

can also be calculated (Figure 27). For phytoplankton biomass, the limiting relationship is 

calculated by setting Pdiss and Turbnp in Equation (32) to zero, yielding the following log-

transformed relationship: log(𝑇𝑇𝑃𝑃) = log(𝑑𝑑2) + 𝐿𝐿 𝑙𝑙𝑁𝑁𝑙𝑙(𝐶𝐶ℎ𝑙𝑙). Different values of d2 were 

estimated for each ecoregion, but the distribution of those values is characterized by an overall 

mean value of 2.5 (2.0, 3.1), while the mean value of the parameter n was 0.87 (0.82, 0.92). The 

straight line based on the two parameter values represents P associated with phytoplankton 

biomass, as quantified by Chl a, and it tracks the lower limit of the observed data (solid line, 

right panel, Figure 27). As a limiting relationship, one would expect that the majority of values of 

TP would be greater than this line indicates, but variability associated with the value of d2 causes 

some values of TP to fall below the limit. 

For Turbnp, setting Pdiss and Chl a to zero yields the following relationship: log(𝑇𝑇𝑃𝑃) =

log(𝑑𝑑1) + 𝑁𝑁log (𝑇𝑇𝑇𝑇𝑁𝑁𝑏𝑏𝑚𝑚𝑠𝑠). The mean value of the coefficient d1 was 31 (23, 40), and the value of 

the exponent m was 0.35 (0.32, 0.40) (left panel, Figure 27). Overall, the RMS error for 

predicting log(TP) was 0.48 for the model. 
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Figure 27. TP versus Turbnp and Chl a. Solid lines: the limiting relationship between the indicated variable 
and TP; gray shaded areas: the 90% credible intervals about the mean relationship. 

3.2.4.3 Phosphorus criteria 

Two relationships between Chl a and TP that can be inferred from the TP model inform 

the derivation of draft TP criteria. First, the limiting relationship between Chl a and TP estimated 

from the model quantifies the amount of P that is bound to phytoplankton (Figure 27). This 

relationship predicts TP concentration in samples in which suspended sediment and dissolved P 

concentrations are very low and defines the minimum value of TP that is associated with a 

targeted Chl a concentration. This limiting relationship can also be interpreted as the Chl a yield 

of P (Yuan and Jones 2019) and could be used to predict the change in Chl a that would 

potentially result from a change in the amount of biologically available P in the water column 

(Reynolds and Maberly 2002). 

A second relationship between TP and Chl a accounts for contributions from P bound to 

nonphytoplankton sediment. If lake depth is specified, then the relationship estimated between 

lake depth and nonphytoplankton sediment can be used to estimate an average contribution to 

TP from these other compartments in the water column (Figure 25). The resulting relationship 

then provides an estimate of the ambient TP concentration one would expect to observe as a 

function of Chl a. 
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Figure 28. Example of deriving TP criteria for a Chl a target of 10 µg/L for data from one ecoregion 
(Southeastern Plains). Open circles: all data; filled circles: data from the ecoregion; solid line: limiting TP-
Chl a relationship from compartment model; dashed line: ambient TP-Chl a relationship taking into 
account contributions from nonphytoplankton sediment for a 3-m deep lake; solid horizontal and vertical 
line segments: Chl a target and associated TP criteria. 

Table 5. Illustrative example of TP criteria corresponding to data shown in Figure 28. Example TP criteria 
for illustrative Chl a targets. Ambient TP criteria calculated for a 3-m deep lake. 

 Chl a = 10 μg/L Chl a = 15 μg/L 

 10th credible 
interval 

25th credible 
interval 

10th credible 
interval 

25th credible 
interval 

Limiting relationship 
(TP μg/L) 15 16 22 23 

Ambient (TP μg/L) 23 25 30 32 
 

Information from the two Chl a and TP relationships specifies a range of possible TP 

criteria that can be associated with a desired concentration of Chl a (Figure 28). The prediction 

of ambient TP that accounts for contributions from nonphytoplankton sediment provides an 

estimate of the mean TP concentration that one would expect to observe for a given Chl a. As 

such, this ambient TP concentration provides a candidate criterion. Note that contributions of 

Pdiss are not included in predictions of ambient TP criteria. In many lakes Pdiss is composed of 

more biologically available forms of P (e.g., soluble reactive P), and so, concentrations of Pdiss 

should be near zero in lakes in which reductions in P loading would be expected to influence 

phytoplankton abundance. 
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The lower limiting relationship identifies the minimum possible TP concentration one 

might expect to observe for a given Chl a. This limiting relationship between TP and Chl a can 

also potentially be used to predict changes in Chl a from a change in loads of biologically 

available P (Reynolds and Maberly 2002), information that can guide the development of waste 

load allocation. Final uses of the range of values provided by these models depend on the 

specific applications in each state and on the risk management decisions made by the state. 

The interactive tool for computing different TP criteria associated with Chl a is available 

at https://tp-tn-chl-prod.app.cloud.gov. This tool allows the user to specify the targeted Chl a 

concentration and the lake depth of interest. Because the coefficients d1 and d2 vary among 

ecoregions (Figure 26), users also can select a particular ecoregion for computing TP criteria. 

Finally, users can select the confidence level, expressed as a lower credible interval, for 

examining the effects of model uncertainty on the calculated criteria. Data selected for an 

ecoregion are highlighted in the provided plots. The model then computes TP associated with 

those conditions using a posterior simulation from the Bayesian model results. A lower credible 

interval provides additional assurance that the calculated criterion is protective, given the data 

and model uncertainty. For example, selecting the 25th credible interval implies that only 25% 

of predicted TP concentrations at the selected Chl a concentration, given the data, were less 

than candidate criterion value criteria. In statistical hypothesis testing, convention suggests that 

p-values of 1% or 5% are statistically significant results. Those practices can also inform the 

selection of the credible interval, but selection of the value of the lower credible interval as the 

basis for the criteria is ultimately a water quality management decision. 

3.2.5 Nitrogen-Chlorophyll a 

Similar to the model for TP, each TN measurement is comprised of N contained within 

three compartments: N bound in phytoplankton, dissolved inorganic N (i.e., nitrate, nitrite, and 

ammonia), and dissolved organic N (DON). Unlike the TP model, exploratory analysis indicated 

that the N content of inorganic suspended sediment was negligible (Yuan and Jones 2019). 

3.2.5.1 Statistical analysis 

Field measurements of the difference between TN and dissolved inorganic nitrogen (DIN 

= NOx + ammonia) were modeled as follows: 

 𝐸𝐸[𝑇𝑇𝑁𝑁 − 𝐷𝐷𝐷𝐷𝑁𝑁] = 𝑓𝑓1𝐶𝐶ℎ𝑙𝑙𝑘𝑘1 + 𝐷𝐷𝐷𝐷𝑁𝑁 = 𝑓𝑓1𝐶𝐶ℎ𝑙𝑙𝑘𝑘1 + 𝑓𝑓2𝐷𝐷𝐷𝐷𝐶𝐶  (36) 

https://tp-tn-chl-prod.app.cloud.gov/
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where variations in the observations of total N minus dissolved inorganic N (TN-DIN) are 

attributed to two compartments: N bound in phytoplankton, modeled as f1Chlk1 and DON. 

Exploratory analysis indicated that DON was closely associated with DOC, as they often originate 

from the same watershed sources (Berman and Bronk 2003), so the concentration of DON was 

modeled as being directly proportional to DOC. 

As with the TP model, exploratory analysis indicated that the parameters f1 and f2 varied 

most strongly with geographic location. Because of those trends and to facilitate the use of this 

model with local data sets, different values of f1, and f2 were specified for each Level III 

ecoregion: 

 log�𝑓𝑓1,𝑖𝑖�~ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑙𝑙�𝜇𝜇𝑓𝑓1,𝜎𝜎𝑓𝑓1� 

 log�𝑓𝑓2,𝑖𝑖�~ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑙𝑙�𝜇𝜇𝑓𝑓2,𝜎𝜎𝑓𝑓2� (37) 

where the parameters µf1 and µf2 estimate the mean values of the distribution of f1 and f2 while 

σf1 and σf2 estimate the standard deviations. 

