

United States Environmental Protection Agency

Final Risk Evaluation for 1-Bromopropane (*n*-Propyl Bromide)

CASRN: 106-94-5

Supplemental Information on Human Health Benchmark Dose Modeling

August 2020

TABLE OF CONTENTS

TABLE OF CONTENTS	2
LIST OF TABLES	4
LIST OF FIGURES	9
ACKNOWLEDGEMENTS	
1 INTRODUCTION	
2 BENCHMARK DOSE MODELING OF NON-CANCER EFFECTS	
2.1 BENCHMARK DOSE MODELING OF NON-CANCER EFFECTS FOR ACUTE EXPOSURES	13
2.1.1 Decreased Live Litter Size	
2.1.2 Post implantation loss	
2.2 BENCHMARK DOSE MODELING OF NON-CANCER EFFECTS FOR CHRONIC EXPOSURES	
2.2.1 Increased Incidence of Vacuolization of Centrilobular Hepatocytes in Males	
2.2.2 Increased Incidence of Vacuolization of Centrilobular Hepatocytes in Males	
2.2.3 Increased Incidence of Vacuolization of Centrilobular Hepatocytes in Females	
2.2.4 Increased Incidence of Renal Pelvic Mineralization in Males	
2.2.5 Increased Incidence of Renal Pelvic Mineralization in Females	
2.2.6 Decreased Seminal Vesicle Weight	
2.2.6.1 Decreased Relative Seminal Vesicle Weight	
2.2.6.2 Decreased Absolute Seminal Vesicle Weight 2.2.7 Decreased Percent Normal Sperm Morphology	
2.2.7 Decreased Percent Normal Sperm Morphology 2.2.8 Decreased Percent Motile Sperm	
2.2.9 Decreased Left Cauda Epididymis Weight	
2.2.9 Decreased Left Cauda Epididymis Weight	
2.2.11 Increased Estrus Cycle Length	
2.2.12 Decreased Antral Follical Count	
2.2.13 Decreased Male and Female Fertility Index	
2.2.14 Decreased Implantations Sites	
2.2.15 Decreased Pup Body Weight	
2.2.15.1 Decreased Body Weight in F1 Male Pups at PND 28	69
2.2.15.2 Decreased Body Weight in F ₂ Female Pups at PND 14	
2.2.15.3 Decreased Body Weight in F ₂ Female Pups at PND 21	
2.2.15.4 Decreased Body Weight in F ₂ Male Pups at PND 14	
2.2.15.5 Decreased Body Weight in F ₂ Male Pups at PND 21 2.2.16 Decreased Brain Weight	
2.2.16 Decreased Brain Weight in F_0 Females	
2.2.16.2 Decreased Brain Weight in F_0 Males	
2.2.16.3 Decreased Brain Weight in F ₁ Females as Adults	91
2.2.16.4 Decreased Brain Weight in F1 Males as Adults	93
2.2.16.5 Decreased Brain Weight in F ₂ Females at PND 21	
2.2.16.6 Decreased Brain Weight in F ₂ Males at PND 21	
2.2.17 Decreased Hang Time	
3 BENCHMARK DOSE MODELING OF TUMORS	107
3.1 LUNG TUMORS IN FEMALE MICE	
3.1.1 Summary of Multistage Model	
3.1.1.1 Selected Frequentist Multistage - Multistage 1 Restricted; Extra Risk, BMR = 0.001 and 0.1, 111	
3.1.1.2 Selected Frequentist Multistage - Multistage 1 Restricted; Added Risk, BMR = 0.001 and 0.1 114	, doses are in ppm
3.1.2 Summary of Frequentist Model Averaging	
3.1.3 Summary of Bayesian Model Averaging	
3.1.3.1 Bayesian Model Averaging – Extra Risk, BMR = 0.001 and 0.1, doses are in ppm	
3.1.3.2 Bayesian Model Averaging – Added Risk, BMR = 0.001 and 0.1, doses are in ppm	118

3.2 LARGE INTESTINE ADENOMAS IN FEMALE RATS	
3.2.1 Summary of Multistage Model	122
3.2.1.1 Selected Frequentist Multistage - Multistage 1 Restricted; Extra Risk, BMR = 0.001 and 0.1, doses are 122	
3.2.1.2 Selected Frequentist Multistage - Multistage 1 Restricted; Added Risk, BMR = 0.001 and 0.1, doses ar 125	e in ppm
3.2.2 Summary of Frequentist Model Averaging	126
3.2.3 Summary of Bayesian Model Averaging	127
3.2.3.1 Bayesian Model Averaging – Extra Risk, BMR = 0.001 and 0.1, doses are in ppm	
3.2.3.2 Bayesian Model Averaging – Added Risk, BMR = 0.001 and 0.1, doses are in ppm	128
3.3 KERATOACANTHOMA AND SQUAMOUS CELL CARCINOMAS IN MALE RATS	129
3.3.1 Summary of Multistage Model	132
3.3.1.1 Selected Frequentist Multistage - Multistage 1 Restricted; Extra Risk, BMR = 0.001 and 0.1, doses are 132	in ppm
3.3.1.2 Selected Frequentist Multistage - Multistage 1 Restricted; Added Risk, BMR = 0.001 and 0.1, doses ar 134	e in ppm
3.3.2 Summary of Frequentist Model Averaging	135
3.3.3 Summary of Bayesian Model Averaging	
3.3.3.1 Bayesian Model Averaging – Extra Risk, BMR = 0.001 and 0.1, doses are in ppm	
3.3.3.2 Bayesian Model Averaging – Added Risk, BMR = 0.001 and 0.1, doses are in ppm	
4 REFERENCES	138

LIST OF TABLES

Table 2-1 Litter Size Data Selected for Dose-Response Modeling for 1-BP 13
Table 2-2 Summary of BMD Modeling Results for Reduced Litter Size in F ₀ Generation Exposed
to 1-BP by Inhalation; BMRs of 1 Standard Deviation, and 5% and 1% Relative Deviation From
Control Mean
Table 2-3 BMD Modeling Results for Reduced Litter Size in F ₀ Generation Exposed to 1-BP by
Inhalation; BMRs of 1 Standard Deviation, and 5% and 1% Relative Deviation From Control
Mean
Table 2-4 BMD Modeling Results for Reduced Litter Size in F ₀ Generation Following Inhalation
Exposure of Parental Rats to 1-BP in a Two-Generation Study with Variances Fixed at Smallest,
Pooled and Highest Values17
Table 2-5. Implantation sites and incidence of post implantation loss in pregnant female rats in the
F ₀ generation exposed to 0, 100, 250 ppm 1-BP by Inhalation WIL Research {, 2001, 2990994}18
Table 2-6 Summary of BMDS modeling results for incidence of post implantation loss in female
rats exposed to 1-BP by Inhalation (WIL Research, 2001); $BMR = 5\%$ extra risk. Dose groups = 0,
100, 250 ppm
Table 2-7 Summary of BMDS modeling results for incidence of post implantation loss in female
rats exposed to 1-BP by Inhalation (WIL Research, 2001); $BMR = 1\%$ extra risk. Dose groups = 0,
100, 250 ppm
Table 2-8 Summary of BMDS modeling results for incidence of post implantation loss in female
rats exposed to 1-BP by Inhalation (WIL Research, 2001); $BMR = 5\%$ extra risk. Dose groups = 0,
100, 250 ppm
Table 2-9 Summary of BMDS modeling results for incidence of post implantation loss in female
rats exposed to 1-BP by Inhalation (WIL Research, 2001); $BMR = 1\%$ extra risk. Dose groups = 0,
100, 250 ppm
Table 2-10 Summary of BMDS modeling results for incidence of post implantation loss in female
rats exposed to 1-BP by Inhalation (WIL Research, 2001); $BMR = 5\%$ extra risk. Dose groups = 0,
100, 250, 500 ppm25
Table 2-11 Summary of BMDS modeling results for incidence of post implantation loss in female
rats exposed to 1-BP by Inhalation (WIL Research, 2001); $BMR = 1\%$ extra risk. Dose groups = 0,
100, 250, 500 ppm
Table 2-12 Incidence of Vacuolization of Centrilobular Hepatocytes Selected for Dose-Response
Modeling for 1-BP
Table 2-13 Summary of BMD Modeling Results for Vacuolization of Centrilobular Hepatocytes in
Male F ₀ Rats Following Inhalation Exposure to 1-BP in a Two-Generation Study28
Table 2-14 BMD Modeling Results for Reduced Litter Size in F ₀ Generation Exposed to 1-BP by
Inhalation; BMRs of 1 Standard Deviation, and 5% and 1% Relative Deviation From Control
Mean
Table 2-15 Incidence of Vacuolization of Centrilobular Hepatocytes Selected for Dose-Response
Modeling for 1-BP
Table 2-16 Summary of BMD Modeling Results for Vacuolization of Centrilobular Hepatocytes in
Male Rats Following Inhalation Exposure to 1-BP
Table 2-17 BMD Modeling Results for Vacuolization of Centrilobular Hepatocytes in Male Rats
Exposed to 1-BP Via Inhalation; BMR 10% Added Risk
Table 2-18 Incidence of Vacuolization of Centrilobular Hepatocytes Selected for Dose-Response
Modeling for 1-BP

Table 2-19 Summary of BMD Modeling Results for Vacuolization of Centrilobular Hepatocytes in
Female F ₀ Rats Following Inhalation Exposure to 1-BP in a Two-Generation Study
Table 2-20 BMD Modeling Results for Vacuolization of Centrilobular Hepatocytes in Female Rats
Exposed to 1-BP Via Inhalation; BMR 10% Added Risk
Table 2-21 Incidence of Renal Pelvic Mineralization Selected for Dose-Response Modeling for
1-BP
Table 2-22 Summary of BMD Modeling Results for Renal Pelvic Mineralization in Male F ₀ Rats
Following Inhalation Exposure to 1-BP in a Two-Generation Study
Table 2-23 BMD Modeling Results for Renal Pelvic Mineralization in Male Rats Exposed to 1-BP
Via Inhalation; BMR 10% Added Risk
Table 2-24 Incidence of Renal Pelvic Mineralization Selected for Dose-Response Modeling for
1-BP
Table 2-25 Summary of BMD Modeling Results for Renal Pelvic Mineralization in Female F ₀ Rats
Following Inhalation Exposure to 1-BP in a Two-Generation Study
Table 2-26 BMD Modeling Results for Renal Pelvic Mineralization in Female Rats Exposed to 1-
BP Via Inhalation; BMR 10% Added Risk40
Table 2-27 Relative Seminal Vesicle Weight Data Selected for Dose-Response Modeling for 1-BP
Table 2-28 Summary of BMD Modeling Results for Relative Seminal Vesicle Weight in Rats
Exposed to 1-BP by Inhalation
Table 2-29 BMD Modeling Results for Relative Seminal Vesicle Weight; BMR = 1 Standard
Deviation Change from Control Mean
Table 2-30 Absolute Seminal Vesicle Weight Data Selected for Dose-Response Modeling for 1-BP
Table 2-31 Summary of BMD Modeling Results for Seminal Vesicle Absolute Weight in Rats
Exposed to 1-BP by Inhalation
Table 2-32 BMD Modeling Results for Seminal Vesicle Absolute Weight; BMR = 1 Standard
Deviation Change from Control Mean
Table 2-33 Sperm Morphology Data Selected for Dose-Response Modeling for 1-BP47
Table 2-34 Summary of BMD Modeling Results for Sperm Morphology in the F ₀ Generation
Exposed to 1-BP by Inhalation
Table 2-35 BMD Modeling Results for Sperm Morphology in F ₀ Rats Exposed to 1-BP by
Inhalation; BMR = 1 Standard Deviation Change from Control Mean49
Table 2-36 Sperm Motility Data Selected for Dose-Response Modeling for 1-BP 53
Table 2-37 Summary of BMD Modeling Results for Sperm Motility F ₀ Male Rats Following
Inhalation Exposure to 1-BP
Table 2-38 Summary of BMD Modeling Results for Sperm Motility F ₀ Male Rats Following
Inhalation Exposure to 1-BP with the Highest Dose Dropped
Table 2-39 Left Cauda Epididymis Absolute Weight Data Selected for Dose-Response Modeling
for 1-BP55
Table 2-40 Summary of BMD Modeling Results for Left Cauda Epididymis Absolute Weight F ₀
Male Rats Following Inhalation Exposure to 1-BP
Table 2-41 BMD Modeling Results for Left Cauda Epididymis Absolute Weight; BMR = 1
Standard Deviation Change from Control Mean
Table 2-42 Right Cauda Epididymis Absolute Weight Data Selected for Dose-Response Modeling
for 1-BP58

Table 2-43 Summary of BMD Modeling Results for Right Cauda Epididymis Absolute Weight F ₀
Male Rats Following Inhalation Exposure to 1-BP
Table 2-44 BMD Modeling Results for Right Cauda Epididymis Absolute Weight; BMR = 1
Standard Deviation Change from Control Mean
Table 2-45 Estrus Cycle Length Data Selected for Dose-Response Modeling for 1-BP 61
Table 2-46 Summary of BMD Modeling Results for Estrus Cycle Length F ₀ Female Rats
Following Inhalation Exposure to 1-BP
Table 2-47 Antral Follicle Count Data Selected for Dose-Response Modeling for 1-BP62
Table 2-48 Summary of BMD Modeling Results for Antral Follical Count in Female Rats
Following Inhalation Exposure to 1-BP
Table 2-49 Fertility Index Data Selected for Dose-Response Modeling for 1-BP63
Table 2-50 Summary of BMD Modeling Results for Fertility Index of F ₀ Rats Following Inhalation
Exposure of Parental Rats to 1-BP in a Two-Generation Study
Table 2-51 BMD Modeling Results for Fertility Index in Rats Exposed to 1-BP Via Inhalation
BMR 10% Extra Risk
Table 2-52 Implantations Site Data Selected for Dose-Response Modeling for 1-BP
Table 2-53 Summary of BMD Modeling Results for Implantations Sites in F ₀ Rats Following
Inhalation Exposure of Parental Rats to 1-BP in a Two-Generation Study
Table 2-54 BMD Modeling Results for Implantation Sites in Rats Exposed to 1-BP Via Inhalation
in ppm BMR 1 Standard Deviation67
Table 2-55 Pup Body Weight Data in F1 Males at PND 28 for Dose-Response Modeling69
Table 2-56 Summary of BMD Modeling Results for Body Weight of F1 Male Rat Pups on PND 28
Following Inhalation Exposure of Parental Rats to 1-BP in a Two-Generation Study70
Table 2-57 BMD Modeling Results for Pup Body Weight in Rats Exposed to 1-BP Via Inhalation
BMR 5% Relative Deviation
Table 2-58 BMD Modeling Results for Pup Body Weight in Rats Exposed to 1-BP Via Inhalation
BMR 5% Relative Deviation
Table 2-59 Pup Body Weight Data in F ₂ Females at PND 14 from Selected for Dose-Response
Modeling
Table 2-59 Summary of BMD Modeling Results for Body Weight of F ₂ Female Rat Pups on PND
14 Following Inhalation Exposure of Parental Rats to 1-BP in a Two-Generation Study
Table 2-60 BMD Modeling Results for Body Weight of F2 Female Rat Pups on PND 14 Following
Inhalation Exposure of Parental Rats to 1-BP in a Two-Generation Study with Variances Fixed at
Smallest, Pooled and Highest Values
Table 2-61 Pup Body Weight Data in F2 Females at PND 21 from Selected for Dose-Response No. 1
Modeling
Table 2-62 Summary of BMD Modeling Results for Body Weight of F_2 Females on PND 21
Following Inhalation Exposure of Parental Rats to 1-BP in a Two-Generation Study
Table 2-63 BMD Modeling Results for Pup Body Weight in Rats Exposed to 1-BP Via Inhalation DMB 5% Delation 70
BMR = 5% Relative Deviation. 79 Table 2 (4 Prop Data Waisht Data in E. Malas et DND 14 from Salasted for Data Response
Table 2-64 Pup Body Weight Data in F2 Males at PND 14 from Selected for Dose-Response Modeling
Modeling
Table 2-65 Summary of BMD Modeling Results for Body Weight of F_2 Male Rat Pups on PND 14 Following Inhelation Exposure of Perentel Pate to 1 PD in a Two Concretion Study.
Following Inhalation Exposure of Parental Rats to 1-BP in a Two-Generation Study
Table 2-66 BMD Modeling Results for Pup Body Weight in Rats Exposed to 1-BP Via Inhalation in ppm $PMP = 5\%$ Polative Deviation
in ppm BMR = 5% Relative Deviation
1 able 2-07 1 up body weight Data in 12 mates at FND 21

Table 2-68 Summary of BMD Modeling Results for Body Weight of F ₂ Male Rat Pups on PND 21
Following Inhalation Exposure of Parental Rats to 1-BP in a Two-Generation Study
Table 2-69 BMD Modeling Results for Pup Body Weight in Rats Exposed to 1-BP Via Inhalation
in ppm BMR = 5% Relative Deviation
Table 2-70 Brain Weight Data in F0 Females for Dose-Response Modeling
Table 2-71 Summary of BMD Modeling Results for Brain Weight of F ₀ Females Following
Inhalation Exposure to 1-BP
Table 2-72 BMD Modeling Results for Brain Weight in F ₀ Female Rats Exposed to 1-BP Via
Inhalation in ppm BMR = 1 Standard Deviation
Table 2-73 Brain Weight Data in F0 Males for Dose-Response Modeling 89
Table 2-74 Summary of BMD Modeling Results for Brain Weight of F ₀ Males Following
Inhalation Exposure to 1-BP
Table 2-75 BMD Modeling Results for Brain Weight of F ₀ Male Rats Following Inhalation
Exposure to 1-BP in a Two-Generation Study with Variances Fixed at Smallest, Pooled and
Highest Values
Table 2-76 Brain Weight Data in F ₁ Females as Adults from Selected for Dose-Response Modeling
Table 2-77 Summary of BMD Modeling Results for Brain Weight of F1 Female Rats as Adults
Following Inhalation Exposure of Parental Rats to 1-BP in a Two-Generation Study
Table 2-78 BMD Modeling Results for Brain Weight in F ₁ Female Rats as Adults Exposed to 1-BP
Via Inhalation BMR = 1% Relative Deviation
Table 2-79 Brain Weight Data in F ₁ Males as Adults from Selected for Dose-Response Modeling
Table 2-80 Summary of BMD Modeling Results for Brain Weight of F1 Male Rats as Adults
Following Inhalation Exposure of Parental Rats to 1-BP in a Two-Generation Study
Table 2-81 Brain Weight Data in F ₂ Females at PND 21 from Selected for Dose-Response
Modeling
Table 2-82 Summary of BMD Modeling Results for Brain Weight of F ₂ Female Rats at PND 21
Following Inhalation Exposure of Parental Rats to 1-BP in a Two-Generation Study
Table 2-83 BMD Modeling Results for Brain Weight in F ₂ Female Exposed to 1-BP Via Inhalation
BMR = 1% Relative Deviation
Table 2-84 Brain Weight Data in F ₂ Males at PND 21 for Dose-Response Modeling
Table 2-85 Summary of BMD Modeling Results for Brain Weight of F ₂ Male Rats as Adults
Following Inhalation Exposure of Parental Rats to 1-BP in a Two-Generation Study
Table 2-86 BMD Modeling Results for Brain Weight in Rats Exposed to 1-BP Via Inhalation in
ppm BMR = 1% Relative Deviation
Table 2-87 Hang Time from a Suspended Bar Data for Dose-Response Modeling for 1-BP101
Table 2-88 Summary of BMD Modeling Results for Hang Time from a Suspended Bar; BMR = 1
std. dev. change from control mean
Table 2-89 BMD Modeling Results for Hang Time from a Suspended Bar; BMR = 1 Standard
Deviation Change from Control Mean102
Table 3-1 Incidence of Lung Tumors in Female Mice 108
Table 3-2 Summary of BMDS 3.0 modeling results for lung tumors in female mice exposed to 1-
BP by inhalation for 2 years (NTP, 2011); BMRs = 10% and 0.1% extra and added risk, doses are
in ppm
Table 3-3 Lung Tumors in Female Mice, Selected Frequentist Multistage - Multistage 1 Restricted;
Extra Risk, BMR = 0.001 and 0.1 User Input

Table 3-4 Lung Tumors in Female Mice, Selected Frequentist Multistage - Multistage 1 Restricted;
Extra Risk, BMR = 0.001 and 0.1 Model Results
Table 3-5 Lung Tumors in Female Mice, Selected Frequentist Multistage - Multistage 1 Restricted;
Added Risk, BMR = 0.001 and 0.1 User Input
Table 3-6 Lung Tumors in Female Mice, Selected Frequentist Multistage - Multistage 1 Restricted;
Added Risk, BMR = 0.001 and 0.1 Model Results
Table 3-7 Lung Tumors in Female Mice, Summary of Frequentist Model Averaging116
Table 3-8 Lung Tumors in Female Mice, Bayesian Model Averaging – Extra Risk, BMR = 0.001
and 0.1 User Inputs
Table 3-9 Lung Tumors in Female Mice, Bayesian Model Averaging – Extra Risk, BMR = 0.001
and 0.1 Model Results
Table 3-10 Lung Tumors in Female Mice, Bayesian Model Averaging – Added Risk, BMR =
0.001 and 0.1 User Inputs
Table 3-11 Lung Tumors in Female Mice, Bayesian Model Averaging – Added Risk, BMR =
0.001 and 0.1 Model Results
Table 3-12 Incidence of Large Intestine Adenomas in Female Rats
Table 3-13 Summary of BMDS 3.0 modeling results for large intestine adenomas in female rats
exposed to 1-BP by inhalation for 2 years (NTP, 2011); BMRs = 10% and 0.1% extra and added
risk, doses are in ppm120
Table 3-14 Large Intestine Adenomas in Female Rats, Selected Frequentist Multistage - Multistage
1 Restricted; Extra Risk, BMR = 0.001 and 0.1 User Input122
Table 3-15 Large Intestine Adenomas in Female Rats, Selected Frequentist Multistage - Multistage
1 Restricted; Extra Risk, BMR = 0.001 and 0.1 Model Results
Table 3-16 Large Intestine Adenomas in Female Rats, Selected Frequentist Multistage - Multistage
1 Restricted; Added Risk, BMR = 0.001 and 0.1 User Input
Table 3-17 Large Intestine Adenomas in Female Rats, Selected Frequentist Multistage - Multistage
1 Restricted; Added Risk, BMR = 0.001 and 0.1 Model Results
Table 3-18 Large Intestine Adenomas in Female Rats, Summary of Frequentist Model Averaging
Table 3-19 Large Intestine Adenomas in Female Rats, Bayesian Model Averaging – Extra Risk,
$BMR = 0.001 \text{ and } 0.1 \text{ User Inputs} \dots 127$
Table 3-20 Large Intestine Adenomas in Female Rats, Bayesian Model Averaging – Extra Risk,
BMR = 0.001 and 0.1 Model Results
Table 3-21 Large Intestine Adenomas in Female Rats, Bayesian Model Averaging – Added Risk,
BMR = 0.001 and 0.1 User Inputs
Table 3-22 Large Intestine Adenomas in Female Rats, Bayesian Model Averaging – Added Risk,
BMR = 0.001 and 0.1 Model Results
Table 3-23 Incidence of Keratoacanthoma and Squamous Cell Carcinomas in Male Rats
Table 3-24 Summary of BMDS 3.0 modeling results for keratoacanthoma & squamous cell
carcinomas in male rats exposed to 1-BP by inhalation for 2 years (NTP, 2011); BMRs = 10% and 0.1% even and added risk decay are in mm
0.1% extra and added risk, doses are in ppm
•
Multistage - Multistage 1 Restricted; Extra Risk, BMR = 0.001 and 0.1 User Input
Multistage - Multistage 1 Restricted; Extra Risk, BMR = 0.001 and 0.1 Model Results
Table 3-27 Keratoacanthoma and Squamous Cell Carcinomas in Male Rats, Selected Frequentist
Multistage - Multistage 1 Restricted; Added Risk, BMR = 0.001 and 0.1 User Input
1310105020 = 1310105020 + 100501000000, Audulu Misk, Divik = 0.0001 and 0.1 0.001 input104

Table 3-28 Keratoacanthoma and Squamous Cell Carcinomas in Male Rats, Selected Frequenti	st
Multistage - Multistage 1 Restricted; Added Risk, BMR = 0.001 and 0.1 Model Results	.134
Table 3-29 Keratoacanthoma and Squamous Cell Carcinomas in Male Rats, Summary of	
Frequentist Model Averaging	.135
Table 3-30 Keratoacanthoma and Squamous Cell Carcinomas in Male Rats, Bayesian Model	
Averaging – Extra Risk, BMR = 0.001 and 0.1 User Inputs	.136
Table 3-31 Keratoacanthoma and Squamous Cell Carcinomas in Male Rats, Bayesian Model	
Averaging – Extra Risk, BMR = 0.001 and 0.1 Model Results	.136
Table 3-32 Keratoacanthoma and Squamous Cell Carcinomas in Male Rats, Bayesian Model	
Averaging – Added Risk, BMR = 0.001 and 0.1 User Inputs	.137
Table 3-33 Keratoacanthoma and Squamous Cell Carcinomas in Male Rats, Bayesian Model	
Averaging – Added Risk, BMR = 0.001 and 0.1 Model Results	.137

LIST OF FIGURES

Figure 2-1 Plot of Mean Response by Dose in ppm with Fitted Curve for Exponential (M2) Model
with Modeled Variance for Reduced Litter Size in F ₀ Generation Exposed to 1-BP by Inhalation;
BMR = 5% Relative Deviation from Control Mean15
Figure 2-2. Plot of incidence rate by dose with fitted curve for NCTR model for post implantation
loss in male rats exposed to 1-BP21
Figure 2-3 Plot of incidence rate by dose with fitted curve for Nlogistic model for post
implantation loss in male rats exposed to 1-BP22
Figure 2-4 Plot of incidence rate by dose with fitted curve for NCTR model for post implantation
loss in male rats exposed to 1-BP23
Figure 2-5 Plot of incidence rate by dose with fitted curve for Nlogistic model for post
implantation loss in male rats exposed to 1-BP24
Figure 2-6 Plot of incidence rate by dose with fitted curve for Nlogistic model for post
implantation loss in male rats exposed to 1-BP25
Figure 2-7 Plot of incidence rate by dose with fitted curve for Nlogistic model for post
implantation loss in male rats exposed to 1-BP27
Figure 2-8 Plot of Mean Response by Dose with Fitted Curve for the Selected Model (LogLogistic)
for Vacuolization of Centrilobular Hepatocytes in Male Rats Exposed to 1-BP Via Inhalation in
ppm; BMR 10% Added Risk
Figure 2-9 Plot of Mean Response by Dose with Fitted Curve for the Selected Model (Multistage
3°) for Vacuolization of Centrilobular Hepatocytes in Male Rats Exposed to 1-BP Via Inhalation in
ppm; BMR 10% Added Risk
Figure 2-10 Plot of Mean Response by Dose with Fitted Curve for the Selected Model
(LogLogistic) for Vacuolization of Centrilobular Hepatocytes in Female Rats Exposed to 1-BP Via
Inhalation in ppm; BMR 10% Added Risk
Figure 2-11 Plot of Mean Response by Dose with Fitted Curve for the Selected Model (Multistage
3°) for Renal Pelvic Mineralization in Male Rats Exposed to 1-BP Via Inhalation in ppm; BMR
10% Added Risk
Figure 2-12 Plot of Mean Response by Dose with Fitted Curve for the Selected Model (Probit) for
Renal Pelvic Mineralization in Female Rats Exposed to 1-BP Via Inhalation in ppm; BMR 10%
Added Risk40

Figure 2-13 Plot of Mean Response by Dose in ppm with Fitted Curve for Exponential (M4) Model with Constant Variance for Relative Seminal Vesicle Weight; BMR = 1 Standard Deviation
Change from Control Mean
Figure 2-14 Plot of Mean Response by Dose in ppm with Fitted Curve for Hill Model with
Constant Variance for Seminal Vesicle Absolute Weight; BMR = 1 Standard Deviation Change
from Control Mean
Figure 2-15 Plot of Mean Response by Dose in ppm with Fitted Curve for Exponential (M2) Model
with Constant Variance for Sperm Morphology in F_0 Rats Exposed to 1-BP by Inhalation; BMR =
1 Standard Deviation Change from Control Mean
Figure 2-16 Plot of Mean Response by Dose in ppm with Fitted Curve for Polynomial 4° Model
with Constant Variance for Left Cauda Epididymis Absolute Weight; BMR = 1 Standard Deviation
Change from Control Mean
Figure 2-17 Plot of Mean Response by Dose in ppm with Fitted Curve for Polynomial 4° Model
with Constant Variance for Right Cauda Epididymis Absolute Weight; BMR = 1 Standard
Deviation Change from Control Mean
Figure 2-18 Plot of Mean Response by Dose with Fitted Curve for the Selected Model
(LogLogistic) for Fertility Index in Rats Exposed to 1-BP Via Inhalation in ppm BMR 10% Extra
Risk
Figure 2-19 Plot of Mean Response by Dose with Fitted Curve for the Selected Model (Linear) for
Implantation Sites in Rats Exposed to 1-BP Via Inhalation in ppm BMR 1 Standard Deviation67
Figure 2-20 Plot of Mean Response by Dose with Fitted Curve for the Selected Model
(Exponential (M2)) for Pup Body Weight in Rats Exposed to 1-BP Via Inhalation in ppm BMR 5%
Relative Deviation
Figure 2-21 Plot of Mean Response by Dose with Fitted Curve for the Hill Model for Pup Body
Weight in Rats Exposed to 1-BP Via Inhalation in ppm BMR 5% Relative Deviation
Figure 2-21 Plot of Mean Response by Dose with Fitted Curve for the Selected Model
(Polynomial 2°) for Pup Body Weight in Rats Exposed to 1-BP Via Inhalation in ppm BMR = 5%
Relative Deviation
Figure 2-22 Plot of Mean Response by Dose with Fitted Curve for the Selected Model
(Polynomial 2°) for Pup Body Weight in Rats Exposed to 1-BP Via Inhalation in ppm BMR = 5%
Relative Deviation
Figure 2-23 Plot of Mean Response by Dose with Fitted Curve for the Selected Model (Linear) for
Pup Body Weight in Rats Exposed to 1-BP Via Inhalation in ppm BMR = 5% Relative Deviation.
Figure 2-24 Plot of Mean Response by Dose with Fitted Curve for the Selected Model (Linear) for
Brain Weight in F_0 Female Rats Exposed to 1-BP Via Inhalation in ppm BMR = 1 Standard
Deviation
Figure 2-25 Plot of Mean Response by Dose with Fitted Curve for the Selected Model
(Exponential (M2)) for Brain Weight in F_1 Female Rats as Adults Exposed to 1-BP Via Inhalation
in ppm BMR = 1% Relative Deviation
Figure 2-26 Plot of Mean Response by Dose with Fitted Curve for the Selected Model
(Exponential (M2)) for Brain Weight in F_2 Female Exposed to 1-BP Via Inhalation in ppm BMR =
1% Relative Deviation
Figure 2-27 Plot of Mean Response by Dose with Fitted Curve for the Selected Model (Power) for
Brain Weight in Rats Exposed to 1-BP Via Inhalation in ppm BMR = 1% Relative Deviation99

Figure 2-28 Plot of Mean Response by Dose in ppm with Fitted Curve for Exponential (M4) Model
with Modeled Variance for Hang Time from a Suspended Bar; BMR = 1 Standard Deviation
Change from Control Mean
Figure 3-1 Plot of Results for Lung Tumors in Female Mice Frequentist Multistage Degree 1
Model with BMR of 10% Extra Risk for the BMD and 0.95 Lower Confidence Limit for the
BMDL
Figure 3-2 Plot of Results for Large Intestine Adenomas in Female Rats Frequentist Multistage
Degree 1 Model with BMR of 10% Extra Risk for the BMD and 0.95 Lower Confidence Limit for
the BMDL
Figure 3-3 Plot of Results for Keratoacanthoma and Squamous Cell Carcinomas in Male Rats
Frequentist Multistage Degree 1 Model with BMR of 10% Extra Risk for the BMD and 0.95
Lower Confidence Limit for the BMDL133

ACKNOWLEDGEMENTS

This report was developed by the United States Environmental Protection Agency (U.S. EPA), Office of Chemical Safety and Pollution Prevention (OCSPP), Office of Pollution Prevention and Toxics (OPPT).

Acknowledgements

The OPPT Assessment Team gratefully acknowledges participation or input from ORD in developing this supplemental document

1 1 INTRODUCTION

2

BMD modeling was performed using USEPA's BMD Software package (BMDS), in a manner
 consistent with EPA <u>Benchmark Dose Technical Guidance</u>. BMRs were selected for each
 endpoint individually. The dose metric for all endpoints was the exposure concentration in ppm.

6 Results are presented for non-cancer effects from acute exposures, then chronic exposures and

7 cancer i.e. tumors.

8

9 **2** Benchmark Dose Modeling of Non-Cancer Effects

2.1 Benchmark Dose Modeling of Non-Cancer Effects for Acute Exposures

12

2.1.1 Decreased Live Litter Size

EPA modeled the decreased live litter size observed in the 2-generation reproductive and developmental study by WIL Research (2001) as one endpoint relevant for calculating risks associated with acute worker and consumer scenarios. A BMR of 5% was used to address the relative severity of this endpoint (U.S. EPA, 2012). This endpoint choice is a combination of reproductive effects where a BMR 10% relative deviation would be used and developmental effects of post implantation loss which is considered a severe effect like mortality where a BMR of 1% relative deviation would be used. For comparison the modeling results with a BMR of 1

standard deviation and 1% relative deviation are also shown. The modeling was performed in
 BMDS version 2.6. The doses and response data used for the modeling are presented in Table

22 2-1.

23 Table 2-1 Litter Size Data Selected for Dose-Response Modeling for 1-BP

Dose (ppm)	Number of litters	Mean litter size	Standard Deviation
0	23	14.4	2.21
100	25	13.3	3.72
250	22	12.3	4.47
500	11	8.3	4.1

24

25 The best fitting model was selected based on Akaike information criterion (AIC; lower value

26 indicates a better fit), chi-square goodness of fit *p*-value (higher value indicates a better fit), ratio

27 of the BMC:BMCL (lower value indicates less model uncertainty) and visual inspection.

