Final Risk Evaluation for Cyclic Aliphatic Bromide Cluster (HBCD) ## **Systematic Review Supplemental File:** ## **Data Extraction of Environmental Hazard Studies** CASRN:25637-99-4 CASRN:3194-55-6 CASRN:3194-57-8 September 2020 ## **Table of Contents** | Table 1. On-topic aquatic toxicity studies that were evaluated for HBCD | 3 | |---|----| | Table 2. On-topic terrestrial toxicity studies that were evaluated for HBCD | 51 | Table 1. On-topic aquatic toxicity studies that were evaluated for HBCD | CAS RN | Test Species | Water
Type | Duration | Endpoint(s) | Concentration(s) | Test Analysis | Effect(s) | References | Data Quality
Rating | HERO ID | |---------------|---|---------------|----------|---|---|--|---|------------------------------|------------------------|---------------------| | Aquatic Veget | tation | | l . | | | | • | | | | | 25637-99-4 | Green algae
(Pseudokirc
hneriella
subcapitata) | Fresh | 24-hour | $EC_{10} = >0.0037$ mg AI/L (0.0037 is the mean of the Day 0 and Day 4 6.8 mg/L measurements) | 0.0015, 0.0022,
0.0032, 0.0046,
0.0068 mg/L
(nominal); 0.0013,
0.0022, 3.38,
0.0042, 0.0064
mg/L (measured,
Day 0) | Static, Measured.
Solvent:
Dimethylformamide | Abundance
(cell density);
Population
growth rate
(area under
growth curve) | Wildlife Intl
Ltd (1997b) | High | 1928298;
6836803 | | 25637-99-4 | Green algae
(Pseudokirchne
riella
subcapitata) | Fresh | 24-hour | $EC_{50} = >0.0037 \text{ mg}$ AI/L | 0.0015, 0.0022,
0.0032, 0.0046,
0.0068 mg/L
(nominal); 0.0013,
0.0022, 3.38, 0.0042,
0.0064 mg/L
(measured, Day 0) | Static, Measured.
Solvent:
Dimethylformamide | Abundance (cell density); Population growth rate (area under growth curve) | Wildlife Intl Ltd
(1997b) | High | | | 25637-99-4 | Green algae
(Pseudokirchne
riella
subcapitata) | Fresh | 24-hour | EC ₉₀ = >0.0037 mg
AI/L | 0.0015, 0.0022,
0.0032, 0.0046,
0.0068 mg/L
(nominal); 0.0013,
0.0022, 3.38, 0.0042,
0.0064 mg/L
(measured, Day 0) | Static, Measured.
Solvent:
Dimethylformamide | Abundance (cell
density);
Population
growth rate (area
under growth
curve) | Wildlife Intl Ltd
(1997b) | High | | | 25637-99-4 | Green algae
(Pseudokirchne
riella
subcapitata) | Fresh | 48-hour | EC ₁₀ = >0.0037 mg
AI/L | 0.0015, 0.0022,
0.0032, 0.0046,
0.0068 mg/L
(nominal); 0.0013,
0.0022, 3.38, 0.0042,
0.0064 mg/L
(measured, Day 0) | Static, Measured. Solvent: Dimethylformamide | Abundance (cell density); Population growth rate (area under growth curve) | Wildlife Intl Ltd
(1997b) | High | | | 25637-99-4 | Green algae
(Pseudokirchne
riella
subcapitata) | Fresh | 48-hour | EC ₅₀ = >0.0037 mg
AI/L | 0.0015, 0.0022,
0.0032, 0.0046,
0.0068 mg/L
(nominal); 0.0013,
0.0022, 3.38, 0.0042,
0.0064 mg/L
(measured, Day 0) | Static, Measured.
Solvent:
Dimethylformamide | Abundance (cell density); Population growth rate (area under growth curve) | Wildlife Intl Ltd
(1997b) | High | | | CAS RN | Test Species | Water
Type | Duration | Endpoint(s) | Concentration(s) | Test Analysis | Effect(s) | References | Data Quality
Rating | HERO ID | |------------|---|---------------|----------|---------------------------------------|--|--|---|------------------------------|------------------------|---------| | 25637-99-4 | Green algae
(Pseudokirchne
riella
subcapitata) | Fresh | 48-hour | EC ₉₀ = >0.0037 mg
AI/L | 0.0015, 0.0022,
0.0032, 0.0046,
0.0068 mg/L
(nominal); 0.0013,
0.0022, 3.38, 0.0042,
0.0064 mg/L
(measured, Day 0) | Static, Measured.
Solvent:
Dimethylformamide | Abundance (cell
density);
Population
growth rate (area
under growth
curve) | (1997b) | High | | | 25637-99-4 | Green algae
(Pseudokirchne
riella
subcapitata) | Fresh | 72-hour | $EC_{10} = >0.0037 \text{ mg}$ AI/L | 0.0015, 0.0022,
0.0032, 0.0046,
0.0068 mg/L
(nominal); 0.0013,
0.0022, 3.38, 0.0042,
0.0064 mg/L
(measured, Day 0) | Static, Measured.
Solvent:
Dimethylformamide | Abundance (cell
density);
Population
growth rate (area
under growth
curve) | Wildlife Intl Ltd
(1997b) | High | | | 25637-99-4 | Green algae
(Pseudokirchne
riella
subcapitata) | Fresh | 72-hour | EC ₅₀ = >0.0037 mg
AI/L | 0.0015, 0.0022,
0.0032, 0.0046,
0.0068 mg/L
(nominal); 0.0013,
0.0022, 3.38, 0.0042,
0.0064 mg/L
(measured, Day 0) | Static, Measured.
Solvent:
Dimethylformamide | Abundance (cell
density);
Population
growth rate (area
under growth
curve) | Wildlife Intl Ltd
(1997b) | High | | | 25637-99-4 | Green algae
(Pseudokirchne
riella
subcapitata) | Fresh | 72-hour | $EC_{90} = >0.0037 \text{ mg}$ AI/L | 0.0015, 0.0022,
0.0032, 0.0046,
0.0068 mg/L
(nominal); 0.0013,
0.0022, 3.38, 0.0042,
0.0064 mg/L
(measured, Day 0) | Static, Measured.
Solvent:
Dimethylformamide | Abundance (cell
density);
Population
growth rate (area
under growth
curve) | Wildlife Intl Ltd
(1997b) | High | | | 25637-99-4 | Green algae
(Pseudokirchne
riella
subcapitata) | Fresh | 96-hour | $EC_{10} = >0.0037 \text{ mg}$ AI/L | 0.0015, 0.0022,
0.0032, 0.0046,
0.0068 mg/L
(nominal); 0.0013,
0.0022, 3.38, 0.0042,
0.0064 mg/L
(measured, Day 0) | Static, Measured.
Solvent:
Dimethylformamide | Abundance (cell
density);
Population
growth rate (area
under growth
curve) | Wildlife Intl Ltd
(1997b) | High | | | 25637-99-4 | Green algae
(Pseudokirchne
riella
subcapitata) | Fresh | 96-hour | EC ₅₀ = >0.0037 mg
AI/L | 0.0015, 0.0022,
0.0032, 0.0046,
0.0068 mg/L
(nominal); 0.0013,
0.0022, 3.38, 0.0042,
0.0064 mg/L
(measured, Day 0) | Static, Measured.
Solvent:
Dimethylformamide | Abundance (cell density); Population growth rate (area under growth curve) | Wildlife Intl Ltd
(1997b) | High | | | CAS RN | Test Species | Water
Type | Duration | Endpoint(s) | Concentration(s) | Test Analysis | Effect(s) | References | Data Quality
Rating | HERO ID | |------------|---|---------------|----------|--|--|--|--|-------------------------------|------------------------|---------| | 25637-99-4 | Green algae
(Pseudokirchne
riella
subcapitata) | | 96-hour | $EC_{90} = >0.0037 \text{ mg}$ AI/L | 0.0015, 0.0022,
0.0032, 0.0046,
0.0068 mg/L
(nominal); 0.0013,
0.0022, 3.38, 0.0042,
0.0064 mg/L
(measured, Day 0) | Static, Measured.
Solvent:
Dimethylformamide | Abundance (cell density); Population growth rate (area under growth curve) | (1997b) | High | | | 25637-99-4 | Green algae
(Pseudokirchne
riella
subcapitata) | Fresh | 96-hour | NOEC = >0.0037 mg
AI/L | 0.0015, 0.0022,
0.0032, 0.0046,
0.0068 mg/L
(nominal); 0.0013,
0.0022, 3.38, 0.0042,
0.0064 mg/L
(measured, Day 0) | Static, Measured. Solvent: Dimethylformamide | Population
growth rate (area
under growth
curve) | Wildlife Intl Ltd
(1997b) | High | | | 25637-99-4 | Diatom
(Skeletonema
costatum) | Salt | 72-hour | $EC_{50} = 0.0101 \text{ mg}$
AI/L; Seawater, Test | Not Reported | Static, Measured,
Solvent: Acetone | Population change (change in N/change in time) | Walsh et al.
(1987) | High | 1927837 | | 25637-99-4 | Diatom
(Skeletonema
costatum) | Salt | 72-hour | EC ₅₀ = 0.01 mg AI/L;
Seawater, Test 2 | Not Reported | Static, Measured,
Solvent: Acetone | Population change (change in N/change in time) | <u>Walsh et al.</u>
(1987) | High | | | 25637-99-4 | Diatom
(Skeletonema
costatum) | Salt | 72-hour | EC ₅₀ = 0.0122 mg
AI/L; Rila Marine
Mix, Test 1 | Not Reported | Static, Measured,
Solvent: Acetone | Population change (change in N/change in time) | <u>Walsh et al.</u>
(1987) | High | | | 25637-99-4 | Diatom
(Skeletonema
costatum) | Salt | 72-hour | EC ₅₀ = 0.0118 mg
AI/L; Rila Marine
Mix, Test 2 | Not Reported | Static, Measured,
Solvent: Acetone | Population change (change in N/change in time) | Walsh et al.
(1987) | High | | | 25637-99-4 | Diatom
(Skeletonema
costatum) | Salt | 72-hour | EC ₅₀ = 0.01 mg AI/L;
Instant Ocean sea
salts, Test 1 | Not Reported | Static, Measured,
Solvent: Acetone | Population change (change in N/change in time) | <u>Walsh et al.</u>
(1987) | High | | | 25637-99-4 | Diatom
(Skeletonema
costatum) | Salt | 72-hour | EC ₅₀ = 0.01 mg AI/L;
Instant Ocean sea
salts, Test 2 | Not Reported | Static, Measured,
Solvent: Acetone | Population change (change in N/change in time) | <u>Walsh et al.</u>
(1987) | High | | | 25637-99-4
| Diatom
(Skeletonema
costatum) | Salt | 72-hour | EC ₅₀ = 0.0113 mg
AI/L; Utikem
seawater compound,
Test 1 | Not Reported | Static, Measured,
Solvent: Acetone | Population
change (change in
N/change in time) | Walsh et al.
(1987) | High | | | 25637-99-4 | Diatom
(Skeletonema
costatum) | Salt | 72-hour | EC ₅₀ = 0.0113 mg
AI/L; Utikem
seawater compound,
Test 2 | Not Reported | Static, Measured,
Solvent: Acetone | Population
change (change in
N/change in time) | <u>Walsh et al.</u>
(1987) | High | | | CAS RN | Test Species | Water
Type | Duration | Endpoint(s) | Concentration(s) | Test Analysis | Effect(s) | References | Data Quality
Rating | HERO ID | |------------|---|---------------|----------|---|------------------|---------------------------------------|--|-------------------------------|------------------------|---------| | 25637-99-4 | Diatom
(Skeletonema
costatum) | Salt | 72-hour | EC ₅₀ = 0.0095 mg
AI/L; HW Marine
Mix, Test 1 | Not Reported | Static, Measured,
Solvent: Acetone | Population change (change in N/change in time) | Walsh et al.
