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• Global chemical industry is projected to double in production, capacity, 
and sales between 2017 – 20301

• Harmful chemical emission from process inefficiencies 

• Ineffective mitigation plan to reduce solvent waste

Expanding Chemical Market
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1. United Nations Environment Programme, “Global Chemicals Outlook II - From Legacies to Innovative Solutions - Synthesis Report (2019),” 
2. O. US EPA, “TRI Data and Tools,” US EPA, 03-Mar-2013. 

The Chemical Waste Trend for Top Ten Wasted Substances Between 2007 and 2017 from the US EPA’s 
Toxic Release Inventory1



• Primary Methods1

◦ On-site solvent disposal – Direct release into air, water, or injection well
◦ Off-site solvent disposal – Third party, sold to other industries
◦ Incineration – Decomposes organic materials with high efficiency

- Cost up to 1/3 of original price of purchased solvent
- Releases up to 6.7 kg CO2 / kg organic compounds

• Solvent recovery – improves greenness and sustainability of chemical 
processes2

Current State of Waste Handling
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https://www.hazardouswasteexperts.com/is-your-business-a-
hazardous-waste-generator-epa-watching/

https://www.torontoenvironment.org/tags/incineration

1. C. S. Slater, M. J. Savelski, W. A. Carole and D. J. Constable, "Solvent Use and Waste Issues," in Green Chemistry in the Pharmaceutical Industry, WIley, 2010, 49-82
2. C. S. Slater, M. Savelski, G. Hounsell, D. Pilipauskas, and F. Urbanski, “Green design alternatives for isopropanol recovery in the celecoxib process,” Clean Technol. 

Environ. Policy, vol. 14, no. 4, pp. 687–698, Aug. 2012

IncinerationChemical Waste



Optimizing Solvent Recovery
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How do we make the design of solvent recovery 
process more efficient? 
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• Create a database of information
◦ Many possible chemicals involved in a solvent waste stream
◦ Multiple separation processes to consider

• Number of possible pathways dependent on waste stream composition

• Additional stages of separation added as required to meet purity 
requirements

Designing a Recovery Process
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Building a Database
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Solvent MW
(g/mol)

Density
(kg/m3)

Physical 
State

MP 
(°C)

BP
(°C)

Solubility in 
water (g/100g)

Toxicity 
(potential side effects)

Methanol 32.042 792 Liquid -97.6 64.7 Miscible Dizziness, nausea, blurred 
vision, vomiting, GI 
bleeding

Acetone 58.08 784 Liquid -94.8 56 Miscible Skin/eye irritant; dizziness, 
blurred vision, headaches

Benzene 78.114 876 Liquid 5.5 80.1 0.18 Carcinogen

Technology Principle/
Driving Force

Specifications and Important Conditions

Membrane Processes
Membranes Particle/molecular size

Sorption/Diffusion
Pressure

Pore size, Mol. wt. cut-off, average flux, Pressure 
gradient, type of membranes – MF, UF, NF and RO

Pervaporation Sorption/Diffusion Partial pressure Heat of vaporization, pressure gradient, average flux, 
membrane selectivity



Example Model: Distillation
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Molar flow rates:

Component balance:

� 𝐹𝑗 ,𝑘
�

𝑗∈𝐽𝑖𝑛𝑖
= � 𝐹𝑗 ,𝑘

�

𝑗∈𝐽𝑜𝑢𝑡𝑖

Minimum number of stages with 
Fenske’s equation:

Underwood’s variable: 

Assume feed is a saturated liquid (q=1):

Minimum reflux ratio:

Reflux ratio:
𝑅 = 1.3𝑅𝑚𝑖𝑛

Number of stages:
0.6𝑁 = 𝑁𝑚𝑖𝑛

Number of actual stages:

Costing variable of column;

𝑄𝑆𝑑𝑠𝑡 =
𝜋
4𝐷

2𝐻
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Generalized Solvent Recovery 
Framework

© 2020  Rowan University, All Rights Reserved 11Monday, April 20, 2020

• Superstructure-based
◦ Considers multiple options to reach a 

desired goal
◦ Advantage over one-by-one approach

• Stages
◦ Solid Removal

─ SDM: Sedimentation
─ PRC: Precipitation
─ CNF: Centrifugation

◦ Recovery, Purification, and 
Refinement
─ DST: Distillation
─ ATPE: Aqueous Two-Phase Extraction
─ PVP: Pervaporation
─ MF: Microfiltration
─ UF: Ultrafiltration
─ NF: Nanofiltration

◦ Additional steps to each stage can be 
added for multicomponent separation
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• Mathematical models for process technology help to minimize cost and maximize 
process efficiency while still reaching target values for safe reuse of solvents

• Programming tools: General Algebraic Modeling Systems (GAMS)

• Solver: Branch-And-Reduce Optimization Navigator (BARON)