28 Comparisons of model fits obtained are provided in Table 2-2. The best-fitting model

29 (Exponential M2), based on the criteria described above, is indicated in **bold**. For the best fitting

30 model a plot of the model is shown in Figure 2-1, the model version number, model form,

- 31 benchmark dose calculation, parameter estimates and estimated values are shown. Although the
- 32 means were well-modeled the variances are not well modeled by the non-homogeneous variance
- 33 model (the non-homogeneous variance model was used because the BMDS test 2 p-value =
- 0.0130). To investigate the effect of the poor modeling of the variances on the BMDL, the models
 were run using the smallest dose standard deviation (2.21), highest (4.47) and pooled (3.54) for all
- were run using the smallest dose standard deviation (2.21), highest (4.47) and pooled (3.54) for all dose levels and the results are summarized in Table 2-4. As shown in the last column of Table 2-4
- the ratios BMDLs for the lowest to the highest variance for the two best fitting models the Linear
- and Exponential (M2) models are 1.15 and 1.20, respectively. Overall the adjustment of the
- 39 variances from most-variable to least-variable for all of the models makes little difference on the
- 40 BMDL. This is strong evidence that the poor variance modeling for the original data is not
- 41 substantially impacting the BMDL estimates. It is reasonable to use the non-homogeneous
- 42 Exponential M2 model for the original data because it has the lowest AIC of all the model choices
- 43 for the original data and therefore a BMDL of 41 ppm (40.7 ppm rounded to two significant
- 44 figures) was selected for this endpoint.
- 45

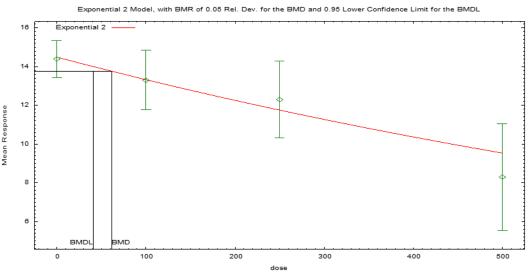
46 Table 2-2 Summary of BMD Modeling Results for Reduced Litter Size in F₀ Generation

47 Exposed to 1-BP by Inhalation; BMRs of 1 Standard Deviation, and 5% and 1% Relative
48 Deviation From Control Mean.

Model ^a	Goodne	ess of fit	BMD	BMDL	BMD	BMDL	BMD	BMDL	Basis for model
	<i>p</i> -value	AIC	1SD (ppm)	1SD (ppm)	5RD (ppm)	5RD (ppm)	1RD (ppm)	1RD (ppm)	selection
Exponential (M2) Exponential (M3) ^b	0.533	291.10	256	158	61.3	40.7	12.0	7.97	The Exponential (M2) model was selected based on lowest AIC from
Power ^c Polynomial 3 ^{od} Polynomial 2 ^{oe} Linear	0.433	291.51	281	189	69.9	49.8	14.0	9.95	this set of models which have adequate <i>p</i> -values, adequate fit by visual inspection
Hill	0.722	291.96	178	error ^g	35.8	10.4	6.36	1.69	and the BMDLs
Exponential (M4) Exponential (M5) ^f	0.622	292.08	181	69.4	40.4	17.8	7.48	3.23	are < 4-fold apart considered sufficiently close.

^a Modeled variance case presented (BMDS Test 2 p-value = 0.0130), selected model in bold; scaled residuals for selected model for doses 0, 100, 250, and 500 ppm were -0.16, -0.05, 0.66, -0.76, respectively.

^b For the Exponential (M3) model, the estimate of d was 1 (boundary). The models in this row reduced to the Exponential (M2) model.


^c For the Power model, the power parameter estimate was 1. The models in this row reduced to the Linear model.

^d For the Polynomial 3° model, the b3 coefficient estimates was 0 (boundary of parameters space). The models in this row reduced to the Polynomial 2° model. For the Polynomial 3° model, the b3 and b2 coefficient estimates were 0 (boundary of parameters space). The models in this row reduced to the Linear model.

^e For the Polynomial 2° model, the b2 coefficient estimate was 0 (boundary of parameters space). The models in this row reduced to the Linear model.

^f For the Exponential (M5) model, the estimate of d was 1 (boundary). The models in this row reduced to the Exponential (M4) model.

^g BMDL computation failed for this model.

50 14:24 11/20 2015

- 51 Figure 2-1 Plot of Mean Response by Dose in ppm with Fitted Curve for Exponential (M2)
- 52 Model with Modeled Variance for Reduced Litter Size in F₀ Generation Exposed to 1-BP
- 53 by Inhalation; BMR = 5% Relative Deviation from Control Mean.
- 54
- 55 Table 2-3 BMD Modeling Results for Reduced Litter Size in F₀ Generation Exposed to 1-
- 56 BP by Inhalation; BMRs of 1 Standard Deviation, and 5% and 1% Relative Deviation
- 57 From Control Mean.

Exponential Model. (Version: 1.10; Date: 01/12/2015) The form of the response function is: Y[dose] = a * exp(sign * b * dose)A modeled variance is fit

Benchmark Dose Computation.

BMR = 5% Relative deviation BMD = 61.3264 BMDL at the 95% confidence level = 40.6605

Variable	Variable Estimate		Default Initial Parameter Values						
lnalpha	10.4606			6.080)25				
rho		3.14328		-1.44	632				
a		14.4915		10.53	312				
b	0.0)0083639	8	0.0010	2437				
c		n/a		0					
d		n/a		1					
Table of Data		1		1					
Dose	Ν	Obs]	Mean	Est Me	an	Obs	Std Dev	Est Std Dev	Scaled Resid
0	23	14	4.4	14.49			2.21	2.8	-0.1569
100	25	13	3.3	13.33		-	3.72	3.19	-0.04505
250	22	12	2.3	11.76		4.47		3.88	0.6554
500	11	8	.3	9.54			4.1	5.4	-0.7614
Likelihoods of									
Model	Log(likel	ihood)	# Pa	aram's	AIC		2		
A1	-143.3	786		5	296.7571		571		
A2	-137.9	879		8	291.9758		58		
A3	-140.9	173		6	2	93.83	347		
R	-153.5	054		2	3	11.01	08		
2	-141.5	475		4		291.0	95		
Tests of Intere			1						
Test	-2*log(Lil Rat		Te	Test df		ø-valı	ue		
Test 1	31.0)3		6	<	<0.00	01		
Test 2	10.7	78		3		0.012	97		
Test 3	5.85	59		2	(0.0534	43		
Test 4	1.2	6		2		0.532	25		

60 Table 2-4 BMD Modeling Results for Reduced Litter Size in F₀ Generation Following Inhalation Exposure of Parental Rats to 61

Model ^a	Sma	llest Sta	ndard De	viation	Ро	Pooled Standard Deviation			L	Ratio			
	Goodne	ss of fit		BMDL _{5RD}	Goodn	ess of fit	BMD _{5RD}	BMDL _{5RD}	Goodness of fit		BMD _{5RD}	PMDI	BMDLs Smallest
	<i>p</i> -value	AIC	(ppm)	(ppm)	<i>p</i> -value	AIC	(ppm)	(ppm)	<i>p</i> -value	AIC	(ppm)	(ppm)	to Largest Std Dev
Linear	0.279	213.92	63.5	53.5	0.605	288.69	63.5	49.2	0.729	326.11	63.5	46.6	1.15
Exponential (M2)	0.112	215.74	54.9	44.1	0.420	289.42	54.9	39.4	0.579	326.57	54.9	36.7	1.20
Exponential (M4)	0.112	215.74	54.9	42.6	0.420	289.42	54.9	34.4	0.579	326.57	54.9	29.1	1.46
Polynomial 3°	0.506	213.81	96.4	58.4	0.678	289.86	96.4	51.1	0.742	327.58	96.4	47.8	1.22
Polynomial 2°	0.393	214.09	105	57.4	0.593	289.97	105	50.8	0.672	327.65	105	47.6	1.21
Power	0.303	214.43	115	56.4	0.519	290.10	115	50.5	0.609	327.74	115	47.4	1.19
Exponential (M3)	0.239	214.75	127	56.1	0.461	290.23	127	42.6	0.559	327.82	127	38.7	1.45
Exponential (M5)	0.239	214.75	127	56.1	N/A ^b	292.23	127	42.6	0.559	327.82	127	33.0	1.70
Hill	N/A ^b	216.43	115	56.4	N/A ^b	292.10	116	50.3	N/A ^b	329.74	116	47.2	1.19

^a Constant variance case presented (BMDS Test 2 *p*-value = 1.000, BMDS Test 3 *p*-value = 1.000), no model was selected as a best-fitting model.

^b No available degrees of freedom to calculate a goodness of fit value.

62 63

64 **2.1.2 Post implantation loss**

65 EPA modeled the post implantation loss observed in the F₀ generation of the 2-generation

66 reproductive and developmental study by WIL Research (2001) as one endpoint relevant for

67 calculating risks associated with acute worker and consumer scenarios. Post implantation loss was

68 significantly increased in all but the lowest dose group. A BMR of 1% was used to address the

69 relative severity of this endpoint which is considered a severe effect like mortality (U.S. EPA,

70 <u>2012</u>). The doses and response data used for the modeling were individual animal data and are

shown in Table 2-5.

72 Table 2-5. Implantation sites and incidence of post implantation loss in pregnant female

73 rats in the F₀ generation exposed to 0, 100, 250 ppm 1-BP by Inhalation WIL Research

74 <u>(2001</u>)

Dose (ppm)	Number of Implantation Sites	Post Implantation Loss	Dam Weight at Study Week 0 (g)
0	15	0	170
0	17	0	160
0	14	0	147
0	14	0	153
0	15	1	158
0	15	0	153
0	18	2	168
0	12	0	165
0	15	0	164
0	15	1	166
0	15	0	149
0	19	0	174
0	15	0	156
0	16	1	160
0	18	1	158
0	18	0	161
0	19	0	166
0	13	0	172
0	16	0	181
0	13	0	177
0	8	0	141
0	14	1	144
0	18	1	157
100	15	0	161
100	14	0	159
100	14	2	153
100	13	1	146
100	16	1	167
100	16	0	150
100	15	0	159

Dose (ppm)	Number of Implantation Sites	Post Implantation Loss	Dam Weight at Study Week 0 (g)
100	14	1	152
100	16	0	165
100	14	0	166
100	14	3	158
100	15	1	168
100	16	1	143
100	12	3	148
100	16	2	177
100	16	0	154
100	1	0	153
100	14	0	179
100	18	0	171
100	16	0	180
100	16	1	170
100	15	0	165
100	15	1	157
100	15	0	164
100	12	0	162
250	18	1	159
250	16	2	160
250	16	5	151
250	15	1	141
250	15	2	179
250	17	0	150
250	14	1	153
250	15	0	175
250	13	0	146
250	15	0	161
250	17	1	167
250	16	1	165
250	16	1	166
250	11	3	162
250	15	0	157
250	12	1	153
250	6	2	158
250	6	0	166
250	2	0	167
250	18	2	146
250	18	2	164
250	12	4	155
500	5	0	161
500	12	0	158

Dose (ppm)	Number of Implantation Sites	Post Implantation Loss	Dam Weight at Study Week 0 (g)
500	5	1	181
500	15	2	159
500	12	1	151
500	16	0	152
500	9	1	166
500	6	0	176
500	6	1	165
500	11	0	144
500	2	0	144

The application of nested dichotomous models to these data was possible because the incidence

77 data for post-implantation loss were available for every litter, and preferable because they can

account for intra-litter correlations and litter-specific covariates. A litter specific covariate that is

potentially related to the endpoint of concern but is not itself impacted by dose is needed for this

analysis. In this case, dam body weight measured at week 0 and the number of implantation sites

81 were both used as covariates and the data was modeled separately in the same format for each. In

82 this case, dam body weight measured at week 0 was selected as the preferred litter specific

covariate because it was not affected at any dose and is potentially related to the implantation
 loss endpoint.

85 Incidence of implantation loss presented a clear dose trend at lower doses but leveled off at the

86 highest dose coincident with a reduction in implantation sites. The data were modeled with the

all doses and the highest dose dropped for the purposes of this analysis because of the

88 uncertainty associated with reduced sample size (11 litters at the high dose compared with 22 to

89 25 litters at lower doses) and improved model fit for the high dose dropped.

90

91 The nested modeling was performed using the nested logistic and NCTR models contained in92 BMDS 2.7.0.4, as follows:

- nested model for extra risk of 5% and 1%, using dam weight as a litter specific covariate,
 dropping the highest dose group (Table 2-6 and Table 2-7 and Figure 2-2 and Figure 2-3).
- 95 nested model for extra risk of 5% and 1%, using number of implantation sites as a litter
 96 specific covariate, dropping the highest dose group (Table 2-8 and Table 2-9 and Figure
 97 2-4 and Figure 2-5).
- nested model for extra risk of 5% and 1%, using dam weight as a litter specific covariate,
 including all dose groups (Table 2-10 and Table 2-11 and Figure 2-6 and Figure 2-7).
- 100
- 101 After considering the model results the BMDLs from the nested model for extra risk of 5% and
- 102 1%, using dam weight as a litter specific covariate, dropping the highest dose group were
- 103 selected to as the PODs for the post implantation loss endpoint.

105 Table 2-6 Summary of BMDS modeling results for incidence of post implantation loss in

106 female rats exposed to 1	-BP by Inha	alation (W	IL Researc	h, 2001); B	MR = 5% extra risk.				
7 Dose groups = 0, 100, 250 ppm. Litter-specific covariate is dam body weight									
	Goodnes	s of fit	BMD ₀₅	BMDL ₀₅					
Model ^a	<i>p</i> -value	AIC	(ppm)	(ppm)	Basis for Model Selection				
Litter-specific covariate = dam weigh	ht; intra-litter d	correlations e	estimated ^b		The models without intra-litter				
Nlogistic (b. seed ^c = 1541098366)	0.468	412.675	181	112	correlations estimated and				
NCTR (b. seed = 1541098374)	0.469	412.658	182	90.8	without use of covariates had				
Litter-specific covariate used; intra-l	itter correlatio	ns assumed t	to be zero		lowest AICs, the NCTR model was				
Nlogistic (b. seed = 1541098367)	0.15	411.498	184	123	selected based on lowest AIC and				
NCTR (b. seed = 1541098375)	0.14	411.483	185	92.3	BMDL.				
Litter-specific covariate not used; in	Litter-specific covariate not used; intra-litter correlations estimated								
Nlogistic (b. seed = 1541098368)	0.507	410.84	173	107	Note these model results were				
NCTR (b. seed = 1541098375)	0.513	410.84	174	86.8	selected to represent this				
Litter-specific covariate not used; in	tra-litter correl	ations assum	ned to be zero		endpoint for BMR = 5%.				

^aBecause the individual animal data were available, the BMDS nested dichotomous models were fitted, with the selected model in bold. All values are rounded to 3 significant figures except for AIC values.

410.377

410.377

^bThe implantation size was also used as a covariate. See Table 2-8.

0.136

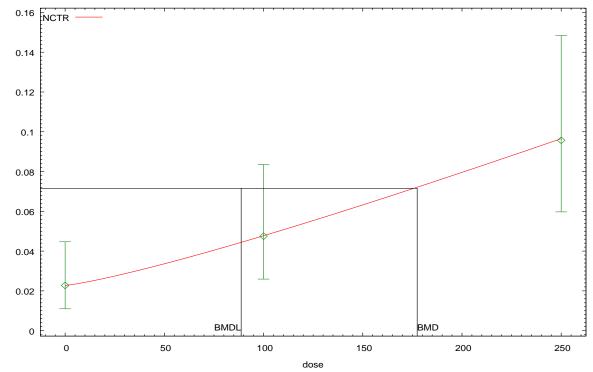
0.124

^cb. seed: bootstrap seed.

Nlogistic (b. seed = 1541098368)

NCTR (b. seed = 1541098376)

108


NCTR Model, with BMR of 5% Extra Risk for the BMD and 0.95 Lower Confidence Limit for the BMDL

177

177

118

88.7

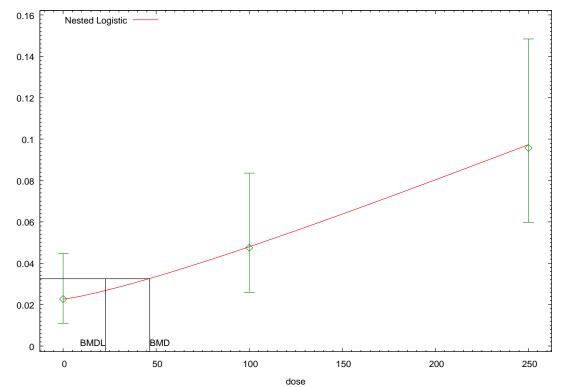
109 14:52 11/01 2018

- 110 Figure 2-2. Plot of incidence rate by dose with fitted curve for NCTR model for post
- 111 implantation loss in male rats exposed to 1-BP. Litter-specific covariate is dam weight

112 Table 2-7 Summary of BMDS modeling results for incidence of post implantation loss in

- 113 female rats exposed to 1-BP by Inhalation (WIL Research, 2001); BMR = 1% extra risk.
- 114 **Dose groups = 0, 100, 250 ppm. Litter-specific covariate is dam body weight**

	Goodness of fit		BMD ₀₁	BMDL ₀₁				
Model ^a	<i>p</i> -value	AIC	(ppm)	(ppm)	Basis for Model Selection			
Litter-specific covariate = dam wei	Litter-specific covariate = dam weight; intra-litter correlations estimated ^b							
Nlogistic (b. seed ^c = 1541098369)	0.482	412.675	48.9	21.5	correlations estimated and without			
NCTR (b. seed = 1541098377)	0.489	412.658	48.5	24.3	use of covariates had lowest AICs,			
Litter-specific covariate used; intra	-litter correl	lations assu	med to be zero)	the Nlogistic model was selected based on lowest AIC and BMDL.			
Nlogistic (b. seed = 1541098369)	0.146	411.498	47.5	23.6				
NCTR (b. seed = 1541098377)	0.144	411.483	47.1	23.5				
Litter-specific covariate not used; in	ntra-litter co	orrelations e	estimated		Note these model results were			
Nlogistic (b. seed = 1541098370)	0.507	410.84	45.5	20.6	selected to represent this endpoint			
NCTR (b. seed = 1541098378)	0.485	410.84	45.0	22.5	for BMR = 1%			
Litter-specific covariate not used; in								
Nlogistic (b. seed = 1541098371)	0.123	410.377	46.6	22.7				
NCTR (b. seed = 1541098379)	0.124	410.377	46.0	23.0				


^aBecause the individual animal data were available, the BMDS nested dichotomous models were fitted, with the selected model in bold. All values are rounded to 3 significant figures except for AIC values.

^bThe implantation size was also used as a covariate. See Table 2-9.

^cb. seed: bootstrap seed.

115

Nested Logistic Model, with BMR of 1% Extra Risk for the BMD and 0.95 Lower Confidence Limit for the BMDL

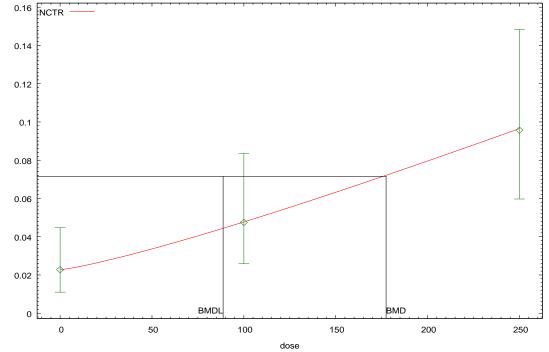
- 116 14:52 11/01 2018
- 117 Figure 2-3 Plot of incidence rate by dose with fitted curve for Nlogistic model for post
- 118 implantation loss in male rats exposed to 1-BP. Litter-specific covariate is dam body weight

119 Table 2-8 Summary of BMDS modeling results for incidence of post implantation loss in

120 female rats exposed to 1-BP by Inhalation (WIL Research, 2001); BMR = 5% extra risk.

Dose groups = 0, 100, 250 ppm. Litter-specific covariate is number of implantation sites 121

	Goodness of fit		BMD ₀₅	BMDL ₀₅	
Modelª	<i>p</i> -value	AIC	(ppm)	(ppm)	Basis for Model Selection
Litter-specific covariate = implanta	The models without intra-litter				
Nlogistic (b. seed ^c = 1541548812)	0.579	412.889	160	105	correlations estimated and without
NCTR (b. seed = 1541548820)	0.602	412.488	153	76.7	use of covariates had lowest AICs,
Litter-specific covariate used; intra	litter correl	lations assui	med to be zero)	the NCTR model was selected based on lowest AIC and BMDL.
Nlogistic (b. seed = 1541548812)	0.214	411.236	159	111	
NCTR (b. seed = 1541548821)	0.242	410.586	151	75.5	
Litter-specific covariate not used; in	ntra-litter co	orrelations e	stimated		Note this litter-specific covariate
Nlogistic (b. seed = 1541548813)	0.497	410.84	173	107	number of implantation sites is not
NCTR (b. seed = 1541548821)	0.489	410.84	174	86.8	the preferred covariate because it
Litter-specific covariate not used; in	is affected at higher doses.				
Nlogistic (b. seed = 1541548814)	0.123	410.377	177	118	
NCTR (b. seed = 1541548822)	0.108	410.377	177	88.7	


^aBecause the individual animal data were available, the BMDS nested dichotomous models were fitted, with the selected model in bold. All values are rounded to 3 significant figures except for AIC values.

^bThe implantation size was used as a covariate and yielded the same model selection results as dam weight. See Table 2-6. ^cb. seed: bootstrap seed.

122

NCTR Model, with BMR of 5% Extra Risk for the BMD and 0.95 Lower Confidence Limit for the BMDL

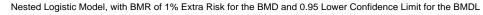
19:00 11/06 2018 123

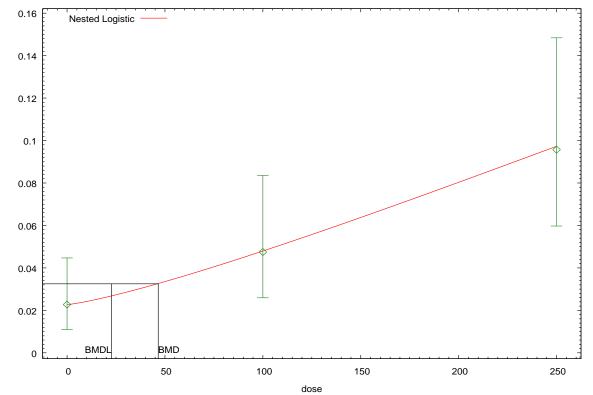
124 Figure 2-4 Plot of incidence rate by dose with fitted curve for NCTR model for post

- implantation loss in male rats exposed to 1-BP. Litter-specific covariate is number of 125 126 implantation sites
- 127

128 Table 2-9 Summary of BMDS modeling results for incidence of post implantation loss in

129 female rats exposed to 1-BP by Inhalation (WIL Research, 2001); BMR = 1% extra risk.


130 **Dose groups = 0, 100, 250 ppm. Litter-specific covariate is number of implantation sites**


	Goodne	Goodness of fit		BMDL ₀₁			
Model ^a	<i>p</i> -value	AIC	(ppm)	(ppm)	Basis for Model Selection		
Litter-specific covariate = implanta	Litter-specific covariate = implantation sites; intra-litter correlations estimated ^b						
Nlogistic (b. seed ^c = 1541548814)	0.574	412.889	33.5	20.2	correlations estimated and without		
NCTR (b. seed = 1541548823)	0.597	412.488	32.3	16.1	use of covariates had lowest AICs,		
Litter-specific covariate used; intra	-litter correl	lations assui	med to be zero)	the Nlogistic model was selected based on lowest AIC and BMDL.		
Nlogistic (b. seed = 1541548815)	0.209	411.236	31.3	21.4			
NCTR (b. seed = 1541548824)	0.237	410.586	31.7	15.8			
Litter-specific covariate not used; in	ntra-litter co	orrelations e	stimated		Note this litter-specific covariate		
Nlogistic (b. seed = 1541548815)	0.505	410.84	45.5	20.6	number of implantation sites is not		
NCTR (b. seed = 1541548824)	0.506	410.84	45.0	22.5	the preferred covariate because it		
Litter-specific covariate not used; in	is affected at higher doses.						
Nlogistic (b. seed = 1541548816)	0.128	410.377	46.6	22.7			
NCTR (b. seed = 1541548825)	0.117	410.377	46.0	23.0	1		

^aBecause the individual animal data were available, the BMDS nested dichotomous models were fitted, with the selected model in bold. All values are rounded to 3 significant figures except for AIC values.

^bThe implantation size was used as a covariate and yielded the same model selection results as dam weight. See Table 2-7. ^cb. seed: bootstrap seed.

131

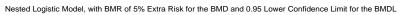
132 19:00 11/06 2018

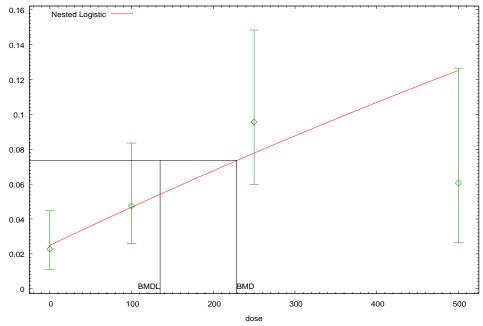
- 133 Figure 2-5 Plot of incidence rate by dose with fitted curve for Nlogistic model for post
- 134 implantation loss in male rats exposed to 1-BP

135 Table 2-10 Summary of BMDS modeling results for incidence of post implantation loss in

136 female rats exposed to 1-BP by Inhalation (WIL Research, 2001); BMR = 5% extra risk.

137 Dose groups = 0, 100, 250, 500 ppm. Litter-specific covariate is dam body weight.


	Goodne	Goodness of fit		BMDL ₀₅		
Model ^a	<i>p</i> -value	AIC	(ppm)	(ppm)	Basis for Model Selection	
Litter-specific covariate = dam weig	The models with intra-litter					
Nlogistic (b. seed ^c = 1541532427)	0.422	462.473	278	146	correlations estimated and without	
NCTR (b. seed = 1541532435)	0.421	464.371	295	148	use of covariates had p-value ≥ 0.1	
Litter-specific covariate used; intra	-litter correl	ations assu	med to be zero)	and lowest AICs, the Nlogistic	
Nlogistic (b. seed = 1541532428)	0.0903	460.235	293	179	model was selected.	
NCTR (b. seed = 1541532436)	0.093	460.173	296	148		
Litter-specific covariate not used; in	ntra-litter co	orrelations e	estimated		Note these model results were not	
Nlogistic (b. seed = 1541532428)	0.496	460.864	229	135	selected to represent this endpoint	
NCTR (b. seed = 1541532437)	0.491	461.038	233	116	because of the uncertainty	
Litter-specific covariate not used; in	ntra-litter co	orrelations a	issumed to be	zero	associated with reduced sample	
Nlogistic (b. seed = 1541532429)	0.0743	459.416	255	166	size at the high dose (fewer litters	
NCTR (b. seed = 1541532438)	0.0797	459.649	261	131	and fewer implantation sites) and the better model fit for the high dose dropped.	


^aBecause the individual animal data were available, the BMDS nested dichotomous models were fitted, with the selected model in bold. All values are rounded to 3 significant figures except for AIC values.

^bThe dam weight at week 0 was used as a covariate.

^cb. seed: bootstrap seed.

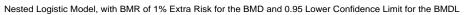
138

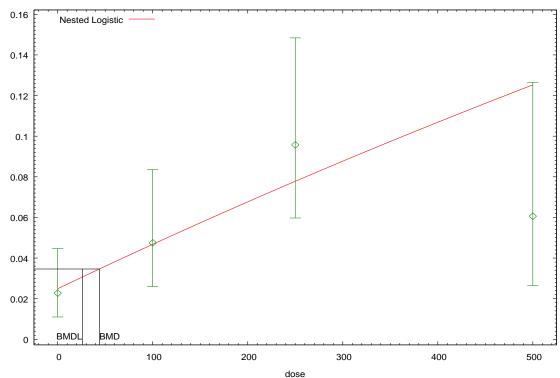
14:27 11/06 2018 139

- Figure 2-6 Plot of incidence rate by dose with fitted curve for Nlogistic model for post 140
- implantation loss in male rats exposed to 1-BP. Litter-specific covariate is dam body weight 141 142

143 Table 2-11 Summary of BMDS modeling results for incidence of post implantation loss in

144 female rats exposed to 1-BP by Inhalation (WIL Research, 2001); BMR = 1% extra risk.


145 **Dose groups = 0, 100, 250, 500 ppm. Litter-specific covariate is dam body weight**


	Goodness of fit		BMD ₀₁	BMDL ₀₁		
Model ^a	<i>p</i> -value	AIC	(ppm)	(ppm)	Basis for Model Selection	
Litter-specific covariate = dam weig	ght; intra-lit	ter correlati	ions estimated	1	The models with intra-litter	
Nlogistic (b. seed ^c = 1541532430)	0.428	462.473	53.3	28.1	correlations estimated and without	
NCTR (b. seed = 1541532438)	0.398	464.371	57.9	28.9	use of covariates had p-value ≥ 0 .	
Litter-specific covariate used; intra	-litter correl	ations assu	med to be zero)	and lowest AICs, the Nlogistic	
Nlogistic (b. seed = 1541532430)	0.095	460.235	56.2	34.4	model was selected. Note these model results were not	
NCTR (b. seed = 1541532439)	0.0967	460.173	58.0	29.0		
Litter-specific covariate not used; in	ntra-litter co	orrelations e	estimated			
Nlogistic (b. seed = 1541532431)	0.496	460.864	43.9	25.9	selected to represent this endpoint	
NCTR (b. seed = 1541532440)	0.487	461.038	45.6	22.8	because of the uncertainty	
Litter-specific covariate not used; in	ntra-litter co	orrelations a	issumed to be	zero	associated with reduced sample	
Nlogistic (b. seed = 1541532431)	0.0723	459.416	48.9	32.0	size at the high dose (fewer litters	
NCTR (b. seed = 1541532441)	0.0743	459.649	51.2	25.6	and fewer implantation sites) and the better model fit for the high dose dropped.	

^aBecause the individual animal data were available, the BMDS nested dichotomous models were fitted, with the selected model in bold. All values are rounded to 3 significant figures except for AIC values.

^bThe dam weight at week 0 was used as a covariate.

^cb. seed: bootstrap seed.

14:27 11/06 2018

- 149 implantation loss in male rats exposed to 1-BP
- 150

151 2.2 Benchmark Dose Modeling of Non-Cancer Effects for Chronic 152 Exposures

EPA selected multiple endpoints for quantitative dose-response analysis with <u>BMDS</u> and calculating risks associated with chronic worker scenarios including: include liver toxicity, kidney toxicity, neurotoxicity, reproductive toxicity, and developmental toxicity. The modeling was performed in BMDS version 2.6. The doses, response data and BMD modeling results are presented below by effect.

158

2.2.1 Increased Incidence of Vacuolization of Centrilobular Hepatocytes in Males

- 159 Increased incidence of vacuolization of centrilobular hepatocytes was observed in males of the
- 160 F_0 generation of the reproductive and developmental study by WIL Laboratories (2001).
- 161 Dichotomous models were used to fit dose response data. A BMR of 10% added risk was
- 162 choosen per EPA <u>Benchmark Dose Technical Guidance</u> (U.S. EPA, 2012). The doses and
- response data used for the modeling are presented in Table 2-12.

¹⁴⁸ Figure 2-7 Plot of incidence rate by dose with fitted curve for Nlogistic model for post

Table 2-12 Incidence of Vacuolization of Centrilobular Hepatocytes Selected for Dose Response Modeling for 1-BP

Dose (ppm)	Number of animals	Incidence
0	25	0
100	25	0
250	25	7
500	25	22
750	25	24

167

168 The BMD modeling results for vacuolization of centrilobular hepatocytes are summarized in

169 Table 2-13. The best fitting model was the LogLogistic based on Akaike information criterion

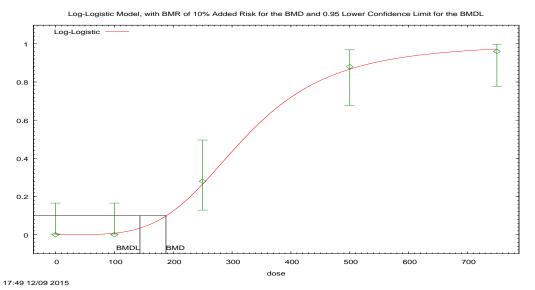
170 (AIC; lower values indicates a better fit), chi-square goodness of fit *p*-value (higher value

171 indicates a better fit) and visual inspection. For the best fitting model a plot of the model is

172 shown in Figure 2-8. The model version number, model form, benchmark dose calculation,

173 parameter estimates and estimated values are shown below in Table 2-14.

174


175 Table 2-13 Summary of BMD Modeling Results for Vacuolization of Centrilobular

176 Hepatocytes in Male F₀ Rats Following Inhalation Exposure to 1-BP in a Two-Generation

177 **Study**

Model ^a	Goodne	ess of fit	BMD10PctAdd	BMDL10PctAdd	Basis for model selection
	<i>p</i> -value	AIC	(ppm)	(ppm)	
LogLogistic	0.939	60.974	188	143	LogLogistic model was selected
LogProbit	0.907	60.980	185	142	based on the lowest AIC from this set of models which have
Gamma	0.691	61.912	178	130	adequate <i>p</i> -values (excluding
Multistage 2°	0.538	63.187	129	98.5	Probit and Quantal-Linear), adequate fit by visual inspection
Weibull	0.360	64.026	158	110	and the BMDLs are < 1.5-fold apart considered sufficiently
Logistic	0.146	65.548	186	142	close.
Probit	0.0542	66.345	177	133]
Quantal-Linear	0.0025	81.794	41.1	32.2]

^a Selected model in bold; scaled residuals for selected model for doses 0, 100, 250, 500, and 750 ppm were 0, -0.45, 0.12, 0.15, -0.41, respectively.

- 179 17:49 12/09 2015
 180 Figure 2-8 Plot of Mean Response by Dose with Fitted Curve for the Selected Model
- 181 (LogLogistic) for Vacuolization of Centrilobular Hepatocytes in Male Rats Exposed to 1-
- 182 BP Via Inhalation in ppm; BMR 10% Added Risk.

184 Table 2-14 BMD Modeling Results for Reduced Litter Size in F₀ Generation Exposed to 1-

185 BP by Inhalation; BMRs of 1 Standard Deviation, and 5% and 1% Relative Deviation

186 From Control Mean.

Logistic Model. (Version: 2.14; Date: 2/28/2013)

The form of the probability function is: P[response] = background + (1-background)/[1+EXP(intercept-slope*Log(dose))]

Slope parameter is restricted as slope ≥ 1

Benchmark Dose Computation.