The sampling distribution of TN-DIN was assumed to be log-normally distributed as 

follows: 

 log(𝑇𝑇𝑁𝑁 − 𝐷𝐷𝐷𝐷𝑁𝑁) ~𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑙𝑙(𝐸𝐸[log (𝑇𝑇𝑁𝑁 − 𝐷𝐷𝐷𝐷𝑁𝑁)],  𝜎𝜎𝑇𝑇𝑇𝑇) (38) 

where σTN is the standard deviation of observed values of log(TN-DIN) about their expected 

value. 

3.2.5.2 Results 

A total of 2466 samples collected from 1875 lakes were available for analysis. Values for 

the coefficient, f1, quantifying phytoplankton N content ranged from 11 to 43 in different 

ecoregions with an overall mean value of 18.3 (14.9, 22.3). The values estimated for f2 spanned 

a greater range among ecoregions with a minimum value of 35 and a maximum value of 103. 

The overall mean value of f2 was 64.9 (61.0, 68.9). The broad range in values of f2 indicates that 

strong differences exist among different locations regarding the nature of the relationships 

between DOC and DON. The mean value of the exponent, k1, was 0.90 (0.86, 0.94). 

To visualize the variability in phytoplankton N among ecoregions, the concentration of N 

bound in phytoplankton at the overall mean Chl a concentration of 9.3 μg/L is mapped (Figure 

29). With the exception of one high value of 320 μg/L estimated for the Sand Hills, Nebraska  
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ecoregion, N-content of phytoplankton exhibited only small variations among ecoregions. N 

content ranged from 83 – 185 μg/L with a median value of 136 μg/L. Coherent spatial patterns 

in the N-content of phytoplankton were not evident. 

Figure 29. Variation in the concentration of N bound in phytoplankton among Level III ecoregions at the 
overall mean Chl a = 9.3 μg/L. Gray scale shows N concentrations in μg/L. 

Estimated DON concentrations at the overall mean DOC concentration of 5.6 mg/L 

ranged from 194 – 570 μg/L with a median concentration of 365 μg/L (Figure 30). Variations in 

DON among ecoregions were substantially greater than observed for phytoplankton N. Spatial 

patterns were also evident, with higher concentrations of DON in the upper Midwest regions of 

the United States and lower concentrations in the mountains in the western and eastern regions 

of the country. 
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Figure 30. Variation in DON Level III ecoregions at an overall mean DOC = 5.6 mg/L. Gray scale shows N 
concentrations in μg/L. 

The EPA calculated limiting relationships that estimate the N content of phytoplankton 

biomass with a procedure identical to that used for TP (Figure 31). In this case, the limiting 

relationship was calculated by setting the contribution from DON in Equation (36) to zero, 

yielding the following log-transformed relationship: log(𝑇𝑇𝑁𝑁 − 𝐷𝐷𝐷𝐷𝑁𝑁) = log(𝑓𝑓1) + 𝑘𝑘 𝑙𝑙𝑁𝑁𝑙𝑙(𝐶𝐶ℎ𝑙𝑙). 

The straight line based on those two parameter values represents N associated with 

phytoplankton biomass, as quantified by Chl a, and it tracks the lower limit of the observed data 

(solid line, left panel Figure 31). 

Similarly, setting DIN and Chl a to zero in Equation (36) yields the following limiting 

relationship for DON: log(𝑇𝑇𝑁𝑁) = log(𝑓𝑓2) + log(𝐷𝐷𝐷𝐷𝐶𝐶) (solid line, right panel Figure 31). The 

mean value of f2 indicates that, on average, the concentration of DON was 0.065 times that of 

DOC. Overall, the RMS prediction error for log(TN-DIN) was 0.37. 
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Figure 31. TN-DIN vs. Chl a and DOC. Solid lines: the limiting relationship between each variable and TN-
DIN; shaded area: the 95% credible intervals about this mean relationship. 

3.2.5.3 Nitrogen criteria 

As with TP, the model for TN-DIN provides two different predictions of TN-DIN 

concentration, given the Chl a concentration. The prediction for the ambient concentration of 

TN-DIN accounts for the increase in TN-DIN one would expect with increased Chl a, but also 

includes contributions from DON (as estimated by DOC) and OSnp in the lake. Mean predictions 

for TN-DIN can be computed for different values of Chl a that include average contributions 

from other sources of N in the water column. The value of this ambient TN-DIN concentration 

that is associated with a targeted Chl a concentration then provides a candidate criterion for TN-

DIN. The second prediction of TN-DIN can be estimated from the limiting relationship between 

Chl a and TN-DIN (Figure 31). This relationship quantifies the amount of N that is bound in 

phytoplankton, a quantity that is also referred to as the “Chl a yield of nitrogen” (Gowen et al. 

1992). This limiting relationship can potentially be used to estimate the change in Chl a that 

would result from a change in the amount of biologically available N in the water column 

(Reynolds and Maberly 2002). 

Criteria for N concentrations are commonly expressed in terms of TN rather than TN-

DIN. To convert a candidate criterion for TN-DIN to a criterion for TN, the availability of DIN for 

phytoplankton uptake can be considered. More specifically, the components of DIN (NOx and 

ammonia) are easily assimilated by phytoplankton and, when excess concentrations of DIN are 

observed in a lake, it may indicate that factors other than N availability are limiting 

phytoplankton growth. Therefore, controlling phytoplankton growth by reducing available N 
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would first require that DIN concentrations are reduced to near zero and, when that occurs, 

criteria expressed for TN-DIN would be the same as those for TN. 

Figure 32. Illustrative example of deriving TN criteria for a Chl a target of 10 µg/L for one ecoregion 
(Southeastern Plains). Open circles: all data; filled circles: data from selected ecoregion; solid line: limiting 
TN-DIN vs. Chl a relationship from compartment model; dashed line: mean ambient TN-DIN vs. Chl a 
relationship taking into account mean DOC observed within the selected ecoregion: shaded area: 80% 
credible intervals about mean relationships; horizontal and vertical solid line segments: Illustrative Chl a 
target and associated TN criteria. 

Table 6. Illustrative example of TN criteria corresponding to data shown in Figure 32. 

 Chl a = 10 μg/L Chl a = 15 μg/L 

 10th credible 
interval 

25th credible 
interval  

10th credible 
interval 

25th credible 
interval 

Limiting relationship 
(TN μg/L) 110 120 160 170 

Ambient (TN μg/L) 380 390 440 450 
 

The same interactive tool for computing different TP criteria also provides TN criteria 

associated with Chl a (https://tp-tn-chl-prod.app.cloud.gov). This tool allows the user to specify 

the targeted Chl a concentration, DOC concentration, and an ecoregion of interest. Finally, users 

can select the confidence level, expressed as a lower credible interval, for examining the effects 

of model uncertainty on the calculated criteria. Data selected for an ecoregion are highlighted in 

the provided plots. 

https://tp-tn-chl-prod.app.cloud.gov/
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4 Characterization 

4.1 Other Measures of Effect and Exposure 

A variety of other measures of effect and exposure could be used for deriving nutrient 

criteria associated with each of the pathways described in Figure 1 and Figure 2. In selecting the 

responses for analysis, the EPA considered (1) available data, (2) the current state of scientific 

understanding of each pathway, and (3) the degree to which a pathway and a response could be 

applied broadly to most lakes. For many possible measures of effect and exposure, data 

availability was a key consideration. For aquatic life, direct measurements of fish assemblage 

composition and biomass were not collected during the NLA, and the lack of those data limited 

the potential for considering several pathways such as evaluating alterations in fish assemblage 

composition because of reduced visibility. Lake benthic communities also exhibit changes along 

a eutrophication gradient (Vadeboncoeur et al. 2003), but none of those data were available. 

For recreational and drinking water source uses, the effects of other cyanotoxins (e.g., 

cylindrospermopsin) might be important for certain lakes, but continental-scale data for those 

other cyanotoxins were not available at the time of this analysis. In certain lakes, cyanobacterial 

blooms have also been observed at depths below the surface layer (Jacquet et al. 2005), but 

observations of phytoplankton at those depths were not available. Similarly, organic matter 

generated by increased primary productivity can increase the concentrations of disinfection by-

products during the drinking water treatment process (Graham et al. 1998, Galapate et al. 