(1987) | High | | | 25637-99-4 | Diatom
(Skeletonema
costatum) | Salt | 72-hour | EC ₅₀ = 0.009 mg
AI/L; HW Marine
Mix, Test 2 | Not Reported | Static, Measured,
Solvent: Acetone | Population change (change in N/change in time) | Walsh et al. (1987) | High | | | 25637-99-4 | Diatom
(Thalassiosira
pseudonana) | Salt | 72-hour | EC ₅₀ = 0.07 mg AI/L;
Seawater, Test 1 | Not Reported | Static, Measured,
Solvent: Acetone | Population change (change in N/change in time) | Walsh et al. (1987) | High | | | 25637-99-4 | Diatom
(Thalassiosira
pseudonana) | Salt | 72-hour | EC ₅₀ = 0.08 mg AI/L;
Seawater, Test 2 | Not Reported | Static, Measured,
Solvent: Acetone | Population change (change in N/change in time) | Walsh et al. (1987) | High | | | 25637-99-4 | Diatom
(Thalassiosira
pseudonana) | Salt | 72-hour | EC ₅₀ = 0.38 mg AI/L;
Rila Marine Mix,
Test 1 | Not Reported | Static, Measured,
Solvent: Acetone | Population change (change in N/change in time) | Walsh et al. (1987) | High | | | 25637-99-4 | Diatom
(Thalassiosira
pseudonana) | Salt | 72-hour | EC ₅₀ = 0.36 mg AI/L;
Rila Marine Mix,
Test 2 | Not Reported | Static, Measured,
Solvent: Acetone | Population change (change in N/change in time) | Walsh et al. (1987) | High | | | 25637-99-4 | Diatom
(Thalassiosira
pseudonana) | Salt | 72-hour | EC ₅₀ = 0.15 mg AI/L;
Instant Ocean sea
salts, Test 1 | Not Reported | Static, Measured,
Solvent: Acetone | Population change (change in N/change in time) | Walsh et al. (1987) | High | | | 25637-99-4 | Diatom
(Thalassiosira
pseudonana) | Salt | 72-hour | EC ₅₀ = 0.14 mg AI/L;
Instant Ocean sea
salts, Test 2 | Not Reported | Static, Measured,
Solvent: Acetone | Population change (change in N/change in time) | Walsh et al. (1987) | High | | | 25637-99-4 | Diatom
(Thalassiosira
pseudonana) | Salt | 72-hour | EC ₅₀ = 0.1 mg AI/L;
40 fathoms marine
mix, Test 1 | Not Reported | Static, Measured,
Solvent: Acetone | Population change (change in N/change in time) | Walsh et al. (1987) | High | | | 25637-99-4 | Diatom
(Thalassiosira
pseudonana) | Salt | 72-hour | EC ₅₀ = 0.1 mg AI/L;
40 fathoms marine
mix, Test 2 | Not Reported | Static, Measured,
Solvent: Acetone | Population change (change in N/change in time) | Walsh et al. (1987) | High | | | 25637-99-4 | Diatom
(Thalassiosira
pseudonana) | Salt | 72-hour | EC ₅₀ = 0.09 mg AI/L;
Utikem seawater
compound, Test 1 | Not Reported | Static, Measured,
Solvent: Acetone | Population change (change in N/change in time) | Walsh et al. (1987) | High | | | 25637-99-4 | Diatom
(Thalassiosira
pseudonana) | Salt | 72-hour | EC ₅₀ = 0.09 mg AI/L;
Utikem seawater
compound, Test 2 | Not Reported | Static, Measured,
Solvent: Acetone | Population change (change in N/change in time) | <u>Walsh et al.</u>
(1987) | High | | | 25637-99-4 | Diatom
(Thalassiosira
pseudonana) | Salt | 72-hour | EC ₅₀ = 0.05 mg AI/L;
HW Marine Mix,
Test 1 | Not Reported | Static, Measured,
Solvent: Acetone | Population
change (change in
N/change in time) | Walsh et al. (1987) | High | | | 25637-99-4 | Diatom
(Thalassiosira
pseudonana) | Salt | 72-hour | EC ₅₀ = 0.04 mg AI/L;
HW Marine Mix,
Test 2 | Not Reported | Static, Measured,
Solvent: Acetone | Population change (change in N/change in time) | <u>Walsh et al.</u>
(1987) | High | | | CAS RN | Test Species | Water
Type | Duration | Endpoint(s) | Concentration(s) | Test Analysis | Effect(s) | References | Data Quality
Rating | HERO ID | |-------------|---|---------------|----------|--|---|------------------------|--|--------------------------|------------------------|---------| | 25637-99-4 | Diatom
(Skeletonema
costatum) | Salt | 72-hour | EC ₅₀
>0.041 mg/L | $\alpha = 0.0014 \text{ mg/L}$ $\beta = 0.0075 \text{ mg/L}$ $\gamma = 0.026 \text{ mg/L}$ | Static, Measured | Cell density,
Biomass, Growth
rate. Inhibition | Desjardins et al. (2005) | High | 3809177 | | 25637-99-4 | Diatom
(Skeletonema
costatum) | Salt | 72-hour | EC ₁₀
(NOEC)
0.041 mg/L | $\alpha = 0.0014 \text{ mg/L}$ $\beta = 0.0075 \text{ mg/L}$ $\gamma = 0.026 \text{ mg/L}$ | Static, Measured | Cell density,
Biomass, Growth
rate. Inhibition | | High | | | 25637-99-4 | Diatom
(Skeletonema
costatum) | Salt | | EC ₅₀ >0.010 mg/L | $\begin{array}{c} \gamma = 0.0, 0.0006,\\ 0.0016, 0.004 \text{ and}\\ 0.01 \text{ mg/L} \end{array}$ | Static, nominal
DMF | Growth; Biomass | (2005) | High | 3809170 | | 25637-99-4 | Diatom
(Skeletonema
costatum) | Salt | 72-hour | EC50>0.010 mg/L | γ = 0.0, 0.0006,
0.0016, 0.004 and
0.01 mg/L | Static, nominal
DMF | Growth; Biomass | Desjardins et al. (2005) | High | | | 25637-99-4 | Diatom
(Skeletonema
costatum) | Salt | | $EC_{50} = 0.027 \text{ mg/L}$ | $\begin{array}{c} \alpha = 0.00354 \ mg/L \\ \beta = 0.0152 \ mg/L \\ \gamma = 0.0358 \ mg/L \end{array}$ | Static, Measured | Inhibition | Desjardins et al. (2005) | High | | | 25637-99-4 | Diatom
(Skeletonema
costatum) | Salt | 72-hour | $EC_{50} = 0.052 \text{ mg/L}$ | $\begin{array}{c} \alpha = 0.00354 \ mg/L \\ \beta = 0.0152 \ mg/L \\ \gamma = 0.0358 \ mg/L \end{array}$ | Static, Measured | Growth | Desjardins et al. (2005) | High | | | 134237-50-6 | Blue-green
Algae
(Spirulina
subsalsa) | Fresh | 168-hour | BCF = 350 | 0.002 mg/L | Static, Measured | Residue;
Bioconcentration | Zhang et al.
(2014c) | High | 2343690 | | 134237-50-6 | Green Algae
(Scenedesmus
acutus var.
acutus) | Fresh | 168-hour | BCF = 407 | 0.002 mg/L | Static, Measured | Residue;
Bioconcentration | Zhang et al.
(2014c) | High | | | 134237-51-7 | Blue-green
Algae
(Spirulina
subsalsa) | Fresh | 168-hour | BCF = 270 | 0.002 mg/L | Static, Measured | Residue;
Bioconcentration | Zhang et al. (2014c) | High | | | 134237-51-7 | Green Algae
(Scenedesmus
acutus var.
acutus) | Fresh | 168-hour | BCF = 469 | 0.002 mg/L | Static, Measured | Residue;
Bioconcentration | Zhang et al. (2014c) | High | | | 134237-52-8 | Green Algae
(Scenedesmus
acutus var.
acutus) | Fresh | 168-hour | BCF = 390 | 0.002 mg/L | Static, Measured | Residue;
Bioconcentration | Zhang et al.
(2014c) | High | | | CAS RN | Test Species | Water
Type | Duration | Endpoint(s) | Concentration(s) | Test Analysis | Effect(s) | References | Data Quality
Rating | HERO ID | |----------------|---------------------------------------|---------------|----------|---------------------------------------|--|------------------|------------------------------|----------------------|------------------------|---------| | 134237-52-8 | Blue-green Algae (Spirulina subsalsa) | Fresh | 168-hour | BCF = 174 | 0.002 mg/L | Static, Measured | Residue;
Bioconcentration | Zhang et al. (2014c) | High | | | Aquatic Invert | ebrates | | | | • | | | | • | | | 3194-55-6 | Water flea
(Daphnia
magna) | Fresh | 3-hour | EC ₀ = 1000 mg AI/L | 0, 0.01, 0.1, 1, 10,
100, 1000 mg/L | Static, Nominal | Behavioral:
Swimming | BASF (1990) | High | 1928267 | | 3194-55-6 | Water flea
(Daphnia
magna) | Fresh | 3-hour | EC ₅₀ = >1000 mg
AI/L | 0, 0.01, 0.1, 1, 10,
100, 1000 mg/L | Static, Nominal | Behavioral:
Swimming | BASF (1990) | High | | | 3194-55-6 | Water flea
(Daphnia
magna) | Fresh | 3-hour | $EC_{100} = >1000 \text{ mg}$
AI/L | 0, 0.01, 0.1, 1, 10,
100, 1000 mg/L | Static, Nominal | Behavioral:
Swimming | BASF (1990) | High | | | 3194-55-6 | Water flea
(Daphnia
magna) | Fresh | 6-hour | EC ₀ = 1000 mg AI/L | 0, 0.01, 0.1, 1, 10,
100, 1000 mg/L | Static, Nominal | Behavioral:
Swimming | BASF (1990) | High | | | 3194-55-6 | Water flea
(Daphnia
magna) | Fresh | 6-hour | $EC_{50} = >1000$ | 0, 0.01, 0.1, 1, 10,
100, 1000 mg/L | Static, Nominal | Behavioral:
Swimming | BASF (1990) | High | | | 3194-55-6 | Water flea
(Daphnia
magna) | Fresh | 6-hour | EC ₁₀₀ = >1000 mg
AI/L | 0, 0.01, 0.1, 1, 10,
100, 1000 mg/L | Static, Nominal | Behavioral:
Swimming | BASF (1990) | High | | | 3194-55-6 | Water flea
(Daphnia
magna) | Fresh | 24-hour | EC ₀ = 1000 mg AI/L | 0, 0.01, 0.1, 1, 10,
100, 1000 mg/L | Static, Nominal | Behavioral:
Swimming | BASF
(1990) | High | | | 3194-55-6 | Water flea
(Daphnia
magna) | Fresh | 24-hour | EC ₅₀ = >1000 mg
AI/L | 0, 0.01, 0.1, 1, 10,
100, 1000 mg/L | Static, Nominal | Behavioral:
Swimming | BASF (1990) | High | | | 3194-55-6 | Water flea
(Daphnia
magna) | Fresh | 24-hour | EC ₁₀₀ = >1000 mg
AI/L | 0, 0.01, 0.1, 1, 10,
100, 1000 mg/L | Static, Nominal | Behavioral:
Swimming | BASF (1990) | High | | | 3194-55-6 | Water flea
(Daphnia
magna) | Fresh | 48-hour | $EC_0 = 1 \text{ mg AI/L}$ | 0, 0.01, 0.1, 1, 10,
100, 1000 mg/L | Static, Nominal | Behavioral:
Swimming | BASF (1990) | High | | | 3194-55-6 | Water flea (Daphnia magna) | Fresh | 48-hour | $EC_{50} = 146.34 \text{ mg}$
AI/L | 0, 0.01, 0.1, 1, 10,
100, 1000 mg/L | Static, Nominal | Behavioral:
Swimming | BASF (1990) | High | | | 3194-55-6 | Water flea
(Daphnia
magna) | Fresh | 48-hour | EC ₁₀₀ = >1000 mg
AI/L | 0, 0.01, 0.1, 1, 10,
100, 1000 mg/L | Static, Nominal | Behavioral:
Swimming | BASF (1990) | High | | | CAS RN | Test Species | Water
Type | Duration | Endpoint(s) | Concentration(s) | Test Analysis | Effect(s) | References | Data Quality
Rating | HERO ID | |------------|----------------------------------|---------------|----------|--|--|---|--|------------------------------|------------------------|---------------------------------| | 25637-99-4 | Water flea
(Daphnia
magna) | Fresh | 48-hour | $EC_{50} = >0.0032 \text{ mg}$
AI/L | 0, 0.0018, 0.0021,
0.0023, 0.0024,
0.0032 mg/L | Flow-through, Measured,
Solvent: DMF | Mortality | Wildlife Intl Ltd
(1997a) | High | 1928297;
3586421 | | 25637-99-4 | Water flea
(Daphnia
magna) | Fresh | 48-hour | NOEC = 0.0032 mg
AI/L | 0.0023, 0.0024,
0.0032 mg/L | Flow-through, Measured,
Solvent: DMF | Mortality,
Immobility | Wildlife Intl Ltd
(1997a) | High | | | 25637-99-4 | Water flea
(Daphnia
magna) | Fresh | 24-hour | $EC_{50} = >0.011 \text{ mg}$
AI/L | 0, 0.00087, 0.0016,
0.0031, 0.0056, 0.011
mg/L | Flow-through, Measured,
Solvent: DMF | Mortality;
Progeny counts/
numbers | Wildlife Intl Ltd
(1998) | High | 1928243;
3809169;
1928293 | | 25637-99-4 | Water flea
(Daphnia
magna) | Fresh | 48-hour | $EC_{50} = >0.011 \text{ mg}$
AI/L | 0, 0.00087, 0.0016,
0.0031, 0.0056, 0.011
mg/L | Flow-through, Measured,
Solvent: DMF | Mortality;
Progeny counts/
numbers | Wildlife Intl Ltd
(1998) | High | | | 25637-99-4 | Water flea
(Daphnia
magna) | Fresh | 96-hour | EC ₅₀ = >0.011 mg
AI/L | 0, 0.00087, 0.0016,
0.0031, 0.0056, 0.011
mg/L | Flow-through, Measured,
Solvent: DMF | Mortality;
Progeny counts/
numbers | Wildlife Intl Ltd
(1998) | High | | | 25637-99-4 | Water flea
(Daphnia
magna) | Fresh | 7-day | $EC_{50} = >0.011 \text{ mg}$
AI/L | 0, 0.00087, 0.0016,
0.0031, 0.0056, 0.011
mg/L | Flow-through, Measured,
Solvent: DMF | Mortality;
Progeny counts/
numbers | Wildlife Intl Ltd
(1998) | High | | | 25637-99-4 | Water flea
(Daphnia
magna) | Fresh | 14-day | $EC_{50} = >0.011 \text{ mg}$
AI/L | 0, 0.00087, 0.0016,
0.0031, 0.0056, 0.011
mg/L | Flow-through, Measured,
Solvent: DMF | Mortality;
Progeny counts/
numbers | Wildlife Intl Ltd
(1998) | High | | | 25637-99-4 | Water flea
(Daphnia
magna) | Fresh | 21-day | $EC_{50} = >0.011 \text{ mg}$
AI/L | 0, 0.00087, 0.0016,
0.0031, 0.0056, 0.011
mg/L | Flow-through, Measured,
Solvent: DMF | Mortality;
Progeny counts/
numbers | Wildlife Intl Ltd
(1998) | High | | | 25637-99-4 | Water flea
(Daphnia
magna) | Fresh | 21-day | NOEC = 0.011 mg
AI/L | 0, 0.00087, 0.0016,
0.0031, 0.0056, 0.011
mg/L | Flow-through, Measured,
Solvent: DMF | Mortality | Wildlife Intl Ltd
(1998) | High | | | 25637-99-4 | Water flea
(Daphnia
magna) | Fresh | 21-day | NOEC = 0.0056 mg
AI/L;
LOEC = 0.011 mg
AI/L | 0, 0.00087, 0.0016,
0.0031, 0.0056, 0.011
mg/L | Flow-through, Measured,
Solvent: DMF | Progeny
counts/numbers;
Growth: Weight | Wildlife Intl Ltd
(1998) | High | | | 25637-99-4 | Water flea
(Daphnia
magna) | Fresh | 21-day | LOEC = 0.0056 mg
AI/L | 0, 0.00087, 0.0016,
0.0031, 0.0056, 0.011
mg/L | Flow-through, Measured,
Solvent: DMF | Growth: Length | Wildlife Intl Ltd
(1998) | High | | | 25637-99-4 | Water flea
(Daphnia
magna) | Fresh | 21-day | NOEC = 0.0031 mg
AI/L | | Flow-through, Measured,
Solvent: DMF | Growth: Length | Wildlife Intl Ltd
(1998) | High | | | 25637-99-4 | Water flea
(Daphnia
magna) | Fresh | 21-day | MATC = 0.0042 mg
AI/L | | Flow-through, Measured,
Solvent: DMF | Growth: Length | Wildlife Intl Ltd
(1998) | High | | | CAS RN | Test Species | Water
Type | Duration | Endpoint(s) | Concentration(s) | Test Analysis | Effect(s) | References | Data Quality
Rating | HERO ID | |-----------|--|---------------|----------|---|--------------------------------------|---|---|-------------------------|------------------------|---------| | 3194-55-6 | Japanese Littleneck Clam (Venerupis philippinarum) | Salt | 1-day | NOAEL = 0.000086
mg AI/L; LOAEL =
0.00086 mg AI/L;
Gill tissue | 0, 0.000086, 0.00086,
0.0086 mg/L | Renewal, Not reported,
Solvent: Dimethyl
sulfoxide (DMSO) | 7-Ethoxyresorufin
O-deethylase;
Glutathione
(reduced
glutathione);
DNA damage | Zhang et al.