BMR = 10% Added risk BMD = 187.639BMDL at the 95% confidence level = 143.489

Parameter Estimates

Variable	Estimate	Default Initial Parameter Values
background	0	0
intercept	-2.4067E+01	-2.0600E+01
slope	4.17795	3.60147

Analysis of Deviance Table

Model	Log(likelihood)	# Param's	Deviance	Test d.f.	<i>p</i> -value
Full model	-28.2	5			
Fitted model	-28.49	2	0.58301	3	0.9
Reduced model	-85.19	1	113.996	4	<.0001

AIC: = 60.9741

Dose	Est. Prob.	Expected	Observed	Size	Scaled Resid
0	0	0	0	25	0
100	0.0079	0.199	0	25	-0.45
250	0.2693	6.731	7	25	0.12
500	0.8696	21.74	22	25	0.15
750	0.9732	24.33	24	25	-0.41

 $Chi^2 = 0.41$ d.f = 3 *p*-value = 0.9391

187

188

2.2.2 Increased Incidence of Vacuolization of Centrilobular Hepatocytes in Males

Increased incidence of vacuolization of centrilobular hepatocytes was observed in males of the 189

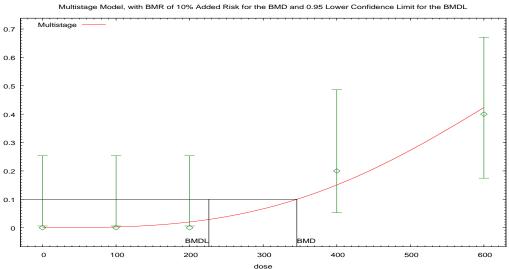
ClinTrials study (1997). Dichotomous models were used to fit dose response data. A BMR of 190

191 10% added risk was choosen per EPA Benchmark Dose Technical Guidance (U.S. EPA, 2012).

The doses and response data used for the modeling are presented in Table 2-15. 192

Table 2-15 Incidence of Vacuolization of Centrilobular Hepatocytes Selected for Dose Response Modeling for 1-BP

Dose (ppm)	Number of animals	Incidence
0	15	0
100	15	0
200	15	0
400	15	3
800	15	6


196

- 197 The BMD modeling results for vacuolization of centrilobular hepatocytes are summarized in
- 198 Table 2-16. The best fitting model was the LogLogistic based on Akaike information criterion
- 199 (AIC; lower values indicates a better fit), chi-square goodness of fit *p*-value (higher value
- 200 indicates a better fit) and visual inspection. For the best fitting model a plot of the model is
- shown in Figure 2-9. The model version number, model form, benchmark dose calculation,
- 202 parameter estimates and estimated values are shown below in Table 2-17.

Table 2-16 Summary of BMD Modeling Results for Vacuolization of Centrilobular Hepatocytes in Male Rats Following Inhalation Exposure to 1-BP

Model ^a	Goodne	ess of fit	BMD10PctAdd	BMDL10PctAdd	Basis for model selection
	<i>p</i> -value	AIC	(ppm)	(ppm)	
Multistage 3°	0.955	38.189	346	226	Multistage 3° model was
Multistage 2°	0.898	39.202	289	198	selected based on the lowest AIC from this set of models
LogProbit	0.951	39.678	345	225	which have adequate <i>p</i> -value,
Gamma	0.919	39.874	349	227	adequate fit by visual inspection and the BMDLs are < 1.5-fold
LogLogistic	0.903	40.003	349	224	apart considered sufficiently close.
Weibull	0.872	40.180	351	222	close.
Probit	0.773	40.585	370	275]
Logistic	0.662	41.195	382	290]

^a Selected model in bold; scaled residuals for selected model for doses 0, 100, 200, 400, and 600 ppm were 0, -0.2, -0.56, 0.54, -0.18, respectively.

206 19:16 12/09 2015

- 207 Figure 2-9 Plot of Mean Response by Dose with Fitted Curve for the Selected Model
- 208 (Multistage 3°) for Vacuolization of Centrilobular Hepatocytes in Male Rats Exposed to 1-
- 209 BP Via Inhalation in ppm; BMR 10% Added Risk.
- 210

Table 2-17 BMD Modeling Results for Vacuolization of Centrilobular Hepatocytes in Male Rats Exposed to 1-BP Via Inhalation; BMR 10% Added Risk.

Multistage Model. (Version: 3.4; Date: 05/02/2014) The form of the probability function is: P[response] = background + (1-background)*[1-EXP(-beta1*dose^1-beta2*dose^2...)]

Benchmark Dose Computation.

BMR = 10% Added risk BMD = 345.704 BMDL at the 95% confidence level = 226.133

Variable		Estin	nate		efault Initial ameter Values		
Background		0)		0		
Beta(1)		0)		0		
Beta(2)		0)		1.4788E-06		
Beta(3)		2.5502	2E-09		0		
Analysis of De	viance Tal	ole					
Model	Log(likelih	lood)	# Param	's	Deviance	Test d.f.	<i>p</i> -value
	17.6		5				
Full model	-17.6						
Full model Fitted model	-17.6		1		0.986987	4	0.91
	-18.09 -27.52		1		0.986987 19.8363	4	0.91
Fitted model Reduced model AIC: = 38.189 Goodness of Fi	-18.09 -27.52 4 it Table		1		19.8363	4	0
Fitted model Reduced model AIC: = 38.189 Goodness of Fi Dose	-18.09 -27.52 4 it Table Est. Pro		1 Expected		19.8363 Observed	4 Size	0 Scaled Resid
Fitted model Reduced model AIC: = 38.189 Goodness of Fi Dose	-18.09 -27.52 4 it Table Est. Pro	b.	1 Expected 0		19.8363 Observed 0	4 Size 15	0 Scaled Resid
Fitted model Reduced model AIC: = 38.189 Goodness of Fi Dose	-18.09 -27.52 4 it Table Est. Pro	b.	1 Expected		19.8363 Observed	4 Size	0 Scaled Resid
Fitted model Reduced model AIC: = 38.189 Goodness of Fi Dose	-18.09 -27.52 4 it Table Est. Pro	b.	1 Expected 0		19.8363 Observed 0	4 Size 15	0 Scaled Resid
Fitted model Reduced model AIC: = 38.189 Goodness of Fi Dose 0 100	-18.09 -27.52 4 it Table Est. Pro 0 0.0025	b.	1 Expected 0 0.038		19.8363 Observed 0 0	4 Size 15 15	0 Scaled Resid

214 215

2.2.3 Increased Incidence of Vacuolization of Centrilobular Hepatocytes in Females

216 Increased incidence of vacuolization of centrilobular hepatocytes was observed in females of the 217 F_0 generation of the reproductive and developmental study by WIL Laboratories (2001).

218 Dichotomous models were used to fit dose response data. A BMR of 10% added risk was

219 choosen per EPA <u>Benchmark Dose Technical Guidance</u> (U.S. EPA, 2012). The doses and

response data used for the modeling are presented in Table 2-18.

Table 2-18 Incidence of Vacuolization of Centrilobular Hepatocytes Selected for Dose Response Modeling for 1-BP

Dose (ppm)	Number of animals	Incidence
0	25	0
100	25	0
250	25	0
500	25	6
750	25	16

224

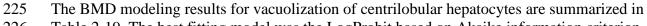


Table 2-19. The best fitting model was the LogProbit based on Akaike information criterion

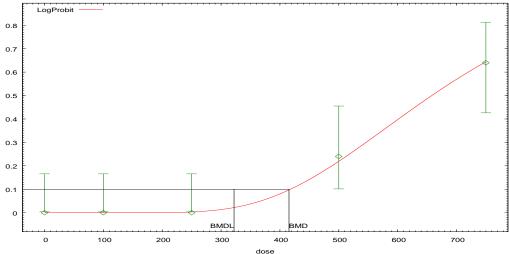
227 (AIC; lower values indicates a better fit), chi-square goodness of fit *p*-value (higher value

indicates a better fit) and visual inspection. For the best fitting model a plot of the model is

shown in Figure 2-10. The model version number, model form, benchmark dose calculation,

230 parameter estimates and estimated values are shown below in .

231 Table 2-19 Summary of BMD Modeling Results for Vacuolization of Centrilobular


232 Hepatocytes in Female F₀ Rats Following Inhalation Exposure to 1-BP in a Two-

233 Generation Study

Model ^a	Goodne	ess of fit	BMD10PctAdd	BMDL _{10PctAdd}	Basis for model selection
	<i>p</i> -value	AIC	(ppm)	(ppm)	
LogProbit	0.988	64.438	415	322	LogProbit model was selected
Gamma	0.965	64.648	416	320	based on the lowest AIC from this set of models which have
LogLogistic	0.945	64.843	415	320	adequate <i>p</i> -values (excluding
Weibull	0.879	65.283	411	310	Quantal-Linear), adequate fit by visual inspection and the
Probit	0.826	65.496	423	335	BMDLs are 1.5-fold apart considered sufficiently close.
Logistic	0.661	66.491	431	347	considered sufficiently close.
Multistage 2°	0.410	68.583	279	228]
Quantal-Linear	0.0134	80.285	153	109	1

^a Selected model in bold; scaled residuals for selected model for doses 0, 100, 250, 500, and 750 ppm were 0, 0, -0.29, 0.19, -0.11, respectively.

235 17:56 12/09 2015

- 236 Figure 2-10 Plot of Mean Response by Dose with Fitted Curve for the Selected Model
- 237 (LogLogistic) for Vacuolization of Centrilobular Hepatocytes in Female Rats Exposed to 1-
- 238 BP Via Inhalation in ppm; BMR 10% Added Risk.
- 239

Table 2-20 BMD Modeling Results for Vacuolization of Centrilobular Hepatocytes in Female Rats Exposed to 1-BP Via Inhalation; BMR 10% Added Risk.

Probit Model. (Version: 3.3; Date: 2/28/2013)

The form of the probability function is: P[response] = Background + (1-Background) * CumNorm(Intercept+Slope*Log(Dose)),where CumNorm(.) is the cumulative normal distribution function

Slope parameter is not restricted

Benchmark Dose Computation.

BMR = 10% Added risk BMD = 415.388 BMDL at the 95% confidence level = 322.058

	Estir	nate	Default Initial Parameter Values		
background	()	0		
intercept	-1.830	5E+01	-7.9627E+00		
slope	2.82	2354	1.1917		
Analysis of De	rion oo Tabla				
Model	Log(likelihood)	# Param's	5 Deviance	Test d.f.	<i>p</i> -value
Full model	-30.11	5			
i un model					
Fitted model	-30.22	2	0.213311	3	0.98
Fitted model Reduced model	-30.22 -58.16	2	0.213311 56.0935	3 4	0.98 <.0001
Fitted model	-30.22 -58.16				
Fitted model Reduced model AIC: = 64.438	-30.22 -58.16				
Fitted model Reduced model AIC: = 64.438 Goodness of Fi	-30.22 -58.16 32 it Table	1	56.0935	4	<.0001
Fitted model Reduced model AIC: = 64.438 Goodness of Fi Dose	-30.22 -58.16 32 it Table Est. Prob.	1 Expected	56.0935 Observed	4 Size	<.0001 Scaled Resid
Fitted model Reduced model AIC: = 64.438 Goodness of Fi Dose 0	-30.22 -58.16 32 it Table Est. Prob. 0	1 Expected 0	56.0935 Observed 0	4 Size 25	<.0001 <p>Scaled Resid 0</p>
Fitted model Reduced model AIC: = 64.438 Goodness of Fi Dose 0 100	-30.22 -58.16 32 it Table Est. Prob. 0 0	1 Expected 0 0	56.0935 0 0 0 0 0 0	4 Size 25 25	<.0001 <p>Scaled Resid 0 0 0</p>

243

2.2.4 Increased Incidence of Renal Pelvic Mineralization in Males

Increased incidence of renal pelvic mineralization was observed in males of the F_0 generation of the reproductive and developmental study by WIL Laboratories (2001). Dichotomous models were used to fit dose response data. A BMR of 10% added risk was choosen per EPA Benchmark Dose Technical Guidance (U.S. EPA, 2012). The doses and response data used for

the modeling are presented in Table 2-21.

Dose (ppm)	Number of animals	Incidence
0	25	1
100	25	0
250	25	1
500	25	2
750	25	6

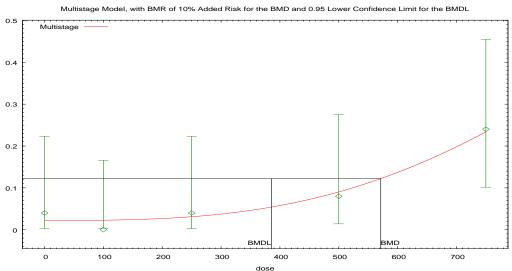
Table 2-21 Incidence of Renal Pelvic Mineralization Selected for Dose-Response Modeling for 1-BP

252

253	The BMD modeling results for vacuolization of renal pelvic mineralization are summarized in
254	Table 2-22. The best fitting model was the Multistage 3° based on Akaike information criterion
255	(AIC: lower values in directors a better fit) shi anvers and reas of fit is value (high or value

255 (AIC; lower values indicates a better fit), chi-square goodness of fit *p*-value (higher value

indicates a better fit) and visual inspection. For the best fitting model a plot of the model is


shown in Figure 2-11. The model version number, model form, benchmark dose calculation,

258 parameter estimates and estimated values are shown below in Table 2-23.

Table 2-22 Summary of BMD Modeling Results for Renal Pelvic Mineralization in Male F₀ Rats Following Inhalation Exposure to 1-BP in a Two-Generation Study

Model ^a	Goodne	ess of fit	BMD10PctAdd	BMDL10PctAdd	Basis for model selection
	<i>p</i> -value	AIC	(ppm)	(ppm)	
Multistage 3°	0.789	63.835	571	386	Multistage 3° model was
Multistage 2°	0.668	64.258	527	368	selected based on the lowest AIC from this set of models
Logistic	0.629	64.260	545	434	which have adequate <i>p</i> -values
Probit	0.567	64.488	526	408	adequate fit by visual inspection and the BMDLs are 1.5-fold
Weibull	0.603	65.825	581	375	apart considered sufficiently close.
LogLogistic	0.602	65.835	579	371	close.
Gamma	0.597	65.856	575	371	
LogProbit	0.597	65.894	577	355	1
Quantal-Linear	0.326	66.496	507	284	1

^a Selected model in bold; scaled residuals for selected model for doses 0, 100, 250, 500, and 750 ppm were 0.6, -0.76, 0.26, -0.18, 0.07, respectively.

262 19:03 12/09 2015

- 263 Figure 2-11 Plot of Mean Response by Dose with Fitted Curve for the Selected Model
- 264 (Multistage 3°) for Renal Pelvic Mineralization in Male Rats Exposed to 1-BP Via
- 265 Inhalation in ppm; BMR 10% Added Risk.
- 266

Table 2-23 BMD Modeling Results for Renal Pelvic Mineralization in Male Rats Exposed to 1-BP Via Inhalation; BMR 10% Added Risk.

Multistage Model. (Version: 3.4; Date: 05/02/2014) The form of the probability function is: P[response] = background + (1-background)*[1-EXP(beta1*dose^1-beta2*dose^2...)]

Benchmark Dose Computation.

BMR = 10% Added risk BMD = 571.342 BMDL at the 95% confidence level = 385.532

Parameter Estimates

Variable	Estimate	Default Initial Parameter Values
Background	0.0222219	0.00963337
Beta(1)	0	0
Beta(2)	0	0
Beta(3)	5.7848E-10	5.8917E-10
		5.67171110

Analysis of Deviance Table							
Model	Log(likelihood)	# Param's	Deviance	Test d.f.	<i>p</i> -value		
Full model	-29.14	5					
Fitted model	-29.92	2	1.5483	3	0.67		
Reduced model	-34.85	1	11.4055	4	0.02		

AIC: = 63.8352

Goodness of Fit Table

Dose	Est. Prob.	Expected	Observed	Size	Scaled Resid
0	0.0222	0.556	1	25	0.6
100	0.0228	0.57	0	25	-0.76
250	0.031	0.776	1	25	0.26
500	0.0904	2.261	2	25	-0.18
750	0.234	5.849	6	25	0.07

Chi^2 = 1.05 d.f = 3 *p*-value = 0.7887

269

270

2.2.5 Increased Incidence of Renal Pelvic Mineralization in Females

Increased incidence of renal pelvic mineralization was observed in females of the F_0 generation of the reproductive and developmental study by WIL Laboratories (2001). Dichotomous models were used to fit dose response data. A BMR of 10% added risk was choosen per EPA <u>Benchmark Dose Technical Guidance (U.S. EPA, 2012</u>). The doses and response data used for the modeling are presented in Table 2-24.

Table 2-24 Incidence of Renal Pelvic Mineralization Selected for Dose-Response Modeling for 1-BP

Dose (ppm)	Number of animals	Incidence
0	25	2
100	25	3
250	25	5
500	24	12
750	25	14

279

280 The BMD modeling results for vacuolization of renal pelvic mineralization are summarized in

Table 2-25. The best fitting model was the LogProbit based on Akaike information criterion

282 (AIC; lower values indicates a better fit), chi-square goodness of fit *p*-value (higher value

283 indicates a better fit) and visual inspection. For the best fitting model a plot of the model is

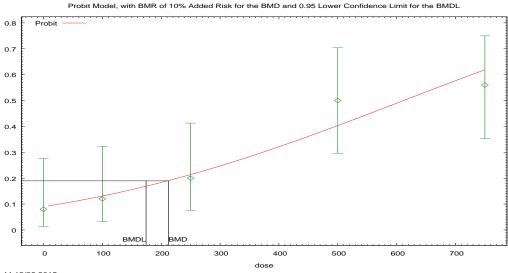

- shown in Figure 2-12. The model version number, model form, benchmark dose calculation,
- 285 parameter estimates and estimated values are shown below in Table 2-26.

Table 2-25 Summary of BMD Modeling Results for Renal Pelvic Mineralization in Female Fo Rats Following Inhalation Exposure to 1-BP in a Two-Generation Study

Model ^a	Goodness of fit		BMD _{10PctAdd}	BMDL _{10PctAdd}	Basis for model selection
	<i>p</i> -value	AIC	(ppm)	(ppm)	
Probit	0.708	130.24	212	174	Probit model was selected based
Quantal-Linear	0.703	130.32	113	79.3	on the lowest AIC from this set of models which have adequate
Logistic	0.664	130.43	228	186	<i>p</i> -values, adequate fit by visual
LogProbit	0.735	131.49	195	70.4	inspection and the BMDLs are < 3-fold apart considered
LogLogistic	0.728	131.51	187	69.9	sufficiently close.
Gamma	0.683	131.63	182	82.8	
Weibull	0.662	131.70	174	82.5	
Multistage 2°	0.610	131.86	164	81.6	

^a Selected model in bold; scaled residuals for selected model for doses 0, 100, 250, 500, and 750 ppm were -0.17, -0.15, -0.16, 0.99, -0.58, respectively.

288

- 289 18:44 12/09 2015
- 290Figure 2-12 Plot of Mean Response by Dose with Fitted Curve for the Selected Model
- (Probit) for Renal Pelvic Mineralization in Female Rats Exposed to 1-BP Via Inhalation in
- 292 ppm; BMR 10% Added Risk.
- 293

294Table 2-26 BMD Modeling Results for Renal Pelvic Mineralization in Female Rats Exposed295to 1-BP Via Inhalation; BMR 10% Added Risk.

Probit Model. (Version: 3.3; Date: 2/28/2013) The form of the probability function is: P[response] = CumNorm(Intercept+Slope*Dose), where CumNorm(.) is the cumulative normal distribution function Slope parameter is not restricted

Benchmark Dose Computation.

BMR = 10% Added risk BMD = 212.127 BMDL at the 95% confidence level = 174.256

Parameter Estimates

Variable	Estimate	Default Initial Parameter Values
background	n/a	0
intercept	-1.3432E+00	-1.3433E+00
slope	0.00218661	0.00218429

Analysis of Deviance Table

Model	Log(likelihood)	# Param's	Deviance	Test d.f.	<i>p</i> -value			
Full model	-62.44	5						
Fitted model	-63.12	2	1.36613	3	0.71			
Reduced model	-74.7	1	24.5328	4	<.0001			

AIC: = 130.239

Dose	Est. Prob.	Expected	Observed	Size	Scaled Resid
0	0.0896	2.24	2	25	-0.17
100	0.1304	3.26	3	25	-0.15
250	0.2129	5.321	5	25	-0.16
500	0.4013	9.632	12	24	0.99
750	0.6167	15.417	14	25	-0.58

Chi^2 = 1.39 d.f = 3 *p*-value = 0.7082

296

297

2.2.6 Decreased Seminal Vesicle Weight

Decreased relative and absolute seminal vesicle weights were observed in (<u>Ichihara et al., 2000</u>).
 Continuous models were used to fit dose-response data for both absolute and relative seminal

300 vesicle weights. A BMR 1 standard deviation was choosen per EPA Benchmark Dose Technical

301 Guidance (U.S. EPA, 2012). Both absolute and relative organ weights may be relevant for

302 reproductive organs like the seminal vesicle as described in EPA's Guidelines for Reproductive

303 Toxicity Risk Assessment (U.S. EPA, 1996). In this case by coincidence the BMDL was the

- 304 same (38 ppm) for both absolute and relative seminal vesicle weights and therefore this endpoint 305
- is refered to as absolute/relative seminal vesicle weight in the risk evaluation and the following
- 306 text and tables. The doses, response data and BMD modeling results are presented for relative
- 307 and then absolute seminal vesicle weights below.
- 308 2.2.6.1 **Decreased Relative Seminal Vesicle Weight**
- 309 The doses and response data used for relative seminal vesicle weight are presented in Table 2-27.

310 Table 2-27 Relative Seminal Vesicle Weight Data Selected for Dose-Response Modeling for **1-BP**

311

Dose (ppm)	Number of animals	Relative Weight (mg/g BW)	Standard Deviation
0	8	4.35	0.62
200	9	3.23	0.55
400	9	3.17	0.67
800	9	2.62	0.87

312

313 Comparisons of model fits obtained are provided in Table 2-28. Models with homogeneous

314 variance were used because the BMDS Test 2 p-value was 0.543. The Hill model was excluded

315 because the BMD to BMDL ratio was 7.34. Of the remaining models the best fitting model

316 (Exponential (M4)) was selected based on Akaike information criterion (AIC; lower values

317 indicates a better fit), chi-square goodness of fit p-value (higher value indicates a better fit) and

visual inspection. The Exponential (M4) model had an acceptable BMD to BMDL ratio of 3.2 318

319 and is indicated in bold. For the best fitting model a plot of the model is shown in Figure 2-13.

320 The model version number, model form, benchmark dose calculation, parameter estimates and

321 estimated values are shown below in Table 2-29.

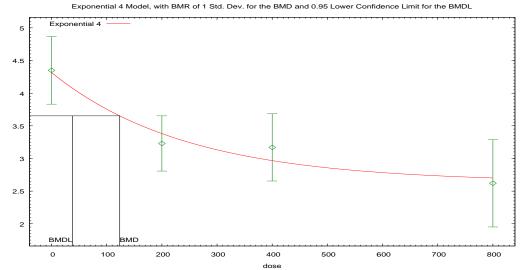
322 Table 2-28 Summary of BMD Modeling Results for Relative Seminal Vesicle Weight in 323 **Rats Exposed to 1-BP by Inhalation**

Model ^a	Goodness of fit				BMD1SD BMDL1SD	Basis for model selection	
	<i>p</i> -value	AIC	(ppm)	(ppm)	(ppm)	(ppm)	
Hill	0.298	13.857	57.2	6.72	101	13.7	For models with BMD to
Exponential (M4) Exponential (M5) ^b	0.221	14.274	73.1	21.4	124	38.1	BMDL ratios less than 5 (this excludes the Hill model), the Exponential
Exponential (M2) Exponential (M3) ^c	0.107	15.240	170	123	301	199	(M4) model was selected based on the lowest BMDL
Power ^d Polynomial 2 ^{°e} Linear ^f	0.0604	16.386	213	165	376	267	because the models with adequate goodness of fit <i>p</i> - value and adequate fit by visual inspection
Polynomial 3°g	0.0604	16.386	213	165	376	267	(Exponetial M2 – M5) had BMDLs > 5-fold apart and not sufficiently close.

^a Constant variance case presented (BMDS Test 2 p-value = 0.543), selected model in bold; scaled residuals for selected model for doses 0, 200, 400, and 800 ppm were 0.15, -0.68, 0.92, -0.37, respectively.

^b For the Exponential (M5) model, the estimate of d was 1 (boundary). The models in this row reduced to the Exponential (M4) model.

^c For the Exponential (M3) model, the estimate of d was 1 (boundary). The models in this row reduced to the Exponential (M2) model.


^d For the Power model, the power parameter estimate was 1. The models in this row reduced to the Linear model.

 $^{\circ}$ For the Polynomial 2 $^{\circ}$ model, the *b2* coefficient estimate was 0 (boundary of parameters space). The models in this row reduced to the Linear model.

 $^{\rm f}$ The Linear model may appear equivalent to the Polynomial 3° model, however differences exist in digits not displayed in the table.

^g The Polynomial 3° model may appear equivalent to the Power model, however differences exist in digits not displayed in the table. This also applies to the Polynomial 2° model. This also applies to the Linear model.

324

325 10:24 10/30 2015

- 326 Figure 2-13 Plot of Mean Response by Dose in ppm with Fitted Curve for Exponential (M4)
- 327 Model with Constant Variance for Relative Seminal Vesicle Weight; BMR = 1 Standard
- 328 Deviation Change from Control Mean.
- 329

Table 2-29 BMD Modeling Results for Relative Seminal Vesicle Weight; BMR = 1 Standard Deviation Change from Control Mean.

Exponential Model. (Version: 1.10; Date: 01/12/2015) The form of the response function is: Y[dose] = a * [c-(c-1) * exp(-b * dose)]A constant variance model is fit

Benchmark Dose Computation.

BMR = 1.0000 Estimated standard deviations from control BMD = 123.644

BMDL at the 95% confidence level = 38.1407

Parameter Estimate	25	
Variable	Estimate	Default Initial Parameter Values
lnalpha	-0.820732	-0.863617

rho	n/a	0
a	4.31581	4.5675
b	0.00406673	0.00345735
с	0.611025	0.546303
d	n/a	1

Table of Data and Estimated Values of Interest							
Dose	Ν	Obs Mean	Est Mean	Obs Std Dev	Est Std Dev	Scaled Resid	
0	8	4.35	4.32	0.62	0.66	0.1458	
200	9	3.23	3.38	0.55	0.66	-0.6845	
400	9	3.17	2.97	0.67	0.66	0.9177	
800	9	2.62	2.7	0.87	0.66	-0.3705	

Likelihoods of Interest

Model	Log(likelihood)	# Param's	AIC				
A1	-2.386703	5	14.77341				
A2	-1.313327	8	18.62665				
A3	-2.386703	5	14.77341				
R	-13.55019	2	31.10038				
4	-3.137185	4	14.27437				

Tests of Interest

Test	-2*log(Likelihood Ratio)	Test df	<i>p</i> -value
Test 1	24.47	6	0.0004272
Test 2	2.147	3	0.5425
Test 3	2.147	3	0.5425
Test 6a	1.501	1	0.2205

332

333

2.2.6.2 Decreased Absolute Seminal Vesicle Weight

The doses and response data used for the modeling are presented in Table 2-30.

Dose (ppm)	Number of animals	Seminal Vesicle Absolute Weight (mg)	Standard Deviation
0	8	1.88	0.27
200	9	1.38	0.26
400	9	1.27	0.25
800	9	1.00	0.36

Table 2-30 Absolute Seminal Vesicle Weight Data Selected for Dose-Response Modeling for
 <u>1-BP</u>

337

Comparisons of model fits obtained are provided in Table 2-31. Models with homogeneous

variance were used because the BMDS Test 2 *p*-value was 0.653. The best fitting model (Hill)

340 was selected based on Akaike information criterion (AIC; lower values indicates a better fit),

341 chi-square goodness of fit *p*-value (higher value indicates a better fit) and visual inspection. The

Hill model had an acceptable BMD to BMDL ratio of 2.5 and is indicated in bold. For the best

343 fitting model a plot of the model is shown in Figure 2-14. The model version number, model

344 form, benchmark dose calculation, parameter estimates and estimated values are shown below in

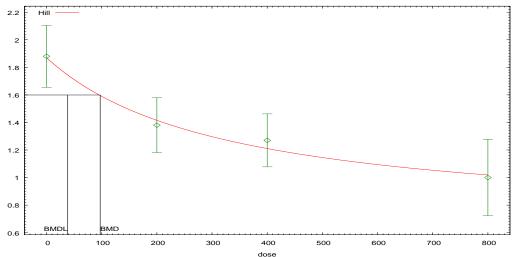
345 Table 2-32.

Table 2-31 Summary of BMD Modeling Results for Seminal Vesicle Absolute Weight in Rats Exposed to 1-BP by Inhalation

Model ^a	Goodness of fit		BMD _{1SD}	BMDL _{1SD}	Basis for model selection
	<i>p</i> -value	AIC	(ppm)	(ppm)	
Hill	0.429	-47.533	97.3	38.4	The Hill model was selected
Exponential (M4) Exponential (M5) ^b	0.337	-47.235	112	58.4	based on the lowest AIC because the models with adequate goodness of fit <i>p</i> -value
Exponential (M2) Exponential (M3) ^c	0.159	-46.484	219	152	and adequate fit by visual inspection (including Hill and
Power ^d Polynomial 3 ^{oe} Polynomial 2 ^{of} Linear	0.0576	-44.450	299	222	Exponetial M2 – M5, excluding Power, Polynomial and Linear) had BMDLs < 4-fold apart considered sufficiently close.

^a Constant variance case presented (BMDS Test 2 p-value = 0.653), selected model in bold; scaled residuals for selected model for doses 0, 200, 400, and 800 ppm were 0.07, -0.43, 0.61, -0.24, respectively.

^b For the Exponential (M5) model, the estimate of d was 1 (boundary). The models in this row reduced to the Exponential (M4) model.


^c For the Exponential (M3) model, the estimate of d was 1 (boundary). The models in this row reduced to the Exponential (M2) model.

^d For the Power model, the power parameter estimate was 1. The models in this row reduced to the Linear model.

^e For the Polynomial 3° model, the b3 coefficient estimates was 0 (boundary of parameters space). The models in this row reduced to the Polynomial 2° model. For the Polynomial 3° model, the b3 and b2 coefficient estimates were 0 (boundary of parameters space). The models in this row reduced to the Linear model.

^f For the Polynomial 2° model, the b2 coefficient estimate was 0 (boundary of parameters space). The models in this row reduced to the Linear model.

349 14:19 11/30 2015

- 350 Figure 2-14 Plot of Mean Response by Dose in ppm with Fitted Curve for Hill Model with
- 351 Constant Variance for Seminal Vesicle Absolute Weight; BMR = 1 Standard Deviation
- 352 Change from Control Mean.
- 353

Table 2-32 BMD Modeling Results for Seminal Vesicle Absolute Weight; BMR = 1 Standard Deviation Change from Control Mean.

Hill Model. (Version: 2.17; Date: 01/28/2013)

The form of the response function is: $Y[dose] = intercept + v*dose^n/(k^n + dose^n)$ A constant variance model is fit

Benchmark Dose Computation.

BMR = 1 Estimated standard deviations from the control mean BMD = 97.2583 BMDL at the 95% confidence level = 38.4029

Variable	Estimate	Default Initial Parameter Values
alpha	0.0752711	0.0834806
rho	n/a	0
intercept	1.87362	1.88
v	-1.2008	-0.88
n	1	1.5698
k	328.422	176

Dose	Ν	Obs Mea	n Est M	ean	Obs Std Dev	Est Std Dev	Scaled Resid
0	8	1.88	1.87	7	0.27	0.27	0.0658
200	9	1.38	1.42	2	0.26	0.27	-0.428
400	9	1.27	1.21	l	0.25	0.27	0.61
800	9	1	1.02	2	0.36	0.27	-0.244
Likelihoods of	Interest						
Model	Log(likelih	ood)	# Param's		AIC		
A1	28.07877	73	5	-	46.157546		
A2	28.89403	36	8 -		41.788073		
A3	28.07877	73	5		46.157546		
fitted	27.76653	32	4		47.533065		
R	13.38732	26	2	-	22.774652		
<u>Fests of Intere</u> Test	est -2*log(Like Ratio		Test df		<i>p</i> -value		
Test 1	31.013	4	6		< 0.0001		
Test 2	1.6305	3	3		0.6525		
Test 3	1.6305	3	3		0.6525		
		82	1		0.4294		

356

357

2.2.7 Decreased Percent Normal Sperm Morphology

358 Decreased percent normal sperm morphology was observed in the F₀ generation of the

reproductive and developmental study by WIL Laboratories (2001). The doses and response data
 used for the modeling are presented in Table 2-33.

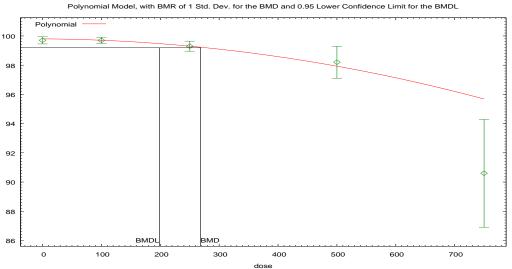
361

362 Table 2-33 Sperm Morphology Data Selected for Dose-Response Modeling for 1-BP

Dose (ppm)	Number of animals	% normal	Standard Deviation			
0	25	99.7	0.6			
100	25	99.7	0.52			
250	25	99.3	0.83			
500	24	98.2	2.59			
750	24	90.6	8.74			

- Comparisons of model fits obtained are provided in Table 2-34. No model was selected due to
- 365 unacceptable fitting of the variances. To illustrate the unacceptable fitting the Polynomial 2° is
- 366 shown in a plot in Figure 2-15. The model version number, model form, benchmark dose
- 367 calculation, parameter estimates and estimated values are shown below in Table 2-35.
- 368

Table 2-34 Summary of BMD Modeling Results for Sperm Morphology in the Fo
 Generation Exposed to 1-BP by Inhalation


Model ^a	Goodne	ess of fit	Variance model	BMD _{1SD}	BMDL _{1SD}	Basis for model
	<i>p</i> -value	AIC	p-value	(ppm)	(ppm)	selection
Exponential (M2) ^b	N/A	243.78	< 0.0001	166	112	Due to
Exponential (M3)	N/A	220.96	< 0.0001	259	200	unacceptable fitting of the
Exponential (M4) ^b	N/A	243.78	< 0.0001	166	112	variances i.e. variance model
Hill	0.490	221.75	0.0269	277	error ^c	<i>p</i> -values are all
Power	< 0.0001	221.03	< 0.0001	258	199	< 0.1 and poor
Polynomial 4 ^{°d} Polynomial 3° Polynomial 2°	0.326	221.51	0.0269	268	198	visual fit no model was selected.
Linear	< 0.0001	243.33	0.0269	164	111	

^a Modeled variance case presented (BMDS Test 2 p-value = <0.0001), selected model in bold; scaled residuals for selected model for doses 0, 100, 250, 500, and 750 ppm were -0.52, 0.29, 0.25, 0.71, -2.26, respectively.

^b The Exponential (M2) and Exponential (M4) models may appear equivalent, however differences exist in digits not displayed in the table.

^c BMDL computation failed for this model.

^d For the Polynomial 3° model, the b3 coefficient estimates was 0 (boundary of parameters space). For the Polynomial 4° model, the b4 and b3 coefficient estimates were 0 (boundary of parameters space). The models in this row reduced to the Polynomial 2° model.