• Life Cycle Analysis tool: SimaPro

Evaluation Framework

© 2020  Rowan University, All Rights Reserved 13Monday, April 20, 2020



• Recovery of Isopropanol from a 
Celecoxib waste stream
◦ Celecoxib – arthritic pain 

medication active pharmaceutical 
ingredient (API)

◦ 510 kg/hr IPA waste

• Incineration
◦ 14.51 kg steam / kg IPA
◦ 0.83 kWh electricity / kg IPA

• Life Cycle Analysis
◦ 2.19 kg total emissions (land, water, 

air)/ kg IPA waste

IPA Recovery Case Study
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Isopropanol 
Water

Raw 
Materials

Celecoxib

50.7% Isopropanol
48.8% Water

0.47% Methanol and 
Ethanol

Wet Solid Product

50% Isopropanol
50% Water

49.2% Isopropanol
49.6% Water

0.7% Methanol and 
Ethanol

0.5% Dissolved Solids

34.5% Isopropanol
45.2% Water

8.45% Methanol
2.71% Ethanol
9.1% Dissolved 

Solids

1. C. S. Slater, M. Savelski, D. Pilipauskas, F. Urbanksi and G. Housell, "Green design alternatives for isopropanol recovery in the celecoxib process," Clean 
Technologies and Environmental Policy, vol. 14, pp. 687-698, 2012.



• Assume trace solvents are negligible for model simplification

• Azeotrope at 80.37°C and 87.7 wt% IPA

• Solvent recovery results compared to incineration

Specifications for Model Testing
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Feed Condition Feed Rates (kg/hr) Output Requirements

Isopropanol (51%) 510 Recovery: 99.5%

Water (49%) 490 Purity: 99%



• 3 major pathways, 6 
technologies, 23 streams

• Technologies
◦ ATPE: Aqueous Two-Phase 

Extraction
◦ PVP: Pervaporation
◦ DST: Distillation
◦ UF: Ultrafiltration
◦ SDM: Sedimentation
◦ INCN: Incineration

IPA Recovery Superstructure
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• Pervaporation followed by ultrafiltration is the best path

• Aqueous Two-Phase Extraction – infeasible at specified condition

• Incineration: not economically viable and no material recovery

Optimal Recovery Path
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Model Statistics Values

Equations 258

Variables 238

Discrete Variables 4

Solution Time 2.48 s

GAMS Model & Solution Statistics

Pathways Annualized Cost 
($ million/yr)

Prices ($/kg
processed)

ATPE-UF1-SDM Infeasible Infeasible

PVP1-UF2 0.524 0.14

DST-PVP2 0.862 0.25

Incineration 8.1 2.01



Cost Breakdown of PVP-UF

© 2020  Rowan University, All Rights Reserved 18Monday, April 20, 2020

Annualized Capital 
Cost
47%

Utility Cost
4%

Labor Cost
10%

Membrane 
Cost
13%

Other Costs
26%



Environmental Impacts Analysis
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“Cause” “Effect”



Human Health (DALY)
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Waste Handling Methods

Human Health Impact

Waste Handling Method % Difference

Direct Disposal (Base Case) 0

Solvent Recovery 164

Incineration 34



Climate Change (kg CO2 eq.)
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Waste Handling Method % Difference

Direct Disposal (Base Case) 0
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Resource

© 2020  Rowan University, All Rights Reserved 22Monday, April 20, 2020
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Summary
• Developed a systematic framework 

for comparing solvent recovery 
options
◦ Simultaneous assessments of economic 

and environmental impacts 
◦ Additional case studies from other 

industries are being analyzed

• Powerful tool to enhance solvent 
recovery practices in industry
◦ Improve process optimization
◦ Reduce global solvent consumption/ 

waste (industrial collaboration required)
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Future Work
• A user-friendly solvent recovery tool
◦ Considers the optimization of solvent recovery pathways from economics 

and environmental impacts  perspectives
◦ Use the developed solvent recovery framework as a backbone
◦ Does not require the user to know coding or Chemical Engineering
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Optimal Solvent Recovery Pathways

User-Input



Current Project Team
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Student Achievements
• Austin Lehr and Jake Stengel earned the 3rd place in Computing and Process 

Control (Undergraduate Poster Session) at 2019 AIChE Annual Student 
Conference, Orlando, FL

• They were ranked in top 5 among 149 participants in the Computing and 
Systems Technology (CAST) poster session at 2019 AIChE Annual Meeting, 
Orlando, FL

• A peer-reviewed journal paper published in Industrial & Engineering 
Chemistry Research

Chea, J.D., Lehr, A., Stengel, J., Savelski, M.J., Slater, C.S., Yenkie, K.M., 2020. Evaluation of 
Solvent Recovery Options for Economic Feasibility through a Superstructure-Based 
Optimization Framework. Industrial & Engineering Chemistry Research.
https://doi.org/10.1021/acs.iecr.9b06725

• A peer-reviewed conference paper published in 2019 FOCAPD (Foundations 
of Computer-Aided Process Design) Conference, Copper Mountain, CO 
Proceedings.
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https://doi.org/10.1021/acs.iecr.9b06725
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