2001), and chemicals produced during blooms of certain algal species can introduce unpleasant 

taste and odors to drinking water (Graham et al. 2010). However, continental-scale data 

pertaining to disinfection by-product precursors or taste and odor chemicals were not available. 

Insufficient scientific understanding of a causal pathway also limited consideration of 

certain measures of effect and exposure. For example, scientific consensus is currently lacking 

on the precise level of cyanobacteria that is harmful to aquatic life. That information gap limited 

the utility of using cyanobacterial abundance as a final response measurement, despite the fact 

that increased cyanobacterial abundance occurs frequently with nutrient pollution (Dolman et 

al. 2012). (Note, however, that cyanobacterial abundance measurements quantify a key step in 

the model linking Chl a to microcystin.) Similarly, increased levels of cyanobacteria can cause 

rashes on people who contact the water (Pilotto et al. 1997, Zhang et al. 2015, US EPA 2015b), 
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potentially affecting the use of a lake for recreation. However, precise quantitative relationships 

between the occurrence of rashes and cyanobacterial abundance are not currently available. 

For certain measures of effect or exposure, data were available, but other factors 

limited the degree to which the response could be applied. For example, Secchi depth data were 

available in the NLA data set, and that measure of transparency could have informed an 

assessment of the aesthetic appeal of different lakes for recreation. That is, increased nutrient 

concentrations cause increases in the abundance of phytoplankton that reduce water clarity and 

decrease the aesthetic appeal of a lake (Carvalho et al. 2011, Keeler et al. 2015). Aesthetic 

considerations have been used by others as a basis of water quality criteria (Heiskary and Wilson 

2008), but the aesthetic expectations for different lakes depend on geographic location 

(Smeltzer and Heiskary 1990), and user perception survey data at the continental scale of this 

analysis were not available. Similarly, reducing the frequency of phytoplankton blooms has been 

cited as a motivation for controlling nutrient loads (Bachmann et al. 2003), but aesthetic 

expectations regarding bloom frequency were not available at the national scale. 

4.2 Incorporating State Data 

State water quality managers are often interested in exploring relationships between 

environmental factors and biological responses using locally collected monitoring data. In many 

cases, leveraging knowledge from broader regional scales (e.g., national scale) can enhance local 

understanding. This document describes draft recommended numeric nutrient criteria models 

based on national data that link designated uses to Chl a, TN, and TP. The NLA data set provided 

a comprehensive set of measurements collected from large numbers of sites with identical 

protocols (US EPA 2011, Pollard et al. 2018), and the availability of consistent measures from 

lakes spanning broad gradients facilitated the calculation of accurate national estimates of 

relationships of interest. However, the number of samples is limited within the national data set 

that is available to estimate relationships within any single state, and uncertainty in estimating 

relationships specific to a single state is higher than that associated with the national models. In 

contrast, monitoring conducted by state agencies can yield more intensive temporal sampling 

over more sites, and hence, relationships estimated from those data can assist local 

management decisions within that state. Data collected at the state level, however, can be 

limited in the parameters that are measured, and the range of environmental conditions 

sampled is limited by conditions occurring within the state boundaries. 
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All the draft recommended criteria models described in this document are formulated 

to facilitate consideration of state data. State-specific values for certain coefficients in each 

model (e.g., Figure 33) have been estimated, and local state, monitoring data can be used to 

refine the estimates of state-specific coefficients, while remaining consistent with national 

trends. Appendices A, B, and C discuss three examples of case studies in which state monitoring 

data have been combined with national data to refine draft recommended criteria. State 

monitoring data sets are each unique, and the EPA is available to assist states in combining their 

monitoring data with the national models. 

4.3 Existing Nutrient-Chlorophyll a Models 

Empirically estimated relationships between TP and Chl a concentrations have provided a 

basis for lake water quality management for over four decades. This relationship was initially 

identified in Connecticut and Japanese lakes (Deevey 1940, Sakamoto 1966), and subsequently 

extended to a broad range of temperate lakes in the mid-1970s (Dillon and Rigler 1974, Jones and 

Bachmann 1976, Carlson 1977). Those early analyses regressed Chl a on TP concentrations and 

reported similar coefficients showing the ratio of Chl:TP increased with lake trophic state. Over 

time, many studies have explored the veracity of that relationship and assessed sources of residual 

variation, testing the limits of applicability to different regions and lake types (e.g., McCauley et al. 

1989; Prairie et al. 1989; Jones and Knowlton 2005; Filstrup, Wagner, et al. 2014). Variations in the 

relationship have been attributed to differences in lake depth (Pridmore et al. 1985), TN:TP ratio 

(Smith 1982, Prairie et al. 1989, Molot and Dillon 1991), grazing by zooplankton and mussels 

(Mazumder 1994, Mellina et al. 1995), landscape characteristics (Wagner et al. 2011), and light 

limitation (Hoyer and Jones 1983, Knowlton and Jones 2000, Havens and Nürnberg 2004). Regional 

studies have evaluated the relationship as influenced by edaphic and climatic factors in locations 

such as Canada (Prepas and Trew 1983), Argentina, (Quirós 1990), the United Kingdom (Spears et 

al. 2013), and Europe (Phillips et al. 2008). Recently, lake classifications have improved the 

precision and accuracy of this relationship (Yuan and Pollard 2014). 

As described in Sections 3.2.4 and 3.2.5, the EPA reformulated the nutrient-chlorophyll 

models to account for variations in TP and TN, rather than in Chl a. The new models better 

account for variability in measurements of TP and TN and are consistent with an understanding 

of the components of TP and TN in the water column. The reformulated models cannot be 

directly compared with earlier studies, including those cited previously. Estimates of N and P 
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content of phytoplankton, however, are consistent with values reported elsewhere (Yuan and 

Jones 2019). 

4.4 Limitations and Assumptions 

The draft recommended models for deriving numeric nutrient criteria are limited by the 

nature of the data that underlie the analysis. First, nutrient data for each lake consisted of 

samples collected at a single point, resulting in no information on within-lake spatial variability 

in nutrient concentrations being included in the analyses. Nutrient concentrations within 

particular lakes can vary considerably across different locations (Perkins and Underwood 2000), 

resulting in criteria based on samples collected at the deepest point or midpoint of the reservoir 

that might not be applicable to samples collected elsewhere. When deriving their criteria, states 

may specify assessment methodologies to collect samples from different locations in the same 

lake to address this issue and analyze those local data to account for spatial variability. 

Similarly, nutrient and response data used in the current analysis were collected only in 

the summer, so monitoring data assessed with respect to these draft recommended criteria 

should also be limited to summer data. Nutrient concentrations in some lakes can vary 

considerably between summer and winter (Søndergaard et al. 2005), and states may specify 

assessment protocols to ensure that only data collected in the summer are compared with 

criterion concentrations. 

As noted earlier, most of the draft statistical criteria models described here combine the 

effects of spatial, temporal, and sampling variability and estimate a single value for each model 

that is applicable to all lakes in the data set. The components of variability, however, might 

differ across lakes and affect the resulting criteria. For example, spatial variability in complex, 

dendritic reservoirs can be much greater than in simple, circular lakes (Gloss et al. 1980). In most 

cases, local monitoring data can inform and potentially improve the parameter estimates both 

for specific locations and for groups of lakes. 

The uncertainty estimated for each modeled relationship is associated with the number 

of samples used in the model, and consideration of sample size can affect the interpretation of 

the resulting candidate criteria. For example, the number of NLA samples within a single Level III 

ecoregion can be small. The hierarchical structure of the model does improve the precision of 

model estimates in those ecoregions, but the precision of TP and TN criteria specific to 
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ecoregions with small amounts of data could be further improved by including state monitoring 

data. Additional national-scale data such as that from the 2017 NLA may also be incorporated as 

they become available to improve model precision. 