371 14:46 05/15 2020

- 372 Figure 2-15 Plot of Mean Response by Dose in ppm with Fitted Curve for Polynomial 2°
- 373 Model with Constant Variance for Sperm Morphology in F₀ Rats Exposed to 1-BP by
- 374 Inhalation; BMR = 1 Standard Deviation Change from Control Mean.

376Table 2-35 BMD Modeling Results for Sperm Morphology in F₀ Rats Exposed to 1-BP by377Inhalation; BMR = 1 Standard Deviation Change from Control Mean.

Polynomial Model. (Version: 2.20; Date: 10/22/2014) The form of the response function is: Y[dose] = beta_0 + beta_1*dose + beta_2*dose^2 + ... A modeled variance is fit

Benchmark Dose Computation.

BMR = 1 Estimated standard deviations from the control mean BMD = 268.494 BMDL at the 95% confidence level = 198.345

Parameter Estimates

Variable	Estimate	Default Initial Parameter Values
lalpha	644.271	2.80123
rho	-140.219	0
beta_0	99.7591	99.2397
beta_1	-0.000251699	0
beta_2	-0.00000698119	-0.0000287522

Table of Data and Estimated Values of Interest							
Dose	Ν	Obs Mean	Est Mean	Obs Std Dev	Est Std Dev	Scaled Resid	
0	25	99.7	99.8	0.6	0.57	-0.518	
100	25	99.7	99.7	0.52	0.61	0.294	
250	25	99.3	99.3	0.83	0.81	0.247	
500	24	98.2	97.9	2.59	2.15	0.71	
750	24	90.6	95.6	8.74	10.9	-2.26	

Likelihoods of Interest

Model	Log(likelihood)	# Param's	AIC
A1	-231.223656	6	474.447313
A2	-100.040336	10	220.080673
A3	-104.635935	7	223.271869
fitted	-105.757098	5	221.514197
R	-265.999639	2	535.999277

Test	- 2*log(Likelihood Ratio)	Test df	p-value
Test 1	331.919	8	< 0.0001
Test 2	262.367	4	<0.0001
Test 3	9.1912	3	0.02685
Test 4	2.24233	2	0.3259

378

To investigate the effect of the poor modeling of the variances on the BMDL the observed

380 standard deviations were considered and the standard deviation at the highest dose is much larger

than at the other dose groups. The data set was investigated with the highest dose dropped. The

model fits with the modeled variance (BMDS test 2 p-value <0.0001) are summarized in Table

2-36. Several models have adequate fits i.e. Goodness of fit p-values > 0.1 excluding the Hill

384 model because a BMDL was not calculated the Polynomial and Exponential (M3) are acceptable.

The BMDLs of these models are sufficiently close, the model with the lowest AIC is the
Polynomial and the Polynomial 3° was choosen because the BMDL is lower than Polynomial 2°.

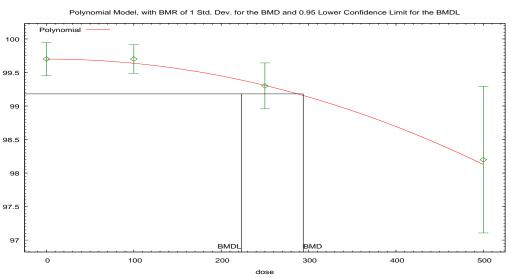
For the selected model Polynomial 3° a plot is shown in Figure 2-16. The model version number,

model form, benchmark dose calculation, parameter estimates and estimated values are shownbelow in Table 2-36.

390

Table 2-36 Summary of BMD Modeling Results for Sperm Morphology in the F₀ Generation Exposed to 1-BP by Inhalation with High Dose Dropped

Model ^a	Goodne	ess of fit	BMD _{1SD}	BMDL _{1SD}	Basis for model
	<i>p</i> -value	AIC	(ppm)	(ppm)	selection
Exponential (M3)	0.408	84.309	297	219	Models with
Hill	0.659	83.555	257	error ^d	Goodness of fit <i>p</i> - values < 0.1 were
Polynomial 3°	0.618	82.324	294	223	excluded i.e.
Polynomial 2°	0.618	82.324	294	238	Linear, Exponential (M2, M4, M5) and
Power	0.0019	93.269	897	147	Power and the Hill model failed to
Exponential (M2) ^b	0.00461	92.383	229	147	calculate a BMDL.
Exponential (M4) ^b	0.00461	92.383	229	147	The remaining models had BMDLs
Exponential (M5)	N/A ^c	85.555	257	225	sufficiently close,
Linear	0.00421	92.300	228	148	the lowest AICs are the Polynomial models and 3° was choosen for a lower BMDL than 2°.


^a Modeled variance case presented (BMDS Test 2 *p*-value = <0.0001), selected model in bold; scaled residuals for selected model for doses 0, 100, 250, and 500 ppm were -0.21, 0.34, -0.19, 0.09, respectively.

^b The Exponential (M2) and Exponential (M4) models may appear equivalent, however differences exist in digits not displayed in the table.

^c No available degrees of freedom to calculate a goodness of fit value.

^d BMDL computation failed for this model.

16:10 05/15 2020

- **Figure 2-16 Plot of Mean Response by Dose in ppm with Fitted Curve for Polynomial 3**°
- 396 Model with Constant Variance for Sperm Morphology in F₀ Rats Exposed to 1-BP by
- **397** Inhalation high Dose Dropped; BMR = 1 Standard Deviation Change from Control Mean.
- 398

Table 2-37 BMD Modeling Results for Sperm Morphology in F₀ Rats Exposed to 1-BP by Inhalation High Dose Dropped; BMR = 1 Standard Deviation Change from Control Mean.

Polynomial Model. (Version: 2.20; Date: 10/22/2014)

The form of the response function is: $Y[dose] = beta_0 + beta_1*dose + beta_2*dose^2 + ...$ A modeled variance is fit

Benchmark Dose Computation.

BMR = 1 Estimated standard deviations from the control mean BMD = 293.888 BMDL at the 95% confidence level = 222.979

Variable	Estimate	Default Initial Parameter Values
lalpha	892.813	0.671598
rho	-194.254	0
beta_0	99.7232	99.7
beta_1	0	0

beta_2	-0.00000628545	-0.0000151
beta_3	-1.94851E-35	0

Table of Data and Estimated Values of Interest							
Dose	Ν	Obs Mean	Est Mean	Obs Std Dev	Est Std Dev	Scaled Resid	
0	25	99.7	99.7	0.6	0.54	-0.213	
100	25	99.7	99.7	0.52	0.58	0.344	
250	25	99.3	99.3	0.83	0.8	-0.19	
500	24	98.2	98.2	2.59	2.54	0.093	

Likelihoods of Interest

Model	Model Log(likelihood)		AIC
A1	-80.702586	5	171.405173
A2	-36.521207	8	89.042414
A3	-36.680048	6	85.360095
fitted	-37.162171	4	82.324341
R	-89.602311	2	183.204622

Tests of Interest

Test	- 2*log(Likelihood Ratio)	Test df	p-value	
Test 1	106.162	6	< 0.0001	
Test 2 88.3628		3	< 0.0001	
Test 3	0.317681	2	0.8531	
Test 4	0.964246	2	0.6175	

401

402

403

2.2.8 Decreased Percent Motile Sperm

404 A decrease in motile sperm was observed in the F_0 generation in the reproductive and 405 developmental study by WIL Laboratories (2001). The doses and response data used for the 406 modeling are presented in Table 2-38.

Dose (ppm)	Number of animals	Mean sperm motility (% motile)	Standard Deviation
0	25	86.8	11.90
100	25	88.8	7.22
250	25	83.4	10.41
500	23	71.9	9.27
750	15	53.2	19.59

408 **Table 2-38 Sperm Motility Data Selected for Dose-Response Modeling for 1-BP**

409

410 The BMD modeling results for sperm motility with non-homogeneous variance (BMDS test 2 p-

411 value = 0.0001749) are summarized in Table 2-39. Although the means are sufficiently fit for

some models (e.g. the Polynomial 2° model has *p*-value of 0.516) the variances are not well

413 modeled BMDS Test 3 p-value = 0.0426. This result suggests that due to the poor variance

414 modeling for the data it is not reasonable to use BMDS for this endpoint. Instead the NOAEL of

415 250 ppm was used.

416

417 Table 2-39 Summary of BMD Modeling Results for Sperm Motility F₀ Male Rats Following 418 Inhalation Exposure to 1-BP

Model ^a	Goodne	ess of fit	BMD _{1SD}	BMDL _{1SD}	Basis for model selection
	<i>p</i> -value	AIC	(ppm)	(ppm)	
Polynomial 2°	0.516	657.83	386	346	Due to unacceptable fitting of
Power	0.334	659.73	399	313	the variances no model was selected.
Polynomial 3°	0.330	659.76	397	315	
Exponential (M3)	0.324	659.80	402	317	
Hill	0.139	661.73	400	323	
Polynomial 4°	0.137	661.76	397	314	
Exponential (M5)	0.133	661.80	402	317	
Linear	0.00132	671.22	237	192	
Exponential (M2) Exponential (M4) ^b	2.10E-04	675.10	226	178	

^a Modeled variance case presented (BMDS Test 2 *p*-value = 1.75E-04, BMDS Test 3 *p*-value = 0.0426), no model was selected as a best-fitting model.

^b For the Exponential (M4) model, the estimate of c was 0 (boundary). The models in this row reduced to the Exponential (M2) model.

419

420 To investigate the effect of the poor modeling of the variances on the BMDL the observed

421 standard deviations were considered and the standard deviation at the highest dose is much larger

422 than at the other dose groups. The data set was investigated with the highest dose dropped. The

423 model fits with non-homogeneous variance (BMDS test 2 p-value = 0.0966) are summarized in

424 Table 2-40. Although the means are sufficiently fit for some models (e.g. the Polynomial 2°

425 model has *p*-value of 0.676) the variances are not well modeled BMDS Test 3 p-value = 0.0426.

Table 2-40 Summary of BMD Modeling Results for Sperm Motility F₀ Male Rats Following Inhalation Exposure to 1-BP with the Highest Dose Dropped

Model ^a	Goodness of fit		BMD _{1SD}	BMDL _{1SD}	Basis for model selection
	<i>p</i> -value	AIC	(ppm)	(ppm)	
Polynomial 3°	0.676	551.25	394	345	Due to unacceptable fitting of
Polynomial 2°	0.676	551.25	394	302	the variances no model was selected.
Hill	0.529	552.86	271	255	
Exponential (M3)	0.386	553.22	391	294	
Power	0.376	553.25	395	296	
Exponential (M5)	N/A ^b	554.86	267	253	
Linear	0.107	554.94	315	241	
Exponential (M2) ^c	0.0743	555.67	310	231	
Exponential (M4) ^d	0.0743	555.67	310	231]
Polynomial 4°	error	error	error ^e	error ^e	

^a Modeled variance case presented (BMDS Test 2 p-value = 0.0966, BMDS Test 3 p-value = 0.0426), no model was selected as a best-fitting model.

^b No available degrees of freedom to calculate a goodness of fit value.

^c The Exponential (M2) model may appear equivalent to the Exponential (M4) model, however differences exist in digits not displayed in the table.

^d The Exponential (M4) model may appear equivalent to the Exponential (M2) model, however differences exist in digits not displayed in the table.

^e BMD or BMDL computation failed for this model.

428

429

2.2.9 Decreased Left Cauda Epididymis Weight

430 A decrease in left cauda epididymis absolute weight was observed in the F_0 generation in the 431 reproductive and developmental study by (WIL Research, 2001). The absolute weights are used

432 for BMD modeling of the epididymis as described in EPA's Guidelines for Reproductive

433 <u>Toxicity Risk Assessment (U.S. EPA, 1996</u>). The doses and response data used for the modeling

are presented in Table 2-41.

Dose (ppm)	Number of animals	Left Cauda Epididymis Weight (mg)	Standard Deviation
0	25	0.3252	0.03673
100	25	0.3242	0.03149
250	25	0.3050	0.03556
500	23	0.2877	0.03170
750	22	0.2401	0.03529

Table 2-41 Left Cauda Epididymis Absolute Weight Data Selected for Dose-Response
 Modeling for 1-BP

438

The BMD modeling results for left cauda epididymis absolute weight with homogeneous

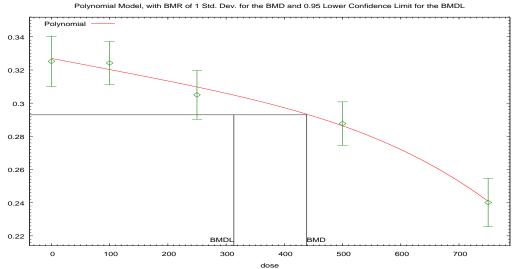
440 variance (BMDS test 2 *p*-value =0.911) are summarized in Table 2-42. The best fitting model

441 (Polynomial 4°) was selected based on Akaike information criterion (AIC; lower values indicates

442 a better fit), chi-square goodness of fit *p*-value (higher value indicates a better fit) and visual

443 inspection. The Polynomial 4° model had an acceptable BMD to BMDL ratio of 1.4 and is

indicated in bold. For the best fitting model a plot of the model is shown in Figure 2-17. The


445 model version number, model form, benchmark dose calculation, parameter estimates and

- 446 estimated values are shown below in Table 2-43.
- 447

Table 2-42 Summary of BMD Modeling Results for Left Cauda Epididymis Absolute Weight F₀ Male Rats Following Inhalation Exposure to 1-BP

Model ^a	Goodness of fit		BMD _{1SD}	BMDL _{1SD}	Basis for model selection			
	<i>p</i> -value AIC		(ppm)	(ppm)				
Polynomial 4°	0.622	-714.88	438	313	The Polynomial 4° model was			
Polynomial 3°	0.565	-714.69	440	316	selected based on the lowest AIC from this set of models			
Polynomial 2°	0.47	-714.32	437	315	which have adequate <i>p</i> -values			
Power	0.430	-714.14	444	317	(excluding Exponential M2 and M4), adequate fit by visual			
Exponential (M3)	0.382	-713.91	446	320	inspection and the BMDLs are < 1.5-fold apart considered			
Linear	0.133	-712.23	307	256	sufficiently close.			
Hill	0.193	-712.14	444	317				
Exponential (M5)	0.166	-711.91	446	320				
Exponential (M2)	0.0636	-710.55	289	236				
Exponential (M4)	0.0636	-710.55	289	235				

^a Constant variance case presented (BMDS Test 2 p-value = 0.911), selected model in bold; scaled residuals for selected model for doses 0, 100, 250, 500, and 750 ppm were -0.21, 0.64, -0.65, 0.26, -0.04, respectively.

451 12:36 11/30 2015

- 452 Figure 2-17 Plot of Mean Response by Dose in ppm with Fitted Curve for Polynomial 4°
- 453 Model with Constant Variance for Left Cauda Epididymis Absolute Weight; BMR = 1
- 454 **Standard Deviation Change from Control Mean.**
- 455
- Table 2-43 BMD Modeling Results for Left Cauda Epididymis Absolute Weight; BMR = 1
 Standard Deviation Change from Control Mean.

Polynomial Model. (Version: 2.20; Date: 10/22/2014) The form of the response function is: Y[dose] = beta_0 + beta_1*dose + beta_2*dose^2 + ... A constant variance model is fit

Benchmark Dose Computation.

BMR = 1 Estimated standard deviations from the control mean BMD = 438.482 BMDL at the 95% confidence level = 313.325

Variable	Estimate	Default Initial Parameter Values
alpha	0.00113284	0.0011711
rho	n/a	0
beta_0	0.326617	0.3252
beta_1	-0.0000672194	0
beta_2	0	-0.00000139519
beta_3	-6.09563E-33	0
beta_4	-1.13164E-13	-2.44944E-12

Dose	Ν	Obs Mean	Est Mean	Obs Std Dev	Est Std Dev	Scaled Resid
0	25	0.32	0.33	0.04	0.03	-0.21
100	25	0.32	0.32	0.03	0.03	0.641
250	25	0.3	0.31	0.04	0.03	-0.649
500	25	0.29	0.29	0.03	0.03	0.262
750	25	0.24	0.24	0.04	0.03	-0.044

Likelihoods of Interest

Model	Log(likelihood)	# Param's	AIC
A1	361.914605	6	-711.829209
A2	362.410744	10	-704.821488
A3	361.914605	6	-711.829209
fitted	361.438986	4	-714.877972
R	322.608827	2	-641.217655

Tests of Interest

Test	-2*log(Likelihood Ratio)	Test df	<i>p</i> -value
Test 1	79.6038	8	<0.0001
Test 2	0.992278	4	0.911
Test 3	0.992278	4	0.911
Test 4	0.951238	2	0.6215

458

459

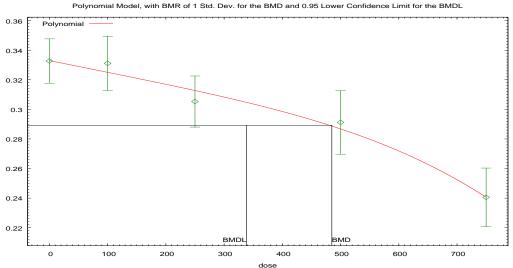
2.2.10 Decreased Right Cauda Epididymis Weight

A decrease in right cauda epididymis absolute weight was observed in the F₀ generation in the
 reproductive and developmental study by (<u>WIL Research, 2001</u>). The absolute weights are used
 for BMD modeling of the epididymis as described in EPA's <u>Guidelines for Reproductive</u>
 <u>Toxicity Risk Assessment</u> (U.S. EPA, 1996). The doses and response data used for the modeling

464 are presented in Table 2-44.

Dose (ppm)	Number of animals	Left Cauda Epididymis Weight (mg)	Standard Deviation
0	25	0.3327	0.03631
100	25	0.3311	0.04453
250	25	0.3053	0.04188
500	23	0.2912	0.05206
750	22	0.2405	0.04804

Table 2-44 Right Cauda Epididymis Absolute Weight Data Selected for Dose-Response
 Modeling for 1-BP


The BMD modeling results for right cauda epididymis absolute weight with homogeneous variance (BMDS test 2 *p*-value =0.455) are summarized in Table 2-45. The best fitting model (Polynomial 4°) was selected based on Akaike information criterion (AIC; lower values indicates a better fit), chi-square goodness of fit *p*-value (higher value indicates a better fit) and visual inspection. The Polynomial 4° model had an acceptable BMD to BMDL ratio of 1.4 and is indicated in bold. For the best fitting model a plot of the model is shown in Figure 2-18. The model version number, model form, benchmark dose calculation, parameter estimates and

475 estimated values are shown below in Table 2-46.

476	Table 2-45 Summary of BMD Modeling Results for Right Cauda Epididymis Absolute
477	Weight F ₀ Male Rats Following Inhalation Exposure to 1-BP

Model ^a	Goodne	ess of fit	BMD _{1SD}	BMDL _{1SD}	Basis for model selection
	<i>p</i> -value	AIC	(ppm)	(ppm)	
Polynomial 4°	0.493	-646.60	485	338	The Polynomial 4° model was
Polynomial 3°	0.442	-646.38	480	334	selected based on the lowest AIC from this set of models
Linear	0.296	-646.32	371	303	which have adequate <i>p</i> -values,
Polynomial 2°	0.376	-646.06	472	327	adequate fit by visual inspection and the BMDLs are < 1.5-fold
Power	0.340	-645.86	474	323	apart considered sufficiently close.
Exponential (M3)	0.304	-645.63	473	317	
Exponential (M2)	0.196	-645.33	350	277	
Exponential (M4)	0.196	-645.33	350	270	
Hill	0.142	-643.85	474	323]
Exponential (M5)	0.123	-643.63	473	317	

^a Constant variance case presented (BMDS Test 2 p-value = 0.455), selected model in bold; scaled residuals for selected model for doses 0, 100, 250, 500, and 750 ppm were -0.09, 0.63, -0.9, 0.44, -0.08, respectively.

479 12:13 11/30 2015

- 480 Figure 2-18 Plot of Mean Response by Dose in ppm with Fitted Curve for Polynomial 4°
- 481 Model with Constant Variance for Right Cauda Epididymis Absolute Weight; BMR = 1
 482 Standard Deviation Change from Control Mean.
- 483

Table 2-46 BMD Modeling Results for Right Cauda Epididymis Absolute Weight; BMR = 1 Standard Deviation Change from Control Mean

Polynomial Model. (Version: 2.20; Date: 10/22/2014) The form of the response function is: Y[dose] = beta_0 + beta_1*dose + beta_2*dose^2 + ... A constant variance model is fit

Benchmark Dose Computation.

BMR = 1 Estimated standard deviations from the control mean BMD = 484.978 BMDL at the 95% confidence level = 338.42

Parameter Estimates

Variable	Estimate	Default Initial Parameter Values
alpha	0.00195609	0.00201467
rho	n/a	0
beta_0	0.333498	0.3327
beta_1	-0.0000793692	0
beta_2	-2.2991E-28	-0.00000198872
beta_3	-2.18866E-31	0
beta_4	-1.03676E-13	-3.6281E-12

Dose	Ν	Obs N	Iean	Est Me	an	Obs Std Dev	Est Std Dev	Scaled Resid
0	25	0.3	3	0.33		0.04	0.04	-0.0902
100	25	0.3	3	0.33		0.04	0.04	0.627
250	25	0.3	3	0.31		0.04	0.04	-0.899
500	25	0.2	9	0.29		0.05	0.04	0.437
750	25	0.2	4	0.24		0.05	0.04	-0.0754
Likelihoods of	Interest				1			
Model	Log(likelih	lood)	# Pa	ram's		AIC		
A1	328.0075	576		6		544.015151		
A2	329.8333	895		10	-	639.66679		
A3	328.0075	576		6	-6	544.015151		
fitted	327.3004	07		4	-6	646.600813		
R	299.1193	376		2	-594.238753			
Fests of Intere	st							
Test	-2*log(Liko Ratio		Т	est df		<i>p</i> -value		
Test 1	61.42	8		8		< 0.0001		
Test 2	3.6516	54		4		0.4552		
Test 3	3.6510	54		4		0.4552		
Test 4	1.4143	24		2		0.493		

486

2.2.11 Increased Estrus Cycle Length

487 An increase estrus cycle length was observed in the F_0 generation in the reproductive and 488 developmental study by (<u>WIL Research, 2001</u>). The doses and response data used for the 489 modeling are presented in Table 2-47.

Dose (ppm)	Number of animals	Number of animals Estrus cycle Length (days)	
0	25	4.2	0.49
100	25	4.5	1.05
250	25	4.7	0.9
500	23	5.5	2.17
750	22	5.6	1.79

491 Table 2-47 Estrus Cycle Length Data Selected for Dose-Response Modeling for 1-BP

492 The BMD modeling results for estrus cycle length with non-homogeneous variance (BMDS test 493 2 p-value = < 0.0001) are summarized in Table 2-48. The means are not adequately fit for any of the models as shown by the goodness of fit where the model with the highest *p*-value is 0.0065 for 494 495 the Exponential M4 and M5 models (excluding the Hill model because a BMDL could not be 496 calculated). This result suggests that due to the poor model fit to the data it is not reasonable to

497 use BMDS for this endpoint. Instead the NOAEL of 250 ppm was used.

498

499 Table 2-48 Summary of BMD Modeling Results for Estrus Cycle Length F₀ Female Rats 500 **Following Inhalation Exposure to 1-BP**

Model ^a	Goodness of fit				Basis for model selection	
	<i>p</i> -value	AIC	(ppm)	(ppm)		
Hill	0.00656	160.04	145	error ^b	Due to inadequate fit of the	
Exponential (M4) Exponential (M5) ^c	0.00650	160.05	157	79.5	models to the data means (shown by the goodness of fit <i>p</i> - value) no model was selected.	
Power ^d Polynomial 4 ^{°e} Polynomial 3 ^{°f} Polynomial 2 ^{°g} Linear	0.00169	163.13	300	205		
Exponential (M2) Exponential (M3) ^h	7.68E-04	164.81	344	244		

^a Modeled variance case presented (BMDS Test 2 p-value = <0.0001, BMDS Test 3 p-value = 0.506), no model was selected as a best-fitting model.

^b BMD or BMDL computation failed for this model.

^c For the Exponential (M5) model, the estimate of d was 1 (boundary). The models in this row reduced to the Exponential (M4) model.

^d For the Power model, the power parameter estimate was 1. The models in this row reduced to the Linear model.

^e For the Polynomial 4° model, the b4 and b3 coefficient estimates were 0 (boundary of parameters space). The models in this row reduced to the Polynomial 2° model. For the Polynomial 4° model, the b4, b3, and b2 coefficient estimates were 0 (boundary of parameters space). The models in this row reduced to the Linear model.

^h For the Exponential (M3) model, the estimate of d was 1 (boundary). The models in this row reduced to the Exponential (M2) model.

^f For the Polynomial 3° model, the b3 coefficient estimates was 0 (boundary of parameters space). The models in this row reduced to the Polynomial 2° model. For the Polynomial 3° model, the b3 and b2 coefficient estimates were 0 (boundary of parameters space). The models in this row reduced to the Linear model.

^g For the Polynomial 2° model, the b2 coefficient estimate was 0 (boundary of parameters space). The models in this row reduced to the Linear model.

502 2.2.12 Decreased Antral Follical Count

A decreased antral follicle count was observed in the study of female reproductive function by (Yamada et al., 2003). The doses and response data used for the modeling are presented in Table 2-49. The highest dose was not included for modeling because all the rats in the highest dose group (800 ppm) were seriously ill and were sacrificed during the 8th week of the 12 week study.

	cie Count Duta Delecte	a for Dose Response for	
Dose (ppm)	Number of animals	Antral Follicle Count	Standard Deviation
0	8	30.1	22.4
200	9	12.6	4.82
400	9	7.44	6.52

508 **Table 2-49 Antral Follicle Count Data Selected for Dose-Response Modeling for 1-BP**

509

510 The BMD modeling results for antral follical count with non-homogeneous variance (BMDS test

511 2 p-value = <0.0001) are summarized in Table 2-50. The means are not adequately fit for any of

512 the models as shown by the goodness of fit where the model with the highest *p*-value is 0.0404 for

513 the Exponential M2 model. This result suggests that due to the poor model fit to the data it is not

reasonable to use BMDS for this endpoint. Instead the LOAEL of 200 ppm was used.

515

Table 2-50 Summary of BMD Modeling Results for Antral Follical Count in Female Rats Following Inhalation Exposure to 1-BP

Model ^a	Goodness of fit		BMD _{1SD}	BMDL _{1SD}	Basis for model selection
	<i>p</i> -value	AIC	(ppm)	(ppm)	
Exponential (M4)	N/A ^b	148.31	189	0.651	Due to inadequate fit of the
Exponential (M2)	0.0404	150.51	270	117	models to the data means (shown by the goodness of fit <i>p</i> -
Power ^c Linear ^d	0.00496	154.21	410	233	value) no model was selected.
Polynomial 2 ^{°e}	0.00496	154.21	410	233	
Exponential (M3)	N/A ^b	179.12	1.8E+05	754	

^a Modeled variance case presented (BMDS Test 2 p-value = <0.0001, BMDS Test 3 p-value = 0.0545), no model was selected as a best-fitting model.

^b No available degrees of freedom to calculate a goodness of fit value.

^c For the Power model, the power parameter estimate was 1. The models in this row reduced to the Linear model.

^d The Linear model may appear equivalent to the Polynomial 2° model, however differences exist in digits not displayed in the table.

 $^{\rm e}$ The Polynomial 2° model may appear equivalent to the Power model, however differences exist in digits not displayed in the table. This also applies to the Linear model.

518

519

2.2.13 Decreased Male and Female Fertility Index

520 A decrease in the male and female fertility index was observed in the F_0 generation in the

reproductive and developmental study by WIL Laboratories (2001). The doses and response data

are presented in Table 2-51 as a percentage and incidence. The incidence represents the number

- 523 of males that did not sire a litter which is equal to the number of nongravid females. The
- 524 incidence was used for modeling as a dichotomous endpoint.
- 525

Dose (ppm)	Number of animals	Fertility Index (%)	Number Nongravid Females = Males that did not Sire a Litter	
0	25	92	2	
100	25	100	0	
250	25	88	3	
500	23	52	12	
750	22	0	25	

526 Table 2-51 Fertility Index Data Selected for Dose-Response Modeling for 1-BP

527

528 The BMD modeling results for the fertility index are summarized in Table 2-52. The best fitting

529 models were the LogLogistic and Dichotomous-Hill based on Akaike information criterion

530 (AIC; lower values indicates a better fit), chi-square goodness of fit *p*-value (higher value

531 indicates a better fit) and visual inspection. Dichotomous-Hill model slope parameter was at the

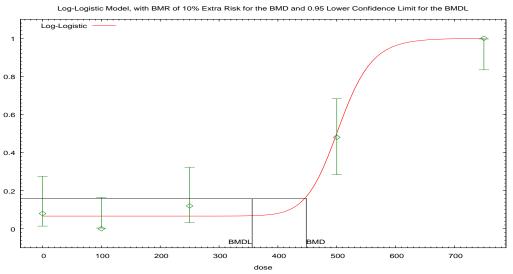
boundary value of 18 which indicates some concern for using this model fit and so instead the

533 LogLogistic model selected. The LogLogistic and Dichotomous-Hill models had nearly the same

534 BMDLs with LogLogistic slightly lower (356 ppm) than Dichotomous-Hill (363 ppm). For the

best fitting model a plot of the model is shown in Figure 2-19. The model version number, model

536 form, benchmark dose calculation, parameter estimates and estimated values are shown below in


537 Table 2-53.

538	Table 2-52 Summary of BMD Modeling Results for Fertility Index of F0 Rats Following
539	Inhalation Exposure of Parental Rats to 1-BP in a Two-Generation Study

Model ^a	Goodne		BMD10Pct		Basis for model selection			
	<i>p</i> -value	AIC	(ppm)	(ppm)				
LogLogistic	0.388	75.396	448	356	The LogLogistic model was			
Dichotomous-Hill	0.388	75.396	448	363	selected based on the lowest AIC from this set of models			
Multistage 4°	0.355	75.682	306	219	which have adequate goodness			
Weibull	0.253	77.024	361	252	of fit <i>p</i> -value (excluding Quantal-Linear, Multistage 2 ⁰ ,			
Gamma	0.256	77.045	361	260	Probit and Logistic) and adequate fit by visual inspection			
LogProbit	0.223	77.357	461	352	and the BMDLs are < 2-fold			
Multistage 3°	0.161	78.153	250	202	apart considered sufficiently close. The Dichotomous-Hill			
Logistic	0.0103	80.981	238	182	model had concern for the fit			
Probit	0.0031	82.358	208	159	based on the slope parameter at the boundary and so instead the			
Multistage 2°	0.0152	85.979	173	143	LogLogistic was selected.			
Quantal-Linear	0	106.73	68.4	52.1	1			

^a Selected model in bold; scaled residuals for selected model for doses 0, 100, 250, 500, and 750 ppm were 0.27, -1.34, 1.07, -0.01, 0.14, respectively.

- 541 17:13 12/03 2015
- 542 Figure 2-19 Plot of Mean Response by Dose with Fitted Curve for the Selected Model
- 543 (LogLogistic) for Fertility Index in Rats Exposed to 1-BP Via Inhalation in ppm BMR 10%
 544 Extra Risk.
- 545 **Extra K**

546 Table 2-53 BMD Modeling Results for Fertility Index in Rats Exposed to 1-BP Via

547 Inhalation BMR 10% Extra Risk

Logistic Model. (Version: 2.14; Date: 2/28/2013) The form of the probability function is: P[response] = background+(1-background)/[1+EXP(intercept-slope*Log(dose))] Slope parameter is restricted as slope >= 1

Benchmark Dose Computation.

BMR = 10% Extra risk BMD = 448.13 BMDL at the 95% confidence level = 356.183

	Estir	nate	Default Initial Parameter Values		
background	0.066	6427	0.08		
intercept	-1.120	9E+02	-2.1668E+01		
slope	1	8	3.62868		
Analysis of De	rianco Tablo				
Model	Log(likelihood)	# Param'	s Deviance	Test d.f.	<i>p</i> -value
Full model	-33.45	5			
Fitted model	-35.7	2	4.4943	3	0.21
Fitted model Reduced model AIC: $= 75.396$	-79.79	2	4.4943 92.6846	3 4	0.21 <.0001
Reduced model AIC: $= 75.396$ Goodness of F	-79.79 64 it Table	1	92.6846	4	<.0001
Reduced model AIC: = 75.396 Goodness of F Dose	-79.79 54 it Table Est. Prob.	1 Expected	92.6846 Observed	4 Size	<.0001 Scaled Resid
Reduced model AIC: $= 75.396$ Goodness of F	-79.79 64 it Table	1	92.6846	4	<.0001
Reduced model AIC: = 75.396 Goodness of F Dose	-79.79 54 it Table Est. Prob.	1 Expected	92.6846 Observed	4 Size	<.0001 Scaled Resid
Reduced model AIC: = 75.396 Goodness of F Dose	-79.79 64 64 64 64 64 64 64 64 64 66 66 66	1 Expected 1.666	92.6846 Observed 2	4 Size 25	<.0001 <p>Scaled Resid 0.27</p>
Reduced model AIC: = 75.396 Goodness of F Dose 0 100	-79.79 64 64 64 64 64 60 666 60 666 60 60 666	1 Expected 1.666 1.666	92.6846 0bserved 2 0	4 Size 25 25	<.0001 Scaled Resid 0.27 -1.34

548

549

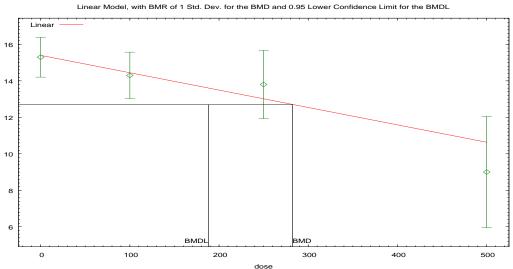
2.2.14 Decreased Implantations Sites

A decrease in the number of implantations sites was observed in the F₀ generation in the 550 551 reproductive and developmental study by (WIL Research, 2001). The doses and response data used for modeling are presented in Table 2-54. The highest dose group was not included because 552 553 none of the dams had implantations sites. 554

Table 2-54 Implantations Site Data Selected for Dose-Response Modeling for 1-BP 555

Dose (ppm)	Number of animals	Average Numer of Sites	Standard Deviation
0	23	15.3	2.53
100	25	14.3	3.09
250	22	13.8	4.23
500	11	9.0	4.54

- 557 The BMD modeling results for the number of implantations sites are summarized in Table 2-55.
- 558 The best fitting models were the Linear and Power based on Akaike information criterion (AIC;
- bower values indicates a better fit), chi-square goodness of fit *p*-value (higher value indicates a
- better fit) and visual inspection. Based on the parameter estimate for the Power model it reduced
- to the Linear, so the Linear model was selected. For the best fitting model a plot of the model is
- shown in Figure 2-20. The model version number, model form, benchmark dose calculation,
- 563 parameter estimates and estimated values are shown below in Table 2-56.