(2014a) | High | 2528343 | | 3194-55-6 | Japanese Littleneck Clam (Venerupis philippinarum) | Salt | 3-day | LOAEL = 0.000086
mg AI/L; Gill tissue | 0, 0.000086, 0.00086,
0.0086 mg/L | Renewal, Not reported,
Solvent: DMSO | 7-Ethoxyresorufin
O-deethylase | Zhang et al.
(2014a) | High | | | 3194-55-6 | Japanese
Littleneck
Clam
(Venerupis
philippinarum) | Salt | 6-day | mg AI/L; Gill tissue | 0, 0.000086, 0.00086,
0.0086 mg/L | Renewal, Not reported,
Solvent: DMSO | 7-Ethoxyresorufin O-deethylase; Glutathione S- transferase; Superoxide dismutase (SOD) enzyme activity; Glutathione (reduced glutathione); Lipid peroxidation | Zhang et al.
(2014a) | High | | | 3194-55-6 | Japanese
Littleneck
Clam
(Venerupis
philippinarum) | Salt | 10-day | LOAEL = 0.000086
mg AI/L; Gill tissue | 0, 0.000086, 0.00086,
0.0086 mg/L | Renewal, Not reported,
Solvent: DMSO | 7-Ethoxyresorufin O-deethylase; Glutathione S- transferase; Superoxide dismutase (SOD) enzyme activity; Glutathione (reduced glutathione) | Zhang et al.
(2014a) | High | | | CAS RN | Test Species | Water
Type | Duration | Endpoint(s) | Concentration(s) | Test Analysis | Effect(s) | References | Data Quality
Rating | HERO ID | |-----------|--|---------------|----------|---|--------------------------------------|---|---|-------------------------|------------------------|---------| | 3194-55-6 | Japanese
Littleneck
Clam
(Venerupis
philippinarum) | Salt | 15-day | mg AI/L; Gill tissue | 0, 0.000086, 0.00086,
0.0086 mg/L | Renewal, Not reported,
Solvent: DMSO | 7-Ethoxyresorufin O-deethylase; Glutathione S- transferase; Superoxide dismutase (SOD) enzyme activity; Glutathione (reduced glutathione) | Zhang et al.
(2014a) | High | | | 3194-55-6 | Japanese Littleneck Clam (Venerupis philippinarum) | Salt | 1-day | NOAEL = 0.0086 mg
AI/L; Gill tissue | 0, 0.000086, 0.00086,
0.0086 mg/L | Renewal, Not reported,
Solvent: DMSO | Glutathione S-
transferase;
Superoxide
dismutase (SOD)
enzyme activity | Zhang et al.
(2014a) | High | | | 3194-55-6 | Japanese
Littleneck
Clam
(Venerupis
philippinarum) | Salt | 3-day | mg AI/L;
LOAEL = 0.00086
mg AI/L; Gill tissue | 0, 0.000086, 0.00086,
0.0086 mg/L | Renewal, Not reported,
Solvent: DMSO | Glutathione S- transferase; Superoxide dismutase (SOD) enzyme activity; Glutathione (reduced glutathione); Lipid peroxidation; DNA damage | Zhang et al.
(2014a) | High | | | 3194-55-6 | Japanese Littleneck Clam (Venerupis philippinarum) | Salt | 6-day | NOAEL = 0.000086
mg AI/L;
LOAEL = 0.00086
mg AI/L; Gill tissue | 0, 0.000086, 0.00086,
0.0086 mg/L | Renewal, Not reported,
Solvent: DMSO | DNA damage | Zhang et al.
(2014a) | High | | | 3194-55-6 | Japanese Littleneck Clam (Venerupis philippinarum) | Salt | 10-day | mg AI/L;
LOAEL = 0.00086
mg AI/L; Gill tissue | 0, 0.000086, 0.00086,
0.0086 mg/L | Renewal, Not reported,
Solvent: DMSO | DNA damage;
Lipid
peroxidation | Zhang et al.
(2014a) | High | | | 3194-55-6 | Japanese Littleneck Clam (Venerupis philippinarum) | Salt | 15-day | NOAEL = 0.00086
mg AI/L;
LOAEL = 0.0086 mg
AI/L; Gill tissue | 0, 0.000086, 0.00086,
0.0086 mg/L | Renewal, Not reported,
Solvent: DMSO | DNA damage | Zhang et al.
(2014a) | High | | | CAS RN | Test Species | Water
Type | Duration | Endpoint(s) | Concentration(s) | Test Analysis | Effect(s) | References | Data Quality
Rating | HERO ID | |-----------|--|---------------
----------|---|--------------------------------------|---|---|-------------------------|------------------------|---------| | 3194-55-6 | Japanese Littleneck Clam (Venerupis philippinarum) | Salt | 1-day | NOAEL = 0.00086
mg AI/L;
LOAEL = 0.0086 mg
AI/L; Gill tissue | 0, 0.000086, 0.00086,
0.0086 mg/L | Renewal, Not reported,
Solvent: DMSO | Lipid
peroxidation | Zhang et al.
(2014a) | High | | | 3194-55-6 | Japanese Littleneck Clam (Venerupis philippinarum) | Salt | 15-day | NOAEL = 0.000086
mg AI/L;
LOAEL = 0.00086
mg AI/L; Gill tissue | 0, 0.000086, 0.00086,
0.0086 mg/L | Renewal, Not reported,
Solvent: DMSO | Lipid
peroxidation | Zhang et al.
(2014a) | High | | | 3194-55-6 | Japanese
Littleneck
Clam
(Venerupis
philippinarum) | Salt | 1-day | NOAEL = 0.000086
mg AI/L; LOAEL =
0.00086 mg AI/L;
Digestive gland | 0, 0.000086, 0.00086,
0.0086 mg/L | Renewal, Not reported,
Solvent: DMSO | 7-Ethoxyresorufin
O-deethylase;
Glutathione
(reduced
glutathione);
DNA damage | Zhang et al.
(2014a) | High | | | 3194-55-6 | Japanese Littleneck Clam (Venerupis philippinarum) | Salt | 3-day | LOAEL = 0.000086
mg AI/L; Digestive
gland | 0, 0.000086, 0.00086,
0.0086 mg/L | Renewal, Not reported,
Solvent: DMSO | 7-Ethoxyresorufin
O-deethylase | Zhang et al.
(2014a) | High | | | 3194-55-6 | Japanese
Littleneck
Clam
(Venerupis
philippinarum) | Salt | 6-day | LOAEL = 0.000086
mg AI/L; Digestive
gland | 0, 0.000086, 0.00086,
0.0086 mg/L | Renewal, Not reported,
Solvent: DMSO | 7-Ethoxyresorufin O-deethylase; Glutathione S- transferase; Superoxide dismutase (SOD) enzyme activity; Glutathione (reduced glutathione); Lipid peroxidation | Zhang et al.
(2014a) | High | | | CAS RN | Test Species | Water
Type | Duration | Endpoint(s) | Concentration(s) | Test Analysis | Effect(s) | References | Data Quality
Rating | HERO ID | |-----------|--|---------------|----------|--|--------------------------------------|---|---|-------------------------|------------------------|---------| | 3194-55-6 | Japanese
Littleneck
Clam
(Venerupis
philippinarum) | Salt | 10-day | LOAEL = 0.000086
mg AI/L; Digestive
gland | 0, 0.000086, 0.00086,
0.0086 mg/L | Renewal, Not reported,
Solvent: DMSO | 7-Ethoxyresorufin O-deethylase; Glutathione S- transferase; Superoxide dismutase (SOD) enzyme activity; Glutathione (reduced glutathione) | Zhang et al.
(2014a) | High | | | 3194-55-6 | Japanese
Littleneck
Clam
(Venerupis
philippinarum) | Salt | 15-day | LOAEL = 0.000086
mg AI/L; Digestive
gland | 0, 0.000086, 0.00086,
0.0086 mg/L | Renewal, Not reported,
Solvent: DMSO | 7-Ethoxyresorufin O-deethylase; Glutathione S- transferase; Superoxide dismutase (SOD) enzyme activity; Glutathione (reduced glutathione) | Zhang et al.
(2014a) | High | | | 3194-55-6 | Japanese Littleneck Clam (Venerupis philippinarum) | Salt | 1-day | NOAEL = 0.0086 mg
AI/L; Digestive gland | 0, 0.000086, 0.00086,
0.0086 mg/L | Renewal, Not reported,
Solvent: DMSO | Glutathione S-
transferase;
Superoxide
dismutase (SOD)
enzyme activity | Zhang et al.
(2014a) | High | | | 3194-55-6 | Japanese
Littleneck
Clam
(Venerupis
philippinarum) | Salt | 3-day | NOAEL = 0.000086
mg AI/L; LOAEL =
0.00086 mg AI/L;
Digestive gland | 0, 0.000086, 0.00086,
0.0086 mg/L | Renewal, Not reported,
Solvent: DMSO | Glutathione S- transferase; Superoxide dismutase (SOD) enzyme activity; Glutathione (reduced glutathione); DNA damage; Lipid peroxidation | Zhang et al.
(2014a) | High | | | 3194-55-6 | Japanese
Littleneck
Clam
(Venerupis
philippinarum) | Salt | 6-day | NOAEL = 0.000086
mg AI/L;
LOAEL = 0.00086
mg AI/L; Digestive
gland | 0.000086, 0.00086,
0.0086 mg/L | Renewal, Not reported,
Solvent: DMSO | DNA damage | Zhang et al.
(2014a) | High | | | CAS RN | Test Species | Water
Type | Duration | Endpoint(s) | Concentration(s) | Test Analysis | Effect(s) | References | Data Quality
Rating | HERO ID | |------------|--|---------------|----------|--|--------------------------------------|---|---|-------------------------|------------------------|---------| | 3194-55-6 | Japanese
Littleneck
Clam
(Venerupis
philippinarum) | Salt | 10-day | NOAEL = 0.000086
mg AI/L;
LOAEL = 0.00086
mg AI/L; Digestive
gland | 0.000086, 0.00086,
0.0086 mg/L | Renewal, Not reported,
Solvent: DMSO | DNA damage;
Lipid
peroxidation | Zhang et al.
(2014a) | High | | | 3194-55-6 | Japanese
Littleneck
Clam
(Venerupis
philippinarum) | Salt | 15-day | NOAEL = 0.00086
mg AI/L;
LOAEL = 0.0086 mg
AI/L; Digestive gland | 0.000086, 0.00086,
0.0086 mg/L | Renewal, Not reported,
Solvent: DMSO | DNA damage | Zhang et al.
(2014a) | High | | | 3194-55-6 | Japanese Littleneck Clam (Venerupis philippinarum) | Salt | | NOAEL = 0.00086
mg AI/L;
LOAEL = 0.0086 mg
AI/L; Digestive gland | 0.000086, 0.00086,
0.0086 mg/L | Renewal, Not reported,
Solvent: DMSO | Lipid
peroxidation | Zhang et al.
(2014a) | High | | | 3194-55-6 | Japanese Littleneck Clam (Venerupis philippinarum) | Salt | 15-day | NOAEL = 0.000086
mg AI/L;
LOAEL = 0.00086
mg AI/L; Digestive
gland | 0.000086, 0.00086,
0.0086 mg/L | Renewal, Not reported,
Solvent: DMSO | Lipid
peroxidation | Zhang et al.
(2014a) | High | | | 25637-99-4 | Japanese
Littleneck
Clam
(Venerupis
philippinarum) | Salt | 3-day | LOAEL = 0.000086
mg AI/L | 0, 0.000086, 0.00086,
0.0086 mg/L | Renewal, Nominal,
Solvent: DMSO | Ferritin mRNA;
Catalase mRNA;
Dihydrodiol
dehydrogenase
mRNA;
Cytochrome c
oxidase subunit 1
mRNA; NADH:
ubiquinone
reductase (H(+)-
translocating)
mRNA | Zhang et al.
(2013) | High | 1928024 | | CAS RN | Test Species | Water
Type | Duration | Endpoint(s) | Concentration(s) | Test Analysis | Effect(s) | References | Data Quality
Rating | HERO ID | |------------|--|---------------|-----------------------------------|---|---------------------------------------|------------------------------------|---|------------------------|------------------------|---------| | 25637-99-4 | Japanese
Littleneck
Clam
(Venerupis
philippinarum) | Salt | 10-day | LOAEL = 0.000086
mg AI/L | 0, 0.000086, 0.00086,
0.0086 mg/L | Renewal, Nominal,
Solvent: DMSO | Ferritin mRNA; Catalase mRNA; Dihydrodiol dehydrogenase mRNA; C-type Lectin like mRNA; Elongation factor- 1 alpha mRNA; Hemocyanin subunit 2 mRNA | Zhang et al.