Draft recommended criteria based on the drinking water health advisories for 

microcystin incorporate some conservative assumptions that affect the final values. The draft 

recommended criteria are intended to reflect the ambient water quality conditions that protect 

a drinking water use before treatment. They do not, however, account for the varying levels of 

treatment a drinking water facility can implement to remove microcystin before generating 

finished drinking water, the condition of the water to which the cyanotoxin health advisories 

apply. As a precautionary step, a drinking water facility may implement treatment protocols that 

minimize the breakage of cyanobacteria cells (Chow et al. 1999, Westrick et al. 2010) which, in 

turn, would minimize the release of intracellular microcystin into the treated water. The EPA 

based the draft recommended models on the total microcystin present in the NLA samples, both 

dissolved in the water and within cyanobacterial cells, which necessitated the lysis of 

cyanobacterial cells prior to microcystin quantification, a process that some drinking water 

treatments for cyanotoxins are designed to limit. Criteria based on the draft national models 

provide protective water quality conditions in the source water, but concentrations of 

microcystin that slightly exceed health advisory values can be further reduced in the finished 

drinking water through carefully engineered and operated source water treatment processes. 

Draft recommended criteria derived using the models described here provide 

concentrations that, when exceeded, are associated with a loss of support for designated uses, 

but the draft models do not provide information regarding appropriate remediation actions. 

Indeed, among lakes in which the criteria are exceeded, appropriate remediation actions will 

likely differ. In some lakes, the magnitude of N loading from anthropogenic sources is small, 

while P loading is large, and cyanobacteria supply N to the system via fixation (Schindler et al. 

2008). In those lakes, reductions in P loading might be the appropriate water quality 

management action. In other lakes, ample supplies of N from anthropogenic sources are 

available, and management actions might need to focus on reducing both N and P loading 

(Ferber et al. 2004). In some lakes, excess N in the form of inorganic nitrogen (NOx or ammonia) 

is abundant, and the presence of high concentrations of DIN might provide insights into the 

effects of different management interventions. For example, DIN is readily taken up by 
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phytoplankton, so the presence of large concentrations of DIN might indicate that other factors 

such as light availability limit phytoplankton growth. In those cases, initial reductions of N 

loading to reduce NOx might be necessary before the effects of N control can be observed. 

4.5 Deriving State-Specified Criteria 

Criteria derived from the draft recommended national models vary with differences in 

lake characteristics (e.g., depth and ecoregion), and specifying a single set of criteria applicable 

to all lakes in a state might not account for those variations. Methods are already available for 

deriving criteria that account for natural variations among water bodies that can be applied to 

ensure that appropriate criteria are applied to different types of lakes. First, states can classify 

water bodies and derive different criteria for each class of water body. The draft recommended 

national models facilitate the classification of lakes by providing specific insights into the factors 

that most affect the derivation of protective numeric nutrient criteria. Furthermore, the draft 

national models can be used to compute candidate criteria for different lakes in a state to 

provide information about the types of lakes for which criterion magnitudes are most similar. 

For example, different draft recommended criteria for TP and TN are associated with different 

Level III ecoregions; however, among the ecoregions within one state, the difference in criterion 

magnitudes might be small enough to specify a single set of criteria applicable to multiple 

ecoregions. Second, site-specific criteria can be specified for a small number of lakes with 

characteristics that differ substantially from the rest of the lakes in a state. Here, too, the draft 

recommended national models provide the means of deriving these criteria for individual lakes. 

4.6 Duration and Frequency 

The duration component of a water quality criterion is the length of time over which 

discrete water samples are averaged to assess the condition of the water body. The frequency 

component defines the number of times over a given time period that the specified magnitude 

of the criterion can be exceeded while the water body is still assessed as being in compliance 

with the criterion and maintaining designated uses. In conjunction with the magnitude of the 

criterion, these additional components define a water quality criterion. 

Specification of duration and frequency components of numeric nutrient criteria is 

complicated by the fact that the ecological effects of elevated nutrient concentrations usually 

arise from a sequence of events. For example, higher nutrient concentrations increase the 
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abundance of phytoplankton. Over time, higher abundances of phytoplankton then increase the 

amount of organic material in the deeper waters of a lake, and decomposition of the stored 

organic material can reduce the concentrations of DO. In this case, the duration and frequency 

of exceedance of a Chl a concentration in the mixed layer of the lake is related only indirectly to 

the ecological effect of decreased DO and the ultimate reductions in the amount of habitat for 

cool- and cold-water species. Contrast this example with the specification of duration and 

frequency of toxic pollutants, for which the length of time and frequency of exposure to the 

pollutant can be directly linked to effects on different organisms (e.g., mortality). A second 

consideration arises from the variability of environmental measurements, for which estimates of 

mean concentrations of Chl a, TN, and TP can only be estimated from a finite number of 

samples. So, when specifying duration and frequency components of the draft recommended 

numeric nutrient criteria, the EPA considered both the timescale of the ecological responses and 

the statistical uncertainty in estimating mean values. 

The draft recommended duration for draft Chl a criteria derived from the models 

described in this document is a growing season (typically summer) geometric mean value, 

consistent with the summary statistic used for Chl a in the stressor-response analyses. The 

geometric mean was selected to account for the fact that Chl a measurements are frequently 

log-normally distributed. The EPA used seasonal mean Chl a concentrations integrated over the 

photic zone for analysis because timescales of ecological responses to increased nutrient 

concentrations are long. For example, as described earlier, some of the increase in deepwater 

oxygen demand arises from accrual of organic material over long time periods while other 

oxygen demand arises from recently created organic matter that settles through the water 

column. Mean Chl a concentration in the lake is associated with mechanisms acting at both 

timescales, providing a measure of the average amount of organic material supplied by the 

photic zone. Similarly, systematic changes in zooplankton composition would be expected to 

occur at longer, seasonal timescales. For the microcystin model, the basic unit of analysis was an 

individual sample, in which the model predicted the probability of different MCs in a sample, 

given the sample’s Chl a concentration. When estimating the relationship for computing criteria, 

however, the EPA computed probabilities of different individual Chl a concentrations as a 

function of seasonal mean Chl a concentration, again linking seasonal mean Chl a concentration 

to the probability of deleterious effects. 
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The unit of analysis for models relating Chl a to TN and TP concentrations was also the 

individual sample, in that TN and TP concentrations measured within a water sample were 

described as the sum of phytoplankton-bound N and P and other compartments in the sample 

containing those nutrients. Because the models are expressed as simple sums of components, 

each one remains applicable even if expressed in terms of seasonal averages. Hence, seasonal 

geometric mean Chl a criteria can be converted to seasonal geometric mean TN and TP criteria 

using the same model, and the draft recommended durations for TN and TP criteria are also 

seasonal mean values. 

The draft recommended frequency component of Chl a, TN, and TP criteria derived from 

the national models is no exceedances, but the EPA recognizes that seasonal geometric mean 

concentrations of Chl a, TN, and TP can vary among years about a long-term mean. As described 

above, the timescale over which excess nutrients cause impacts to designated uses is long. 

Conversely, occasional deviations of seasonal mean nutrient concentrations above a criterion 

magnitude are unlikely to cause immediate, deleterious effects to uses. Draft recommended 

nutrient criteria derived from these national models are intended to identify TN, TP, and Chl a 

concentrations that, if maintained, on average will ensure protection of applicable designated 

uses. Seasonal mean nutrient concentrations do vary, however. For example, a year with 

particularly high precipitation might yield higher than average loads of TP to downstream lakes. 

Similarly, a year with longer than average periods of sunshine might lead to higher rates of 

accumulation of phytoplankton biomass and higher concentrations of Chl a. Hence, in lakes in 

which long-term mean concentrations of Chl a, TN, and TP are below the criteria, occasional 

seasonal mean concentrations might still exceed the criterion magnitude. Interannual variability 

in seasonal mean concentrations can be addressed by characterizing this variability and 

incorporating it into the expression of criteria or assessment methods. More specifically, states 

may identify adjusted criterion magnitudes with allowable frequencies of exceedance based on 

the observed interannual variability of nutrient concentrations. For example, seasonal mean 

concentrations of TP would be expected to exceed a criterion magnitude that is equal to the 

long-term mean in approximately 50% of the years, whereas less frequent exceedances of a 

higher criterion magnitude would be expected. Appendix D provides examples of calculations 

that identify different combinations of criterion magnitudes and frequencies. 
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6 Appendix A: State Case Study: Chlorophyll a-Microcystin 

This case study in Iowa describes chlorophyll a (Chl a) and microcystin data collected by 

the Iowa Department of Natural Resources (IDNR) that are combined with national data to 

estimate a stressor-response relationship for the state (Yuan and Pollard 2019). 