Table 2-55 Summary of BMD Modeling Results for Implantations Sites in F₀ Rats Following Inhalation Exposure of Parental Rats to 1-BP in a Two-Generation Study

Model ^a	Goodness of fit				BMDL _{1SD}	Basis for model	
	<i>p</i> -value	AIC	(ppm)	(ppm)	(ppm)	(ppm)	selection
Linear Power ^b	0.936	284.66	80.8	56.1	282	188	Linear and Power models were selected
Exponential (M2)	0.901	284.74	74.1	48.1	270	166	based on the lowest AIC from this set of models
Exponential (M4)	0.901	284.74	74.1	37.3	270	138	which have adequate p-
Polynomial 3°	0.741	286.64	85.5	56.2	295	188	values, adequate fit by visual inspection and
Polynomial 2°	0.724	286.66	84.3	56.1	289	188	the BMDLs are < 1.5- fold apart considered sufficiently close.
Hill	0.715	286.67	80.6	55.8	282	195	
Exponential (M3)	0.669	286.71	82.3	48.2	278	167	
Exponential (M5)	N/A ^c	288.71	82.3	48.2	278	167	-

^a Modeled variance case presented (BMDS Test 2 p-value = 0.0493), selected model in bold; scaled residuals for selected model for doses 0, 100, 250, and 500 ppm were -0.17, -0.23, 1, -1, respectively.

^b For the Power model, the power parameter estimate was 1. The models in this row reduced to the Linear model.

^c No available degrees of freedom to calculate a goodness of fit value.

19:50 12/03 2015

- 568 Figure 2-20 Plot of Mean Response by Dose with Fitted Curve for the Selected Model
- 569 (Linear) for Implantation Sites in Rats Exposed to 1-BP Via Inhalation in ppm BMR 1
 570 Standard Deviation.
- 570
- Table 2-56 BMD Modeling Results for Implantation Sites in Rats Exposed to 1-BP Via
 Inhalation in ppm BMR 1 Standard Deviation

Polynomial Model. (Version: 2.20; Date: 10/22/2014) The form of the response function is: Y[dose] = beta_0 + beta_1*dose A modeled variance is fit

Benchmark Dose Computation.

BMR = 1 Estimated standard deviations from the control mean BMD = 282.359 BMDL at the 95% confidence level = 188.047

Parameter Estimates					
Variable	Estimate	Default Initial Parameter Values			
lalpha	12.2915	2.51459			
rho	-3.77194	0			
beta_0	15.393	15.7286			
beta_1	-0.00952791	-0.01237			

Table of Data and Estimated Values of Interest

Dose	Ν	Obs Mean	Est Mean	Obs Std Dev	Est Std Dev	Scaled Resid		
0	23	15.3	15.4	2.53	2.69	-0.166		
100	25	14.3	14.4	3.09	3.03	-0.231		
250	22	13.8	13	4.23	3.69	1		
500	11	9	10.6	4.54	5.41	-0.999		

Likelihoods of Interest

Model	Log(likelihood)	# Param's	AIC
A1	-140.289933	5	290.579865
A2	-136.366566	8	288.733132
A3	-138.26616	6	288.532319
fitted	-138.332408	4	284.664816
R	-151.740933	2	307.481866

Tests of Interest Test -2*log(Likelihood Ratio) Test df *p*-value Test 1 30.7487 6 < 0.0001 7.84673 3 0.04929 Test 2 2 3.79919 0.1496 Test 3 Test 4 0.132497 2 0.9359

575 **2.2.15** Decreased Pup Body Weight

Decreased pup body weight was observed in the 2-generation reproductive and developmental 576 577 study by (WIL Research, 2001). Statistically significant decreases in pup body weight were noted 578 for males in the F₁ generation at PND 28 and in the F₂ generation in both sexes at PNDs 14 and 579 21. Continuous models were used to fit-dose response data for decreased pup body weights. A 580 BMR of 5% RD from control mean was applied in modeling pup body weight changes under the 581 assumption that it represents a minimal biologically significant response. In adults, a 10% 582 decrease in body weight in animals is generally recognized as a biologically significant response 583 associated with identifying a maximum tolerated dose; during development, however, 584 identification of a smaller (5%) decrease in body weight is consistent with the assumptions that 585 development represents a susceptible lifestage and that the developing animal is more adversely 586 affected by a decrease in body weight than the adult. In humans, reduced birth weight is 587 associated with numerous adverse health outcomes, including increased risk of infant mortality 588 as well as heart disease and type II diabetes in adults (Barker, 2007; Reyes and Mañalich, 2005). 589 The selection of a 5% BMR is additionally supported by data from (Kaylock et al., 1995) which 590 found that a BMR of 5% RD for fetal weight reduction was statistically similar to several other 591 BMR measurements as well as to statistically-dervived NOAEL values. For these reasons, a 592 BMR of 5% RD was selected for decreased pup weight. A BMR of 1 standard deviation is also 593 shown for comparison per EPA Benchmark Dose Technical Guidance (U.S. EPA, 2012). The 594 doses, response data and BMD modeling results for decreased pup body weight are presented 595 below at each time point.

- 596
- 597

2.2.15.1 Decreased Body Weight in F1 Male Pups at PND 28

598 The doses and response data from the WIL Laboratories (WIL Research, 2001) study were used 599 for the modeling and are presented in Table 2-57.

600

601 Table 2-57 Pup Body Weight Data in F1 Males at PND 28 for Dose-Response Modeling

		Concent	ration (ppm)	
	0	100	250	500
Number of litters	23	24	21	10
Mean pup wt (g)	88.1	82.8	80.3	76.0
Standard deviation (g)	7.60	7.74	9.04	9.45

602

603 A comparison of the model fits obtained for pup body weight changes is provided in Table 2-58. 604 The best fitting model was selected based on Akaike information criterion (AIC; lower values 605 indicates a better fit), visual inspection and comparison with the BMD/BMDLs among the data 606 for decreased pup weights at other time points. There is a large spread in BMC/L values among 607 the models and EPA procedures allow for selecting the lowest BMDL is this case (the Hill 608 model) however the Exponential (M2) was selected because it is in line with the results from the 609 pup body weight decreases observed at the other time points in this data set and the Hill model 610 has additional uncertainty of the BMD / BMDL ratio is 4-fold and the BMDL is greater than 4-611 fold lower than the lowest dose. The best-fitting model is indicated in bold. For the best fitting

model a plot of the model is shown in Figure 2-21. The model version number, model form,
benchmark dose calculation, parameter estimates and estimated values are shown below in Table

- 2-59. Also a plot of the Hill model is shown in Figure 2-22 and the model version number, model 614
- 615 form, benchmark dose calculation, parameter estimates and estimated values are shown below in Table 2-59.
- 616
- 617

Table 2-58 Summary of BMD Modeling Results for Body Weight of F1 Male Rat Pups on 618

- 619 PND 28 Following Inhalation Exposure of Parental Rats to 1-BP in a Two-Generation
- 620 Study

Model ^a	Goodne	ss of fit	BMD	BMDL	BMD	BMDL	Basis for model selection
	<i>p</i> -value	AIC	1SD (ppm)	1SD (ppm)	5RD (ppm)	5RD (ppm)	
Exponential (M2) Exponential (M3) ^b	0.449	411.46	334.07	228.77	174	123	The Exponential (M2) model was selected based on the lowest AIC from this set of models which have adequate <i>p</i> -values and adequate fit
Power ^c Polynomial 3 ^{od} Polynomial 2 ^{oe} Linear	0.406	411.66	345.22	242.64	183	133	by visual inspection. The Hill model has the lowest BMDL and the BMDI is > 5-fold apart from other model BMDLs not considered sufficiently close, however the BMDL is > 4-fold
Hill	0.578	412.17	234.74	85.21	92.2	23.2	from the lowest dose and BMD /
Exponential (M4) Exponential (M5) ^f	0.512	412.29	238.92	95.80	101	36.8	BMDL ratio is 4-fold and the Exponential (M2) model is in line with the result from pup body weight decreases observed in this study at other time points.

^a Constant variance case presented (BMDS Test 2 p-value = 0.785), selected model in bold; scaled residuals for selected model for doses 0, 100, 250, and 500 ppm were 0.77, -0.88, -0.17, 0.44, respectively.

^b For the Exponential (M3) model, the estimate of d was 1 (boundary). The models in this row reduced to the Exponential (M2) model.

^c For the Power model, the power parameter estimate was 1. The models in this row reduced to the Linear model.

^d For the Polynomial 3° model, the b3 coefficient estimates was 0 (boundary of parameters space). The models in this row reduced to the Polynomial 2° model. For the Polynomial 3° model, the b3 and b2 coefficient estimates were 0 (boundary of parameters space). The models in this row reduced to the Linear model.

^e For the Polynomial 2° model, the b2 coefficient estimate was 0 (boundary of parameters space). The models in this row reduced to the Linear model.

^f For the Exponential (M5) model, the estimate of d was 1 (boundary). The models in this row reduced to the Exponential (M4) model.

Exponential 2 Model, with BMR of 0.05 Rel. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

- 622 16:23 10/27 2015
- 623 Figure 2-21 Plot of Mean Response by Dose with Fitted Curve for the Selected Model
- 624 (Exponential (M2)) for Pup Body Weight in Rats Exposed to 1-BP Via Inhalation in ppm
- 625 **BMR 5% Relative Deviation.**
- 626

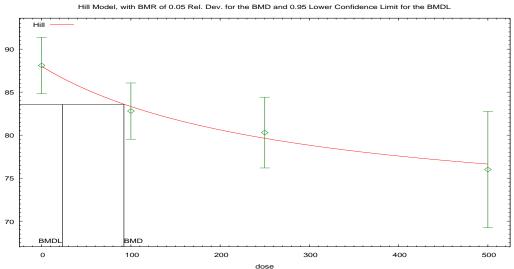
Table 2-59 BMD Modeling Results for Pup Body Weight in Rats Exposed to 1-BP Via Inhalation BMR 5% Relative Deviation

Exponential Model. (Version: 1.10; Date: 01/12/2015) The form of the response function is: Y[dose] = a * exp(sign * b * dose) A constant variance model is fit

Benchmark Dose Computation.

BMR = 5% Relative deviation BMD = 173.561 BMDL at the 95% confidence level = 122.612

Parameter Estimate	es	
Variable	Estimate	Default Initial Parameter Values
lnalpha	4.19824	4.17769
rho	n/a	0
a	86.7871	78.9392
b	0.000295534	0.000288601
с	n/a	0
d	n/a	1


Table of Data and Estimated Values of Interest

Dose	Ν	Obs Mean	Est Mean	Obs Std Dev	Est Std Dev	Scaled Resid
0	23	88.1	86.79	7.6	8.16	0.7717
100	24	82.8	84.26	7.74	8.16	-0.8765
250	21	80.3	80.61	9.04	8.16	-0.1719
500	10	76	74.87	9.45	8.16	0.4398

Likelihoods of Interest

Model	Log(likelihood)	# Param's	AIC
A1	-201.9297	5	413.8595
A2	-201.395	8	418.7901
A3	-201.9297	5	413.8595
R	-210.4356	2	424.8712
2	-202.7313	3	411.4626

Tests of Interest					
Test	-2*log(Likelihood Ratio)	Test df	<i>p</i> -value		
Test 1	18.08	6	0.006033		
Test 2	1.069	3	0.7845		
Test 3	1.069	3	0.7845		
Test 4	1.603	2	0.4486		

630 16:23 10/27 2015

- 631 Figure 2-22 Plot of Mean Response by Dose with Fitted Curve for the Hill Model for Pup
- 632 Body Weight in Rats Exposed to 1-BP Via Inhalation in ppm BMR 5% Relative Deviation.
- 633

Table 2-60 BMD Modeling Results for Pup Body Weight in Rats Exposed to 1-BP Via Inhalation BMR 5% Relative Deviation

Hill Model. (Version: 2.17; Date: 01/28/2013) The form of the response function is: $Y[dose] = intercept + v*dose^n/(k^n + dose^n)$ A constant variance model is fit

Benchmark Dose Computation.

BMR = 5% Relative deviation BMD = 92.1819 BMDL at the 95% confidence level = 23.1805

Parameter Estimates

Variable	Estimate	Default Initial Parameter Values
alpha	65.474	68.7399
rho	n/a	0
intercept	87.9661	88.1
v	-17.7059	-12.1
n	1	0.881973
k	278.907	145

Dose	Ν	Obs M	Iean	Est M	ean	Obs Std Dev	Est Std Dev	Scaled Resid
0	23	88.	.1	88		7.6	8.09	0.0793
100	24	82.	.8	83.3		7.74	8.09	-0.299
250	21	80.	.3	79.6		9.04	8.09	0.398
500	10	76	5	76.6		9.45	8.09	-0.235
Likelihoods (of Interest				1			
Model	Log(likeliho	ood)	# Pai	ram's		AIC		
A1	-201.92973	32		5	4	13.859464		
A2	-201.3950	3	8	8	4	18.790061		
A3	-201.92973	32	:	5	4	13.859464		
fitted	-202.08454	41	2	4	4	12.169082		
R	-210.43560	07		2	4	24.871213		
Tests of Inter	rest		Tes	t df		p-value		
2000	2*log(Likelih Ratio)	100d				p · unuo		
Test 1	18.0812		(5		0.006033		
Test 2	1.0694			3		0.7845		
	1.0694			3		0.7845		
Test 3	1.0094			5		0.7015		

2.2.15.2 Decreased Body Weight in F₂ Female Pups at PND 14

- The doses and response data used for the modeling are presented in Table 2-61.
- 640

638

641Table 2-61 Pup Body Weight Data in F2 Females at PND 14 from Selected for Dose-

642 **Response Modeling**

		Concentration (ppm)						
	0	100	250	500				
Number of litters	22	17	15	15				
Mean pup wt (g)	27.6	26.9	27.3	23.7				
Standard deviation (g)	2.29	2.11	3.87	3.70				

643

The BMD modeling results for decreased pup weight in F₂ females at PND 14 with non-

homogeneous variance (BMDS test 2 p-value = 0.0218) are summarized in Table 2-62. Although

the variances are non-homogeneous and not well modeled for any of the non-homogeneous

647 variance models the means were well-modeled (the highest *p*-value is 0.904 for the linear model

648 with non-homogeneous variances).

649

650 Table 2-62 Summary of BMD Modeling Results for Body Weight of F₂ Female Rat Pups on

651 PND 14 Following Inhalation Exposure of Parental Rats to 1-BP in a Two-Generation

652 Study

Model ^a	Go	oodness of fit	BMD _{5RD}	BMDL _{5RD}	
	<i>p</i> -value	AIC	(ppm)	(ppm)	
Linear	0.904	221.02	228	145	
Exponential (M2)	0.893	221.05	224	138	
Exponential (M4)	0.893	221.05	224	104	
Exponential (M3)	0.715	222.96	244	139	
Power	0.708	222.96	245	146	
Polynomial 3 ^{°b}	0.687	222.98	245	145	
Polynomial 2 ^{°c}	0.687	222.98	245	145	
Exponential (M5)	N/A ^d	224.82	228	107	
Hill	N/A ^d	224.82	226	105	
Polynomial 4°	error	error	error ^e	error ^e	

^a Modeled variance case presented (BMDS Test 2 p-value = 0.0218, BMDS Test 3 p-value = 0.0438), no model was selected as a best-fitting model.

^b The Polynomial 3° model may appear equivalent to the Polynomial 2° model, however differences exist in digits not displayed in the table.

^c The Polynomial 2[°] model may appear equivalent to the Polynomial 3[°] model, however differences exist in digits not displayed in the table.

^d No available degrees of freedom to calculate a goodness of fit value.

^e BMD or BMDL computation failed for this model.

- 653 To investigate the effect of the poor modeling of the variances on the BMDL, the models were
- run using the smallest dose standard deviation (2.29), highest (3.87) and pooled (2.89) for all dose levels and the modeling results are summarized in Table 2-63. 654
- 655

Table 2-63 BMD Modeling Results for Body Weight of F2 Female Rat Pups on PND 14 Following Inhalation Exposure of Parental Rats to 1-BP in a Two-Generation Study with Variances Fixed at Smallest, Pooled and Highest Values.

Model ^a	Sma	llest Sta	ndard De	viation	Ро	oled Stan	dard Devi	ation	L	argest St	tandard Dev	iation	Ratio
	Goodnes	ss of fit		BMDL _{5RD}	Goodn	ess of fit	f fit BMD _{5RD} BMDL _{5RD} Goodness of			BMDL _{5RD}	BMDLs Smallest		
	<i>p</i> -value	AIC	(ppm)	(ppm)	<i>p</i> -value	AIC	(ppm)	(ppm)	<i>p</i> -value	AIC	(ppm)	(ppm)	to Largest Std Dev
Polynomial 3°	0.518	186.54	360	274	0.661	218.16	360	183	0.793	258.09	360	145	1.9
Polynomial 2°	0.318	187.51	304	199	0.485	218.78	304	260	0.667	258.44	304	140	1.4
Power	0.331	188.16	465	247	0.441	219.93	465	200	0.564	259.96	460	148	1.7
Exponential (M3)	0.331	188.16	473	249	0.441	219.93	470	202	0.564	259.96	473	143	1.7
Hill	N/A ^b	190.16	466	248	N/A ^b	221.93	465	200	N/A ^b	261.96	442	138	1.8
Exponential (M5)	N/A ^b	190.16	470	249	N/A ^b	221.93	470	202	N/A ^b	261.96	473	139	1.8
Linear	0.0533	191.08	193	146	0.154	221.07	193	138	0.348	259.74	193	127	1.1
Exponential (M2)	0.0443	191.45	188	139	0.137	221.31	188	131	0.325	259.88	188	119	1.2
Exponential (M4)	0.0443	191.45	188	131	0.137	221.31	188	115	0.325	259.88	188	90.2	1.5

^a Constant variance case presented (BMDS Test 2 *p*-value = 1., BMDS Test 3 *p*-value = 1.), no model was selected as a best-fitting model.

^b No available degrees of freedom to calculate a goodness of fit value.

- A comparison across the full suite of BMD models shows the BMDL is sensitive to the
- adjustment of the variances and for the model that fit the constant variance data best, the
- Polynomial 3° model the ratio of BMDLs was 1.9. This result suggests that due to the poor
- variance modeling for the original data it is not reasonable to use BMDS for this endpoint. Instead
- the NOAEL of 250 ppm was used.
- 664

2.2.15.3 Decreased Body Weight in F₂ Female Pups at PND 21

- The doses and response data used for the modeling are presented in Table 2-64.
- 667

Table 2-64 Pup Body Weight Data in F₂ Females at PND 21 from Selected for Dose Response Modeling

		Concentration (ppm)						
	0	100	250	500				
Number of litters	22	17	15	15				
Mean pup wt (g)	46.6	44.7	45.6	39.7				
Standard deviation (g)	4.05	3.80	5.60	6.13				

670 Comparisons of model fits obtained are provided in Table 2-65. The best fitting model

671 (Polynomial 2° with constant variance) was selected based on Akaike information criterion

672 (AIC; lower values indicates a better fit), chi-square goodness of fit *p*-value (higher value

673 indicates a better fit) and visual inspection. The best-fitting model is indicated in bold. For the

best fitting model a plot of the model is shown in Figure 2-23. The model version number, model

675 form, benchmark dose calculation, parameter estimates and estimated values are shown below.

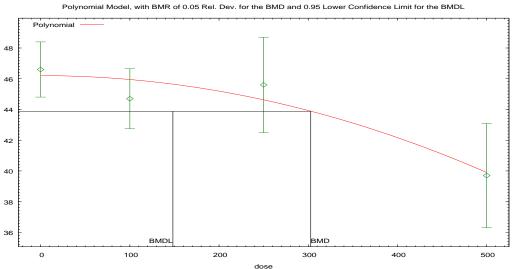

676

Table 2-65 Summary of BMD Modeling Results for Body Weight of F₂ Females on PND 21 Following Inhalation Exposure of Parental Rats to 1-BP in a Two-Generation Study

Model ^a	Goodne	ss of fit	BMD _{1SD}	BMDL _{1SD}	BMD _{5RD}	BMDL _{5RD}	Basis for model
	<i>p</i> -value	AIC	(ppm)	(ppm)	(ppm)	(ppm)	selection
Polynomial 2°	0.372	291.28	436.24	299.79	303	148	The Polynomial
Linear	0.176	292.77	386.50	269.95	187	135	2° model was selected based on
Power	0.216	292.83	475.29	314.36	407	155	the lowest AIC
Exponential (M3)	0.216	292.83	474.45	316.27	406	152	from this set of models which
Polynomial 3°	0.213	292.85	449.22	313.20	336	154	have adequate <i>p-</i> values, adequate
Exponential (M2)	0.160	292.97	385.88	261.10	181	127	fit by visual
Exponential (M4)	0.160	292.97	385.88	250.91	181	105	inspection and the BMDLs are <
Exponential (M5)	N/A ^b	294.83	474.45	316.27	406	152	1.5-fold apart
Hill	N/A ^b	294.83	475.10	314.77	406	150	considered sufficiently close.

^a Constant variance case presented (BMDS Test 2 p-value = 0.144), selected model in bold; scaled residuals for selected model for doses 0, 100, 250, and 500 ppm were 0.4, -1.06, 0.8, -0.15, respectively.

^b No available degrees of freedom to calculate a goodness of fit value.

679 13:20 10/29 2015

- 680 Figure 2-23 Plot of Mean Response by Dose with Fitted Curve for the Selected Model
- (Polynomial 2°) for Pup Body Weight in Rats Exposed to 1-BP Via Inhalation in ppm BMR
 = 5% Relative Deviation.
- 683

Table 2-66 BMD Modeling Results for Pup Body Weight in Rats Exposed to 1-BP Via Inhalation BMR = 5% Relative Deviation.

Polynomial Model. (Version: 2.20; Date: 10/22/2014) The form of the response function is: Y[dose] = beta_0 + beta_1*dose + beta_2*dose^2 + ... A constant variance model is fit

Benchmark Dose Computation.

BMR = 5% Relative deviation BMD = 302.794 BMDL at the 95% confidence level = 148.282

Parameter Estimates

Variable	Estimate	Default Initial Parameter Values
alpha	22.9776	23.7017
rho	n/a	0
beta_0	46.1877	45.9942
beta_1	0	0
beta_2	-0.0000251884	-0.000029911

Dose	Ν	Obs M	lean	Est Me	an	Obs Std Dev	Est Std Dev	Scaled Resid
0	22	46.	6	46.2		4.05	4.79	0.403
100	17	44.	4.7 45.9			3.8	4.79	-1.06
250	15	45.	5.6 44.6			5.6	4.79	0.797
500	15	39.	7	39.9		6.13	4.79	-0.154
Likelihoods o								
Model	Log(likeli	nood)	# Pa	ram's		AIC		
A1	-141.651	019		5	2	93.302038		
A2	-138.944	287		8	293.888574			
A3	-141.651	019		5	293.302038			
fitted	-142.640	988		3	291.281976			
					305.362534			
R	-150.681	267		2	3	05.362534		
R	-150.681	267		2	3	05.362534		
R Fests of Inter	est				3	05.362534		
		elihood		2 est df		05.362534 <i>p</i> -value		
Fests of Inter Test	rest -2*log(Lik	elihood o)						
Fests of Inter	rest -2*log(Lik Ratio	elihood o) 74		est df		<i>p</i> -value		
Tests of Inter Test Test 1	rest -2*log(Lik Ration 23.4*	elihood o) 74 46		est df		<i>p</i> -value		

687

2.2.15.4 Decreased Body Weight in F₂ Male Pups at PND 14

The doses and response data used for the modeling are presented in Table 2-67.

Table 2-67 Pup Body Weight Data in F₂ Males at PND 14 from Selected for Dose-Response Modeling

		Concentration (ppm)						
	0	100	250	500				
Number of litters	22	17	15	16				
Mean pup wt (g)	29.2	28.1	28.4	24.5				
Standard deviation (g)	2.77	2.43	3.65	4.14				

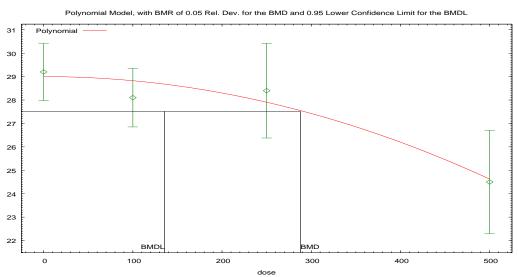
691

692 Comparisons of model fits obtained are provided in Table 2-68. The best fitting model

693 (Polynomial 2° with constant variance) was selected based on Akaike information criterion

- 694 (AIC; lower values indicates a better fit), chi-square goodness of fit *p*-value (higher value
- 695 indicates a better fit) and visual inspection. The best-fitting model is indicated in bold. For the
- best fitting model a plot of the model is shown in Figure 2-24. The model version number, model
- 697 form, benchmark dose calculation, parameter estimates and estimated values are shown below in698 Table 2-69.
- 699

700 Table 2-68 Summary of BMD Modeling Results for Body Weight of F₂ Male Rat Pups on


701 PND 14 Following Inhalation Exposure of Parental Rats to 1-BP in a Two-Generation

702 Study

Model ^a	Goodne	ss of fit	BMD _{1SD}	BMDL _{1SD}	BMD _{5RD}	BMDL _{5RD}	Basis for model
	<i>p</i> -value	AIC	(ppm)	(ppm)	(ppm)	(ppm)	selection
Polynomial 2°	0.509	238.45	427.44	290.47	288	136	The Polynomial
Linear	0.236	239.99	367.99	261.73	168	124	2° model was selected based on
Polynomial 3°	0.316	240.11	439.96	300.66	314	140	the lowest AIC
Power	0.290	240.22	457.39	297.00	358	138	from this set of models which
Exponential (M3)	0.289	240.23	456.58	297.67	358	134	have adequate <i>p</i> - values, adequate
Exponential (M2)	0.209	240.23	365.77	251.63	161	115	fit by visual
Exponential (M4)	0.209	240.23	365.77	241.42	161	95.6	inspection and the BMDLs are <
Hill	N/A ^b	242.22	457.31	296.92	358	138	1.5-fold apart
Exponential (M5)	N/A ^b	242.23	456.58	297.67	358	134	considered sufficiently close.

^a Constant variance case presented (BMDS Test 2 *p*-value = 0.116), selected model in bold; scaled residuals for selected model for doses 0, 100, 250, and 500 ppm were 0.35, -0.89, 0.64, -0.12, respectively. ^b No available degrees of freedom to calculate a goodness of fit value.

703

704 14:31 10/29 2015

- 705 Figure 2-24 Plot of Mean Response by Dose with Fitted Curve for the Selected Model
- 706 (Polynomial 2°) for Pup Body Weight in Rats Exposed to 1-BP Via Inhalation in ppm BMR
- 707 = **5% Relative Deviation.**

Table 2-69 BMD Modeling Results for Pup Body Weight in Rats Exposed to 1-BP Via Inhalation in ppm BMR = 5% Relative Deviation.

Polynomial Model. (Version: 2.20; Date: 10/22/2014) The form of the response function is: Y[dose] = beta_0 + beta_1*dose + beta_2*dose^2 + ... A constant variance model is fit

Benchmark Dose Computation.

BMR = 5% Relative deviation BMD = 287.938 BMDL at the 95% confidence level = 135.688

Parameter Estimates

Variable	Estimate	Default Initial Parameter Values
alpha	10.1836	10.5942
rho	n/a	0
beta_0	28.9615	28.8658
beta_1	0	0
beta_2	-0.000017466	-0.000019675

Table of Data and Estimated Values of Interest

Dose	Ν	Obs Mean	Est Mean	Obs Std Dev	Est Std Dev	Scaled Resid
0	22	29.2	29	2.77	3.19	0.35
100	17	28.1	28.8	2.43	3.19	-0.887
250	15	28.4	27.9	3.65	3.19	0.643
500	16	24.5	24.6	4.14	3.19	-0.119

Likelihoods of Interest

Model	Log(likelihood)	# Param's	AIC
A1	-115.551371	5	241.102743
A2	-112.600048	8	241.200097
A3	-115.551371	5	241.102743
fitted	-116.227119	3	238.454239
R	-125.255153	2	254.510306

Test	-2*log(Likelihood Ratio)	Test df	<i>p</i> -value
Test 1	25.3102	6	0.0002991
Test 2	5.90265	3	0.1164
Test 3	5.90265	3	0.1164
Test 4	1.3515	2	0.5088

712

2.2.15.5 Decreased Body Weight in F₂ Male Pups at PND 21

The doses and response data from the WIL Laboratories (2001) study was used for the modeling and are presented in Table 2-70.

715 Table 2-70 Pup Body Weight Data in F₂ Males at PND 21

		Concentration (ppm)						
	0	100	250	500				
Number of litters	22	17	15	16				
Mean pup wt (g)	49.5	46.9	47.6	40.8				
Standard deviation (g)	5.14	5.03	5.40	6.70				

716

717 Comparisons of model fits obtained are provided in Table 2-71. The best fitting model (Linear

718 with homogeneous variance) was selected based on Akaike information criterion (AIC; lower

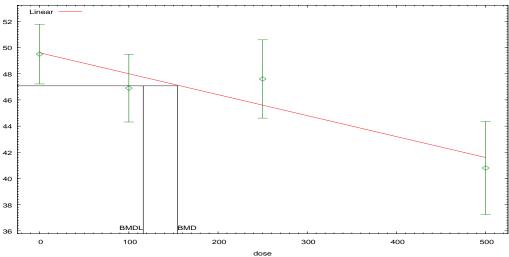
values indicates a better fit), chi-square goodness of fit *p*-value (higher value indicates a better

fit) and visual inspection. The best-fitting model is indicated in bold. For the best fitting model a

plot of the model is shown in Figure 2-25. The model version number, model form, benchmark

dose calculation, parameter estimates and estimated values are shown below in Table 2-72.

724Table 2-71 Summary of BMD Modeling Results for Body Weight of F2 Male Rat Pups on


- 725 PND 21 Following Inhalation Exposure of Parental Rats to 1-BP in a Two-Generation
- 726 **Study**

Model ^a	Goodne	ss of fit	BMD _{1SD}	BMDL _{1SD}	BMD5RD	BMDL _{5RD}	Basis for model
	<i>p</i> -value	AIC	(ppm)	(ppm)	(ppm)	(ppm)	selection
Linear	0.218	315.14	344.43	249.00	155	116	The Linear model
Exponential (M2)	0.194	315.38	339.42	237.32	147	107	was selected based on the
Exponential (M4)	0.194	315.38	339.42	220.01	147	84.8	lowest AIC from
Polynomial 3°	0.194	315.78	418.75	271.24	273	125	this set of models which have
Polynomial 2°	0.153	316.14	404.48	264.17	252	122	adequate <i>p-</i> values, adequate
Power	0.150	316.17	435.13	263.67	313	122	fit by visual
Exponential (M3)	0.148	316.19	436.20	257.18	318	115	inspection and the BMDLs are <
Hill	N/A ^b	318.17	435.26	262.98	314	121	1.5-fold apart
Exponential (M5)	N/A ^b	318.19	436.20	257.18	318	115	considered sufficiently close.

^a Constant variance case presented (BMDS Test 2 *p*-value = 0.614), selected model in bold; scaled residuals for selected model for doses 0, 100, 250, and 500 ppm were -0.04, -0.78, 1.44, -0.54, respectively. ^b No available degrees of freedom to calculate a goodness of fit value.

727

- 728 15:03 10/29 2015
- 729 Figure 2-25 Plot of Mean Response by Dose with Fitted Curve for the Selected Model
- (Linear) for Pup Body Weight in Rats Exposed to 1-BP Via Inhalation in ppm BMR = 5%
 Relative Deviation.
- 732
- Table 2-72 BMD Modeling Results for Pup Body Weight in Rats Exposed to 1-BP Via
 Inhalation in ppm BMR = 5% Relative Deviation

Polynomial Model. (Version: 2.20; Date: 10/22/2014) The form of the response function is: Y[dose] = beta_0 + beta_1*dose A constant variance model is fit

Benchmark Dose Computation. BMR = 5% Relative deviation BMD = 154.623 BMDL at the 95% confidence level = 116.114

Parameter Est	imates							
Variable Est		Estimat	e	Default Initial Parameter Values		s		
alpha		30.4578	;	30.92	275			
rho		n/a		0				
beta_0		49.5516	5	49.6	515			
beta_1		-0.016023	34	-0.016	0705			
Table of Data	and Estii	mated Val	ues of I	nterest				
Dose	Ν	Obs	s Mean	Est Me	an (bs Std Dev	Est Std Dev	Scaled Resid
0	22	2	19.5	49.6		5.14	5.52	-0.0439
100	17	2	46.9	47.9		5.03	5.52	-0.784
250	15	2	47.6	45.5		5.4	5.52	1.44
500	16	2	40.8	41.5		6.7	5.52	-0.536
Likelihoods of	Interest							
Model	Log(ikelihood)	# P	aram's		AIC		
A1	-15	3.048201		5	316	.096402		
A2	-15	2.146228	8		320.29245			
A3	-15	3.048201		5	316	.096402		
fitted	-154	4.572024		3	315	.144048		
R	-16	3.858303		2	331	.716606		

Tests of Interest

Test	-2*log(Likelihood Ratio)	Test df	<i>p</i> -value	
Test 1	23.4241	6	0.0006662	
Test 2	1.80395	3	0.6141	
Test 3	1.80395	3	0.6141	
Test 4	3.04765	2	0.2179	

736 **2.2.16 Decreased Brain Weight**

737 Decreased brain weights were observed in the 2-generation reproductive and developmental 738 study by (WIL Research, 2001). Statistically significant decreases in brain weights were noted 739 for both sexes in the F_0 generation, F_1 generation as adults and in the F_2 generation at PND 21. 740 Continuous models were used to fit-dose response data for decreased brain weights. For animals 741 exposed as adults (i.e. F0) a BMR of 5% was used because reduced brain weight is considered a 742 more severe endpoint than other decreased organ weights. For animals exposed during 743 development (i.e. F1 and F2 generations) BMRs of 1% and 5% were calculated. The reduced 744 brain weights were observed in the F1 generation as adults and in F2 generation at PND 21 745 suggesting this may be considered a permanent reduction starting during brain development and 746 therefore an even more severe effect and a BMR of 1% was choosen. In all cases a BMR of 1 747 standard deviation is also shown for comparison per EPA Benchmark Dose Technical Guidance 748 (U.S. EPA, 2012). The BMD and BMDLs for a BMR of 1 standard deviation and BMR of 5% 749 are generally similar. The doses, response data and BMD modeling results for decreased brain

750 weights are presented below at each time point.

2.2.16.1 Decreased Brain Weight in F₀ Females

The doses and response data from the WIL Laboratories (2001) study was used for the modeling and are presented in Table 2-73.