(2013) | High | | | 25637-99-4 | Japanese Littleneck Clam (Venerupis philippinarum) | Salt | 10-day | NOAEL = 0.0086 mg
AI/L | 0, 0.000086, 0.00086,
0.0086 mg/L | Renewal, Nominal,
Solvent: DMSO | Cytochrome c
oxidase subunit 1
mRNA | Zhang et al. (2013) | High | | | 25637-99-4 | Japanese Littleneck Clam (Venerupis philippinarum) | Salt | 10-day | NOAEL = 0.000086
mg AI/L;
LOAEL = 0.00086
mg AI/L | 0, 0.000086, 0.00086,
0.0086 mg/L | Renewal, Nominal,
Solvent: DMSO | NADH:
ubiquinone
reductase (H(+)-
translocating)
mRNA | Zhang et al.
(2013) | High | | | 25637-99-4 | Japanese Littleneck Clam (Venerupis philippinarum) | Salt | 10-day | NOAEL = 0.00086
mg AI/L;
LOAEL = 0.0086 mg
AI/L | 0, 0.000086, 0.00086,
0.0086 mg/L | Renewal, Nominal,
Solvent: DMSO | Purine nucleoside
phosphorylase
mRNA | Zhang et al.
(2013) | High | | | 25637-99-4 | Sea urchin (Psammechinus miliaris) | Salt | 72 hours
post
fertilization | NOAEL =
0.06416989 mg AI/L;
Exp. A | 0, 0.006, 0.016,
0.032, 0.064 mg/L | Renewal, Nominal,
Solvent: DMSO | Growth:
Abnormal | Anselmo et al. (2011) | High | 1274149 | | 25637-99-4 | Sea urchin
(Psammechinus
miliaris) | Salt | 72 hours
post | NOAEL = 0.032 mg
AI/L; LOAEL =
0.064 mg AI/L; Exp.
B | 0, 0.006, 0.016,
0.032, 0.064 mg/L | Renewal, Nominal,
Solvent: DMSO | Growth:
Abnormal | Anselmo et al. (2011) | High | | | 25637-99-4 | Sea urchin
(Psammechinus
miliaris) | Salt | 2-4 days
post
fertilization | NOAEL = 0.032 mg
AI/L; LOAEL =
0.064 mg AI/L; Exp.
A | 0, 0.006, 0.016,
0.032, 0.064 mg/L | Renewal, Nominal,
Solvent: DMSO | Growth:
Abnormal | Anselmo et al. (2011) | High | | | 25637-99-4 | Sea urchin
(Psammechinus
miliaris) | Salt | 2-4 days
post
fertilization | NOAEL = 0.032 mg
AI/L; LOAEL =
0.064 mg AI/L; Exp.
B | 0, 0.006, 0.016,
0.032, 0.064 mg/L | Renewal, Nominal,
Solvent: DMSO | Growth:
Abnormal | Anselmo et al. (2011) | High | | | CAS RN | Test Species |
Water
Type | Duration | Endpoint(s) | Concentration(s) | Test Analysis | Effect(s) | References | Data Quality
Rating | HERO ID | |------------|---|---------------|-------------------------------------|--|--|------------------------------------|------------------------------|-----------------------|------------------------|---------| | 25637-99-4 | Sea urchin (Psammechinus miliaris) | Salt | 2-4 days
post
fertilization | | 0, 0.006, 0.016,
0.032, 0.064 mg/L | Renewal, Nominal,
Solvent: DMSO | Growth:
Abnormal | Anselmo et al. (2011) | High | | | 25637-99-4 | Sea urchin
(Psammechinus
miliaris) | Salt | 7-9 days
post
fertilization | NOAEL = 0.0320 mg
AI/L; LOAEL =
0.064 mg AI/L; Exp.
B | 0, 0.006, 0.016,
0.032, 0.064 mg/L | Renewal, Nominal,
Solvent: DMSO | Growth:
Abnormal | Anselmo et al. (2011) | High | | | 25637-99-4 | Sea urchin (Psammechinus miliaris) | Salt | 7-9 days
post
fertilization | | 0, 0.006, 0.016,
0.032, 0.064 mg/L | Renewal, Nominal,
Solvent: DMSO | Growth:
Abnormal | Anselmo et al. (2011) | High | | | 25637-99-4 | Sea urchin
(Psammechinus
miliaris) | Salt | post | NOAEL = 0.0325 mg
AI/L; LOAEL =
0.064 mg AI/L; Exp.
A | 0, 0.006, 0.016,
0.032, 0.064 mg/L | Renewal, Nominal,
Solvent: DMSO | Growth:
Abnormal | Anselmo et al. (2011) | High | | | 25637-99-4 | Sea urchin (Psammechinus miliaris) | Salt | 14-16 days
post
fertilization | EC50 = 0.056 mg AI/L; Exp. | 0, 0.006, 0.016,
0.032, 0.064 mg/L | Renewal, Nominal,
Solvent: DMSO | Growth:
Abnormal | Anselmo et al. (2011) | High | | | 25637-99-4 | Sea urchin
(Psammechinus
miliaris) | Salt | post | NOAEL = 0.0325 mg
AI/L; LOAEL =
0.064 mg AI/L; Exp.
B | 0, 0.006, 0.016,
0.032, 0.064 mg/L | Renewal, Nominal,
Solvent: DMSO | Growth:
Abnormal | Anselmo et al. (2011) | High | | | 25637-99-4 | Sea urchin (Psammechinus miliaris) | Salt | 14-16 days
post
fertilization | EC ₅₀ = 0.035mg
AI/L; Exp. B | 0, 0.006, 0.016,
0.032, 0.064 mg/L | Renewal, Nominal,
Solvent: DMSO | Growth:
Abnormal | Anselmo et al. (2011) | High | | | 25637-99-4 | Sea urchin
(Psammechinus
miliaris) | Salt | 16 days
post
fertilization | NOAEL = 0.032 mg
AI/L; LOAEL =
0.064 mg AI/L; Exp.
A | 0, 0.006, 0.016,
0.032, 0.064 mg/L | Renewal, Nominal,
Solvent: DMSO | Growth: Development | Anselmo et al. (2011) | High | | | 25637-99-4 | Sea urchin
(Psammechinus
miliaris) | Salt | 16 days
post
fertilization | NOAEL = 0.0058 mg
AI/L;
LOAEL = 0.016 mg
AI/L Exp. B | 0, 0.006, 0.016,
0.032, 0.064 mg/L | Renewal, Nominal,
Solvent: DMSO | Growth: Development | Anselmo et al. (2011) | High | | | 25637-99-4 | Harpacticoid
Copepod
(Tigriopus
japonicus) | Salt | 96-hour | NOEC = 0.8 mg
AI/L;
LOEC = >0.8 mg
AI/L | 0, 0.008, 0.03, 0.08,
0.3, 0.8 mg/L | Renewal, Nominal,
Solvent: DMSO | Mortality | Shi et al. (2017) | High | 3546057 | | 25637-99-4 | Harpacticoid
Copepod
(Tigriopus
japonicus) | Salt | 96-hour | Kinetic BCF = 87,300 | 0, 0.002 mg/L | Renewal, Nominal | Residue;
bioconcentration | Shi et al. (2017) | High | | | CAS RN | Test Species | Water
Type | Duration | Endpoint (s) | Concentration(s) | Test Analysis | Effect(s) | References | Data Quality
Rating | HERO ID | |------------|---|---------------|----------|---|--|------------------------------------|---|-------------------|------------------------|---------| | 25637-99-4 | Harpacticoid
Copepod
(Tigriopus
japonicus) | Salt | 96-hour | Steady-State BCF = 63,400 | 0, 0.002 mg/L | Renewal, Nominal | Residue;
bioconcentration | Shi et al. (2017) | High | | | 25637-99-4 | Harpacticoid Copepod (Tigriopus japonicus) | Salt | 96-hour | Lipid-Normalized
Kinetic BCF =
78,400 | 0, 0.002 mg/L | Renewal, Nominal | Residue;
bioconcentration | Shi et al. (2017) | High | | | 25637-99-4 | Harpacticoid
Copepod
(Tigriopus
japonicus) | Salt | 3-day | NOAEL = 0.8 mg
AI/L | 0, 0.008, 0.03, 0.08,
0.3, 0.8 mg/L | Renewal, Nominal,
Solvent: DMSO | Glutathione S-
transferase
mRNA; p53
mRNA | Shi et al. (2017) | High | | | 25637-99-4 | Harpacticoid
Copepod
(Tigriopus
japonicus) | Salt | 7-day | NOAEL = 0.8 mg
AI/L | 0, 0.008, 0.03, 0.08,
0.3, 0.8 mg/L | Renewal, Nominal,
Solvent: DMSO | Glutathione S-
transferase
mRNA; Catalase;
p53 mRNA;
Superoxide
dismutase mRNA | Shi et al. (2017) | High | | | 25637-99-4 | Harpacticoid
Copepod
(Tigriopus
japonicus) | Salt | 14-day | NOAEL = 0.3 mg
AI/L;
LOAEL = 0.8 mg
AI/L | 0, 0.008, 0.03, 0.08,
0.3, 0.8 mg/L | Renewal, Nominal,
Solvent: DMSO | Glutathione S-
transferase
mRNA; 8-
oxoguanine DNA
glycosylase
mRNA; p53
mRNA | Shi et al. (2017) | High | | | 25637-99-4 | Harpacticoid
Copepod
(Tigriopus
japonicus) | Salt | 3-day | NOAEL = 0.3 mg
AI/L;
LOAEL = 0.8 mg
AI/L | 0, 0.008, 0.03, 0.08, 0.3, 0.8 mg/L | Renewal, Nominal,
Solvent: DMSO | Catalase; 8-
oxoguanine DNA
glycosylase
mRNA;
Superoxide
dismutase mRNA | Shi et al. (2017) | High | | | 25637-99-4 | Harpacticoid Copepod (Tigriopus japonicus) | Salt | 14-day | LOAEL = 0.3 mg
AI/L | 0, 0.008, 0.03, 0.08,
0.3, 0.8 mg/L | Renewal, Nominal,
Solvent: DMSO | Catalase;
Caspase-3 mRNA | Shi et al. (2017) | High | | | 25637-99-4 | Harpacticoid
Copepod
(Tigriopus
japonicus) | Salt | 7-day | NOAEL = 0.3 mg
AI/L;
LOAEL = 0.8 mg
AI/L | 0, 0.008, 0.03, 0.08, 0.3, 0.8 mg/L | Renewal, Nominal,
Solvent: DMSO | 8-oxoguanine
DNA glycosylase
mRNA | Shi et al. (2017) | High | | | CAS RN | Test Species | Water
Type | Duration | Endpoint(s) | Concentration(s) | Test Analysis | Effect(s) | References | Data Quality
Rating | HERO ID | |------------|---|---------------|----------|---|--|------------------------------------|--|-------------------|------------------------|---------| | 25637-99-4 | Harpacticoid
Copepod
(Tigriopus
japonicus) | Salt | 3-day | LOAEL = 0.3 mg
AI/L | 0, 0.008, 0.03, 0.08,
0.3, 0.8 mg/L | Renewal, Nominal,
Solvent: DMSO | Caspase-3 mRNA | Shi et al. (2017) | High | | | 25637-99-4 | Harpacticoid Copepod (Tigriopus japonicus) | Salt | 7-day | LOAEL = 0.3 mg
AI/L | 0, 0.008, 0.03, 0.08,
0.3, 0.8 mg/L | Renewal, Nominal,
Solvent: DMSO | Caspase-3 mRNA | Shi et al. (2017) | High | | | 25637-99-4 | Harpacticoid
Copepod
(Tigriopus
japonicus) | Salt | 10-day | NOAEL = 0.8 mg
AI/L; F0 generation | 0, 0.008, 0.03, 0.08,
0.3, 0.8 mg/L | Renewal, Nominal,
Solvent: DMSO | Reproductive: Fecundity; Progeny counts/numbers; Sex ratio | Shi et al. (2017) | High | | | 25637-99-4 | Harpacticoid
Copepod
(Tigriopus
japonicus) | Salt | 10-day | NOAEL = 0.8 mg
AI/L; F1 generation | 0, 0.008, 0.03, 0.08,
0.3, 0.8 mg/L | Renewal, Nominal,
Solvent: DMSO | Reproductive: Fecundity; Progeny counts/numbers; Sex ratio | Shi et al. (2017) | High | | | 25637-99-4 | Harpacticoid
Copepod
(Tigriopus
japonicus) | Salt | 20-day | NOEC = 0.08 mg AI/L; LOEC = 0.3 mg AI/L; F0 generation; maturation period | 0, 0.008, 0.03, 0.08,
0.3, 0.8 mg/L | Renewal, Nominal,
Solvent: DMSO | Growth, Developmental stage | Shi et al. (2017) | High | | | 25637-99-4 | Harpacticoid
Copepod
(Tigriopus
japonicus) | Salt | 20-day | NOEC = 0.008 mg AI/L; LOEC = 0.03 mg AI/L; F1 generation; maturation period | 0, 0.008, 0.03, 0.08, 0.3, 0.8 mg/L | Renewal, Nominal,
Solvent: DMSO | Growth,
Developmental
stage | Shi et al. (2017) | High | | | 25637-99-4 | Harpacticoid
Copepod
(Tigriopus
japonicus) | Salt | 20-day | NOEC = 0.008 mg AI/L; LOEC = 0.03 mg AI/L; F0 generation; nauplius phase | 0, 0.008, 0.03, 0.08,
0.3, 0.8 mg/L | Renewal, Nominal,
Solvent: DMSO | Growth, Developmental stage | Shi et al. (2017) | High | | | 25637-99-4 | Harpacticoid
Copepod
(Tigriopus
japonicus) | Salt | 20-day | LOEC = 0.008 mg
AI/L; F1 generation;
nauplius phase | 0, 0.008, 0.03, 0.08,
0.3, 0.8 mg/L | Renewal, Nominal,
Solvent: DMSO | Growth, Developmental stage | Shi et al. (2017) | High | | | 25637-99-4 | Harpacticoid
Copepod
(Tigriopus
japonicus) | Salt | 40-day | NOEC = 0.8 mg AI/L | 0, 0.008, 0.03, 0.08, 0.3, 0.8 mg/L | Renewal, Nominal,
Solvent: DMSO | Mortality | Shi et al. (2017) | High | | | CAS RN | Test Species | Water
Type | Duration | Endpoint(s) | Concentration(s) | Test Analysis | Effect(s) | References | Data Quality
Rating | HERO ID | |------------|---|---------------|----------|-----------------------------------|---|---|---|------------------------------|------------------------|---------------------| | 25637-99-4 | Balic Macoma
Or Clam
(Macoma
balthica) | Salt | 50-day | LOAEL =
0.1 mg/L | 0, 0.1, 0.25 mg/L | Multiple routes, Nominal | Nuclear abnormality: micronuclei; frequency of dead cells; Mean number of nucleoli; binucleated cells, formation of nucleoplasmic bridges, nuclear buds, occurrence of pleomorphic and hypertrophic cells | Smolarz and
Berger (2009) | High | 1927697 | | 25637-99-4 | Amphipod
(Hyalella
azteca) | Fresh | 28-day | NOEC > 1000 mg/kg
dwt sediment | 31,63, 125, 250, 500
and 1,000 mg/kg dwt
sediment (Nominal
concentrations) | Flow-through, Measured, Solvent: DMF range-finding study conducted in the presence of 2 % TOC. Further study details were not provided. | Reduced
survivability | ACC (2003a) | High | 4269889 | | 25637-99-4 | Amphipod
(Hyalella
azteca) | Fresh | 28-day | | and 1,000 mg/kg dwt
sediment (Nominal
concentrations) | Flow-through, Measured,
Solvent: DMF range-
finding study conducted
in the presence of 2 %
TOC. Further study
details were not provided. | Reduced
survivability | ACC (2003a) | High | | | 25637-99-4 | Amphipod
(Hyalella
azteca) | Fresh | | | and 1,000 mg/kg dwt
sediment (Nominal
concentrations) | Flow-through, Measured,
Solvent: DMF range-
finding study conducted
in the presence of 5%