6.1 Data 

Chl a measurements in Iowa were collected as part of an ambient lake monitoring 

program conducted by IDNR. Water samples were collected with an integrated water column 

sampler above the thermocline, when present, to a maximum depth of 2 meters (m) at the 

deepest point of each lake. Lake water samples were collected in the summer (May–

September). An aliquot of the water sample was analyzed for Chl a in the laboratory by non-

acidified fluorometry after filtering water samples through GF/C filters. In a separate IDNR 

monitoring program, microcystin concentrations (MCs) are sampled regularly at swimming 

beaches in Iowa during the summer. This sampling effort includes state park beaches and locally 

managed beaches across the state. MC was quantified in composite water samples collected at 

nine different locations on three transects spanning the swimming beach. On each transect, 

samples were collected at depths of 0.15, 0.5, and 1.0 m. Chl a and MC samples were matched 

by lake and sampling date for use in the analysis. To maximize the available data, MC and Chl a 

measurements collected within 1 day of each other were included as matched samples. 

6.2 Statistical Analysis 

The structure of a statistical model that accommodates data collected at different 

spatial scales must be defined to ensure that the available data appropriately inform model 

estimates. Consider the case of a large national data set of approximately 1,000 samples and a 

state data set of approximately 50 samples. If the two data sets were pooled, the national data 

would dominate the state data simply because of the significantly larger sample size, and the 

state data would exert a weak influence on the model. In any single state, however, only about 

20 samples from the national data might be available, and we would expect the state data to 

dominate estimates. Defining a hierarchical structure in the model helps ensure that each data 

set exerts the appropriate influence on the model results (Gelman and Hill 2007). 
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A second issue that arises from combining data sets is that different measurements are 

often collected in the different data sets. This problem is addressed in the national models by 

modeling a comprehensive network of relationships between different parameters to take 

advantage of the many different measurements available in the National Lakes Assessment 

(NLA) data (Qian and Miltner 2015). Then, state data sets in which only a subset of 

measurements were collected could still be feasibly modeled by informing specific aspects of 

the network. 

State data from Iowa were included in the national model and inform estimates of 

relationships in the same network. As mentioned earlier, however, only Chl a and MC 

measurements were available in the Iowa state data set. To prevent overspecifying the model, 

the EPA selected one of the relationships in the network that could be refined with data from 

the state. The relationship between Chl a and the relative biovolume of cyanobacteria relied 

most heavily on empirical calibration, so it was selected for refinement with state data. More 

specifically, the national model was revised so that model coefficients specific to each state 

were estimated (Equation (20)). 

𝐸𝐸[𝑙𝑙𝑁𝑁𝑙𝑙𝑙𝑙𝑡𝑡�𝑇𝑇𝑐𝑐,𝑖𝑖�] = 𝑓𝑓1,𝑘𝑘[𝑖𝑖] +  𝑓𝑓2,𝑘𝑘[𝑖𝑖]𝑐𝑐ℎ𝑙𝑙𝑖𝑖 + 𝑓𝑓3,𝑘𝑘[𝑖𝑖]𝑐𝑐ℎ𝑙𝑙𝑖𝑖2 (39) 

where different values of each of the coefficients were estimated for each state in the United 

States, k. The values of the coefficients for each state were constrained by normal distributions 

defined by the parameters, µf and σf. For example, the set of state-specific coefficients for f1 

were drawn from a single normal distribution as follows: 

𝑓𝑓1~𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑙𝑙(𝜇𝜇𝑓𝑓1 ,𝜎𝜎𝑓𝑓1) (40) 

Identical expressions can be written for the set of f2 values and f3 values. These distributions 

constrained the range of possible values so estimates of those parameters computed with 

relatively small sample sizes within individual states can “borrow” information from estimates 

computed from other states (Gelman and Hill 2007). 

Iowa state data were included in the model by noting that the data should inform 

estimates of the coefficients only in the state of Iowa. That is, estimates of f1, f2, and f3 from 

Equation (39) in Iowa are based on both the Iowa state data set and NLA data collected in Iowa. 

In other states, estimates of the coefficients are based only on NLA data. The influence of Iowa 

state data on the national distributions of the coefficients (as characterized by µf and σf) is  
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limited because the data affect only one element of the overall distributions of coefficients. 

Within the state of Iowa, however, the coefficients can be fit to maximize the predictive 

accuracy of the overall relationship linking Chl a to MC for both Iowa data and NLA data 

collected in Iowa, while remaining consistent with the range of possible values observed across 

all states. 

One final difference in fitting the Iowa state data is that several sources of variability 

modeled separately in the national model (e.g., s1 and s2 in equations (21) and (22)) are 

combined into one combined estimate of residual variability. This combination of error terms 

reflects the data available from Iowa, in which no laboratory replicates or direct measurements 

of cyanobacterial biovolume were available. Hence, one lumped source of variability was 

estimated. 

For comparison, a simple bivariate model was fit using only IDNR data, in which MC was 

modeled as a quadratic function of Chl a. 

6.3 Results 

A total of 556 samples of Chl a were measured at 28 lakes in Iowa. In some lakes, MC 

concentrations were sampled at different beaches, so 686 observations of MC were matched to 

the Chl a measurements. 

In the revised draft national model with state-specific relationships between Chl a and 

the relative biovolume of cyanobacteria, coefficients varied substantially among states. Because 

coefficient values for quadratic relationships are not easily interpreted, the predicted mean 

cyanobacterial-relative biovolume at a Chl a concentration of 20 microgram per liter (µg/L) is 

plotted to visualize the range of variation among states (Figure 33). For comparison, among all 

the national data, mean cyanobacterial-relative biovolume was 0.18 at Chl a concentration of 20 

µg/L. Systematic changes in cyanobacterial-relative biovolume with latitude or longitude were 

not evident, but some regional differences were observed. For example, cyanobacterial-relative 

biovolume with a Chl a concentration of 20 µg/L in northeast states was generally lower than 

elsewhere, whereas in midwest states, it was somewhat higher. 
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Figure 33. Variation in the relationship between Chl a and cyanobacterial-relative biovolume among 
states. PropCyano: predicted mean relative biovolume of cyanobacteria at an illustrative Chl a = 20 μg/L. 

As described previously, the relationship between Chl a and cyanobacterial-relative 

biovolume in Iowa was adjusted to maximize the accuracy of the predicted MC. Inclusion of 

Iowa data reduced the magnitude of the slope of the relationship between Chl a and 

cyanobacterial-relative biovolume, but increased the intercept (Figure 34). So, higher values of 

cyanobacterial-relative biovolume were observed at Chl a concentrations less than about 10 

µg/L. At higher Chl a concentrations, inclusion of Iowa state data did not substantively change 

the predicted cyanobacterial-relative biovolume. Overall, in Iowa, the estimated relationship 

between cyanobacterial-relative biovolume and Chl a was statistically indistinguishable from a 

constant value (Figure 34). The addition of the state data also narrowed the range of the 

credible intervals, as would be expected. 



93 

Figure 34. Comparison of Chl a/cyanobacterial-relative biovolume relationships in Iowa. Filled gray: 90% 
credible intervals for estimate of relationship using only NLA data collected in Iowa; solid and dashed 
lines: mean and 90% credible intervals for estimate of relationship using both Iowa state and NLA data. 