754 Table 2-73 Brain Weight Data in F₀ Females for Dose-Response Modeling

	Concentration (ppm)								
	0	100	250	500	750				
Number of animals	25	25	25	25	25				
Brain wt (g)	1.96	1.92	1.94	1.89	1.86				
Standard deviation (g)	0.078	0.094	0.084	0.105	0.072				

755

751

Comparisons of model fits obtained are provided in Table 2-74. The best fitting model (Linear with homogeneous variance) was selected based on Akaike information criterion (AIC; lower values indicates a better fit), chi-square goodness of fit *p*-value (higher value indicates a better fit) and visual inspection. The best-fitting model is indicated in bold. For the best fitting model a plot of the model is shown in Figure 2-26. The model version number, model form, benchmark dose calculation, parameter estimates and estimated values are shown below in Table 2-75.

762

Table 2-74 Summary of BMD Modeling Results for Brain Weight of F₀ Females Following Inhalation Exposure to 1-BP

Model ^a	Goodness of fit		BMD _{1SD}	BMDL _{1SD}	BMD5RD	BMDL _{5RD}	Basis for model
	<i>p</i> -value	AIC	(ppm)	(ppm)	(ppm)	(ppm)	selection
Linear	0.444	-480.77	711	509	802	584	The Linear model
Exponential (M2)	0.441	-480.75	711	504	804	580	was selected based on the lowest AIC from
Exponential (M4)	0.441	-480.75	711	434	804	543	this set of models
Polynomial 4 ^{°b} Polynomial 3°	0.273	-478.85	717	511	785	586	which have adequate <i>p</i> -values, adequate fit

Polynomial 2°	0.271	-478.84	718	511	792	586	by visual inspection
Power	0.263	-478.77	715	509	802	584	and the BMDLs are < 1.2-fold apart
Exponential (M3)	0.261	-478.76	716	504	804	580	considered
Exponential (M5)	0.101	-476.76	716	504	804	580	sufficiently close.
Hill	0.100	-476.75	error ^c	error ^c	error ^c	error ^c	

^a Constant variance case presented (BMDS Test 2 p-value = 0.340), selected model in bold; scaled residuals for selected model for doses 0, 100, 250, 500, and 750 ppm were 0.41, -1.2, 1.01, -0.12, -0.1, respectively.

^b For the Polynomial 4° model, the b4 coefficient estimate was 0 (boundary of parameters space). The models in this row reduced to the Polynomial 3° model.

^c BMD and BMDL computation failed for this model.

765

Linear Model, with BMR of 1 Std. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL Linea 2 1.98 1.96 1.94 1.92 1.9 1.88 1.86 1.84 1.82 BMDI MD о 100 200 500 600 300 400 700

- 766 18:44 10/05 2015
- 767 Figure 2-26 Plot of Mean Response by Dose with Fitted Curve for the Selected Model
- (Linear) for Brain Weight in F₀ Female Rats Exposed to 1-BP Via Inhalation in ppm BMR
 = 1 Standard Deviation.
- 770

Table 2-75 BMD Modeling Results for Brain Weight in F₀ Female Rats Exposed to 1-BP Via Inhalation in ppm BMR = 1 Standard Deviation

Polynomial Model. (Version: 2.20; Date: 10/22/2014) The form of the response function is: Y[dose] = beta_0 + beta_1*dose A constant variance model is fit

Benchmark Dose Computation.

BMR = 1 Estimated standard deviations from the control mean

BMD = 711.056

BMDL at the 95% confidence level = 508.985

Parameter	Estimates

Variable	Estimate	Default Initial Parameter Values	
----------	----------	-------------------------------------	--

alpha	0.00749034	0.007637
rho	n/a	0
beta_0	1.95295	1.95295
beta_1	-0.000121716	-0.000121716

Dose	Ν	Obs Mean	Est Mean	Obs Std Dev	Est Std Dev	Scaled Resid
0	25	1.96	1.95	0.08	0.09	0.407
100	25	1.92	1.94	0.09	0.09	-1.2
250	25	1.94	1.92	0.08	0.09	1.01
500	25	1.89	1.89	0.1	0.09	-0.121
750	25	1.86	1.86	0.07	0.09	-0.096

Model	Log(likelihood)	# Param's	AIC
A1	244.723276	6	-477.446552
A2	246.984613	10	-473.969225
A3	244.723276	6	-477.446552
fitted	243.383815	3	-480.76763
R	234.782134	2	-465.564268

Test	-2*log(Likelihood Ratio)	Test df	<i>p</i> -value
Test 1	24.405	8	0.001959
Test 2	4.52267	4	0.3399
Test 3	4.52267	4	0.3399
Test 4	2.67892	3	0.4438

774

2.2.16.2 Decreased Brain Weight in F₀ Males

The doses and response data from the WIL Laboratories (2001) study was used for the modeling
and are presented in Table 2-76.

		С	oncentration (ppr	n)	
	0	100	250	500	750
Number of animals	25	25	25	25	25
Brain wt (g)	2.19	2.15	2.08	2.1	2.05
Standard deviation (g)	0.091	0.114	0.087	0.177	0.091

777 Table 2-76 Brain Weight Data in F₀ Males for Dose-Response Modeling

778

The BMD modeling results for decreased brain weight in F_0 males with non-homogeneous

variance (BMDS test 2 p-value = 0.000386) are summarized in Table 2-77. Although the

variances are non-homogeneous and not well modeled for any of the non-homogeneous variance

models the means were well-modeled (the highest *p*-value is 0.618 for the Exponential (M4)
 model with non-homogeneous variances).

784

Table 2-77 Summary of BMD Modeling Results for Brain Weight of F₀ Males Following Inhalation Exposure to 1-BP

Model ^a	Goodness of fit		Goodness of fit				BMDL _{1SD}	BMD5RD	BMDL5RD	Basis for
	<i>p</i> -value	AIC	(ppm)	(ppm)	(ppm)	(ppm)	model selection			
Exponential (M4)	0.618	-408.61	235	99.2	372	159	No model			
Hill	0.340	-406.66	226	97.3	354	107	selected based on			
Exponential (M5)	0.152	-405.52	110	84.8	115	102	poor			
Exponential (M2) Exponential (M3) ^b	0.0868	-405.00	606	401	636	453	modeling of the variances			
Power ^c Polynomial 4 ^{od} Polynomial 2 ^{oe} Linear ^f	0.0804	-404.83	617	413	644	463				
Polynomial 3 ^{og}	0.0804	-404.83	617	413	644	463				

^a Modeled variance case presented (BMDS Test 2 p-value = 3.86E-04, BMDS Test 3 p-value = 5.66E-04), no model was selected as a best-fitting model.

^b For the Exponential (M3) model, the estimate of d was 1 (boundary). The models in this row reduced to the Exponential (M2) model.

^c For the Power model, the power parameter estimate was 1. The models in this row reduced to the Linear model.

^d For the Polynomial 4° model, the b4 and b3 coefficient estimates were 0 (boundary of parameters space). The models in this row reduced to the Polynomial 2° model. For the Polynomial 4° model, the b4, b3, and b2 coefficient estimates were 0 (boundary of parameters space). The models in this row reduced to the Linear model.

^e For the Polynomial 2° model, the b2 coefficient estimate was 0 (boundary of parameters space). The models in this row reduced to the Linear model.

^f The Linear model may appear equivalent to the Polynomial 3° model, however differences exist in digits not displayed in the table.

^g The Polynomial 3° model may appear equivalent to the Power model, however differences exist in digits not displayed in the table. This also applies to the Polynomial 4° model. This also applies to the Polynomial 2° model. This also applies to the Linear model.

787

- 788 To investigate the effect of the poor modeling of the variances on the BMDL, the models were
- run using the smallest dose standard deviation (0.091), highest (0.177) and the pooled (0.0907) for

all dose levels using the BMR of 5% RD and the modeling results are summarized in Table 2-78.

Table 2-78 BMD Modeling Results for Brain Weight of F₀ Male Rats Following Inhalation Exposure to 1-BP in a Two Generation Study with Variances Fixed at Smallest, Pooled and Highest Values.

Model ^a	Sm	allest Sta	ndard Dev	iation	Po	oled Stan	dard Devi	dard Deviation Largest Standard Deviation					Ratio
	Goodne	ess of fit	BMD _{5RD}		Goodn	Goodness of fit BMD5RD	BMD _{5RD}	BMD _{5RD} BMDL _{5RD}	Goodness of fit		BMD _{5RD}	BMDL _{5RD}	BMDLs Smallest
	<i>p</i> -value	AIC	(ppm)	(ppm)	<i>p</i> -value	AIC	(ppm)	(ppm)	<i>p</i> -value	AIC	(ppm)	(ppm)	to Largest Std Dev
Exponential (M4)	0.0893	-477.73	375	164	0.108	-467.70	375	159	0.553	-303.82	375	78.7	2.1
Hill	0.0423	-476.44	289	106	0.0513	-466.35	289	106	0.315	-302.00	289	70.4	1.5
Exponential (M5)	0.0398	-476.34	246	104	0.0484	-466.26	246	103	0.309	-301.97	246	82.4	1.3
Exponential (M2)	0.0238	-475.11	669	515	0.0332	-465.43	669	510	0.503	-304.65	669	420	1.2
Exponential (M3)	0.0238	-475.11	669	515	0.0332	-465.43	669	510	0.503	-304.65	669	420	1.2
Power	0.0223	-474.96	674	523	0.0312	-465.29	674	518	0.496	-304.62	674	430	1.2
Polynomial 4°	0.0223	-474.96	674	523	0.0312	-465.29	674	518	0.496	-304.62	674	430	1.2
Polynomial 2°	0.0223	-474.96	674	523	0.0312	-465.29	674	518	0.496	-304.62	674	430	1.2
Linear	0.0223	-474.96	674	523	0.0312	-465.29	674	518	0.496	-304.62	674	430	1.2
Polynomial 3°	0.0223	-474.96	674	523	0.0312	-465.29	674	518	0.496	-304.62	674	430	1.2

^a Constant variance case presented (BMDS Test 2 *p*-value = 1., BMDS Test 3 *p*-value = 1.), no model was selected as a best-fitting model.

- A comparison across the full suite of BMD models shows the BMDL is sensitive to the adjustment
- of the variances and for the model that fit the constant variance data best, the Exponential (M4)
- model the ratio of BMDLs was 2.1. This result suggests that due to the poor variance modeling for
- the original data it is not reasonable to use BMDS for this endpoint. Instead the NOAEL of 100 ppm was used.
- 800

2.2.16.3 Decreased Brain Weight in F₁ Females as Adults

802 The doses and response data used for the modeling are presented in Table 2-79.

Table 2-79 Brain Weight Data in F1 Females as Adults from Selected for Dose-Response Modeling

		Concentration (ppm)					
	0	100	250	500			
Number of animals	25	25	25	25			
Brain wt (g)	1.97	1.96	1.92	1.89			
Standard deviation (g)	0.076	0.073	0.067	0.102			

805

806 Comparisons of model fits obtained are provided in Table 2-80. The best fitting model

807 (Exponential (M2) with homogeneous variance) was selected based on Akaike information

808 criterion (AIC; lower values indicates a better fit), chi-square goodness of fit *p*-value (higher value

indicates a better fit) and visual inspection. The best-fitting model is indicated in bold. For the best

fitting model a plot of the model is shown in Figure 2-27. The model version number, model form,

benchmark dose calculation, parameter estimates and estimated values are shown below in Table

- 812 2-81.
- 813

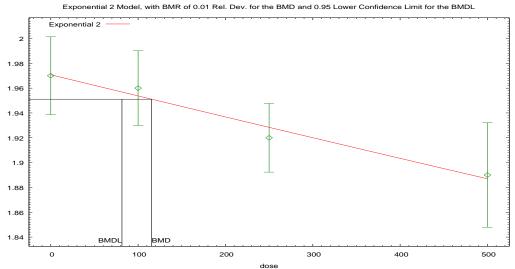
Table 2-80 Summary of BMD Modeling Results for Brain Weight of F1 Female Rats as Adults Following Inhalation Exposure of Parental Rats to 1-BP in a Two-Generation Study

Model ^a	Goodne	ess of fit	BMD	BMDL	BMD	BMDL	BMD	BMDL	Basis for model
	<i>p</i> -value	AIC	1SD (ppm)	1SD (ppm)	5RD (ppm)	5RD (ppm)	1RD (ppm)	1RD (ppm)	selection
Exponential (M2) Exponential (M3) ^b	0.787	-401.21	472	327	590	416	116	81.5	The Exponential (M2) model was selected based on the lowest AIC
Power ^c Polynomial 3 ^{od} Polynomial 2 ^{oe} Linear	0.780	-401.19	473	331	589	419	118	83.8	from this set of models which have adequate <i>p</i> - values, adequate fit by visual
Exponential (M4)	0.534	-399.30	459	230	619	363	94.7	35.1	inspection and the BMDLs are < 3-
Hill	N/A ^f	-397.69	482	230	error ^g	error ^g	138	33.1	fold apart considered
Exponential (M5)	N/A ^f	-397.69	463	112	error ^g	0	141	37.6	sufficiently close.

^a Constant variance case presented (BMDS Test 2 p-value = 0.144), selected model in bold; scaled residuals for selected model for doses 0, 100, 250, and 500 ppm were -0.05, 0.39, -0.53, 0.19, respectively.

^b For the Exponential (M3) model, the estimate of d was 1 (boundary). The models in this row reduced to the Exponential (M2) model.

^c For the Power model, the power parameter estimate was 1. The models in this row reduced to the Linear model.


^d For the Polynomial 3° model, the b3 coefficient estimates was 0 (boundary of parameters space). The models in this row reduced to the Polynomial 2° model. For the Polynomial 3° model, the b3 and b2 coefficient estimates were 0 (boundary of parameters space). The models in this row reduced to the Linear model.

^e For the Polynomial 2° model, the b2 coefficient estimate was 0 (boundary of parameters space). The models in this row reduced to the Linear model.

^f No available degrees of freedom to calculate a goodness of fit value.

^g BMD or BMDL computation failed for this model.

816

13:46 11/06 2015 817

- 818 Figure 2-27 Plot of Mean Response by Dose with Fitted Curve for the Selected Model
- (Exponential (M2)) for Brain Weight in F1 Female Rats as Adults Exposed to 1-BP Via 819
- 820 Inhalation in ppm BMR = 1% Relative Deviation.
- 821

822 Table 2-81 BMD Modeling Results for Brain Weight in F₁ Female Rats as Adults Exposed to 823

1-BP Via Inhalation BMR = 1% Relative Deviation.

Exponential Model. (Version: 1.10; Date: 01/12/2015) The form of the response function is: Y[dose] = a * exp(sign * b * dose)A constant variance model is fit

Benchmark Dose Computation.

BMR = 1% Relative deviation BMD = 115.594BMDL at the 95% confidence level = 81.5083

Parameter Estimat Variable	Estimate	Default Initial Parameter Values		
Inalpha	-5.07205	-5.07685		
rho	n/a	0		
a	1.97082	1.89939		
b	0.0000869453	0.000086769		
c	n/a	0		
d	n/a	1		

Table of Data and Estimated Values of Interest								
Dose	Ν	Obs Mean	Est Mean	Obs Std Dev	Est Std Dev	Scaled Resid		
0	25	1.97	1.97	0.08	0.08	-0.05174		
100	25	1.96	1.95	0.07	0.08	0.3941		
250	25	1.92	1.93	0.07	0.08	-0.5332		
500	25	1.89	1.89	0.1	0.08	0.1908		

Likelihoods of Interest							
Model	Log(likelihood)	# Param's	AIC				
A1	203.8426	5	-397.6852				
A2	206.5452	8	-397.0903				
A3	203.8426	5	-397.6852				
R	196.2377	2	-388.4753				
2	203.6027	3	-401.2054				

Tests of Interest			
Test	-2*log(Likelihood Ratio)	Test df	<i>p</i> -value
Test 1	20.62	6	0.002151
Test 2	5.405	3	0.1444
Test 3	5.405	3	0.1444
Test 4	0.4799	2	0.7867

825

2.2.16.4 Decreased Brain Weight in F1 Males as Adults

826 The doses and response data used for the modeling are presented in Table 2-82.

827 Table 2-82 Brain Weight Data in F1 Males as Adults from Selected for Dose-Response Modeling

828

	Concentration (ppm)					
	0	100	250	500		
Number of animals	24	25	25	24		
Brain wt (g)	2.21	2.11	2.12	2.01		
Standard deviation (g)	0.092	0.111	0.109	0.079		

829

The data were not adequately fit by any of the models, the means goodness of fit *p*-values were 830

831 less than 0.05 for all of the models. Comparisons of model fits obtained are provided in Table 2-83.

Since no model was selected a plot of the model, BMD and BMDL calculations and other output 832

are not presented. Instead the LOAEL of 100 ppm was used because there was no NOAEL 833

observed in the WIL Laboratories (2001) study. 834

835

836 Table 2-83 Summary of BMD Modeling Results for Brain Weight of F₁ Male Rats as Adults Following Inhalation Exposure of Parental Rats to 1-BP in a Two-Generation Study 837

Model ^a	Goodne	ess of fit				BMDL _{5RD}		BMDL1RD	
	<i>p</i> -value	AIC	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	model selection
Exponential (M2) Exponential (M3) ^b	0.0320	-346.71	282	218	308	245	60.4	47.9	None selected
Power ^c Polynomial 3 ^{°d} Polynomial 2 ^{°e} Linear	0.0312	-346.66	288	225	314	252	62.8	50.3	based on poor fit to the mean values
Hill	0.00968	-344.90	237	93.0	265	112	44.2	12.5	goodness
Exponential (M4) Exponential (M5) ^f	0.00932	-344.84	251	124	279	144	49.4	20.7	of fit <i>p-</i> values < 0.05

^a Constant variance case presented (BMDS Test 2 *p*-value = 0.310, BMDS Test 3 *p*-value = 0.310), no model was selected as a best-fitting model.

^b For the Exponential (M3) model, the estimate of d was 1 (boundary). The models in this row reduced to the Exponential (M2) model.

^c For the Power model, the power parameter estimate was 1. The models in this row reduced to the Linear model.

^d For the Polynomial 3° model, the b3 coefficient estimates was 0 (boundary of parameters space). The models in this row reduced to the Polynomial 2° model. For the Polynomial 3° model, the b3 and b2 coefficient estimates were 0 (boundary of parameters space). The models in this row reduced to the Linear model.

^e For the Polynomial 2° model, the b2 coefficient estimate was 0 (boundary of parameters space). The models in this row reduced to the Linear model.

^f For the Exponential (M5) model, the estimate of d was 1 (boundary). The models in this row reduced to the Exponential (M4) model.

2.2.16.5 Decreased Brain Weight in F₂ Females at PND 21

840 The doses and response data used for the modeling are presented in Table 2-84.

841 Table 2-84 Brain Weight Data in F₂ Females at PND 21 from Selected for Dose-Response Modeling

842

a de la companya de	Concentration (ppm)						
	0	100	250	500			
Number of animals	22	17	15	15			
Brain wt (g)	1.3957	1.3903	1.3673	1.3089			
Standard deviation (g)	0.06491	0.08882	0.12231	0.1004			

843

844 Comparisons of model fits obtained are provided in Table 2-85. The best fitting model

845 (Exponential (M2) with non-homogeneous variance) was selected based on Akaike information

846 criterion (AIC; lower values indicates a better fit), chi-square goodness of fit p-value (higher value

indicates a better fit) and visual inspection. The best-fitting model is indicated in bold. For the best 847

848 fitting model a plot of the model is shown in Figure 2-28. The model version number, model form,

benchmark dose calculation, parameter estimates and estimated values are shown below in Table 849

850

2-86.

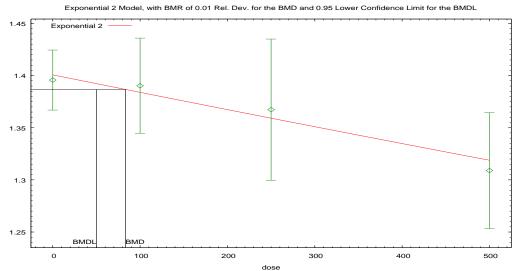
851

852 Table 2-85 Summary of BMD Modeling Results for Brain Weight of F₂ Female Rats at PND 21 Following Inhalation Exposure of Parental Rats to 1-BP in a Two-Generation Study 853

Model ^a	Good	ness of fit	BMD	BMDL	BMD	BMDL	BMD	BMDL	Basis for model
	<i>p-</i> value	AIC	1SD (ppm)	1SD (ppm)	5RD (ppm)	5RD (ppm)	1RD (ppm)	1RD (ppm)	selection
Exponential (M2) Exponential (M3) ^b	0.634	-257.31	454	260	426	256	83.4	50.1	The Exponential (M2) model was selected based on
Power	0.621	-257.27	456	266	427	261	85.3	52.1	the lowest AIC from this set of
Polynomial 3 ^{°c} Linear ^d	0.566	-257.27	456	266	427	261	85.3	52.1	models which have adequate <i>p</i> -
Polynomial 2 ^{°e}	0.566	-257.27	456	266	427	261	85.3	52.1	values, adequate fit by visual
Exponential (M4)	0.702	-256.08	643	130	1149	170	48.5	12.6	inspection and the BMDLs are < 4-
Hill	N/A ^f	-254.41	error ^g	error ^g	error ^g	error ^g	85.7	6.27	fold apart
Exponential (M5)	N/A ^f	-254.41	error ^g	0	error ^g	0	81.2	14.9	considered sufficiently close.

^a Modeled variance case presented (BMDS Test 2 *p*-value = 0.0643), selected model in bold; scaled residuals for selected model for doses 0, 100, 250, and 500 ppm were -0.31, 0.32, 0.34, -0.32, respectively.

^b For the Exponential (M3) model, the estimate of d was 1 (boundary). The models in this row reduced to the Exponential (M2) model.


^c For the Polynomial 3^o model, the b3 and b2 coefficient estimates were 0 (boundary of parameters space). The models in this row reduced to the Linear model.

^d The Linear model may appear equivalent to the Polynomial 2° model, however differences exist in digits not displayed in the table.

^e The Polynomial 2° model may appear equivalent to the Polynomial 3° model, however differences exist in digits not displayed in the table. This also applies to the Linear model.

^f No available degrees of freedom to calculate a goodness of fit value.

^g BMD or BMDL computation failed for this model.

- 855 13:15 11/06 2015
- Figure 2-28 Plot of Mean Response by Dose with Fitted Curve for the Selected Model
- 857 (Exponential (M2)) for Brain Weight in F₂ Female Exposed to 1-BP Via Inhalation in ppm
- 858 **BMR = 1% Relative Deviation.**
- 859

860 Table 2-86 BMD Modeling Results for Brain Weight in F₂ Female Exposed to 1-BP Via

861 **Inhalation BMR = 1% Relative Deviation.**

Exponential Model. (Version: 1.10; Date: 01/12/2015) The form of the response function is: Y[dose] = a * exp(sign * b * dose) A modeled variance is fit

Benchmark Dose Computation.

BMR = 1% Relative deviation BMD = 83.4282 BMDL at the 95% confidence level = 50.1098

Parameter Estimates							
Variable	Estimate	Default Initial Parameter Values					
lnalpha	-0.0282712	-1.99881					
rho	-15.3239	-8.92906					
a	1.40066	1.33604					
b	0.000120467	0.000129477					
c	n/a	0					
d	n/a	1					

Table of Data and Estimated Values of Interest								
Dose	Ν	Obs Mean	Est Mean	Obs Std Dev	Est Std Dev	Scaled Resid		
0	22	1.4	1.4	0.06	0.07	-0.3121		
100	17	1.39	1.38	0.09	0.08	0.3231		
250	15	1.37	1.36	0.12	0.09	0.3377		
500	15	1.31	1.32	0.1	0.12	-0.3236		

Likelihoods of Interest								
Model	Log(likelihood)	# Param's	AIC					
A1	131.2578	5	-252.5155					
A2	134.8828	8	-253.7656					
A3	133.1137	6	-254.2275					
R	126.819	2	-249.638					
2	132.6574	4	-257.3148					

Tests of Intere	st		
Test	-2*log(Likelihood Ratio)	Test df	<i>p</i> -value
Test 1	16.13	6	0.01309
Test 2	7.25	3	0.06434
Test 3	3.538	2	0.1705
Test 4	0.9127	2	0.6336

2.2.16.6 Decreased Brain Weight in F₂ Males at PND 21

The doses and response data from the WIL Laboratories (2001) study was used for the modeling are presented in Table 2-87.

		Concentration (ppm)						
	0	100	250	500				
Number of animals	22	17	15	16				
Brain wt (g)	1.4728	1.4253	1.4668	1.3629				
Standard deviation (g)	0.07836	0.07679	0.05971	0.09581				

866 Table 2-87 Brain Weight Data in F₂ Males at PND 21 for Dose-Response Modeling

867

868 Comparisons of model fits obtained are provided in Table 2-88. The best fitting model (Power with

869 homogeneous variance) was selected based on Akaike information criterion (AIC; lower values

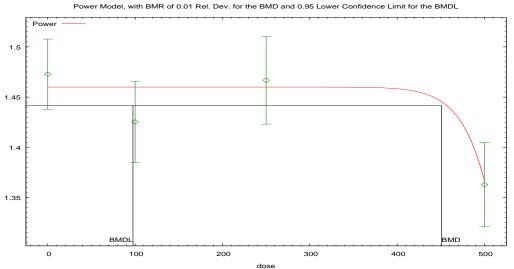
870 indicates a better fit), chi-square goodness of fit *p*-value (higher value indicates a better fit) and

871 visual inspection. The best-fitting model is indicated in bold. For the best fitting model a plot of the

872 model is shown in Figure 2-29. The model version number, model form, benchmark dose

873 calculation, parameter estimates and estimated values are shown below in Table 2-89.

874


Table 2-88 Summary of BMD Modeling Results for Brain Weight of F₂ Male Rats as Adults Following Inhalation Exposure of Parental Rats to 1-BP in a Two-Generation Study

Model ^a	Goodn	ess of fit	BMD	BMDL	BMD	BMDL	BMD	BMDL	
	<i>p</i> -value	AIC	1SD (ppm)	1SD (ppm)	5RD (ppm)	5RD (ppm)	1RD (ppm)	1RD (ppm)	selection
Power	0.137	-279.68	495	395	493	374	451	97.6	The Power model
Polynomial 3°	0.0961	-278.97	472	353	459	331	269	67.1	was selected based adequate goodness of fit <i>p</i> -value (> 0.1
Polynomial 2°	0.0647	-278.18	459	383	440	370	197	166	which excludes all other models) and
Exponential (M3)	0.0463	-277.68	495	396	493	376	450	102	adequate fit by visual inspection. Also, note if Polynomial 3°
Hill	0.0463	-277.68	495	281	493	error ^b	450	error ^b	model <i>p</i> -value was rounded up to 0.1
Linear	0.0306	-276.68	430	293	393	274	78.6	54.8	and included the
Exponential (M2)	0.0294	-276.60	431	289	393	269	76.9	52.8	Power model would be selected based on lowest AIC for
Exponential (M4)	0.0294	-276.60	431	278	393	250	76.9	36.9	models with BMDLs < 1.5-fold apart
Exponential (M5)	N/A ^c	-275.68	495	272	493	376	449	102	considered sufficiently close

^a Constant variance case presented (BMDS Test 2 p-value = 0.337), selected model in bold; scaled residuals for selected model for doses 0, 100, 250, and 500 ppm were 0.99, -1.62, 0.52, 0, respectively.

^b BMD or BMDL computation failed for this model.

^c No available degrees of freedom to calculate a goodness of fit value.

878 13:32 11/06 2015

- 879 Figure 2-29 Plot of Mean Response by Dose with Fitted Curve for the Selected Model
- 880 (Power) for Brain Weight in Rats Exposed to 1-BP Via Inhalation in ppm BMR = 1%
- 881 **Relative Deviation.**
- 882

Table 2-89 BMD Modeling Results for Brain Weight in Rats Exposed to 1-BP Via Inhalation in ppm BMR = 1% Relative Deviation

Power Model. (Version: 2.18; Date: 05/19/2014) The form of the response function is: Y[dose] = control + slope * dose^power A constant variance model is fit

Benchmark Dose Computation.

BMR = 1% Relative deviation BMD = 450.983 BMDL at the 95% confidence level = 97.5507

Parameter Estimates

Variable	Estimate	Default Initial Parameter Values
alpha	0.00621258	0.00622577
rho	n/a	0
control	1.45618	1.3629
slope	-2.44527E-50	0.0048117
power	18	-9999

Dose	Ν	Obs N	Iean	Est Mea	an	Obs Std Dev	Est Std Dev	Scaled Resid
0	22	1.4	7	1.46		0.08	0.08	0.989
100	17	1.4	3	1.46		0.08	0.08	-1.62
250	15	1.4	7	1.46		0.06	0.08	0.522
500	16	1.3	6	1.36		0.1	0.08	-0.00000182
Likelihoods o Model	Log(likeliho			ram's		AIC		
A1	144.82646	6		5	-2	79.652932		
A2	146.51612	4		8	-2	77.032248		
A3	144.82646	6		5	-2	79.652932		
fitted	142.84129	4		3	-2	79.682588		
R	135.11661	2		2	-2	66.233223		
Tests of Inter								
Tests of Inter	-2*log(Likeli	hood	Та	st df		<i>p</i> -value		
Itst	Ratio)	noou	п	stui		p-value		
Test 1	22.799			6	0	.0008667		
Test 2	3.37932			3		0.3368		
Test 3	3.37932			3		0.3368		
Test 4	3.97034			2		0.1374		

2.2.17 Decreased Hang Time 886

EPA selected decreased time hanging from a suspended bar from the (Honma et al., 2003) study as 887

a relevant endpoint for calculating risks associated with chronic worker scenarios. Since this is a 888

continuous endpoint and in the absence of a basis for selecting a BMR a default selection of 1 889

890 standard deviation was used in accordance with EPA Benchmark Dose Technical Guidance (U.S.

EPA, 2012). The doses and response data used for the modeling are presented in Table 2-90. 891

892 Table 2-90 Hang Time from a Suspended Bar Data for Dose-Response Modeling for 1-BP

Dose (ppm)	Number of animals	Mean traction time (sec)	Standard Deviation
0	5	25.2	15.25
10	5	23.8	7.53
50	5	15.2	5.54
200	5	5.2	3.42
1000	5	4.4	3.65

893

894 The best fitting model was selected based on Akaike information criterion (AIC; lower value

indicates a better fit), chi-square goodness of fit *p*-value (higher value indicates a better fit), ratio of 895

the BMC:BMCL (lower value indicates less model uncertainty) and visual inspection. 896

897 Comparisons of model fits obtained are provided in Table 2-91. The best-fitting model

(Exponential M4), based on the criteria described above, is indicated in **bold**. For the best fitting 898 899

model a plot of the model is shown in Figure 2-30. The model version number, model form,

900 benchmark dose calculation, parameter estimates and estimated values are shown below in Table 901 2-92.

902

903 Table 2-91 Summary of BMD Modeling Results for Hang Time from a Suspended Bar; BMR = 1 std. dev. change from control mean 904

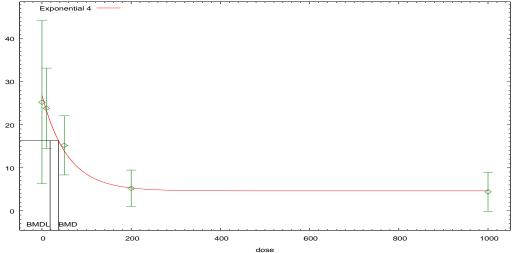
Model ^a	Goodne	ess of fit	BMD _{1SD}	BMDL _{1SD}	Basis for model selection
	<i>p</i> -value	AIC	(ppm)	(ppm)	
Exponential (M4)	0.955	122.13	36.9	18.2	The Exponential (M4) model
Exponential (M5)	0.766	124.12	37.7	18.2	was selected based on the lowest AIC from this set of models
Hill	0.467	124.57	45.0	error ^b	which have adequate <i>p</i> -values
Exponential (M2) ^c	0.00443	133.13	47.4	20.8	(including Exponential M4 and M5 and excluding Exponential
Exponential (M3) ^d	0.00443	133.13	47.4	20.8	M2 and M3, Power, Polynomial and Linear models), adequate
Power ^e	2.22E-04	139.47	799	525	fit by visual inspection and
Polynomial 2 ^{°f} Linear ^g	2.22E-04	139.47	799	525	BMDLs (excluding Hill model) are the same for Exponential M4 and M5.
Polynomial 3°	< 0.0001	188.00	-9999	error ^b	
Polynomial 4°	N/A ^h	192.45	-9999	error ^b	

^a Modeled variance case presented (BMDS Test 2 p-value = 0.00293), selected model in bold; scaled residuals for selected model for doses 0, 10, 50, 200, and 1000 ppm were -0.34, 0.12, 0.44, -0.07, -0.17, respectively.

^b BMD or BMDL computation failed for this model.

^c The Exponential (M2) model may appear equivalent to the Exponential (M3) model, however differences exist in digits not displayed in the table.

^d The Exponential (M3) model may appear equivalent to the Exponential (M2) model, however differences exist in digits not displayed in the table.


^e The Power model may appear equivalent to the Polynomial 2° model, however differences exist in digits not displayed in the table. This also applies to the Linear model.

 $^{\rm f}$ For the Polynomial 2° model, the b2 coefficient estimate was 0 (boundary of parameters space). The models in this row reduced to the Linear model.

^g The Linear model may appear equivalent to the Power model, however differences exist in digits not displayed in the table. ^h No available degrees of freedom to calculate a goodness of fit value.

905

Exponential 4 Model, with BMR of 1 Std. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

906 17:15 08/10 2015

- 907 Figure 2-30 Plot of Mean Response by Dose in ppm with Fitted Curve for Exponential (M4)
- 908 Model with Modeled Variance for Hang Time from a Suspended Bar; BMR = 1 Standard
- 909 Deviation Change from Control Mean.
- 910
- Table 2-92 BMD Modeling Results for Hang Time from a Suspended Bar; BMR = 1
 Standard Deviation Change from Control Mean

Exponential Model. (Version: 1.10; Date: 01/12/2015) The form of the response function is: Y[dose] = a * [c-(c-1) * exp(-b * dose)] A modeled variance is fit

Benchmark Dose Computation.