TOC. Further study
details were not provided. | Reduced
survivability | ACC (2003b) | High | 3809137;
4269912 | | 25637-99-4 | Amphipod
(Hyalella
azteca) | Fresh | 28-day | NOEC = 1000 mg/kg
dwt sediment | 31,63, 125, 250, 500
and 1,000 mg/kg dwt
sediment (Nominal
concentrations) | Flow-through, Measured,
Solvent: DMF range-
finding study conducted
in the presence of 5%
TOC. Further study
details were not provided. | Reduced
survivability | ACC (2003b) | High | | | Worm (Lumbriculus variegatus) Worm (Lumbriculus variegatus) Worm (Lumbriculus variegatus) Worm (Lumbriculus variegatus) Fresh (28-day MoEC = 3.1 mg/kg dry weight sediment to 500 mg/kg dry weight sediment. measured concentrations were ND, 0.2, 3.1, 28.7, and 303.2 mg/kg dry weight. Worm (Lumbriculus variegatus) Worm (Lumbriculus variegatus) Worm (Lumbriculus variegatus) Fresh (28-day dry weight sediment to 500 mg/kg dw; 40 worms per treatment; and 313.5 mg/kg sediment dw; 40 worms per treatment; and 313.5 mg/kg sediment dw; 40 worms per treatment; and 313.5 mg/kg sediment dw; 40 worms per treatment; and 313.5 mg/kg sediment dw; 40 worms per treatment; and 313.5 mg/kg sediment dw; 40 worms per treatment; and 313.5 mg/kg sediment dw; 40 worms per treatment; and 313.5 mg/kg sediment dw; 40 worms per treatment; and 313.5 mg/kg sediment dw; 40 worms per treatment; and 313.5 mg/kg sediment dw; 40 worms per treatment; and 313.5 mg/kg sediment dw; 40 worms per treatment; and 313.5 mg/kg sediment dw; 40 worms per treatment; and 313.5 mg/kg sediment dw; 40 worms per treatment; and 313.5 mg/kg sediment dw; 40 worms per treatment; and 313.5 mg/kg sediment dw; 40 worms per treatment; and 313.5 mg/kg sediment dw; 40 worms dechlorinated tap water measured concentrations-and 313.5 mg/kg sediment dw; 40 worms dechlorinated tap water measured concentrations-and 313.5 mg/kg sediment dw; 40 worms dechlorinated tap water measured concentrations-and 313.5 mg/kg sediment dw; 40 worms dechlorinated tap water measured concentrations-and 313.5 mg/kg sediment dw; 40 worms dechlorinated tap | 3809143 | |--|---------| | Sediment. measured concentrations were ND, 0.2, 3.1, 28.7, and 303.2 mg/kg dry weight. Sediment dw; 40 worms per treatment; artificial sediment: 1.8% organic carbon, grain size 100–2000 μm; Sediment dw; 40 worms per treatment; artificial sediment: 1.8% organic carbon, grain size 100–2000 μm; Sediment dw; 40 worms per treatment; artificial sediment: 1.8% organic carbon, grain size 100–2000 μm; Sediment dw; 40 worms per treatment; artificial sediment to size 100–2000 μm; Sediment dw; 40 worms per treatment; artificial sediment to size 100–2000 μm; Sediment dw; 40 worms per treatment; | | | concentrations were ND, 0.2, 3.1, 28.7, and 303.2 mg/kg dry weight. Worm (Lumbriculus variegatus) Fresh (Lumbriculus variegatus) Concentrations were ND, 0.2, 3.1, 28.7, and 303.2 mg/kg dry weight. O, nd3, 0.25, 3.25, 29.25 and 311.35 mg/kg sediment dw; 40 worms per treatment; artificial sediment: 1.8% organic carbon, grain size 100–2000 μm; 28-day tatic test using dechlorinated tap water measured concentrations were ND, 0.2, 3.1, 28.7, and 303.2 mg/kg dry weight. Total number of worms Oetken et al. (2001) High worms per treatment; 40 worms per treatment; 40 worms worms | | | ND, 0.2, 3.1, 28.7, and 303.2 mg/kg dry weight. Worm (Lumbriculus variegatus) Worm (Lumbriculus variegatus) ND, 0.2, 3.1, 28.7, and 303.2 mg/kg dry weight. Adaptive description of the process th | | | and 303.2 mg/kg dry weight. Worm (Lumbriculus variegatus) Sediment dw; 40 worms per treatment; artificial sediment: 1.8% organic carbon, grain size 100–2000 µm; 28-day static test using dechlorinated tap water measured concentrations-concentrations were ND, 0.2, 3.1, 28.7, and 303.2 mg/kg dry weight. Worm (Loec = 28.7 mg/kg organic carbon, grain size 100–2000 µm; Total number of worms (2001) Worms (2001) | _ | | weight. Worm (Lumbriculus variegatus) LOEC = 28.7 mg/kg (0.05, 0.5, 5, 50, and dry weight sediment sediment sediment measured concentrations were ND, 0.2, 3.1, 28.7, and 303.2 mg/kg dry weight. Worm (Lumbriculus variegatus) Worm (Lumbriculus variegatus) Total number of worms (2001) Worms (2001) | _ | | artificial sediment: 1.8% organic carbon, grain size 100–2000 μm; Worm (Lumbriculus variegatus) Fresh 28-day LOEC = 28.7 mg/kg dry weight sediment 500 mg/kg dry weight sediment. measured concentrations were ND, 0.2, 3.1, 28.7, and 303.2 mg/kg dry weight. Above the concentration of the concentration of the concentrations artificial sediment: 1.8% organic carbon, grain size 100–2000 μm; 28-day static test using dechlorinated tap water measured concentrations on the concentrations were ND, 0.2, 3.1, 28.7, and 311.35 mg/kg sediment dw; 40 worms per treatment; | _ | | Worm (Lumbriculus variegatus) Total number of worms Worm (Lumbriculus variegatus) Variegatus Varie | | | Worm (Lumbriculus variegatus) Fresh 28-day LOEC = 28.7 mg/kg dry weight sediment variegatus) LOEC = 28.7 mg/kg dry weight sediment sediment. measured concentrations were ND, 0.2, 3.1, 28.7, and 303.2 mg/kg dry weight. Size 100–2000 μm; 28-day static test using dechlorinated tap water measured concentrations- 0, nd3, 0.25, 3.25, 29.25 and 311.35 mg/kg sediment dw; 40 worms per treatment; | | | Worm (Lumbriculus variegatus) Fresh (Lumbriculus variegatus) Fresh (Lumbriculus variegatus) Worm (Lumbriculus variegatus) Fresh (Lumbriculus variegatus) Fresh (Lumbriculus variegatus) LOEC = 28.7 mg/kg (0.05, 0.5, 5, 50, and dry weight sediment (500 mg/kg dry weight sediment. measured concentrations were ND, 0.2, 3.1, 28.7, and 303.2 mg/kg dry weight. Worm (Lumbriculus variegatus) Total number of worms (2001) Worms (2001) | | | (Lumbriculus variegatus) dry weight sediment 500 mg/kg dry weight dechlorinated tap water sediment. measured concentrations were ND, 0.2, 3.1, 28.7, and 303.2 mg/kg dry weight. dry weight sediment 500 mg/kg dry weight dechlorinated tap water measured concentrations-0, nd3, 0.25, 3.25, 29.25 and 311.35 mg/kg sediment dw; 40 worms per treatment; | | | variegatus) sediment. measured concentrations- concentrations were ND, 0.2, 3.1, 28.7, and 303.2 mg/kg dry weight. measured concentrations- 0, nd3, 0.25, 3.25, 29.25 and 311.35 mg/kg sediment dw; 40 worms per treatment; | | | concentrations were ND, 0.2, 3.1, 28.7, and 303.2 mg/kg dry weight. 0, nd3, 0.25, 3.25, 29.25 and 311.35 mg/kg sediment dw; 40 worms per treatment; | | | ND, 0.2, 3.1, 28.7, and 311.35 mg/kg sediment dw; weight. 40 worms per treatment; | | | and 303.2 mg/kg dry weight. sediment dw; 40 worms per treatment; | | | weight. 40 worms per treatment; | ı | | | | | | - | | artificial
sediment: 1.8% | | | organic carbon, grain | - | | size 100–2000 μm; | - | | Worm Fresh 28-day NOEC = 28.7 mg/kg 0.05, 0.5, 5, 50, and 28-day static test using Large vs small Oetken et al. High | | | (Lumbriculus dry weight sediment 500 mg/kg dry weight dechlorinated tap water worms (2001) | | | variegatus) sediment. measured measured concentrations- | | | concentrations were 0, nd3, 0.25, 3.25, 29.25 | | | ND, 0.2, 3.1, 28.7, and 311.35 mg/kg | | | and 303.2 mg/kg dry sediment dw; | | | weight. 40 worms per treatment; artificial sediment: 1.8% | | | | | | organic carbon, grain | | | Worm Fresh 28-day NOEC = 3.1 mg/kg 0.05, 0.5, 5, 50, and 28-day static test using Large vs small Oetken et al. High | - | | | | | | | | variegatus) sediment. measured measured concentrations-
concentrations were 0, nd3, 0.25, 3.25, 29.25 | | | ND, 0.2, 3.1, 28.7, and 311.35 mg/kg | | | and 303.2 mg/kg dry sediment dw; | | | weight. 40 worms per treatment; | | | artificial sediment: 1.8% | | | organic carbon, grain | | | size 100–2000 µm; | | | Aquatic Vertebrates | + | | CAS RN | Test Species | Water
Type | Duration | Endpoint(s) | Concentration(s) | Test Analysis | Effect(s) | References | Data Quality
Rating | HERO ID | |------------|-------------------------------------|---------------|----------|----------------------------------|--|--------------------------------------|--|------------------------------------|------------------------|---------------------------------| | 1837-91-8 | Rainbow trout (Oncorhynchus mykiss) | Fresh | 2-hour | NOAEL = 27.877 mg
AI/L | 0, 27.877 mg/L | In vitro, Nominal | Insulin-like
growth factor 1
mRNA; Signal
Transducer and
Activator of
Transcription | Reindl et al. (2011) | High | 3586425 | | | | | | | | | protein 5 | | | | | 25637-99-4 | Bluegill (Lepomis macrochirus) | Fresh | 24-hour | $LC_{50} = >100 \text{ mg AI/L}$ | 0, 10.0, 18.0, 32.0,
56.0, 100.0 mg/L | Static, Nominal, Solvent:
Acetone | Mortality | Great Lakes Chem Corp (1994) | Unacceptable | 1928289;
3586733;
1928275 | | 25637-99-4 | Bluegill (Lepomis macrochirus) | Fresh | 48-hour | $LC_{50} = >100 \text{ mg AI/L}$ | 0, 10.0, 18.0, 32.0, 56.0, 100.0 mg/L | Static, Nominal, Solvent:
Acetone | Mortality | Great Lakes Chem Corp (1994) | Unacceptable | | | 25637-99-4 | Bluegill (Lepomis macrochirus) | Fresh | 96-hour | $LC_{50} = >100 \text{ mg AI/L}$ | 0, 10.0, 18.0, 32.0,
56.0, 100.0 mg/L | Static, Nominal, Solvent:
Acetone | Mortality | Great Lakes Chem Corp (1994) | Unacceptable | | | 25637-99-4 | Bluegill (Lepomis macrochirus) | Fresh | 96-hour | NOEC = >100 mg
AI/L | 0, 10.0, 18.0, 32.0,
56.0, 100.0 mg/L | Static, Nominal, Solvent:
Acetone | Mortality | Great Lakes Chem Corp (1994) | Unacceptable | | | 25637-99-4 | Bluegill (Lepomis macrochirus) | Fresh | 96-hour | NR-ZERO = >100
mg AI/L | 0, 10.0, 18.0, 32.0,
56.0, 100.0 mg/L | Static, Nominal, Solvent:
Acetone | Abnormal
behavior | Great Lakes Chem Corp (1994) | Unacceptable | | | 25637-99-4 | Bluegill (Lepomis macrochirus) | Fresh | 24-hour | $LC_{50} = >100 \text{ mg AI/L}$ | 0, 10.0, 18.0, 32.0,
56.0, 100.0 mg/L | Static, Nominal | Mortality | Great Lakes
Chem Corp
(1994) | Unacceptable | | | 25637-99-4 | Bluegill (Lepomis macrochirus) | Fresh | 48-hour | $LC_{50} = >100 \text{ mg AI/L}$ | 0, 10.0, 18.0, 32.0,
56.0, 100.0 mg/L | Static, Nominal | Mortality | Great Lakes Chem Corp (1994) | Unacceptable | | | 25637-99-4 | Bluegill (Lepomis macrochirus) | Fresh | 96-hour | $LC_{50} = >100 \text{ mg AI/L}$ | 0, 10.0, 18.0, 32.0, 56.0, 100.0 mg/L | Static, Nominal | Mortality | Great Lakes Chem Corp (1994) | Unacceptable | | | 25637-99-4 | Bluegill (Lepomis macrochirus) | Fresh | 96-hour | NOEC = 100 mg
AI/L | 0, 10.0, 18.0, 32.0,
56.0, 100.0 mg/L | Static, Nominal | Abnormal
behavior | Great Lakes Chem Corp (1994) | Unacceptable | | | 25637-99-4 | Bluegill (Lepomis macrochirus) | Fresh | 96-hour | NR-ZERO = 100 mg
AI/L | 0, 10.0, 18.0, 32.0,
56.0, 100.0 mg/L | Static, Nominal | Mortality | Great Lakes Chem Corp (1994) | Unacceptable | | | 3194-55-6 | Zebrafish
(Danio rerio) | Fresh | 72-hour | NOAEL = 32 mg
AI/L | 0, 32 mg/L | Static, Nominal | Thyroxine | Thienpont et al. (2011) | High | 1062065 | | CAS RN | Test Species | Water
Type | Duration | Endpoint(s) | Concentration(s) | Test Analysis | Effect(s) | References | Data Quality
Rating | HERO ID | |------------|-------------------------------------|-----------------|----------|---|---|---|--|------------------------------|------------------------|---------------------------------| | 25637-99-4 | Rainbow trout (Oncorhynchus mykiss) | Fresh | 24-hour | $LC_{50} = >0.0025 \text{ mg}$
AI/L | 0, 0.00075, 0.0015,
0.0023, 0.0023,
0.0025 mg/L | Flow-through, Measured.