The predicted mean relationship between Chl a and MC in Iowa from the state-national 

model closely followed the observed data (left panel, Figure 35), exhibiting a slight increase in 

slope as Chl a concentration increased. The 90% prediction intervals shown in the plot were 

based on the mean values of repeated random draws of 15 samples from the predicted 

distribution to replicate the plotted observed data. The intervals were broad and included most 

of the estimated mean values. The curvature observed in the simple bivariate fit between Chl a 

and MC using only Iowa data was opposite of that observed from the state-national model, 

predicting that the rate of increase in MC was lower at high Chl a concentrations than at low Chl 

a concentrations (right panel, Figure 35). The 90% prediction intervals of this fit also included 

most of the observed mean values, but qualitatively, the simple bivariate model did not match 

the observed data as closely as did the state-national model. 
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Figure 35. Comparison of predicted relationship between Chl a and MC for the state-national model (left 
panel) and a model using only Iowa state data (right panel). Open circles: average MC concentration 
computed in ~15 samples at the indicated Chl a; solid lines: mean relationship; dashed lines: 5th to 95th 
percentiles of distribution of means of 15 samples drawn from predicted distribution. 

Three features inherent to the model combining state and national data are likely 

responsible for the improved predictions of observations in the Iowa data set. First, the network 

of relationships specified in the national model define a nonlinear function linking Chl a to MC 

that yielded a curved mean response (left panel, Figure 35). When only Iowa data are available, 

no information regarding the functional form of the relationship between Chl a and MC is 

known. Hence, it is difficult for the model to identify the correct shape of the curve. Indeed, the 

concavity of the mean relationship identified by the model using only Iowa data (right panel, 

Figure 35) was opposite of that estimated in the combined state-national model. Second, the 

network of relationships in the state-national model provided information regarding unobserved 

variables and relationships that could be used in lieu of direct observations. In this example, the 

relationships between Chl a and total phytoplankton biovolume and between cyanobacterial 

biovolume and microcystin were supplied by the national model. The Iowa-only model lacked 

the benefit of the additional information, and hence, for this model a direct relationship 

between Chl a and MC had to be estimated that aggregated the different causal linkages. 

Finally, the hierarchical structure of the national model placed constraints on the range of 

possible values for parameters estimated within each state. These constraints limited model 

parameters for the state data set to values that were generally consistent with national 

parameters. 
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6.4 Criteria Derivation 

Derivation of a draft recommended Chl a criterion based on decisions such as allowable 

exceedance rate, targeted MC, and model uncertainty follows an identical process as described 

for the national model. The model based on both IDNR data and NLA data yields a slightly 

different relationship from the model estimated from only the national data (Figure 36). Slightly 

greater uncertainty accompanies the estimate of the mean relationship in the Iowa-NLA model 

than the estimate in the NLA-only model (see Figure 22), and that uncertainty is reflected in a 

broader range of possible Chl a criteria. In the example shown in Figure 36, to maintain a 

maximum exceedance rate of 1% of MC of 8 µg/L, the Chl a criterion associated with the lower 

25th credible interval was 14 μg/L. 

Figure 36. MC and Chl a measurements in Iowa. Top panel–open circles: observed values of microcystin 
and Chl a for samples in which MC was greater than the detection limit; solid line: predicted MC that will 
be exceeded 1% of the time for the indicated Chl a concentration; gray shading: 50% credible intervals 
about mean relationship; horizontal and vertical line segments: candidate Chl a criteria based on targeted 
MC. Bottom panel: proportion of samples for which microcystin was not detected in ~100 samples 
centered at the indicated Chl a concentration. 
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7 Appendix B: State Case Study: Chlorophyll a–Hypoxia 

This case study in Missouri describes national and state data that are combined to refine 

estimates of the relationship between chlorophyll a (Chl a) and deepwater hypoxia. As 

described in Section 3.2.2, mean concentrations of dissolved oxygen below the thermocline 

(DOm) decrease with time during the period of summer stratification. The sampling design of the 

National Lakes Assessment (NLA) allowed for one visit to most of the lakes, so estimating 

temporal changes in deepwater DOm in the national model required a space-for-time 

substitution. State monitoring data collected during multiple visits to a smaller number of lakes 

provided an opportunity to directly estimate temporal changes in DOm and to compare the 

relationship between eutrophication and the rate of oxygen depletion with estimates from NLA 

data. 

7.1 Data 

The Missouri data considered in this case study were collected an average of 3–4 times 

per year by the University of Missouri (MU) from 1989 to 2007 as part of a statewide monitoring 

effort. Samples were collected near the dam for each reservoir (herein referred to as lakes for 

simplicity), where vertical profiles for temperature and DO concentration were measured (YSI 

model 51B or 550A meters). Composite water samples from a depth of approximately 0.25 

meter (m) were transferred to high density polyethylene containers, placed in coolers on ice, 

and transported to the MU Limnology Laboratory. There, a 250-milliliter aliquot was filtered 

(Pall A/E) for determination of total chlorophyll a via fluorometry following pigment extraction 

in heated ethanol (Knowlton et al. 1984, Sartory and Grobbelaar 1984). A total of 198 

measurements of DOm were available for analysis, collected at 20 different lakes over 62 unique 

lake-year combinations. 

7.2 Statistical Analysis 

The same model equations used in the national model were applied to data collected in 

Missouri: 

 𝐸𝐸[𝐷𝐷𝐷𝐷𝑁𝑁,𝑙𝑙] = 𝐷𝐷𝐷𝐷0 + 𝑉𝑉𝐷𝐷𝐷𝐷𝑘𝑘[𝑙𝑙]�𝑡𝑡𝑙𝑙 − 𝑡𝑡0,𝑗𝑗[𝑙𝑙]� (41) 
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where DO0 is the value of DOm at the start of spring stratification, volumetric oxygen demand 

(VOD)k is the net imbalance in the volumetric oxygen budget for lake k corresponding to sample 

i expressed as milligrams per liter per day of DO (Burns 1995), ti is the date that sample i is 

collected, and t0,j is the date of the beginning of stratification for lake-year j. Observed values of 

DOm were assumed to be normally distributed with a standard deviation of σ1 about the 

expected value. Note that, like the national model, VOD is assumed to be constant for each lake, 

but the date of the beginning of stratification varied by year and lake. The model equation 

specifying the relationship between Chl a, dissolved organic carbon (DOC), and lake depth and 

VOD was the same equation used in the draft recommended national model (see Equation (14)). 

As with the national model, saturation DO concentrations at the minimum temperature in 

Missouri were used to set the value of DO0. 

The treatment of DO measurements less than 2 milligrams per liter (mg/L) in the 

Missouri data differed from the approach used in the NLA. From 2 to 14 measurements of DOm 

greater than 2 mg/L were available in the Missouri data set for each of the lake-years included in 

the model, so data were available to directly estimate temporal changes in DOm. Because data 

were available at each lake before DOm approached zero, measurements of DOm that were less 

than 2 mg/L could be excluded without biasing the model results. 

Two models were run to explore the effects of combining Missouri data with the 

national model. In the first model, only Missouri data were used, and in the second model, both 

Missouri and NLA data were used to estimate the parameter values. 

7.3 Results 

The range of values spanned by each of the covariates differed between the two data 

sets. Missouri measurements were collected over a broader range of days than the NLA, 

whereas lakes sampled by the NLA covered a broader range of Chl a concentrations (Figure 37). 

Variations in DOC concentrations and depths below the thermocline were also narrower in the 

Missouri data than in the NLA data. Those differences in the range of observations were 

reflected in the strength of correlation between each covariate and DOm. For Missouri, sampling 

day was most strongly correlated with DOm, whereas for the NLA, sampling day exhibited the 

weakest correlation with DOm. Instead, in the NLA data, Chl a, DOC, and the depth below the 

thermocline were all more strongly correlated with DOm. 
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Figure 37. Observed DOm vs. Chl a, sampling day, DOC, and depth below the thermocline. Open circles: 
NLA data; filled circles: Missouri. 