BMR = 1.0000 Estimated standard deviations from control BMD = 36.9173 BMDL at the 95% confidence level = 18.2429

Parameter Estimate	es	
Variable	Estimate	Default Initial Parameter Values
lnalpha	-0.107405	0.415293
rho	1.46448	1.29675
a	26.8244	26.46
b	0.0174245	0.00510395
С	0.172048	0.15837
d	n/a	1

Table of Data	a and Estimate	d Values of In	terest			
Dose	Ν	Obs Mean	Est Mean	Obs Std Dev	Est Std Dev	Scaled Resid
0	5	25.2	26.82	15.25	10.54	-0.3447
10	5	23.8	23.27	7.53	9.5	0.1241
50	5	15.2	13.91	5.54	6.51	0.4434
200	5	5.2	5.3	3.42	3.21	-0.0668
1000	5	4.4	4.62	3.65	2.9	-0.1656

Likelihoods of Interest

Model	Log(likelihood)	# Param's	AIC
A1	-62.64066	6	137.2813
A2	-54.60856	10	129.2171
A3	-56.01777	7	126.0355
R	-73.64274	2	151.2855
4	-56.06343	5	122.1269

Tests of Intere	est		-
Test	-2*log(Likelihood Ratio)	Test df	<i>p</i> -value
Test 1	38.07	8	< 0.0001
Test 2	16.06	4	0.002934
Test 3	2.818	3	0.4205
Test 6a	0.09133	2	0.9554

913

914

2.2.18 Decreased Hind Limb Grip Strength

915 Decreased hind limb grip strength was observed in rats after a 12 week exposure (<u>Ichihara et al.</u>,
 916 2000a). Continuous models were used to fit the dose response data. A BMR 1 standard deviation

- 917 was choosen per EPA <u>Benchmark Dose Technical Guidance</u> (U.S. EPA, 2012). The doses and
- 918 response data used for the modeling are presented in Table 2-93.
- 919

920 Table 2-93 Hind Limb Grip Strength Data Selected for Dose-Response Modeling for 1-BP

Concentration (ppm)	Number of animals	Hind Limb Grip Strength mean (mg)	Standard Deviation
0	8	353	69
200	9	275	67
400	9	248	69
800	9	156	74

921

922 Comparisons of model fits obtained are provided in Table 2-94. Models with homogeneous

923 variance were used because the BMDS Test 2 *p*-value was 0.992. All of the models had adequate

924 chi-square goodness of fit *p*-value (higher value indicates a better fit) and adequate visual fits to the

data. The BMDLs were sufficiently close ranging 99.8 - 214, the scaled residuals near the BMD

926 were smaller for the Exponential and Hill models. The best fitting model was selected based on the

927 Akaike information criterion (AIC; lower values indicates a better fit) and the selected model is the

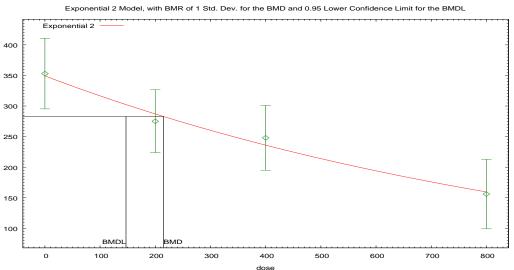
928 Exponential (M2) indicated in bold in Table 2-94. For the best fitting model a plot of the model is

shown in Figure 2-31. The model version number, model form, benchmark dose calculation,

parameter estimates and values are shown below in Table 2-95.

931

Table 2-94 Summary of BMD Modeling Results for Hind Limb Grip Strength in Rats Exposed to 1-BP by Inhalation


Model ^a	Goodne	ess of fit	Scaled Residual	BMD _{1SD}	BMDL _{1SD}	Basis for model
	<i>p</i> -value	AIC	for Dose Nnear BMD	(ppm)	(ppm)	selection
Exponential (M2) Exponential (M3) ^b	0.723	334.62	-0.546	215	147	All of the models had adequate goodness of
Exponential (M4)	0.723	334.62	-0.546	215	113	fit <i>p</i> -values and visual fits. The BMDLs are
Power ^c Linear ^d	0.603	334.98	-0.793	286	214	sufficiently close, the scaled residuals near
Polynomial 3 ^{°e} Polynomial 2 [°]	0.603	334.98	-0.793	286	214	the BMD are lowest for Exponential and Hill models. The best fitting
Hill	0.431	336.59	-0.559	218	99.8	model Exponential (M2) was selected
Exponential (M5)	0.420	336.62	-0.546	215	113	based on lowest AIC

^a Constant variance case presented (BMDS Test 2 p-value = 0.992), selected model in bold; scaled residuals for selected model for doses 0, 200, 400, and 800 ppm were 0.16, -0.55, 0.54, -0.16, respectively.

^b For the Exponential (M3) model, the estimate of d was 1 (boundary). The models in this row reduced to the Exponential (M2) model.

^c For the Power model, the power parameter estimate was 1. The models in this row reduced to the Linear model. ^d The Linear model (and Power model see footnote c) may appear equivalent to the Polynomial 3° and Polynomial 2° models, however differences exist in digits not displayed in the table.

^e For the Polynomial 3^o model, the b3 coefficient estimates was 0 (boundary of parameters space) and this model reduced to the Polynomial 2^o model.

934 13:52 07/06 2020

- 935 Figure 2-31 Plot of Mean Response by Dose in ppm with Fitted Curve for Exponential (M2)
- 936 Model with Constant Variance for Hind Limb Grip Strength in Rats Exposed to 1-BP by
- 937 Inhalation; BMR = 1 Standard Deviation Change from Control Mean.
- 938

Table 2-95 BMD Modeling Results for Hind Limb Grip Strength in Rats Exposed to 1-BP by Inhalation; BMR = 1 Standard Deviation Change from Control Mean.

Exponential Model. (Version: 1.10; Date: 01/12/2015)

The form of the response function is: Y[dose] = a * exp(sign * b * dose)A constant variance model is fit

Benchmark Dose Computation.

BMR = 1.0000 Estimated standard deviations from control BMD = 214.987 BMDL at the 95% confidence level = 146.958

Parameter Estimates

Variable	Estimate	Default Initial Parameter Values
lnalpha	8.38915	8.37058
rho	n/a	0
a	349.203	171.433
b	0.000979778	0.000992498
с	n/a	0
d	n/a	1

Dose	Ν	Obs	Mean	Est Me	an	Obs Std Dev	Est Std Dev	Scaled Resid
0	8	3	53	349.2		69	66.33	0.1619
200	9	2	275	287.1		67	66.33	-0.5456
400	9	2	48	236		69	66.33	0.5437
800	9	1	56	159.5		74	66.33	-0.1568
Likelihoods of	f Interest		-					
Model Log(likelil		hood)) # Param's		AIC			
A1	-163.98	-163.9852		5		337.9703		
A2 -163.93		44	14 8		343.8689			
A3	-163.98	52		5		337.9703		
R	-177.12	45		2		358.2489		
2	-164.31	02		3		334.6204		
Fests of Intere	est							
Test - 2*log(Likelihood Ratio)			Те	st df		p-value		
Test 1	26.38	26.38		6		0.0001891		
Test 2	0.101	5		3		0.9917		
Test 3	0.101	5		3		0.9917		
Test 4	0.650	1		2		0.7225		

944 **3 Benchmark Dose Modeling of Tumors**

945 EPA selected 1-BP-induced tumors observed in mice and rats in the chronic inhalation bioassay by

946 NTP ($\underline{2011}$) for BMD modeling with EPA's <u>BMDS</u>. The three tumor sites were selected for

modeling were alveolar/bronchiolar adenomas and carcinomas (i.e. lung tumors) in female mice,
adenomas of the large intestine in female rats, and keratoacanthoma and squamous cell carcinomas

948 adenomas of the large intestine in female rats, and keratoacanthoma and squamous cell carcinoma 949 of the skin in male rats. None of the tumor sites occurred in the same strain and sex therefore

- 950 combined tumor modeling was not conducted. Three approaches were applied to model individual
- tumor sites; multistage modeling, frequentist model-averaging and Bayesian model averaging.
- All of the models in the BMDS suite of dichotomous models were applied the gamma, logistic, log-
- 953 logistic, multistage, probit, log-probit, quantal-linear and Weibull models. BMRs of 10% and 0.1%
- 954 (1 in 1,000) both added nad extra risk were modeled and the 95% lower confidence limit was
- calculated. Models were determined to be adequate or not in a manner consistent with EPA
- 956 <u>Benchmark Dose Technical Guidance</u> (U.S. EPA, 2012). Briefly the AIC, goodness of fit *p*-values
- 957 (0.1 or greater) and a visual assessment of fit are important criteria.

In agreement with U.S. EPA's long-standing approach all three tumor types from the NTP study (NTP, 2011) were dose-response modeled with multistage models using the typical constrained model coefficients ≥ 0 (EPA, 2012). Under U.S. EPA's 2005 cancer guidelines (U.S. EPA 2005), quantitative risk estimates from cancer bioassay data were calculated by modeling the data in the observed range to estimate a BMCL for a BMR of 10% extra risk, which is generally near the low end of the observable range for standard cancer bioassay data. Also the results for a BMR of 0.1%

- added risk are presented for comparison.
- 965

966 In addition to the multistage modeling model averaging methods were applied, frequentist 967 (Wheeler and Bailer, 2007) and Bayesian (USEPA 2018 BMDS software) to assess the impact of 968 model uncertainty. A model-averaging (MA) technique (Wheeler and Bailer, 2007) was applied using the multistage, log-probit and Weibull models based on the observation that those 3 models 969 970 performed better in bias and coverage than other combinations of models (Wheeler and Bailer, 971 2007). The model averaging applied statistics (bootstrapping technique) to weigh, based on fit, the 972 models providing acceptable fit to the experimental dataset (as evidenced by a chi-square 973 goodness-of-fit value > 0.10). Model-averaging software was restricted to avoid supralinear 974 models, which exhibit properties at the low dose that are not considered biologically plausible. The 975 resulting model-average benchmark concentrations (MA BMCs) associated with 0.1% added risk 976 and their 95% lower confidence limits (MA BMCLs) are shown the Frequentist Model-Average 977 (BMDS 2.6) row for each of the three cancer datasets.

- 978
- 979 Since the 2016 Draft Risk Assessment (U.S. EPA, 2016), the EPA has conducted additional
- 980 modeling, using the BMDS (Version 3.0) and more details are available in the supplemental file.
- All dichotomous frequentist and Bayesian¹ models in the BMD software (BMDS Version 3.0),
- 982 were fit to the incidence data for each of the three tumor types. The benchmark response (BMR)
- 983 levels used were 0.1% and 10% added and extra risk. The BMR used in the 2016 Draft Risk
- Assessment (U.S. EPA, 2016) was 0.1% added risk. The BMR of 10% extra risk which is
- generally near the low end of the observable range for standard cancer bioassay data was used. The

¹ The Bayesian dichotomous models used in BMDS 3.0 are identical to the frequentist parametric models but incorporate prior information (e.g., parameter distributions) that is used in the model fit (see the BMDS 3.0 User Guide for details; <u>https://www.epa.gov/bmds/benchmark-dose-software-bmds-version-30-user-guide-readme</u>).

- Bayesian models and Bayesian model averaging solve issues associated with strict frequentist
- 987 parameter bounds by replacing them with "soft bounds" defined by mildly informative prior
- 988 density for the individual parameters of the models included in the analysis. Thus, in the cases 989 where there are limited data, the shapes of the models are limited to dose-response shapes that a
- 989 where there are limited data, the shapes of the models are limited to dose-response shapes that are 990 frequently seen in practice. In addition, because parameters are restricted through their prior
- density, the U.S. EPA BMDS 3.0 Bayesian model averaging approach allows for consideration of a
- 992 large suite of models across many different study designs without typical model "degeneracy" or
- 993 "overparameterization" concerns of previous model averaging approaches (BMDS 3.0 User
- 994 <u>Guide</u>). The resulting model-average benchmark concentrations (MA BMCs) associated with 0.1%
- added risk (AR) and 10% extra risk (ER) and their 95% lower confidence limits (BMCLs) are
- shown in the Bayesian Model-Average (BMDS 3.0) row for each of the three cancer datasets.

3.1 Lung Tumors in Female Mice

- 998 The doses and response data from the NTP (2011) study that were used for the modeling are
- 999 presented in Table 3-1.

Dose (ppm)	Number of animals	Number of Animals with Tumors
0	50	1
62.5	50	9
125	50	8
250	50	14

1000 Table 3-1 Incidence of Lung Tumors in Female Mice

1001

997

1002 Comparisons of model fits obtained from BMD modeling of the NTP (2011) study are provided in

1003 Table 3-2. A summary of all the dichotomous models and all three modeling approachs are shown

1004 for comparison with the BMDS results in Table 3-2. Detailed output of the multistage, frequestist 1005 model average and Bayesian model average results are also shown below.

1006Table 3-2 Summary of BMDS 3.0 modeling results for lung tumors in female mice exposed to 1-BP by inhalation for 2 years (NTP, 2011);1007BMRs = 10% and 0.1% extra and added risk, doses are in ppm

$\mathbf{D}\mathbf{M}\mathbf{K}\mathbf{S} = \mathbf{I}\mathbf{U}$		CALLA A	nu auuc	u Hok, u	10505 01	c m ppn	1					
Frequentist Model	Restriction**		tra Risk		ded Risk		tra Risk		lded Risk	P Value	AIC	BMDS Recommendation
Frequentist Model	*	BMD	BMDL	BMD	BMDL	BMD	BMDL	BMD	BMDL	1 value	AIC	Notes
Dichotomous Hill	Restricted	37.97524	CF	39.13867	CF	0.262433	CF	0.267937	CF	0.2913697	167.35319	Lower limit includes zero
Gamma	Restricted	78.59758	54.06762	81.47433	54.97972	0.74636	0.513424	0.772227	0.521665	0.2183691	166.9715428	
Log-Logistic	Restricted	69.93796	46.26665	72.25183	46.99549	0.630072	0.416817	0.64879	0.422752	0.2824931	166.5219996	Lowest AIC
Log-Probit	Restricted	135.5751	91.5552	142.1972	93.75467	22.21672	15.00317	22.7714	15.19065	0.0392364	170.9591691	Goodness of fit p-value < 0.1 Goodness of fit p-value < 0.05
Multistage Degree 3	Restricted	78.59758	54.05654	81.47433	54.96919	0.74636	0.513402	0.772228	0.521634	0.2183691	166.9715428	Converges to Degree 1
Multistage Degree 2	Restricted	78.59758	54.05354	81.47433	54.96921	0.74636	0.513407	0.772228	0.521634	0.2183691	166.9715428	Converges to Degree 1
Multistage Degree 1 (Quantal Linear)**	Restricted	78.59758	54.06143	81.47433	54.96919	0.74636	0.5134	0.772228	0.521634	0.2183691	166.9715428	All Multistage models converged to Degree 1
Weibull	Restricted	65.43007	41.33211	66.06867	41.67007	4.083719	0.997165	4.121506	1.005019	3.896E-08	197.0272423	Goodness of fit p-value < 0.1 Goodness of fit p-value < 0.05
Dichotomous Hill	Unrestricted	28.47259	CF	29.82262	CF	0.00191	CF	0.001991	CF	CF	169.1046753	Lower limit includes zero
Logistic	Unrestricted	136.7186	107.335	144.6373	113.6071	1.996488	1.492227	2.156856	1.643332	0.0888649	169.5064951	Goodness of fit p-value < 0.1
Log-Probit	Unrestricted	29.35781	CF	30.64006	CF	0.038238	CF	0.039098	CF	0.3429581	167.1324257	Lower limit includes zero
Probit	Unrestricted	129.2628	100.3938	136.6598	105.8843	1.801609	1.349556	1.937322	1.474752	0.0955787	169.2319294	Goodness of fit p-value < 0.1
Frequentist Model Average (multistage, log-probit and Weibull)	Restricted							0.849	0.634	0.1298	NA	
Bayesian Model										BMA model Posterior Probabilities	Unnormalized Log Posterior Probabilities	
Dichotomous Hill	Priors	64.34544	14.5245	67.31868	15.29848	0.752301	0.006834	0.779298	0.007215	0.166806	-87.09741015	NB
Gamma	Priors	98.64837	50.08382	104.1892	52.11979	1.716614	0.088742	1.80595	0.093472	0.056914	-88.17269343	NB
Logistic	Priors	150.9715	111.2937	162.4684	118.824	2.063819	1.503801	2.27159	1.670964	0.195845	-86.93691547	NB
Log-Logistic	Priors	73.78165	29.87163	77.34186	31.35776	0.751037	0.008745	0.783528	0.009254	0.079815	-87.8345243	NB
Log-Probit	Priors	97.84488	45.04163	102.5082	46.68855	8.25872	0.636263	8.460435	0.652272	0.012133	-89.71830101	NB
Multistage Degree 3	Priors	78.73632	57.42297	81.69198	58.98483	0.839515	0.572085	0.873569	0.587588	NA	-96.25255595	NB
Multistage Degree 2	Priors	74.67602	54.67322	77.5899	56.14487	0.773638	0.538379	0.804686	0.552757	0.000911	-92.30719837	NB
Multistage Degree 1	Priors	70.96872	51.75386	74.00783	53.1925	0.673917	0.491566	0.701235	0.50454	NA	-87.07030802	NB
Probit	Priors	136.3017	102.8982	145.3018	109.0151	1.838917	1.363377	1.995304	1.496475	0.199328	-86.91928526	NB
Quantal Linear	Priors	82.46298	56.36126	86.78205	58.07897	0.783066	0.535205	0.82187	0.550684	0.240282	-86.73242779	NB
Weibull	Priors	95.40995	43.42538	100.647	45.41124	1.445756	0.034791	1.520816	0.036836	0.047966	-88.3437562	NB

	Bayesian Model Average (BMA) results	Priors	104.6183	39.4122	111.1076	41.12461	1.412281	0.080929	1.511725	0.084815	Probabilities Sum to 1	NA	NB
--	--	--------	----------	---------	----------	----------	----------	----------	----------	----------	---------------------------	----	----

1008 **Best Multistage; scaled residuals for doses 0, 62.5, 125, and 250 were -0.529882976, 1.548678296, -0.413499804, and -0.439288554, respectively. 1009 ***Restrictions and parameter priors defined in the <u>BMDS 3.0 User Guide</u>; CF = Computation failed; NA = Not available in BMDS 3.0; NA = Not Applicable

3.1.1 Summary of Multistage Model

3.1.1.1 Selected Frequentist Multistage - Multistage 1 Restricted; Extra Risk,1012BMR = 0.001 and 0.1, doses are in ppm

1013 Table 3-3 Lung Tumors in Female Mice, Selected Frequentist Multistage - Multistage 1

Restricted; Extra Risk, BMR = 0.001 and 0.1 User Input

Info	1				
mo		Options		Model Data	
Model	frequentist Multistage degree 1 v1.0	Risk Type	Extra Risk	Dependent	
Dataset	1-BP - Lung Tumors - F	BMR	0.001 and 0.1	Variable	PPM
Name	Mice	Confidence	0.001 and 0.1	Independent	
Ivanie	NTP (2011) Lung Tumors	Confidence	0.05	Variable	[Tumor Incidence]
TT (Level	0.95	Total # of	
User notes	in Female Mice from 1- BP	Background	Estimated	Observation	4
	•J				

Table 3-4 Lung Tumors in Female Mice, Selected Frequentist Multistage - Multistage 1

Restricted; Extra Risk, BMR = 0.001 and 0.1 Model Results

	R 0.001 nark Dose
BMD	0.746360281
BMDL	0.513400221
BMDU	1.377878074
	IR 0.1 nark Dose
BMD	78.59757869
BMDL	54.06142797
BMDU	145.0923735
AIC	166.9715428
P-value	0.218369111
D.O.F.	2
Chi ²	3.043136955

Model Par		
# of Parameters	3	
Variable	Estimate	Std Error
Background	0.033480124	0
Beta1	0.001340506	0
Beta2	0	0

Goodne	ss of Fit				
Dose	Estimated Probability	Expected	Observed	Size	Scaled Residual
0	0.033480124	1.674006202	1	50	-0.529883
62.5	0.111157329	5.557866469	9	50	1.5486783
125	0.182591778	9.129588912	8	50	-0.4135
250	0.308698954	15.43494771	14	50	-0.439289
250 Analysis o		15.43494771	14	50	-0.439289
		15.43494771 # of Parameters	14 Deviance	50 Test d.f.	-0.439289 P Value
Analysis o	f Deviance				
Analysis o Model	f Deviance Log Likelihood	# of Parameters			

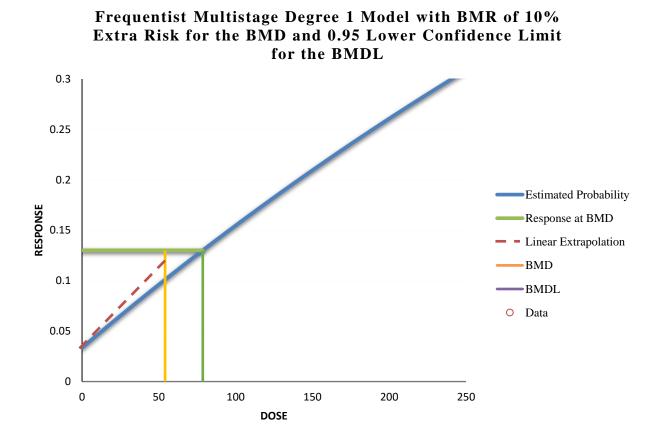


Figure 3-1 Plot of Results for Lung Tumors in Female Mice Frequentist Multistage Degree 1
 Model with BMR of 10% Extra Risk for the BMD and 0.95 Lower Confidence Limit for the
 BMDL

3.1.1.2 Selected Frequentist Multistage - Multistage 1 Restricted; Added Risk, BMR = 0.001 and 0.1, doses are in ppm

1025 1026

1024

Table 3-5 Lung Tumors in Female Mice, Selected Frequentist Multistage - Multistage 1 1027 Restricted; Added Risk, BMR = 0.001 and 0.1 User Input 1028

	_				
Info		Options		Model Data	
Model	frequentist Multistage degree 1 v1.0	Risk Type	Added Risk	Dependent	
Dataset	1-BP - Lung Tumors - F	BMR	0.001 and 0.1	Variable	PPM
Name	Mice	Confidence		- Independent Variable	[Tumor Incidence]
User notes	NTP (2011) Lung Tumors in Female Mice from 1-	Level	0.95	Total # of	
User notes	BP	Background	Estimated	Observation	4

1029

1030

Table 3-6 Lung Tumors in Female Mice, Selected Frequentist Multistage - Multistage 1 **Restricted; Added Risk, BMR = 0.001 and 0.1 Model Results** 1031

	IR 0.001
Bench	mark Dose
BMD	0.772227533
BMDL	0.521640376
BMDU	1.495515393
B	MR 0.1
Bench	mark Dose
BMD	81.47432888
BMDL	54.97974829
BMDU	158.2503904
AIC	166.9715428
P-value	0.218369111
D.O.F.	2
Chi ²	3.043136955

Model Par		
# of Parameters	3	
Variable	Estimate	Std Error
Background	0.033480124	0
Beta1	0.001340506	0
Beta2	0	0

Goodness of Fit					
Dose	Estimated Probability	Expected	Observed	Size	Scaled Residual
0	0.033480124	1.674006202	1	50	-0.529883
62.5	0.111157329	5.557866469	9	50	1.5486783
125	0.182591778	9.129588912	8	50	-0.4135
	0.000.000.54	15 42404771	14	50	-0.439289
250	0.308698954	15.43494771	14	50	-0.+37207
		13.43494771	14		-0.+37207
250 Analysis of Model		# of Parameters	Deviance	Test d.f.	P Value
Analysis of	[°] Deviance				
Analysis of Model	Deviance Log Likelihood	# of Parameters	Deviance	Test d.f.	

1035

3.1.2 Summary of Frequentist Model Averaging

1036 1037

Table 3-7 Lung Tumors in Female Mice, Summary of Frequentist Model Averaging

Model Averaging Fit Statistics

Model	Weight	-2log(L)	AIC	BIC
Multistage, 3°	0.245	162.97	170.97	184.16
Weibull	0.665	162.97	168.97	178.87
Log-Probit	0.091	166.96	172.96	182.85

Average-Model Benchmark Dose Estimate:

Nominally Specified Confidence Level:0.950 Weighting Criterion: AIC BMD Calculation: Added Risk BMR: 0.001000 BMD: 0.849148762733 BMDL(BCa):0.400888479370 BMDL(Percentile):0.634308392327 Acceleration: 0.043517 Bootstrap Resamples: 5000 Random Seed: 102210

Average-Model Goodness of Fit Test

Test Statistic: 3.274559 Bootstrap *p*-value: 0.129800

Parameter Estimates

Model	Parameter	Estimate	Standard Error
Multistage, 3°	gamma	0.03348013	0.02882729
	beta(1)	0.001340506	0.0003669969
	beta(2)	0	N/A
	beta(3)	0	N/A
Weibull	gamma	0.033480	0.028840
	alpha	1.0	N/A
	beta	0.001341	0.000367
Log-Probit	gamma	0.079419089201	0.034577
	alpha	-6.191081	0.272037
	beta	1.0	N/A

1040 3.1.3 Summary of Bayesian Model Averaging

Bayesian Model Averaging – Extra Risk, BMR = 0.001 and 0.1, doses 1041 3.1.3.1 1042 are in ppm

Table 3-8 Lung Tumors in Female Mice, Bayesian Model Averaging – Extra Risk, BMR = 1043

0.001 and 0.1 User Inputs 1044

Info Model Dataset Name	Bayesian Model Averaging v1.0 1-BP - Lung Tumors - F Mice	Model Options Risk Type	Extra Risk	Model Data Dependent Variable Independent Variable	PPM [Incidence]
User notes	NTP (2011) Lung Tumors in Female Mice from 1- BP	BMR Confidence Level	0.001 and 0.1 0.95	Total # of Observation	4
		Background	Estimated]	

1045

Table 3-9 Lung Tumors in Female Mice, Bayesian Model Averaging – Extra Risk, BMR = 1046 0.001 and 0.1 Model Results

BMR 0.001 Benchmark Dose				
BMD	1.412280907			
BMDL	0.08092889			
BMDU	6.929373369			
2	IR 0.1 nark Dose			
BMD	104.618334			
BMDL	39.41220045			
BMDU	220.1845944			

MA - Indivi	dual Models		BMR 0.001		BMR 0.1			
Model	Posterior Probability	BMD	BMDL	BMDU	BMD	BMDL	BMDU	
Dichotomous Hill	0.166805588	0.752300664	0.00683358	11.23398263	64.34543431	14.5244971	165.5205	
Gamma	0.056914248	1.716613537	0.088741617	15.75845852	98.64837676	50.0838161	206.6454	
Logistic	0.195845027	2.06381944	1.503801206	3.924900666	150.9715021	111.293748	313.7542	
Log-Logistic	0.07981527	0.751036569	0.008744945	12.44686637	73.78164679	29.8716258	150.8161	
Log-Probit	0.012133111	8.258719929	0.636263227	106.3076332	97.84487635	45.0416319	232.3484	
Multistage	0.000911231	0.773638254	0.538378954	1.237213961	74.67601448	54.976739	100.7804	
Probit	0.199328433	1.838917378	1.363377436	2.949863905	136.3016963	102.89821	237.678	
Quantal Linear	0.240281547	0.783066032	0.535204832	1.367988414	82.46298134	56.3612543	144.0599	
Weibull	0.047965545	1.445755828	0.034791225	21.79520577	95.40994465	43.4253775	190.5838	

1048**3.1.3.2**Bayesian Model Averaging – Added Risk, BMR = 0.001 and 0.1, doses1049are in ppm

Table 3-10 Lung Tumors in Female Mice, Bayesian Model Averaging – Added Risk, BMR = 0.001 and 0.1 User Inputs

Info]	Model		Model Data	
Model	Bayesian Model Averaging v1.0	Options		Dependent Variable	PPM
Dataset	1-BP - Lung Tumors - F	Risk Type	Added Risk	Independent	
Name	Mice	BMR	0.001 and 0.1	Variable	[Incidence]
User notes	NTP (2011) Lung Tumors in Female Mice from 1-	Confidence Level	0.95	Total # of Observation	4
	BP	Background	Estimated		

1052

1053 **Table 3-11 Lung Tumors in Female Mice, Bayesian Model Averaging – Added Risk, BMR =**

1054 0.001 and 0.1 Model Results

	0.001			
BMR 0.001 Benchmark Dose				
BMD	1.511725049			
BMDL	0.084814979			
BMDU	7.349459454			
BMR Benchma				
Dencinna				
BMD	111.1076087			
BMDL	41.12460837			
BMDU	242.2282994			

MA - Indivi	dual Models		BMR 0.001		BMR 0.001		
Model	Posterior Probability	BMD	BMDL	BMDU	BMD	BMDL	BMDU
Dichotomous Hill	0.166805588	0.779298134	0.00721453	11.78462	67.3186779	15.2984811	179.9472
Gamma	0.056914248	1.805950073	0.09347239	16.61692	104.1891947	52.1197878	225.3164
Logistic	0.195845027	2.271589823	1.67096395	4.486674	162.4683738	118.824027	351.2111
Log-Logistic	0.07981527	0.783527736	0.00925409	13.02672	77.34185457	31.3577577	160.9768
Log-Probit	0.012133111	8.460435085	0.6522715	107.9432	102.5081798	46.6885529	244.554
Multistage	0.000911231	0.804685755	0.55281934	1.312665	77.5898993	56.0719296	106.9866
Probit	0.199328433	1.995303668	1.49647507	3.303659	145.3018337	109.015137	262.5193
Quantal Linear	0.240281547	0.821870286	0.55068434	1.494455	86.78204566	58.078967	158.1819
Weibull	0.047965545	1.52081612	0.036836	22.85683	100.6470174	45.4112366	204.8545

3.2 Large Intestine Adenomas in Female Rats

- 1057 The doses and response data from the NTP (2011) study that were used for the modeling are
- 1058 presented in Table 3-12.

1059 **Table 3-12 Incidence of Large Intestine Adenomas in Female Rats**

Dose (ppm)	Number of animals	Number of Animals with Tumors
0	50	0
125	50	1
250	50	2
500	50	5

- 1061 Comparisons of model fits obtained from BMD modeling of the NTP (2011) study are provided in
- 1062 Table 3-13. A summary of all the dichotomous models and all three modeling approaches are
- 1063 shown for comparison with the the BMDS results in Table 3-13. Detailed output of the multistage,
- 1064 frequestist model average and Bayesian model average results are also shown below.