Solvent: DMF | Mortality | Wildlife Intl Ltd
(1997b) | High | 1928298;
3586422;
1928300 | | 25637-99-4 | Rainbow trout (Oncorhynchus mykiss) | Fresh | 48-hour | $LC_{50} = >0.0025 \text{ mg}$
AI/L | 0, 0.00075, 0.0015,
0.0023, 0.0023,
0.0025 mg/L | Flow-through, Measured,
Solvent: DMF | Mortality | Wildlife Intl Ltd
(1997b) | High | | | 25637-99-4 | Rainbow trout (Oncorhynchus mykiss) | Fresh | 72-hour | LC ₅₀ = >0.0025 mg
AI/L | 0, 0.00075, 0.0015,
0.0023, 0.0023,
0.0025 mg/L | Flow-through, Measured,
Solvent: DMF | Mortality | Wildlife Intl Ltd
(1997b) | High | | | 25637-99-4 | Rainbow trout (Oncorhynchus mykiss) | Fresh | 96-hour | LC ₅₀ = >0.0025 mg
AI/L | 0, 0.00075, 0.0015,
0.0023, 0.0023,
0.0025 mg/L | Flow-through, Measured,
Solvent: DMF | Mortality | Wildlife Intl Ltd
(1997b) | High | | | 25637-99-4 | Rainbow trout (Oncorhynchus mykiss) | Fresh | 96-hour | NOEC = 0.0025 mg
AI/L | 0, 0.00075, 0.0015,
0.0023, 0.0023,
0.0025 mg/L | Flow-through, Measured | Mortality | Wildlife Intl Ltd
(1997b) | High | | | 25637-99-4 | Rainbow trout (Oncorhynchus mykiss) | Fresh | 96-hour | NR-ZERO = >0.0025
mg AI/L | 0, 0.00075, 0.0015,
0.0023, 0.0023,
0.0025 mg/L | Flow-through, Measured,
Solvent: DMF | Mortality | Wildlife Intl Ltd
(1997b) | High | | | 3194-55-6 | Zebrafish (Danio rerio) | Not reported | 47-hour | NOAEL = 0.128 mg
AI/L | 0, 0.001, 0.013, 0.128
mg/L | Renewal, Nominal,
Solvent: DMSO | Hatching rate | Wu et al. (2013) | High | 1927533 | | 3194-55-6 | Zebrafish
(Danio rerio) | Not
reported | 47-hour | NOAEL = 0.013 mg
AI/L; LOAEL =
0.128 mg AI/L | 0, 0.001, 0.013, 0.128
mg/L | Renewal, Nominal,
Solvent: DMSO | Heart rate | Wu et al. (2013) | High | | | 3194-55-6 | Zebrafish (Danio rerio) | Not reported | 59-hour | LOAEL = 0.001 mg
AI/L | 0, 0.001, 0.013, 0.128
mg/L | Renewal, Nominal,
Solvent: DMSO | Heart rate | Wu et al. (2013) | High | | | 3194-55-6 | Zebrafish
(Danio rerio) | Not
reported | 71-hour | AI/L | 0, 0.001, 0.013, 0.128
mg/L | Solvent: DMSO | Heart rate; T-box
5a mRNA;
Homeobox
protein Nkx-2.5
mRNA | Wu et al. (2013) | High | | | 3194-55-6 | Zebrafish
(Danio rerio) | Not
reported | 71-hour | NOAEL = 0.001 mg
AI/L;
LOAEL = 0.013 mg
AI/L | 0, 0.001, 0.013, 0.128
mg/L | Renewal, Nominal,
Solvent: DMSO | Cardiac
arrhythmia | Wu et al. (2013) | High | | | CAS RN | Test Species | Water
Type | Duration | Endpoint(s) | Concentration(s) | Test Analysis | Effect(s) | References | Data Quality
Rating | HERO ID | |-------------|----------------------------|-----------------|----------|---|---------------------------------|------------------------------------|--|-------------------|------------------------|---------| | 3194-55-6 | Zebrafish
(Danio rerio) | Not reported | 71-hour | NOAEL = 0.128 mg
AI/L | 0, 0.001, 0.013, 0.128
mg/ L | Renewal, Nominal,
Solvent: DMSO | ATPase, Ca++ transporting, cardiac muscle, slow twitch 2a mRNA; Troponin T type 2a (cardiac) mRNA; myH6 expression; End-diastolic Volume; Stroke volume; Caspase 3; Actin, alpha, cardiac muscle la mRNA; Myosin, heavy chain 6, cardiac muscle, alpha mRNA; Cardiac output; End-systolic Volume; Mortality; Abnormal; whole | Wu et al. (2013) | High | | | 3194-55-6 | Zebrafish
(Danio rerio) | Not
reported | 71-hour | NOAEL = 0.013 mg
AI/L;
LOAEL = 0.128 mg
AI/L | 0, 0.001, 0.013, 0.128
mg/L | Renewal, Nominal,
Solvent: DMSO | malformation rate ATPase, Ca++ transporting, cardiac muscle, slow twitch 2b mRNA; Ryanodine receptor 2a (cardiac) mRNA | Wu et al. (2013) | High | | | 134237-52-8 | Zebrafish
(Danio rerio) | Fresh | 44-hour | NOEC = 0.01 mg
AI/L;
LOEC = 0.1 mg AI/L | 0, 0.01, 0.1, 1.0 mg/L | Renewal, Nominal,
Solvent: DMSO | Heart rate | Du et al. (2012b) | High | 1927610 | | 134237-52-8 | Zebrafish (Danio rerio) | Fresh | 68-hour | | 0, 0.01, 0.1, 1.0 mg/L | Renewal, Nominal,
Solvent: DMSO | Hatching success | Du et al. (2012b) | High | | | 134237-52-8 | Zebrafish
(Danio rerio) | Fresh | 92-hour | AI/L;
LOEC = 1 mg AI/L | 0, 0.01, 0.1, 1.0 mg/L | Renewal, Nominal,
Solvent: DMSO | Heart rate | Du et al. (2012b) | High | | | 134237-52-8 | Zebrafish
(Danio rerio) | Fresh | 92-hour | | 0, 0.01, 0.1, 1.0 mg/L | Renewal, Nominal,
Solvent: DMSO | Growth:
Length | Du et al. (2012b) | High | | | CAS RN | Test Species | Water
Type | Duration | Endpoint(s) | Concentration(s) | Test Analysis | Effect(s) | References | Data Quality
Rating | HERO ID | |-------------|----------------------------|---------------|----------|---|------------------------|------------------------------------|---|--------------------------|------------------------|---------| | 134237-52-8 | Zebrafish (Danio rerio) | Fresh | 92-hour | AI/L | 0, 0.01, 0.1, 1.0 mg/L | Renewal, Nominal,
Solvent: DMSO | Mortality | <u>Du et al. (2012b)</u> | High | | | 134237-52-8 | Zebrafish (Danio rerio) | Fresh | 116-hour | AI/L | 0, 0.01, 0.1, 1.0 mg/L | Renewal, Nominal,
Solvent: DMSO | Growth: Abnormal. Malformation rate | Du et al. (2012b) | High | | | 134237-52-8 | Zebrafish (Danio rerio) | Fresh | 116-hour | AI/L;
LOEC = 0.1 mg AI/L | 0, 0.01, 0.1, 1.0 mg/L | Renewal, Nominal,
Solvent: DMSO | Reactive oxygen species; Caspase 3; Caspase 9 | Du et al. (2012b) | High | | | 134237-51-7 | Zebrafish (Danio rerio) | Fresh | 44-hour | NOEC = 0.01 mg
AI/L;
LOEC = 0.1 mg AI/L | 0, 0.01, 0.1, 1.0 mg/L | Renewal, Nominal,
Solvent: DMSO | Heart rate | <u>Du et al. (2012b)</u> | High | | | 134237-51-7 | Zebrafish
(Danio rerio) | Fresh | 68-hour | NOEC = 0.01 mg
AI/L;
LOEC = 0.1 mg AI/L | 0, 0.01, 0.1, 1.0 mg/L | Renewal, Nominal,
Solvent: DMSO | Hatching success | Du et al. (2012b) | High | | | 134237-51-7 | Zebrafish (Danio rerio) | Fresh | 92-hour | AI/L;
LOEC = 0.1 mg AI/L | | Renewal, Nominal,
Solvent: DMSO | Growth: Length;
Heart rate;
Mortality | Du et al. (2012b) | High | | | 134237-51-7 | Zebrafish (Danio rerio) | Fresh | 116-hour | AI/L | 0, 0.01, 0.1, 1.0 mg/L | Renewal, Nominal,
Solvent: DMSO | Growth: Abnormal. Malformation rate | | High | | | 134237-51-7 | Zebrafish (Danio rerio) | Fresh | 116-hour | NOEC = 0.01 mg
AI/L;
LOEC = 0.1 mg AI/L | 0, 0.01, 0.1, 1.0 mg/L | Renewal, Nominal,
Solvent: DMSO | Reactive oxygen species | Du et al. (2012b) | High | | | 134237-51-7 | Zebrafish (Danio rerio) | Fresh | 116-hour | NOEC = 0.1 mg
AI/L;
LOEC = 1 mg AI/L | 0, 0.01, 0.1, 1.0 mg/L | Renewal, Nominal,
Solvent: DMSO | Caspase 3;
Caspase 9 | Du et al. (2012b) | High | | | 134237-50-6 | Zebrafish
(Danio rerio) | Fresh | 44-hour | NOEC = 0.1 mg
AI/L;
LOEC = 1 mg AI/L | 0, 0.01, 0.1, 1.0 mg/L | Renewal, Nominal,
Solvent: DMSO | Heart rate | Du et al. (2012b) | High | | | 134237-50-6 | Zebrafish
(Danio rerio) | Fresh | 68-hour | AI/L;
LOEC = 0.1 mg AI/L | | Renewal, Nominal,
Solvent: DMSO | Hatching success | Du et al. (2012b) | High | | | 134237-50-6 | Zebrafish
(Danio rerio) | Fresh | 92-hour | NOEC = 0.01 mg
AI/L;
LOEC = 0.1 mg AI/L | 0, 0.01, 0.1, 1.0 mg/L | Renewal, Nominal,
Solvent: DMSO | Heart rate | Du et al. (2012b) | High | | | 134237-50-6 | Zebrafish (Danio rerio) | Fresh | 92-hour | | 0, 0.01, 0.1, 1.0 mg/L | Renewal, Nominal,
Solvent: DMSO | Growth: Length;
Mortality | Du et al. (2012b) | High | | | 134237-50-6 | Zebrafish
(Danio rerio) | Fresh | 116-hour | | 0, 0.01, 0.1, 1.0 mg/L | Renewal, Nominal,
Solvent: DMSO | Growth: Abnormal. Malformation rate | Du et al. (2012b) | High | | | CAS RN | Test Species | Water
Type | Duration | Endpoint(s) | Concentration(s) | Test Analysis | Effect(s) | References | Data Quality
Rating | HERO ID | |-------------|-------------------------------------|---------------|----------|--|---|--|--|--------------------|------------------------|---------| | 134237-50-6 | Zebrafish
(Danio rerio) | Fresh | 116-hour | AI/L;
LOEC = 1 mg AI/L | 0, 0.01, 0.1, 1.0 mg/L | Renewal, Nominal,
Solvent: DMSO | Reactive oxygen
species; Caspase
3; Caspase 9 | Du et al. (2012b) | High | | | 3194-55-6 | Zebrafish (Danio rerio) | Fresh | 92-hour | LOAEL = 0.05 mg
AI/L | 0, 0.05, 0.1, 0.5, 1.0
mg/L | Aquatic-not reported,
Nominal, Solvent:
DMSO | Heart rate; bax
mRNA; Mortality | Deng et al. (2009) | High | 1927716 | | 3194-55-6 | Zebrafish
(Danio rerio) | Fresh | 92-hour | NOAEL = 0.05 mg
AI/L;
LOAEL = 0.1 mg
AI/L | 0, 0.05, 0.1, 0.5, 1.0
mg/L | Aquatic-not reported,
Nominal, Solvent:
DMSO | Growth: Length; Reactive oxygen species; Caspase- 3 mRNA expression profile; Caspase-9 mRNA expression profile; Growth: Abnormal malformation rate | | High | | | 3194-55-6 | Zebrafish (Danio rerio) | Fresh | 96-hour | LOAEL = 0.002 mg
AI/L | 0, 0.002, 0.01, 0.1,
0.5, 2.5, 10 mg/L | Renewal, Nominal,
Solvent: DMSO | Hatch delay | Hu et al. (2009) | High | 1927732 | | 25637-99-4 | | | | | | | | | | | | 25637-99-4 | Zebrafish (Danio rerio) | Fresh | 96-hour | NOAEL = 10 mg
AI/L | 0, 0.002, 0.01, 0.1,
0.5, 2.5, 10 mg/L | Renewal, Nominal,
Solvent: DMSO | Mortality | Hu et al. (2009) | High | | | 25637-99-4 | Zebrafish
(Danio rerio) | Fresh | 96-hour | NOAEL = 0.1 mg
AI/L;
LOAEL = 0.5 mg
AI/L | 0, 0.002, 0.01, 0.1,
0.5, 2.5, 10 mg/L | Renewal, Nominal,
Solvent: DMSO | Malondialdehyde | Hu et al. (2009) | High | | | 25637-99-4 | Zebrafish
(Danio rerio) | Fresh | 96-hour | NOAEL = 0.002 mg
AI/L;