The first day of stratification for Missouri lakes was generally earlier than for most of the 

dimictic lakes considered in the national model (Figure 38), a finding that is consistent with the 

fact that Missouri is located at the southern end of the geographic distribution of dimictic lakes 

(see Figure 7). Both the Missouri-only model and the NLA-only model yielded similar estimates 

of the relationship between Chl a and VOD (d2 in Equation (14)) (Figure 39), and the estimate 

based on the combined data sets improved further on the precision. Estimates of coefficients 

characterizing the relationship between VOD and depth below the thermocline (d3) and DOC (d4) 

were much more precise in the NLA-only data set than in the Missouri-only data set. Hence, the 

estimate based on the combined data set mainly reflects the trends in the NLA data. 
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Figure 38. Estimated first day of stratification for Missouri lakes (left panel) and NLA lakes (right panel). 

Figure 39. Model coefficients estimated for models for Missouri data, NLA data, and combined data. Thick 
line segment: 50% credible intervals; thin line segment: 90% credible intervals; vertical dashed line: 
coefficient value of zero. 

Qualitatively, the model accurately represented the decrease in DOm over time in 

different lakes (Figure 40). The effects of differences in the timing of spring stratification was 

manifested as differences in the vertical position of each line, and in some lakes, substantial 

variation was observed across years. 
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Figure 40. Relationships between day of year and DOm for six Missouri lakes. Different line and symbol 
colors in each panel correspond to data collected within different years with at least three samples. Open 
gray circles: other samples collected at each lake. 

7.4 Criteria Derivation 

The utility of combining Missouri and NLA data to inform decision-making is evident 

when one considers the predicted relationship between Chl a and DOm calculated using 

parameter estimates from the Missouri data and from the combined Missouri-NLA data set 

(Figure 41). In the example shown, the relationship is calculated based on illustrative values for 

other covariates (depth below thermocline at 13 m, DOC at 3.5 mg/L, and time between spring 

stratification and sampling at 120 days). Because use of both data sets improves the precision of 

model parameters, the resulting mean relationship is also estimated with increased precision 

and a targeted Chl a concentration can be identified with greater confidence. In this example, 

the 50% credible interval for the targeted Chl a concentration corresponding to DOm = 0 extends 

from 10 to 16 µg/L when the combined model is used. When using only Missouri data, the 

interval expands to 8–22 µg/L. 
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Figure 41. Relationship between Chl a and DOm in an illustrative lake with depth below thermocline at 
13m, DOC at 3.5 mg/L, and 120 days after spring stratification. Solid line: mean relationship; gray shading: 
50% credible intervals about mean relationship from combined Missouri-NLA model; dashed line: 50% 
credible intervals about mean relationship from Missouri-only model; dotted line: DOm = 0 mg/L. 
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8 Appendix C: State Case Study: Total Nitrogen–Chlorophyll a 

This case study in Iowa examines how combining locally collected measurements of 

total nitrogen (TN) and chlorophyll a (Chl a) with the national draft models can refine 

predictions calculated from these local data sets. 

8.1 Data 

Data used for this case study were collected by the Iowa Department of Natural 

Resources (IDNR) as part of their routine monitoring program. For each lake in the data set, TN, 

NOx, Chl a, and dissolved organic carbon (DOC) values were measured. A total of 968 

observations collected at 31 different lakes were available for analysis. 

8.2 Statistical Analysis 

The same model formulation provided in Equation (36) was applied to the IDNR data, 

expressing TN-dissolved inorganic nitrogen (-DIN) as the sum of a phytoplankton compartment, 

modeled as f1Chlk1, and a dissolved organic nitrogen (DON) component, modeled as f2DOCk2; and 

nitrogen (N) bound to organic sediment (equation is repeated below): 

 𝐸𝐸[𝑇𝑇𝑁𝑁 − 𝐷𝐷𝐷𝐷𝑁𝑁] = 𝑓𝑓1𝐶𝐶ℎ𝑙𝑙𝑘𝑘 + 𝐷𝐷𝐷𝐷𝑁𝑁 + 𝐷𝐷𝑂𝑂𝑚𝑚𝑠𝑠 = 𝑓𝑓1𝐶𝐶ℎ𝑙𝑙𝑘𝑘 + 𝑓𝑓2𝐷𝐷𝐷𝐷𝐶𝐶 + 𝐷𝐷𝑂𝑂𝑚𝑚𝑠𝑠 (42) 

DOC measurements were available only at a small proportion of Iowa lakes, so the EPA 

simplified the national model to the following form for modeling Iowa data: 

 𝐸𝐸[𝑇𝑇𝑁𝑁 − 𝐷𝐷𝐷𝐷𝑁𝑁] = 𝑓𝑓1𝐶𝐶ℎ𝑙𝑙𝑘𝑘 + 𝑇𝑇 (43) 

where u is a lake-specific constant representing the contributions of DON and nonphytoplankton 

organic suspended sediment (OSnp) in each lake to observed values of TN-DIN. Recall also that, 

in the national model, the coefficient f1 varied across states. With the IDNR data set, multiple 

samples were collected from each lake, so the model could be refined further to estimate a 

value of f1 for each lake as follows: 

 log�𝑓𝑓1,𝑗𝑗�~ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑙𝑙�𝜇𝜇𝑓𝑓1,𝐼𝐼𝐼𝐼,𝜎𝜎𝑓𝑓1� (44) 

where the index, j, refers to different lakes, and the mean value μf1,IA is computed for data 

collected in Iowa. 



103 

To examine the effects of considering local state data in the context of the national 

model, two models were fit. In the first model, only IDNR data were used to estimate the 

coefficients. In the second model, relationships were fit to both the IDNR data and NLA data 

simultaneously. The exponent k was modeled as being the same in both the IDNR and NLA data, 

while the coefficients f1 for each lake were estimated with IDNR data and NLA data collected 

within Iowa, and the value of μf1,IA was constrained by the national distribution among all the 

states in the NLA data. 

8.3 Results 

Data collected during the NLA in Iowa and by IDNR spanned similar ranges of Chl a, TN-

DIN, and DOC (Figure 42). The limiting relationship between Chl a and TN-DIN estimated using 

only IDNR data approximated the lower edge of the cloud of points (gray shading) but were 

estimated with more uncertainty than when estimated using both IDNR and NLA data (solid 

lines). The mean limiting relationships between Chl a and TN-DIN estimated with the two 

models were statistically indistinguishable from one another. 

Figure 42. Chl a vs. TN-DIN in Iowa. Open circles: data collected by Iowa DNR; filled circles: data collected 
by NLA in Iowa; solid lines: 95% credible intervals for limiting relationships between Chl a and TN-DIN 
estimated using both NLA and IDNR data; shaded gray area: 95% credible intervals for limiting 
relationships estimated using only IDNR data. 

The root mean square (RMS) prediction error of log(TN-DIN) measurements in the IDNR 

data was the same for the models using only IDNR data (RMS = 0.27) and the combined Iowa -

NLA data (RMS = 0.27), indicating that imposing national constraints on the parameter values 

did not reduce the accuracy of predictions at the scale of the local state data. Uncertainty about  
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estimates of the relationship between TN-DIN and Chl a for individual lakes was very similar 

(example shown in Figure 43), indicating that a sufficient number of samples was available for 

each lake to estimate the relationship without the information provided by the national model. 

Figure 43. Chl a vs. TN-DIN in Beeds Lake, Iowa. Open circles: observed data; gray shading: 90% credible 
intervals for predicted relationship based on only IDNR data; solid lines: 90% credible intervals for 
predicted relationship using both IDNR and NLA data. 