E	Restriction*	10% Ex	tra Risk	10% Ad	ded Risk	0.1% Ex	tra Risk	0.1% Ad	ded Risk	DX		
Frequentist Model	*	BMD	BMDL	BMD	BMDL	BMD	BMDL	BMD	BMDL	P Value	AIC	BMDS Recommendation Notes
Dichotomous Hill	Restricted	507.1886	233.2808	507.1886	CF	12.49015	2.02E-05	12.49015	0.000691	0.8834656	65.12821578	BMD10 higher than max dose
Gamma	Restricted	507.0328	328.131	507.0328	328.1311	12.23436	3.132948	12.23436	3.132948	0.9899304	63.12698036	BMD10 higher than max dose
Log-Logistic	Restricted	507.1886	326.4527	507.1886	326.4527	12.49014	2.967884	12.49015	2.967884	0.989315	63.12821578	BMD10 higher than max dose
Log-Probit	Restricted	477.1922	330.2017	478.8704	330.202	78.19758	54.11022	78.34071	54.11038	0.6315053	64.24003983	
Multistage Degree 3	Restricted	500.7362	330.5708	CF	CF	6.557897	3.138036	6.557897	3.138036	0.9988974	63.10882433	BMD10 higher than max dose
Multistage Degree 2	Restricted	502.9252	330.2656	CF	CF	7.437661	3.136283	7.437661	3.136283	0.9958358	63.11496834	BMD10 higher than max dose
Multistage Degree 1 (Quantal Linear)*	Restricted	555.3227	326.7021	555.3227	326.7336	5.273328	3.102597	5.273328	3.102597	0.9885628	61.23428391	BMD10 higher than max dose Lowest AIC
Weibull	Restricted	301.4129	228.7688	301.7364	284.8074	105.7531	45.34816	105.8608	45.36294	2.024E-14	126.9988592	Goodness of fit p-value < 0.1 Goodness of fit p-value < 0.05
Dichotomous Hill	Unrestricted	507.1886	326.4527	507.1886	326.4527	12.49015	CF	12.49015	CF	0.989315	63.12821578	BMD10 higher than max dose
Logistic	Unrestricted	502.6164	401.8342	504.1957	403.3183	21.75435	11.15261	21.92247	11.40486	0.7220677	64.14445439	BMD10 higher than max dose
Log-Probit	Unrestricted	513.5019	319.158	513.5019	319.158	22.53697	3.05E-10	22.53697	3.05E-10	0.9787434	63.15005452	BMD10 higher than max dose
Probit	Unrestricted	498.6988	387.1642	500.1934	388.3664	20.22219	10.09325	20.35123	10.29972	0.7579644	63.98223935	
Frequentist Model Average	Restricted							13.5	5.005	0.824	NA	Average of: multistage, log-prob and Weibull
Bayesian Model										BMA model Posterior Probabilities	Unnormalized Log Posterior Probability	
Dichotomous Hill	Priors	580.7885	363.9277	586.8591	366.3746	32.1626	1.943651	32.44390	1.970037	0.220739	-34.83201879	NB
Gamma	Priors	574.6022	370.815	581.0418	373.6548	36.78534	7.612838	37.14127	7.691739	0.039040	-36.56441487	NB
Logistic	Priors	748.2903	435.647	758.8572	439.4368	17.09404	9.77774	17.53697	10.10689	0.209018	-34.88658014	NB
Log-Logistic	Priors	443.7372	317.9377	447.3434	320.2013	34.7643	3.044037	35.01854	3.079371	0.009846	-37.941941	NB
Log-Probit	Priors	496.108	365.0003	500.2088	367.391	138.4617	37.032	139.0559	37.23307	0.019907	-37.23793011	NB
Multistage Degree 3	Priors	281.6332	214.8912	283.5637	216.3168	3.58622	2.361475	3.617773	2.380263	NA	-55.95416186	NB
Multistage Degree 2	Priors	292.2843	214.7176	294.6334	216.4783	3.394427	2.261514	3.425026	2.27977	3.7871E-08	-50.41033757	NB
Multistage Degree 1	Priors	326.0742	223.1094	329.3273	224.9746	3.096391	2.118664	3.125683	2.135989	NA	-43.07798951	NB
Probit	Priors	560.3876	401.1173	563.8816	403.0099	16.40803	9.430684	16.60386	9.66788	0.488955	-34.03672885	NB
Quantal Linear	Priors	518.8844	308.1564	525.4594	311.1072	4.92731	2.926244	4.986506	2.952824	0.003797	-38.89483963	NB
Weibull	Priors	482.3999	345.5124	486.5647	347.9023	36.57184	4.415083	36.87119	4.466438	0.008698	-38.06592312	NB
Bayesian Model Average (BMA) results	Priors	601.4568	392.3594	607.1436	394.7824	23.56684	7.783059	23.84832	7.975868	Probabilities Sum to 1	NA	NB

1065Table 3-13 Summary of BMDS 3.0 modeling results for large intestine adenomas in female rats exposed to 1-BP by inhalation for 2 years1066(NTP, 2011); BMRs = 10% and 0.1% extra and added risk, doses are in ppm

1067 *Best overall and Multistage; scaled residuals for doses 0, 125, 250 and 500 were -0.000872639, -0.160645981, -0.212777056, and 0.234051055, respectively. **Restrictions and parameter priors are defined in the BMDS 3.0 User Guide; CF = Computation failed; NA = Not available in BMDS 3.0; NA = Not Applicable

1069 **Summary of Multistage Model** 3.2.1

- 1070 3.2.1.1 Selected Frequentist Multistage - Multistage 1 Restricted; Extra Risk, BMR = 0.001 and 0.1, doses are in ppm 1071
- Table 3-14 Large Intestine Adenomas in Female Rats, Selected Frequentist Multistage -1072

Multistage 1 Restricted; Extra Risk, BMR = 0.001 and 0.1 User Input 1073

Info		Model		Model Data	
	frequentist Multistage degree 1	Options		Dependent	
Model	v1.0	Risk Type	Extra Risk	Variable	PPM
Dataset Name	1-BP Large Intestine Adenomas - F Rats	BMR	0.001 and 0.1	Independent Variable	[Incidence]
User notes	NTP (2011) Large Intestine Adenomas in Female Rats from	Confidence Level	0.95	Total # of Observation	
User notes	1-BP	Background	Estimated	Observation	

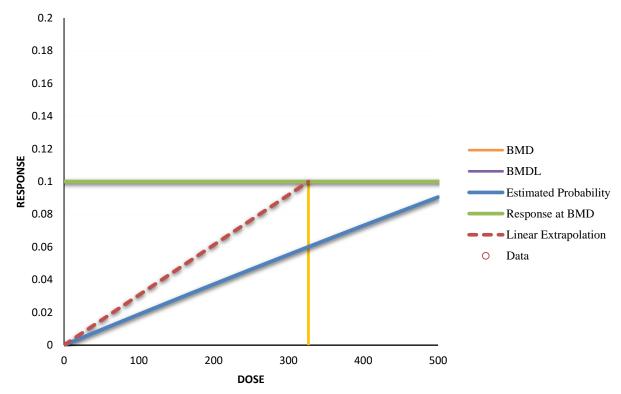

1074

Table 3-15 Large Intestine Adenomas in Female Rats, Selected Frequentist Multistage -1075 Multistage 1 Restricted; Extra Risk, BMR = 0.001 and 0.1 Model Results

BMR 0.001				
Benchmark Dose				
BMD	5.273328163			
BMDL	3.102597277			
BMDU	10.04488819			
BMR 0.1 Benchmark Dose				
BMD	555.3227114			
BMDL	326.7020652			
BMDU	1058.027014			
AIC	61.23428391			
P-value	0.988562772			
D.O.F.	3			
Chi ²	0.125861864			

Model Par		
# of Parameters	3	
Variable	Estimate	Std Error
Background	0	0
Beta1	0.000189728	0
Beta2	0	0

Goodne	ss of Fit				
Dose	Estimated Probability	Expected	Observed	Size	Scaled Residual
0	1.523E-08	7.61499E-07	0	50	-0.000873
125	0.023437055	1.171852759	1	50	-0.160646
250	0.0463248	2.316240014	2	50	-0.212777
	0.0005026	4 525170070	5	50	0.0240511
500	0.0905036	4.525179979	5	50	0.2340511
500 Analysis of		4.525179979		50	0.2340311
		# of Parameters	Deviance	Test d.f.	P Value
Analysis of	[°] Deviance				
Analysis of Model	Deviance Log Likelihood	# of Parameters	Deviance		P Value

Frequentist Multistage Degree 1 Model with BMR of 10% Extra Risk for the BMD and 0.95 Lower Confidence Limit for the BMDL

1078

1079 Figure 3-2 Plot of Results for Large Intestine Adenomas in Female Rats Frequentist

1080 Multistage Degree 1 Model with BMR of 10% Extra Risk for the BMD and 0.95 Lower 1081 Confidence Limit for the BMDL

1083 3.2.1.2 Selected Frequentist Multistage - Multistage 1 Restricted; Added Risk, BMR = 0.001 and 0.1, doses are in ppm 1084

Table 3-16 Large Intestine Adenomas in Female Rats, Selected Frequentist Multistage -1085 Multistage 1 Restricted; Added Risk, BMR = 0.001 and 0.1 User Input 1086

Info Model Dataset Name	frequentist Multistage degree 1 v1.0 1-BP Large Intestine Adenomas - F Rats	Model Options Risk Type BMR Confidence	Added Risk 0.001 and 0.1	Model Data Dependent Variable Independent Variable	PPM [Incidence]
User notes	NTP (2011) Large Intestine Adenomas in Female Rats from 1-BP	Level Background	0.95 Estimated	Total # of Observation	4

1087

1088

1089

Table 3-17 Large Intestine Adenomas in Female Rats, Selected Frequentist Multistage -Multistage 1 Restricted; Added Risk, BMR = 0.001 and 0.1 Model Results

	AR 0.001
Bench	imark Dose
BMD	5.273328163
BMDL	3.102597277
BMDU	11.28247793
В	MR 0.1
Bench	nmark Dose
BMD	555.322731
BMDL	326.7335971
BMDU	1188.88287
AIC	61.23428391
P-value	0.988562772
D.O.F.	3
Chi ²	0.125861864

Model Par		
# of Parameters	3	
Variable	Estimate	Std Error
Background	0	0
Betal	0.000189728	0
Beta2	0	0

Goodnes	s of Fit				
Dose	Estimated Probability	Expected	Observed	Size	Scaled Residual
0	1.523E-08	7.61499E-07	0	50	-0.000873
125	0.023437055	1.171852759	1	50	-0.160646
250	0.0463248	2.316240014	2	50	-0.212777
500	0.0905036	4.525179979	5	50	0.2340511
]			
Analysis of	Deviance				
Model	Log Likelihood	# of Parameters	Deviance	Test d.f.	P Value
Full Model	-29.55331182	0	-	-	-
Fitted Model	-29.61714195	1	0.12766026	3	0.988323

1091

Summary of Frequentist Model Averaging 3.2.2

-33.58882955

1092 1093 Table 3-18 Large Intestine Adenomas in Female Rats, Summary of Frequentist Model Averaging

1

8.07103545

3

0.0445662

1094

Model Averaging Fit Statistics							
Model	Weight	-2log(L)	AIC	BIC			
Multistage, 3°	0.191	59.11	67.11	80.30			
Weibull	0.514	59.13	65.13	75.02			
Log-Probit	0.295	60.24	66.24	76.13			

Average-Model Benchmark Dose Estimate:

Nominally Specified Confidence Level:0.950 Weighting Criterion: AIC BMD Calculation: Added Risk BMR: 0.001000 BMD: 13.472617282689 BMDL(BCa): 2.445277845095 BMDL(Percentile): 5.005030327500 Acceleration: -0.149668 Bootstrap Resamples: 5000 Random Seed: 331201 **Average-Model Goodness of Fit Test**

Test Statistic: 0.139777

Reduced Model

Bootstrap p-value: 0.824400

Parameter Estim	Parameter Estimates				
Model	Parameter	Estimate	Standard Error		
Multistage, 3°	gamma	0.0	N/A		
	beta(1)	0.0001525544	0.00006655318		
	beta(2)	0	N/A		
	beta(3)	2.307482E-10	N/A		
Weibull	gamma	0.0	N/A		
	alpha	1.238098	0.739784		
	beta	0.000047	0.000206		
Log-Probit	gamma	0.006136953057	0.011787		
	alpha	-7.449471	0.263198		
	beta	1.0	N/A		

1096

3.2.3 Summary of Bayesian Model Averaging

1097 **3.2.3.1 Bayesian Model Averaging – Extra Risk, BMR = 0.001 and 0.1, doses**

1098 1099 are in ppm

1100 Table 3-19 Large Intestine Adenomas in Female Rats, Bayesian Model Averaging – Extra 1101 Risk, BMR = 0.001 and 0.1 User Inputs

	1				
Info		Model		Model Data	
Model	Bayesian Model Averaging v1.0	Options		Dependent Variable	PPM
Dataset	1-BP Large Intestine Adenomas	Risk Type	Extra Risk	Independent	
Name	- F Rats	BMR	0.001 and 0.1	Variable	[Incidence]
User notes	NTP (2011) Large Intestine Adenomas in Female Rats from	Confidence	0.001 and 0.1	Total # of	
	1-BP	Level	0.95	Observation	4
	·	Background	Estimated]	

1102

Table 3-20 Large Intestine Adenomas in Female Rats, Bayesian Model Averaging – Extra Risk, BMR = 0.001 and 0.1 Model Results

BMR 0.001 Benchmark Dose				
BMD	23.5668422			
BMDL	7.783059031			
BMDU	103.7795544			
-	MR 0.1 mark Dose			
BMD	601.4567771			
BMDL	392.359376			
BMDU	1236.80985			

MA - Indivi	dual Models		BMR 0.001			BMR 0.1	
Model	Posterior Probability	BMD	BMDL	BMDU	BMD	BMDL	BMDU
Dichotomous Hill	0.220739084	32.16260672	1.943651238	140.386492	580.7885528	363.927722	-9999*
Gamma	0.039039943	36.78534552	7.61283841	119.1831902	574.6021867	370.8150089	1205.82664
Logistic	0.20901793	17.09404029	9.777739644	85.90026945	748.2903004	435.6470108	-9999*
Log-Logistic	0.00984594	34.76430476	3.044036916	128.055945	443.7371492	317.9377317	710.2971673
Log-Probit	0.019906973	138.4616643	37.03200072	298.4407544	496.1079955	365.0002778	766.8138146
Multistage	3.78705E-08	3.394427244	2.261513844	5.397694651	292.2843099	215.5684978	386.8899941
Probit	0.488955424	16.40802808	9.430683218	39.76662457	560.3876114	401.1173546	-9999*
Quantal Linear	0.003796807	4.927310627	2.926244168	9.784449823	518.8843608	308.1564009	1030.379176
Weibull	0.00869786	36.57183424	4.415083211	123.5612407	482.3999405	345.5123901	809.5982075
* these model ou	tputs -9999 indi	cate a BMDU w	as not identified				

1106

Bayesian Model Averaging – Added Risk, BMR = 0.001 and 0.1, doses 3.2.3.2 are in ppm

1107 1108

Table 3-21 Large Intestine Adenomas in Female Rats, Bayesian Model Averaging – Added 1109 Risk, BMR = 0.001 and 0.1 User Inputs 1110

Info Model Dataset	Bayesian Model Averaging v1.0 1-BP Large Intestine Adenomas	Model Options Risk Type	Added Risk	Model Data Dependent Variable	PPM
Name User notes	- F Rats NTP (2011) Large Intestine Adenomas in Female Rats from 1-BP	BMR Confidence Level	0.001 and 0.1 0.95	Independent Variable Total # of Observation	[Incidence] 4
		Background	Estimated		

1111

1112

Table 3-22 Large Intestine Adenomas in Female Rats, Bayesian Model Averaging – Added **Risk, BMR = 0.001 and 0.1 Model Results** 1113

BMR 0.001 Benchmark Dose				
BMD	23.84832328			
BMDL	7.975867949			
BMDU	95.10070086			
BMR 0.1 Benchmark Dose				
BMD	607.1436084			
BMDL	394.782424			
BMDU	1228,752732			

MA - Indivi	dual Models		BMR 0.001		BMR 0.1				
Model	Posterior Probability	BMD	BMDL	BMDU	BMD	BMDL	BMDU		
Dichotomous Hill	0.220739084	32.44390339	1.97003712	141.4284	586.859107	366.374612	-9999		
Gamma	0.039039943	37.14127466	7.69173913	120.7405	581.0417533	373.654813	-9999*		
Logistic	0.20901793	17.53697172	10.1068914	57.47345	758.8571906	439.436793	-9999*		
Log-Logistic	0.00984594	35.01853719	3.07937129	128.7793	447.3433793	320.201248	721.1831		
Log-Probit	0.019906973	139.0558928	37.2330733	299.1879	500.2087951	367.39105	778.8816		
Multistage	3.78705E-08	3.425025847	2.27973261	5.453989	294.6333885	216.422349	405.7088		
Probit	0.488955424	16.60385728	9.6678799	39.83995	563.8816357	403.009892	1407.68		
Quantal Linear	0.003796807	4.986505955	2.95282365	9.981385	525.4594088	311.107248	1052.267		
Weibull	0.00869786	36.87119484	4.46643773	124.3649	486.5646958	347.902298	822.9395		

1115

3.3 Keratoacanthoma and Squamous Cell Carcinomas in Male Rats

1116 The doses and response data from the NTP (2011) study that were used for the modeling are 1117 presented in Table 3-23.

1118 Table 3-23 Incidence of Keratoacanthoma and Squamous Cell Carcinomas in Male Rats

Dose (ppm)	Number of animals	Number of Animals with Tumors
0	50	1
125	50	4
250	50	6
500	50	8

1119

1120 Comparisons of model fits obtained from BMD modeling of the NTP (2011) study are provided in

1121 Table 3-24. A summary of all the dichotomous models and all three modeling approaches are

shown for comparison with the the BMDS results in Table 3-24. Detailed output of the multistage,

1123 frequestist model average and Bayesian model average results are also shown below.

1124Table 3-24 Summary of BMDS 3.0 modeling results for keratoacanthoma & squamous cell carcinomas in male rats exposed to11251-BP by inhalation for 2 years (NTP, 2011); BMRs = 10% and 0.1% extra and added risk, doses are in ppm

¹⁵ ^{1-D1} by IIIIa	nation io	<u> </u>		, , ,	DIVILLO	= 10 / 0	una or.		u unu u		, uobes ui e i	пррш
Frequentist Model	Restriction	10% Ex		10% Ad		0.1% Ex	tra Risk	0.1% Ad	lded Risk	P Value	AIC	BMDS Recommendation Notes
-	***	BMD	BMDL	BMD	BMDL	BMD	BMDL	BMD	BMDL			
Dichotomous Hill	Restricted	241.9508	CF	250.0001	CF	3.236715	CF	3.290924	CF	CF	126.3403356	BMD Lower limit includes zero
Gamma	Restricted	303.843	185.275	312.2107	187.7474	2.885284	1.759366	2.960561	1.781668	0.8021847	122.7789055	
Log-Logistic	Restricted	294.0892	173.3592	302.2094	175.6876	2.649453	1.561794	2.715178	1.580743	0.8427402	122.6810603	Lowest AIC
Log-Probit	Restricted	399.4465	261.7774	411.4748	265.8007	65.45737	42.89751	66.4724	43.24036	0.312975	124.8422642	
Multistage Degree 3	Restricted	303.843	185.2034	312.2107	187.6895	2.885284	1.759338	2.960561	1.781575	0.8021847	122.7789055	Converges to Degree 1
Multistage Degree 2	Restricted	303.843	185.206	312.2107	187.6879	2.885284	1.759315	2.960561	1.781575	0.8021847	122.7789055	Converges to Degree 1
Multistage Degree 1**	Restricted	303.843	185.2037	312.2107	187.6903	2.885284	1.759336	2.960561	1.781575	0.8021847	122.7789055	All Multistage models converged to Multistage Degree 1
Weibull	Restricted	210.3339	150.19	211.7953	150.9278	35.05038	12.46708	35.28128	12.52632	5.148E-12	173.1717353	Goodness of fit p-value < 0.1 Goodness of fit p-value < 0.05
Dichotomous Hill	Unrestricted	241.9507	CF	250	CF	3.236742	CF	3.290951	CF	CF	126.3403356	BMD Lower limit includes zero
Logistic	Unrestricted	408.5802	301.9481	420.7805	310.1677	7.203864	4.997068	7.542471	5.311385	0.4706516	123.9898837	
Log-Probit	Unrestricted	258.4618	CF	267.409	CF	1.230169	CF	1.252142	CF	0.9131073	124.3521934	BMD Lower limit includes zero
Probit	Unrestricted	394.6247	285.4619	406.5746	292.8437	6.509137	4.502717	6.797135	4.762942	0.5034012	123.8228047	
Frequentist Model Average	Restricted							3.73	2.26	0.7077	NA	Average of: multistage, log-probit and Weibull
Bayesian Model										BMA model Posterior Probabilities	Unnormalized Log Posterior Probability	
Dichotomous Hill	Priors	355.5078	147.56	369.5556	152.9072	8.094685	0.153672	8.357178	0.160579	0.203424	-64.32163349	NB
Gamma	Priors	389.7621	222.3436	404.6563	228.1034	15.30021	1.588847	15.82102	1.643549	0.054140	-65.64536621	NB
Logistic	Priors	528.4769	325.7855	553.3675	337.3084	8.149692	5.110528	8.702688	5.475214	0.321293	-63.86457516	NB
Log-Logistic	Priors	300.2942	168.0456	309.8314	172.937	8.166761	0.220277	8.399582	0.229138	0.029647	-66.24756569	NB
Log-Probit	Priors	407.5987	226.62	420.3065	232.0305	82.22845	9.177505	83.54719	9.343584	0.019221	-66.6809488	NB
Multistage Degree 3	Priors	216.2644	160.9627	220.8948	163.8834	2.47565	1.663083	2.537335	1.695316	NA	-79.02131211	NB
Multistage Degree 2	Priors	213.6458	156.4551	218.7139	159.4762	2.319659	1.581474	2.378462	1.612377	1.1126E-05	-74.13536451	NB
Multistage Degree 1	Priors	218.2195	153.9162	224.3367	157.1083	2.072206	1.461724	2.127236	1.490495	NA	-67.77973593	NB
Probit	Priors	434.7017	297.0376	450.8228	305.801	6.767236	4.568947	7.121577	4.849836	0.302901	-63.92352293	NB
Quantal Linear	Priors	295.3006	185.6616	306.2603	190.0876	2.804166	1.763037	2.902711	1.802915	0.045837	-65.81184537	NB
Weibull	Priors	352.5042	206.0483	364.4752	211.6823	12.68129	0.624409	13.08899	0.649286	0.023527	-66.47877309	NB
Bayesian Model Average (BMA) results	Priors	433.4563	220.5825	451.3116	227.1573	9.392749	1.425164	9.805706	1.473828	Probabilities Sum to 1	NA	NB

1126 **Best Multistage; scaled residuals for doses 0, 125, 250 and 500 were -0.243246539, 0.375234935, 0.313277121, and -0.37778312, respectively.
***Restrictions and parameter priors are defined in the <u>BMDS 3.0 User Guide</u>; CF = Computation failed; NA = Not available in BMDS 3.0; NA = Not Applicable

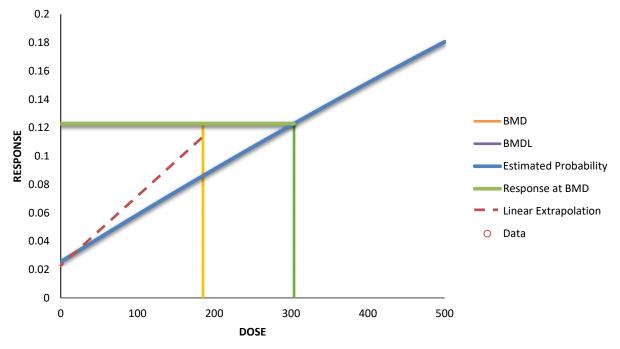
1128 **3.3.1 Summary of Multistage Model**

- 1129**3.3.1.1** Selected Frequentist Multistage Multistage 1 Restricted; Extra Risk,1130BMR = 0.001 and 0.1, doses are in ppm
- 1131 Table 3-25 Keratoacanthoma and Squamous Cell Carcinomas in Male Rats, Selected
- 1132 Frequentist Multistage Multistage 1 Restricted; Extra Risk, BMR = 0.001 and 0.1 User
- 1133 **Input**

Info Model Dataset	frequentist Multistage degree 1 v1.0	Model Options Risk Type	Extra Risk	Model Data Dependent Variable	PPM
Name	1-BP K and SCC - M Rats	BMR	0.001 and 0.1	Independent Variable	[Incidence]
User notes	NTP (2011) Keratoacanthoma and Squamous Cell Carcinomas in Male Rats	Confidence Level	0.95	Total # of Observations	4
		Background	Estimated		

1134

- 1135 Table 3-26 Keratoacanthoma and Squamous Cell Carcinomas in Male Rats, Selected
- 1136 Frequentist Multistage Multistage 1 Restricted; Extra Risk, BMR = 0.001 and 0.1 Model


1137 **Results**

	R 0.001 nark Dose
BMD	2.885283902
BMDL	1.759336336
BMDU	7.747724524
	IR 0.1 nark Dose
BMD	303.8429907
BMDL	185.2037126
BMDU	815.6993114
AIC	122.7789055
P-value	0.802184708
D.O.F.	2
Chi ²	0.440832776

Model Par	ameters	
# of Parameters	3	
Variable	Estimate	Std Error
Background	0.025413861	0
Beta1	0.00034676	0
Beta2	0	0

Goodne	ss of Fit				
Dose	Estimated Probability	Expected	Observed	Size	Scaled Residual
0	0.025413861	1.270693055	1	50	-0.243247
125	0.066754831	3.337741571	4	50	0.3752349
250	0.106342159	5.317107955	6	50	0.3132771
500	0.180550282	9.027514105	8	50	-0.377783
Analysis o	f Deviance				
Analysis o Model	f Deviance Log Likelihood	# of Parameters	Deviance	Test d.f.	P Value
		# of Parameters	Deviance -	Test d.f.	P Value
Model	Log Likelihood		Deviance - 0.43856993	Test d.f. - 2	P Value - 0.8030928

Frequentist Multistage Degree 1 Model with BMR of 10% Extra Risk for the BMD and 0.95 Lower Confidence Limit for the BMDL

1139 Figure 3-3 Plot of Results for Keratoacanthoma and Squamous Cell Carcinomas in Male

1140 Rats Frequentist Multistage Degree 1 Model with BMR of 10% Extra Risk for the BMD and

1141 **0.95 Lower Confidence Limit for the BMDL**

3.3.1.2 Selected Frequentist Multistage - Multistage 1 Restricted; Added Risk, BMR = 0.001 and 0.1, doses are in ppm

1144 1145

1143

1146Table 3-27 Keratoacanthoma and Squamous Cell Carcinomas in Male Rats, Selected

- 1147 Frequentist Multistage Multistage 1 Restricted; Added Risk, BMR = 0.001 and 0.1 User
- 1148 **Input**

Info		Model Options		Model Data	
Model Dataset	frequentist Multistage degree 1 v1.0	Risk Type	Added Risk	Dependent Variable Independent	PPM
Name	1-BP K and SCC - M Rats	BMR	0.001 and 0.1	Variable	[Incidence]
User notes	NTP (2011) Keratoacanthoma and Squamous Cell Carcinomas in Male Rats	Confidence Level	0.95	Total # of Observations	4
		Background	Estimated		

1149

1150

1151Table 3-28 Keratoacanthoma and Squamous Cell Carcinomas in Male Rats, Selected

- 1152 Frequentist Multistage Multistage 1 Restricted; Added Risk, BMR = 0.001 and 0.1 Model
- 1153 **Results**

BN	IR 0.001
Bench	mark Dose
BMD	2.960560843
BMDL	1.781575063
BMDU	8.258328982
B	MR 0.1
Bench	mark Dose
BMD	312.2107498
BMDL	187.7473751
BMDU	872.7938309
	· ·
AIC	122.7789055
P-value	0.802184708
D.O.F.	2
Chi ²	0.440832776

Model Pa		
# of Parameters	3	
Variable	Estimate	Std Error
Background	0.025413861	0
Beta1	0.00034676	0
Beta2	0	0

Goodness of Fit					
Dose	Estimated Probability	Expected	Observed	Size	Scaled Residual
0	0.025413861	1.270693055	1	50	-0.243247
125	0.066754831	3.337741571	4	50	0.3752349
250	0.106342159	5.317107955	6	50	0.3132771
500	0.180550282	9.027514105	8	50	-0.377783

of Parameters

0

1

Deviance

0.43856993

7.24200452

Test d.f.

2

3

P Value

0.8030928

0.0645715

- 1154
- 1155

3.3.2 Summary of Frequentist Model Averaging

1156

1157 Table 3-29 Keratoacanthoma and Squamous Cell Carcinomas in Male Rats, Summary of

1158 Frequentist Model Averaging

Andel Averag	ing Fit Sta	tistics		
Model	Weight	-2log(L)	AIC	BIC
Multistage, 3°	0.213	118.78	126.78	139.97
Weibull	0.580	118.78	124.78	134.67
Log-Probit	0.207	120.84	126.84	136.74

Log Likelihood

-59.17016779

-59.38945275

-62.79117005

Average-Model Benchmark Dose Estimate:

Analysis of Deviance

Model

Full Model

Fitted Model

Reduced Model

Nominally Specified Confidence Level:0.950 Weighting Criterion: AIC BMD Calculation: Added Risk BMR: 0.001000 BMD: 3.732432783338 BMDL(BCa): 1.505273123061 BMDL(Percentile): 2.260265766150 Acceleration: 0.030873 Bootstrap Resamples: 5000 Random Seed: 257515

Average-Model Goodness of Fit Test

Test Statistic: 0.707725 Bootstrap *p*-value: 0.586800

Parameter Estim	ates		
Model	Parameter	Estimate	Standard Error
Multistage, 3°	gamma	0.02541313	0.02238034
	beta(1)	0.0003467654	0.0001309450
	beta(2)	0	N/A
	beta(3)	0	N/A
Weibull	gamma	0.025414	0.022401
	alpha	1.0	N/A
	beta	0.000347	0.000131
Log-Probit	gamma	0.050387778679	0.025518
	alpha	-7.271630	0.311627
	beta	1.0	N/A

1160

3.3.3 **Summary of Bayesian Model Averaging**

- 1161 1162

Bayesian Model Averaging – Extra Risk, BMR = 0.001 and 0.1, doses 3.3.3.1 are in ppm

1163 Table 3-30 Keratoacanthoma and Squamous Cell Carcinomas in Male Rats, Bayesian Model 1164 Averaging – Extra Risk, BMR = 0.001 and 0.1 User Inputs 1165

Info		Model		Model Data	
Model	Bayesian Model Averaging v1.0	Options		Dependent Variable	PPM
Dataset Name	1-BP Large Intestine Adenomas - F Rats	Risk Type	Extra Risk	Independent	
User notes	NTP (2011) Large Intestine Adenomas in Female Rats from	BMR Confidence	0.001 and 0.1	Variable Total # of	[Incidence]
	1-BP	Level	0.95	Observation	4
		Background	Estimated]	

1166

Table 3-31 Keratoacanthoma and Squamous Cell Carcinomas in Male Rats, Bayesian Model 1167 Averaging – Extra Risk, BMR = 0.001 and 0.1 Model Results

	IR 0.001 mark Dose
BMD	9.392749294
BMDL	1.425164286
BMDU	55.04451692
	MR 0.1 mark Dose
BMD	433.4563002
BMDL	220.582515
BMDU	1556.137562

MA - Individual Models		BMR 0.001			BMR 0.1		
Model	Posterior Probability	BMD	BMDL	BMDU	BMD	BMDL	BMDU
Dichotomous Hill	0.203424469	8.094685152	0.153671514	86.83353662	355.5077612	147.5600451	192683.5175
Gamma	0.054139392	15.30020591	1.588847255	82.10273087	389.7621334	222.343564	928.3482432
Logistic	0.321292879	8.149691857	5.11052832	31.40190989	528.4768939	325.7855475	2252.007484
Log-Logistic	0.029647049	8.166761138	0.220277332	67.28941947	300.2942502	168.0455804	513.0673647
Log-Probit	0.019220539	82.22845197	9.177505039	271.9267905	407.5987339	226.6199589	689.7653341
Multistage	1.11264E-05	2.319659106	1.581473509	3.680806607	213.6458308	156.4551443	296.4730561
Probit	0.302900793	6.767235696	4.568947013	15.09856433	434.7017109	297.0376015	1098.289967
Quantal Linear	0.0458366	2.804165939	1.763036591	5.545045715	295.3006327	185.6615543	583.9366913
Weibull	0.023527152	12.68129051	0.624408538	81.15071058	352.504164	206.0482651	624.6541739

1170

3.3.3.2 Bayesian Model Averaging – Added Risk, BMR = 0.001 and 0.1, doses are in ppm

1171 1172

1173Table 3-32 Keratoacanthoma and Squamous Cell Carcinomas in Male Rats, Bayesian Model1174Averaging – Added Risk, BMR = 0.001 and 0.1 User Inputs

User notes Adenomas in Female Rats from Confidence Confidence Variable Incidence	Info Model Dataset Name	Bayesian Model Averaging v1.0 1-BP Large Intestine Adenomas - F Rats	Model Options Risk Type	Added Risk	Model DataDependentVariableIndependent	PPM
1-BP Level 0.95 Ubservation 4		NTP (2011) Large Intestine Adenomas in Female Rats from	Confidence			[Incidence] 4

1175

1176Table 3-33 Keratoacanthoma and Squamous Cell Carcinomas in Male Rats, Bayesian Model1177Averaging – Added Risk, BMR = 0.001 and 0.1 Model Results

BMR 0.001 Benchmark Dose				
BMD	9.805706222			
BMDL	1.47382787			
BMDU	51.07468367			
_	MR 0.1 nmark Dose			
BMD	451.311646			
BMDL	227.1572948			
BMDU	1229.189038			

MA - Individual Models		BMR 0.001			BMR 0.1		
Model	Posterior Probability	BMD	BMDL	BMDU	BMD	BMDL	BMDU
Dichotomous Hill	0.203424469	8.357177489	0.16057906	89.33856338	369.5555627	152.9071629	-9999
Gamma	0.054139392	15.82102291	1.64354872	85.22485197	404.6563208	228.1033844	983.387589
Logistic	0.321292879	8.702687919	5.475214217	31.09874949	553.3674359	337.3084068	-9999
Log-Logistic	0.029647049	8.399581537	0.229138095	68.88824701	309.8314404	172.9370356	540.1743054
Log-Probit	0.019220539	83.54718983	9.343584068	274.2274106	420.3065038	232.0304662	722.1497893
Multistage	1.11264E-05	2.378462348	1.612394466	3.807670902	218.7139392	159.5782638	296.476125
Probit	0.302900793	7.121576462	4.84983623	16.27391949	450.8228302	305.8009446	1167.15800
Quantal Linear	0.0458366	2.90271081	1.802915474	5.884175655	306.2603176	190.0876462	621.731638
Weibull	0.023527152	13.08898814	0.649286201	83.21873099	364.4751906	211.6823345	659.649074

1179 **4 References**

1180

1181	
1182	Barker, DJP. (2007). The Origins of the Developmental Origins Theory. J Intern Med 261: 412-
1183	417. http://dx.doi.org/10.1111/j.1365-2796.2007.01809.x
1184	ClinTrials. (1997). A 13-Week Inhalation Toxicity Study of a Vapor Formulation of Albta1 in the
1185	Albino Rat. (Report No. 91190). Canada.
1186	Honma, T; Suda, M; Miyagawa, M. (2003). Inhalation of 1-Bromopropane Causes Excitation in
1187	the Central Nervous System of Male F344 Rats. Neurotoxicology 24: 563-575.
1188	http://dx.doi.org/10.1016/S0161-813X(03)00049-4

- Ichihara, G; Yu, X; Kitoh, J; Asaeda, N; Kumazawa, T; Iwai, H; Shibata, E; Yamada, T; Wang, H;
 Xie, Z; Maeda, K; Tsukamura, H; Takeuchi, Y. (2000). Reproductive Toxicity of 1 Bromopropane, a Newly Introduced Alternative to Ozone Layer Depleting Solvents, in
 - Male Rats. Toxicol Sci 54: 416-423. <u>http://dx.doi.org/10.1093/toxsci/54.2.416</u> Kavlock, RJ; Allen, BC; Faustman, EM; Kimmel, CA. (1995). Dose-Response Assessments for
- 1193 <u>Kavlock, RJ; Allen, BC; Faustman, EM; Kimmel, CA.</u> (1995). Dose-Response Assessments for
 1194 Developmental Toxicity. Iv. Benchmark Doses for Fetal Weight Changes. Toxicol Sci 26:
 1195 211-222. <u>http://dx.doi.org/10.1006/faat.1995.1092</u>
- 1196 <u>Ntp.</u> (2011). Toxicology and Carcinogenesis Studies of 1-Bromopropane (CAS No. 106-94-5) in
 1197 F344/N Rats and B6C3F1 Mice (Inhalation Studies) [NTP] (pp. 1-190). (ISSN 0888-8051
- 1198NTP TR 564; NIH Publication No. 11-5906). Research Triangle Park, NC.1199http://ntp.niehs.nih.gov/ntp/htdocs/LT_rpts/TR564.pdf
- 1200Reyes, L; Mañalich, R. (2005). Long-Term Consequences of Low Birth Weight [Review]. Kidney1201Int Suppl 68: S107-S111. http://dx.doi.org/10.1111/j.1523-1755.2005.09718.x
- 1202 U.S. EPA. (1996). Guidelines for Reproductive Toxicity Risk Assessment (pp. 1-143).
- 1203 (EPA/630/R-96/009). Washington, DC: U.S. Environmental Protection Agency, Risk

1204	Assessment Forum. <u>https://www.epa.gov/sites/production/files/2014-</u>
1205	<u>11/documents/guidelines_repro_toxicity.pdf</u>
1206	U.S. EPA. (2012). Benchmark Dose Technical Guidance. (EPA/100/R-12/001). Washington, DC:
1207	U.S. Environmental Protection Agency, Risk Assessment Forum.
1208	https://www.epa.gov/risk/benchmark-dose-technical-guidance
1209	U.S. EPA. (2016). TSCA Work Plan Chemical Risk Assessment: Peer Review Draft 1-
1210	Bromopropane: (N-Propyl Bromide) Spray Adhesives, Dry Cleaning, and Degreasing Uses
1211	CASRN: 106-94-5 [EPA Report]. (EPA 740-R1-5001). Washington, DC.
1212	https://www.epa.gov/sites/production/files/2016-03/documents/1-
1213	bp_report_and_appendices_final.pdf
1214	Wheeler, MW; Bailer, AJ. (2007). Properties of Model-Averaged Bmdls: A Study of Model
1215	Averaging in Dichotomous Response Risk Estimation. Risk Anal 27: 659-670.
1216	http://dx.doi.org/10.1111/j.1539-6924.2007.00920.x
1217	WIL Research. (2001). An Inhalation Two-Generation Reproductive Toxicity Study of 1-
1218	Bromopropane in Rats. (Study No. WIL-380001). Ashland, OH.
1219	Yamada, T; Ichihara, G; Wang, H; Yu, X; Maeda, K; Tsukamura, H; Kamijima, M; Nakajima, T;
1220	Takeuchi, Y. (2003). Exposure to 1-Bromopropane Causes Ovarian Dysfunction in Rats.
1221	Toxicol Sci 71: 96-103. http://dx.doi.org/10.1093/toxsci/71.1.96
1222	