LOAEL = 0.01 mg
AI/L | 0, 0.002, 0.01, 0.1,
0.5, 2.5, 10 mg/L | Renewal, Nominal,
Solvent: DMSO | Heat shock
protein 70 | Hu et al. (2009) | High | | | 25637-99-4 | Atlantic
salmon (Salmo
salar) | Fresh | 5-day | NOAEL = 0.00005
mg AI/L; Exp. 1 | 0, 0.000005, 0.00005
mg/L | Flow-through, Nominal,
Solvent: Methanol | Growth: Length;
Growth: Weight;
Gonadosomatic
index | Lower (2008) | High | 3618094 | | 25637-99-4 | Atlantic
salmon (Salmo
salar) | Fresh | 5-day | NOAEL = 0.00005
mg AI/L; Exp. 2 | 0, 0.000005, 0.00005
mg/L | Flow-through, Nominal,
Solvent: Methanol | Growth: Length;
Growth: Weight;
Gonadosomatic
index | Lower (2008) | High | | | CAS RN | Test Species | Water
Type | Duration | Endpoint(s) | Concentration(s) | Test Analysis | Effect(s) | References | Data Quality
Rating | HERO ID | |------------|-------------------------------------|---------------|----------|-------------------------------------|------------------------------|--|---|---------------------|------------------------|---------| | 25637-99-4 | Atlantic
salmon (Salmo
salar) | Fresh | 5-day | NOAEL = 0.000017-
0.0003 mg AI/L | 0, 0.000017- 0.0003
mg/L | Flow-through, Measured,
Solvent: Methanol | Condition index: 5-day freshwater dosing period, 3- day transfer to salt water; Sodium potassium ATPase; 5-day freshwater dosing period, 3-day transfer to salt water; Thyroxine; 5-day freshwater dosing period, 3- day transfer to salt water; Triiodothyronine; 5-day freshwater dosing period, 3- day transfer to salt water; | Lower (2008) | High | | | 25637-99-4 | Atlantic
salmon (Salmo
salar) | Fresh | 5-day | NOAEL = 0.00005
mg AI/L | 0, 0.000005, 0.00005
mg/L | Flow-through, Nominal,
Solvent: Methanol | salt water Trans-epithelial voltage gradient; Accessory reproductive fluid; Testosterone | Lower (2008) | High | | | 25637-99-4 | Atlantic
salmon (Salmo
salar) | Fresh | 5-day | LOAEL = 0.000005
mg AI/L | 0, 0.000005, 0.00005
mg/L | Flow-through, Nominal,
Solvent: Methanol | 11-
Ketotestosterone;
17,20beta-
Dihydroxy-4-
pregnen-3-one | Lower (2008) | High | | | 25637-99-4 | Atlantic
salmon (Salmo
salar) | Fresh | 30-day | NOEC = 0.000011 | 0, 0.000011 mg/L | Flow-through, Measured,
Solvent: Methanol | Mortality,
Growth: length;
Condition Factor | <u>Lower (2008)</u> | High | | | 25637-99-4 | Atlantic
salmon (Salmo
salar) | Fresh | 30-day | LOEC = 0.000011 | 0, 0.000011 mg/L | Flow-through, Measured,
Solvent: Methanol | Gill Na+/K+
ATPase activity;
Plasma T4 | Lower (2008) | High | | | CAS RN | Test Species | Water
Type | Duration | Endpoint(s) | Concentration(s) | Test Analysis | Effect(s) | References | Data Quality
Rating | HERO ID | |------------|--|---------------|----------|--|----------------------------------|-------------------------------------|--|------------------------|------------------------|---------| | 25637-99-4 | Chinese Rare
Minnow
(Gobiocypris
rarus) | Fresh | 14-day | NOAEL = 0.5 mg
AI/L | 0, 0.001, 0.01, 0.1,
0.5 mg/L | Renewal, Nominal,
Solvent: DMSO | Pentylresorufin O-deethylase; Reactive oxygen species; 7- Ethoxyresorufin O-deethylase; Thiobarbituric acid reactive substances; Protein carbonyls; DNA damage; Superoxide dismutase (SOD) enzyme activity; Glutathione disulfide (oxidized glutathione) | Zhang et al.
(2008) | High | 1927768 | | 25637-99-4 | Chinese Rare
Minnow
(Gobiocypris
rarus) | Fresh | 28-day | NOAEL = 0.1 mg
AI/L;
LOAEL = 0.5 mg
AI/L | 0, 0.001, 0.01, 0.1,
0.5 mg/L | Renewal, Nominal,
Solvent: DMSO | Pentylresorufin
O-deethylase; 7- Ethoxyresorufin O-deethylase; Superoxide dismutase (SOD) enzyme activity | Zhang et al. (2008) | High | | | 25637-99-4 | Chinese Rare
Minnow
(Gobiocypris
rarus) | Fresh | 42-day | NOAEL = 0.01 mg
AI/L;
LOAEL = 0.1 mg
AI/L | 0, 0.001, 0.01, 0.1,
0.5 mg/L | Renewal, Measured,
Solvent: DMSO | Pentylresorufin O-deethylase; 7- Ethoxyresorufin O-deethylase; Thiobarbituric acid reactive substances | Zhang et al.
(2008) | High | | | 25637-99-4 | Chinese Rare
Minnow
(Gobiocypris
rarus) | Fresh | 28-day | NOAEL = 0.01 mg
AI/L;
LOAEL = 0.1 mg
AI/L | 0, 0.001, 0.01, 0.1,
0.5 mg/L | Renewal, Nominal,
Solvent: DMSO | Reactive oxygen
species; Protein
carbonyls; DNA
damage;
Glutathione
disulfide
(oxidized
glutathione) | Zhang et al.
(2008) | High | | | CAS RN | Test Species | Water
Type | Duration | Endpoint(s) | Concentration(s) | Test Analysis | Effect(s) | References | Data Quality
Rating | HERO ID | |------------|--|---------------|----------|--|----------------------------------|--|--|------------------------|------------------------|---------| | 25637-99-4 | Chinese Rare
Minnow
(Gobiocypris
rarus) | Fresh | 42-day | NOAEL = 0.001 mg
AI/L;
LOAEL = 0.01 mg
AI/L | 0, 0.001, 0.01, 0.1,
0.5 mg/L | Renewal, Nominal,
Solvent: DMSO | Reactive oxygen
species; Protein
carbonyls; DNA
damage;
Superoxide
dismutase (SOD)
enzyme activity | Zhang et al.
(2008) | High | | | 25637-99-4 | Chinese Rare
Minnow
(Gobiocypris
rarus) | Fresh | 28-day | NOAEL = 0.5 mg
AI/L | 0, 0.001, 0.01, 0.1,
0.5 mg/L | Renewal, Nominal,
Solvent: DMSO | Thiobarbituric acid reactive substances | Zhang et al. (2008) | High | | | 25637-99-4 | Chinese Rare
Minnow
(Gobiocypris
rarus) | Fresh | 42-day | LOAEL = 0.001 mg
AI/L | 0, 0.001, 0.01, 0.1,
0.5 mg/L | Renewal, Nominal,
Solvent: DMSO | Glutathione
disulfide
(oxidized
glutathione) | Zhang et al.
(2008) | High | | | 25637-99-4 | Chinese Rare
Minnow
(Gobiocypris
rarus) | Fresh | 42-day | 34 mg/kg | 0.001mg/L | Renewal, Nominal,
Solvent: DMSO | Residue; whole
body HBCD
concentration,
wet weight | Zhang et al. (2008) | High | | | 25637-99-4 | Chinese Rare
Minnow
(Gobiocypris
rarus) | Fresh | 42-day | 654 mg/kg | 0.5 mg/L | Renewal, Nominal,
Solvent: DMSO | Residue: whole
body HBCD
concentration,
wet weight | Zhang et al. (2008) | High | | | 25637-99-4 | Atlantic
salmon (Salmo
salar) | Fresh | 7-day | NOAEL = 0.000011
mg AI/L | 0, 0.000011 mg/L | Flow-through, Measured,
Solvent: Methanol | Triiodothyronine;
Thyroxine;
Sodium
potassium
ATPase | Lower and Moore (2007) | High | 1927956 | | 25637-99-4 | Atlantic
salmon (Salmo
salar) | Fresh | 14-day | NOAEL = 0.000011
mg AI/L | 0, 0.000011 mg/L | Flow-through, Measured,
Solvent: Methanol | Triiodothyronine;
Thyroxine;
Sodium
potassium
ATPase | Lower and Moore (2007) | High | | | 25637-99-4 | Atlantic
salmon (Salmo
salar) | Fresh | 21-day | NOAEL = 0.000011
mg AI/L | 0, 0.000011 mg/L | Flow-through, Measured,
Solvent: Methanol | | Lower and Moore (2007) | High | | | 25637-99-4 | Atlantic
salmon (Salmo
salar) | Fresh | 28-day | NOAEL = 0.000011
mg AI/L | 0, 0.000011 mg/L | Flow-through, Measured,
Solvent: Methanol | | Lower and Moore (2007) | High | | | CAS RN | Test Species | Water
Type | Duration | Endpoint(s) | Concentration(s) | Test Analysis | Effect(s) | References | Data Quality
Rating | HERO ID | |------------|---|---------------|----------|---|----------------------------|--|--|-------------------------|------------------------|---------| | 25637-99-4 | Atlantic
salmon (Salmo
salar) | Fresh | 28-day | LOAEL = 0.000011
mg AI/L | 0, 0.000011 mg/L | Flow-through, Measured,
Solvent: Methanol | Thyroxine; | Lower and Moore (2007) | High | | | 25637-99-4 | Atlantic salmon (Salmo salar) | Fresh | 7-day | LOAEL = 0.000011
mg AI/L | 0, 0.000011 mg/L | Flow-through, Measured,
Solvent: Methanol | Smell/Sniff | Lower and Moore (2007) | High | | | 25637-99-4 | Atlantic
salmon (Salmo
salar) | Fresh | 17-day | LOAEL = 0.000011
mg AI/L | 0, 0.000011 mg/L | Flow-through, Measured,
Solvent: Methanol | Smell/Sniff | Lower and Moore (2007) | High | | | 25637-99-4 | Atlantic salmon (Salmo salar) | Fresh | 29-day | LOAEL = 0.000011
mg AI/L | 0, 0.000011 mg/L | Flow-through, Measured,
Solvent: Methanol | Smell/Sniff | Lower and Moore (2007) | High | | | 25637-99-4 | Atlantic
salmon (Salmo
salar) | Fresh | 30-day | NOAEL = 0.000011
mg AI/L | 0, 0.000011 mg/L | Flow-through, Measured,
Solvent: Methanol | Mortality;
Growth: Length;
Growth: Weight;
Condition index | Lower and Moore (2007) | High | | | 25637-99-4 | Rainbow trout (Oncorhynchus mykiss) | Fresh | 5-day | LOAEL = <500 mg
AI/kg bdwt | 0, < 500 mg/kg bdwt | Intraperitoneal, Nominal | Cytochrome P1A | Ronisz et al. (2004) | High | 1927821 | | 25637-99-4 | Rainbow trout
(Oncorhynchus
mykiss) | Fresh | 5-day | NOAEL = <500 mg
AI/kg bdwt | 0 50, < 500 mg/kg
bdwt | Intraperitoneal, Nominal | DNA Adducts; 7-
Ethoxyresorufin
O-deethylase;
Glutathione S-
transferase | Ronisz et al. (2004) | High | | | 25637-99-4 | Rainbow trout (Oncorhynchus mykiss) | Fresh | 5-day | NOAEL = <500 mg
AI/kg bdwt; Exp. 1 | 0, 50, < 500 mg/kg
bdwt | Intraperitoneal, Nominal | Liver somatic index; Glutathione reductase | Ronisz et al. (2004) | High | | | 25637-99-4 | Rainbow trout
(Oncorhynchus
mykiss) | Fresh | 5-day | NOAEL = <500 mg
AI/kg bdwt; Exp. 2 | 0, < 500 mg/kg bdwt | Intraperitoneal, Nominal | Liver somatic
index;
Glutathione
reductase;
Catalase | Ronisz et al.
(2004) | High | | | 25637-99-4 | Rainbow trout (Oncorhynchus mykiss) | Fresh | 28-day | NOAEL = 50 mg
AI/kg bdwt; LOAEL
= <500 mg AI/kg
bdwt | 0, 50, < 500 mg/kg
bdwt | Intraperitoneal, Nominal | Liver somatic
index; 7-Ethoxy-
resorufin O-
deethylase | Ronisz et al.