8.4 Criteria Derivation 

Because of the higher number of samples collected within each lake in the IDNR data 

set, unique relationships between TN-DIN and Chl a for each lake could be calculated, and those 

relationships, in turn, can be used to derive numeric nutrient criteria (Figure 44). Variations 

across lakes in DON and OSnp and in the coefficients of the modeled relationship yield 

differences in the estimated relationship between TN-DIN and Chl a. Then, resulting TN ambient 

criterion differ as well. For an illustrative target Chl a concentration of 15 micrograms per liter 

(μg/L), the mean ambient TN criterion for the lake shown in the left panel of Figure 44 was 750 

µg/L, while the TN criterion for the lake in the right panel was 1260 µg/L. 
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Figure 44. Lake-specific criteria derivation using combined Iowa-NLA model for two different lakes in 
Iowa. Open circles: observed values of TN-DIN and Chl a in Iowa for each lake; gray shading: 50% credible 
intervals about the mean relationship; solid line: mean relationship calculated using mean DOC 
concentration in lake; horizontal and vertical line segments: TN criterion calculation for illustrative Chl a 
target of 15 µg/L. 
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9 Appendix D: Operational Numeric Nutrient Criteria 

Operationally, chlorophyll a (Chl a), total nitrogen (TN), and total phosphorus (TP) 

criteria can be specified to account for the effects of sampling and temporal variability on 

observed mean concentrations (Barnett and O’Hagan 1997). In most cases, the condition of a 

lake will be assessed by examining a small number of samples and the uncertainty in the 

estimation of the true seasonal mean value from those data will be determined by the number 

of samples, the temporal variability of nutrient concentrations in the lake, and the inherent 

sampling variability of the measurement. By examining historical data from many different 

lakes, sampling variability associated with TN and TP can be estimated and “operational” criteria 

can be specified to account for this variability with adjusted criterion magnitudes and by 

adopting a frequency component that allows for some excursions of the specified magnitude. 

Ambient monitoring of nutrient concentrations provides the basis for determining 

whether a lake complies with the specified numeric nutrient criteria. Because of logistical and 

resource restrictions, the number of water quality samples available at different lakes can vary 

from a single grab sample to weekly or monthly samples throughout the sampling season. 

Statewide monitoring designs also vary in how often a lake is visited in different years. For 

example, a typical rotating basin design might sample the same lake once every 5 years, 

whereas other lakes might be sampled every year. Because of the differences in the frequency 

of sample collection, a statistical analysis of available monitoring data might be necessary to 

accurately assess compliance with the numeric nutrient criteria. This appendix describes a 

statistical approach for deriving operational or realizable criteria magnitude, duration, and 

frequency components. 

This document provides tools to compute numeric nutrient criteria expressed as 

seasonal mean values. Those criteria implicitly assumed that a large number of samples are 

available for characterizing the condition of each lake and that the uncertainty in the 

computation of the mean value is small (Barnett and O’Hagan 1997), a condition that is usually 

not satisfied by routine monitoring data. Operational criteria incorporate statistical uncertainty 

in estimating environmental conditions from a much smaller number of samples. The statistical 

approach recommended here requires that one estimate the sampling and temporal variability 

of nutrient concentrations within lakes for which criteria are specified. 
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A variety of approaches are available that account for within-lake variability when 

defining operational criteria, but they should all be designed to consider that nutrient 

concentrations vary in space (e.g., at different points on a lake) and in time. Both sources of 

variability account for a distribution of nutrient concentrations that will arise when a lake is 

repeatedly sampled. For example, if a single sample of TP was collected from one lake every 

year, over 10 years, the distribution of values might be as shown in Figure 45, in which observed 

concentrations range from 30 to 80 micrograms per liter (µg/L). Given this example, the relevant 

water quality management question is whether the lake complies with its specified numeric 

nutrient criteria. Here, if the relevant criterion is 60 µg/L, a methodical approach for assessing 

compliance can enhance the utility of the criterion. This section provides one example of an 

approach for accounting for sampling variability and defining “operational” nutrient criteria. 

Figure 45. Example distribution of 10 TP measurements. Note that the horizontal axis is log-scaled. 

Estimates of sampling variability are needed to inform decisions on operational criteria, 

and those estimates can be computed from historical data. For this example, the EPA analyzed 

TP data extracted from the Storage and Retrieval Data Warehouse (STORET) that had been 

collected in the summers from 1990 to 2011. From those data, lakes were identified in the U.S. 

with at least 5 years of nutrient data, yielding 25,056 samples collected from 846 different lakes. 

A statistical model was then used to estimate variance in nutrient measurements across 

different samples collected in the same year and from the same lake (within-lake variability). A 

model was fit to TP measurements that explicitly estimated intra-annual and interannual 

variability as follows: 
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 log (𝑇𝑇𝑃𝑃 𝑖𝑖) = 𝑁𝑁𝑗𝑗[𝑖𝑖] + 𝑏𝑏𝑘𝑘[𝑖𝑖] + 𝑁𝑁𝑖𝑖 (45) 

where TPi is measured in sample i at site j and in year k. So, observed TP in a sample is modeled 

as being log-normally distributed about a mean value that is the sum of an overall site mean (aj) 

and a random effect of year (bk). The random effect of year is assumed to be normally 

distributed with a mean value of 0 and a standard deviation of syear, and the intra-annual 

variance (ri) is modeled as a normal distribution with a mean of 0 and a standard deviation of 

ssample. Intra-annual variance not only includes contributions from traditional sources of sampling 

variability (e.g., measurement uncertainty), but also includes variability that could be attributed 

to differences in TP concentrations among different locations in a lake and differences in TP 

concentrations one might observe over the course of a single sampling season. Hence, intra-

annual variance was expected to differ among different lakes, so, the overall distribution of 

different values of ssample was modeled as a half-Cauchy distribution (Gelman 2006). 

Fitting this model to the TP data collected from STORET yielded a mean estimate of 0.16 

for intra-annual variability of log(TP). Among different lakes in the data set, this value ranged 

from 0.10 to 0.27, so sampling variability varied substantially among the lakes in the data set. 

Estimating intra-annual variability from local data collected in the lake of interest would help 

ensure that the estimate correctly reflects variability in the lake. 

Once intra-annual variability for the lake or lakes of interest has been estimated, this 

information can be combined with the relevant criterion for that lake to estimate a distribution 

of nutrient concentration values that would be observed if the lake complied with the criterion. 

For example, if the standard deviation of the intra-annual variability of log(TP) in a particular 

lake is estimated as 0.16 and the relevant TP criterion for the lake is 60 µg/L, we can infer the 

characteristics of the cumulative distribution of TP values that would be observed at the lake if it 

were exactly complying with its criterion (Figure 46). Then, based on this distribution, 

operational criteria can be derived. For example, one might define an operational criterion that 

corresponds with the 10th percentile of the distribution (TP = 37 µg/L) and assert that a single 

TP observation below that value indicates the probability that the mean TP concentration in the 

lake is greater than 60 µg/L is less than 10%. That is, a lake with an observation below that 

threshold is likely in compliance with the criterion. Conversely, one might define a criterion at 

the 90th percentile of the distribution (TP = 96 µg/L) and assert that a single TP observation that 

exceeds that value indicates the probability that the mean TP concentration is lower than  
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60 µg/L is less than 10%. That is, any lakes with an observation that exceeds that threshold is 

likely to be out of compliance with the criterion. Different water quality management outcomes 

(e.g., additional sampling) could be triggered at different threshold concentrations. Also, 

different operational criteria can be developed depending on probabilities of error that are 

acceptable to environmental managers. 

Figure 46. Example of defining an operational criterion magnitude. Solid line: the cumulative probability of 
observing a single sample TP lower than or equal to the indicated value if the true annual mean was 
exactly equal to the criterion (TP = 60 µg/L); dashed line: the cumulative probability for the average of 
four samples; black arrows: operational criteria for one sample; gray arrows: operational criteria 
associated with four samples. 

This analysis also highlights the relative benefits of collecting additional samples from 

each lake. More specifically, the standard error (s.e.) on the estimate of a summer mean 

concentration is as follows: 

 𝑠𝑠. 𝑇𝑇. =  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠

√𝑇𝑇
 (46) 

where N is the number of samples collected and ssample is the sampling variability of the nutrient 

concentration. Hence, additional samples increase the precision with which the annual average 

nutrient concentration can be estimated. In Figure 46, the dashed line shows the cumulative 

probability distribution of mean values computed using four samples. Because of the reduction 

in the standard error, assessments for compliance can be made with much greater confidence. 

The same 10% probabilities used above for single samples yield operational criteria of 47 and 76 

µg/L, when applied to the case of four measurements (gray arrows in Figure 46). Information 

and procedures regarding the use of operational criteria in assessment might be described in a 

state’s assessment methodology to accompany criteria specified in the water quality standards. 
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