(2004) | High | | | 25637-99-4 | Rainbow trout
(Oncorhynchus
mykiss) | Fresh | 28-day | NOAEL = <500 mg
AI/kg bdwt | 0, 50, < 500 mg/kg
bdwt | Intraperitoneal, Nominal | Glutathione
reductase;
Catalase;
Glutathione S-
transferase | Ronisz et al. (2004) | High | | | CAS RN | Test Species | Water
Type | Duration | Endpoint(s) | Concentration(s) | Test Analysis | Effect(s) | References | Data Quality
Rating | HERO ID | |------------|--|---------------|------------------------------|---|------------------------------|------------------------------------|---|----------------------|------------------------|---------| | 25637-99-4 | Rainbow trout (Oncorhynchus mykiss) | Fresh | 5-day | LOAEL = 50 mg/kg
bdwt; Exp. 1 | 0, 50, < 500 mg/kg
bdwt | Intraperitoneal, Nominal | Catalase | Ronisz et al. (2004) | High | | | 25637-99-4 | Indian Medaka
(Oryzias
melastigma) | Salt | 5 days post fertilization | LOAEL = 0.005 mg
AI/L | 0, 0.005, 0.02, 0.05
mg/L | Renewal, Nominal,
Solvent: DMSO | Heart rate | Hong et al. (2014) | High | 2343684 | | 25637-99-4 | Indian Medaka
(Oryzias
melastigma) | Salt | 8 days post
fertilization | LOAEL = 0.005 mg
AI/L | 0, 0.005, 0.02, 0.05
mg/L | Renewal, Nominal,
Solvent: DMSO | Heart rate;
Uncharacterized
arginine/ serine-
rich coiled-coil 1
mRNA | Hong et al. (2014) | High | | | 25637-99-4 | Indian Medaka (Oryzias melastigma) | Salt | 5 days post fertilization | $\begin{aligned} NOAEL &= 0.02 \text{ mg} \\ AI/L; \\ LOAEL &= 0.05 \text{ mg} \\ AI/L \end{aligned}$ | 0, 0.005, 0.02, 0.05
mg/L | Renewal, Nominal,
Solvent: DMSO | Growth:
Abnormal; SV-
BA distance | Hong et al. (2014) | High | | | 25637-99-4 | Indian Medaka
(Oryzias
melastigma) | Salt | fertilization | NOAEL = 0.005 mg
AI/L;
LOAEL = 0.02 mg
AI/L | 0, 0.005, 0.02, 0.05
mg/L | Renewal, Nominal,
Solvent: DMSO | Growth: Abnormal; SV- BA distance; Coiled coil domain containing 106 protein mRNA; Uncharacterized transmembrane and coiled-coil domain family 3 mRNA | Hong et al. (2014) | High | | | 25637-99-4 | Indian Medaka (Oryzias melastigma) | Salt | 5 days post
fertilization | NOAEL = 0.05 mg
AI/L;
LOAEL = 0.2 mg
AI/L | 0, 0.02, 0.05, 0.2
mg/L | Renewal, Nominal,
Solvent: DMSO | Caspase 3;
Interleukin-1 beta | | High | | | 25637-99-4 | Indian Medaka
(Oryzias
melastigma) | Salt | 8 days post
fertilization | NOAEL = 0.05 mg
AI/L;
LOAEL = 0.2 mg
AI/L | 0, 0.02, 0.05, 0.2
mg/L | Renewal, Nominal,
Solvent: DMSO | Caspase 3;
Caspase 8;
Caspase 9; p53
mRNA;
Interleukin-1 beta | Hong et al. (2014) | High | | | 25637-99-4 | Indian Medaka
(Oryzias
melastigma) | Salt | 5 days post fertilization | NOAEL = 0.2 mg
AI/L | 0, 0.02, 0.05, 0.2
mg/L | Renewal, Nominal,
Solvent: DMSO | Caspase 8;
Caspase 9 | Hong et al. (2014) | High | | | 25637-99-4 | Indian Medaka
(Oryzias
melastigma) | Salt | 5 days post
fertilization | NOAEL = 0.02
mg
AI/L; LOAEL = 0.05
mg AI/L | 0, 0.02, 0.05, 0.2
mg/L | Renewal, Nominal,
Solvent: DMSO | p53 mRNA;
Tumor necrosis
factor-alpha | Hong et al. (2014) | High | | | CAS RN | Test Species | Water
Type | Duration | Endpoint(s) | Concentration(s) | Test Analysis | Effect(s) | References | Data Quality
Rating | HERO ID | |------------|--|---------------|------------------------------|---|------------------------------|------------------------------------|---|--------------------|------------------------|---------| | 25637-99-4 | Indian Medaka
(Oryzias
melastigma) | Salt | First fry | NOAEL = 0.05 mg
AI/L;
LOAEL = 0.2 mg
AI/L | 0, 0.02, 0.05, 0.2
mg/L | Renewal, Nominal,
Solvent: DMSO | p53 mRNA;
Interleukin-1
beta; Tumor
necrosis factor-
alpha | Hong et al. (2014) | High | | | 25637-99-4 | Indian Medaka (Oryzias melastigma) | Salt | 8 days post fertilization | NOAEL = 0.2 mg
AI/L | 0, 0.02, 0.05, 0.2
mg/L | Renewal, Nominal,
Solvent: DMSO | Tumor necrosis factor-alpha | Hong et al. (2014) | High | | | 25637-99-4 | Indian Medaka
(Oryzias
melastigma) | Salt | 6 days post
fertilization | | 0, 0.005, 0.02, 0.05
mg/L | Renewal, Nominal,
Solvent: DMSO | 8-Oxo-2'-deoxy-
guanosine | Hong et al. (2014) | High | | | 25637-99-4 | Indian Medaka
(Oryzias
melastigma) | Salt | 8 days post
fertilization | LOAEL = 0.05 mg | 0, 0.005, 0.02, 0.05
mg/L | Renewal, Nominal,
Solvent: DMSO | Uncharacterized polycomb protein mRNA; Uncharacterized short-chain dehydrogenase/reductase family mRNA; 40S ribosomal protein SA mRNA; Brain-type fatty acid binding protein mRNA | | High | | | 25637-99-4 | Indian Medaka
(Oryzias
melastigma) | Salt | 8 days post
fertilization | NOAEL = 0.02 mg
AI/L;
LOAEL = 0.05 mg
AI/L | 0, 0.005, 0.02, 0.05
mg/L | Renewal, Nominal,
Solvent: DMSO | | Hong et al. (2014) | High | | | CAS RN | Test Species | Water
Type | Duration | Endpoint(s) | Concentration(s) | Test Analysis | Effect(s) | References | Data Quality
Rating | HERO ID | |-------------|--|---------------|----------------------------------|---|---|-------------------------------------|--|--------------------|------------------------|---------| | 25637-99-4 | Indian Medaka
(Oryzias
melastigma) | Salt | 8 days post fertilization | LOAEL = 0.02 mg
AI/L | 0, 0.005, 0.02, 0.05
mg/L | Renewal, Nominal,
Solvent: DMSO | Uncharacterized
myosin regulatory
light chain
mRNA | Hong et al. (2014) | High | | | 25637-99-4 | Indian Medaka (Oryzias melastigma) | Salt | 8 days post fertilization | LOAEL = 0.005 mg
AI/L | 0, 0.005, 0.02, 0.05
mg/L | Renewal, Nominal,
Solvent: DMSO | Choriogenin L
mRNA | Hong et al. (2014) | High | | | 25637-99-4 | Indian Medaka (Oryzias melastigma) | Salt | 8 days post fertilization | LOAEL = 0.02 mg
AI/L | 0, 0.005, 0.02, 0.05
mg/L | Renewal, Nominal,
Solvent: DMSO | Vitellogenin 2
mRNA | Hong et al. (2014) | High | | | 25637-99-4 | Indian Medaka (Oryzias melastigma) | Salt | 8 days post fertilization | NOAEL = 0.05 mg
AI/L | 0, 0.005, 0.02, 0.05
mg/L | Renewal, Nominal,
Solvent: DMSO | Vitellogenin-like
protein | Hong et al. (2014) | High | | | 25637-99-4 | Indian Medaka
(Oryzias
melastigma) | Salt | 17 days
post
fertilization | AI/L | 0, 0.005, 0.02, 0.05
mg/L | Renewal, Nominal,
Solvent: DMSO | Abnormal; malformations | Hong et al. (2014) | High | | | 25637-99-4 | Indian Medaka (Oryzias melastigma) | Salt | 17 days
post
fertilization | NOAEL = 0.05 mg
AI/L | 0, 0.005, 0.02, 0.05
mg/L | Renewal, Nominal,
Solvent: DMSO | Mortality;
Hatching success;
Hatchout time | Hong et al. (2014) | High | | | 134237-52-8 | Indian Medaka
(Oryzias
melastigma) | Salt | 5-day post
fertilization | NOAEL = 0.0084-
0.0163 mg AI/L;
LOAEL = 0.0165-
0.0324 mg AI/L | 0, 0.0084-0.0163,
0.0165-0.0324,
0.1212-0.1568 mg/L | Renewal, Measured,
Solvent: DMSO | Heart rate | Hong et al. (2015) | High | 3350507 | | 134237-52-8 | Indian Medaka (Oryzias melastigma) | Salt | 8-day post fertilization | LOAEL = 0.0084- | 0, 0.0084-0.0163,
0.0165-0.0324,
0.1212-0.1568 mg/L | Renewal, Measured,
Solvent: DMSO | Heart rate | Hong et al. (2015) | High | | | 134237-52-8 | | Salt | 8-day post
fertilization | NOAEL = 0.0165-
0.0324mg AI/L;
LOAEL = 0.1212-
0.1568 mg AI/L | 0, 0.0084-0.0163,
0.0165-0.0324,
0.1212-0.1568 mg/L | Renewal, Measured,
Solvent: DMSO | Growth,
abnormal. SV-
BA distance;
Interleukin 1 beta
mRNA; Tumor
necrosis factor
mRNA | Hong et al. (2015) | High | | | 134237-52-8 | Indian Medaka (Oryzias melastigma) | Salt | 8-day post fertilization | LOAEL = 0.0084-
0.0163 mg AI/L | 0, 0.0084-0.0163,
0.1212-0.1568 mg/L | Renewal, Measured,
Solvent: DMSO | Caspase 3 | Hong et al. (2015) | High | | | 134237-52-8 | Indian Medaka
(Oryzias
melastigma) | Salt | 8-day post
fertilization | NOAEL = 0.0084-
0.0163 mg AI/L;
LOAEL = 0.1212-
0.1568 mg AI/L | 0, 0.0084-0.0163,
0.1212-0.1568 mg/L | Renewal, Measured,
Solvent: DMSO | Caspase 8;
Caspase 9 | Hong et al. (2015) | High | | | CAS RN | Test Species | Water
Type | Duration | Endpoint (s) | Concentration(s) | Test Analysis | Effect(s) | References | Data Quality
Rating | HERO ID | |-------------|--|---------------|-------------------------------------|---|---|-------------------------------------|---|--------------------|------------------------|---------| | 134237-52-8 | Indian Medaka
(Oryzias
melastigma) | Salt | 8-day post
fertilization | NOAEL = 0.0084-
0.0163 mg AI/L;
LOAEL = 0.0165-
0.0324 mg AI/L | 0, 0.0084-0.0163,
0.0165-0.0324,
0.1212-0.1568 mg/L | Renewal, Measured,
Solvent: DMSO | p53 mRNA | Hong et al. (2015) | High | | | 134237-52-8 | Indian Medaka
(Oryzias
melastigma) | Salt | >8-<17-day
post
fertilization | NOAEL = 0.0017-
0.0324 mg AI/L;
LOAEL = 0.1212-
0.1568 mg AI/L | 0, 0.0084-0.0163,
0.0165-0.0324,
0.1212-0.1568 mg/L | Renewal, Measured,
Solvent: DMSO | p53 mRNA,
newly hatched
larvae; Interleukin
1 beta mRNA,
newly hatched
larvae; Tumor
necrosis factor
mRNA; newly
hatched larvae | | High | | | 134237-52-8 | Indian Medaka
(Oryzias
melastigma) | Salt | 6-day post
fertilization | NOAEL = 0.0017-
0.0324 mg AI/L;
LOAEL = 0.1212-
0.1568 mg AI/L | 0, 0.0084-0.0163,
0.0165-0.0324,
0.1212-0.1568 mg/L | Renewal, Measured,
Solvent: DMSO | 8-Oxo-2'-
deoxyguanosine | Hong et al. (2015) | High | | | 134237-52-8 | Indian Medaka (Oryzias melastigma) | Salt | 17-day post fertilization | NOAEL = 0.0017-
0.0324 mg AI/L;
LOAEL =0.1212-
0.1568 mg AI/L | 0, 0.0084-0.0163,
0.0165-0.0324,
0.1212-0.1568 mg/L | Renewal, Measured,
Solvent: DMSO | Growth:
Abnormal;
Malformation rate | Hong et al. (2015) | High | | | 134237-52-8 | Indian Medaka (Oryzias melastigma) | Salt | 17-day post fertilization | NOAEL =0.1212-
0.1568 mg AI/L | 0, 0.0084-0.0163,
0.0165-0.0324,
0.1212-0.1568 mg/L | Renewal, Measured,
Solvent: DMSO | Mortality;
Hatching rate | Hong et al. (2015) | High | | | 134237-51-7 | Indian Medaka (Oryzias melastigma) | Salt | 5-day post fertilization | LOAEL = 0.1326-
0.1845 mg AI/L | 0, 0.0082-0.0145,
0.0205-0.0341,
0.1326-0.1845 mg/L | Renewal, Measured,
Solvent: DMSO | Heart rate | Hong et al. (2015) | High | | | 134237-51-7 | Indian Medaka
(Oryzias
melastigma) | Salt | 8-day post fertilization | LOAEL = 0.0082-
0.0145 mg AI/L | 0, 0.0082-0.0145,
0.0205-0.0341,
0.1326-0.1845 mg/L | Renewal, Measured,
Solvent: DMSO | Heart rate | Hong et al. (2015) | High | | | 134237-51-7 | Indian Medaka
(Oryzias
melastigma) | Salt | 8-day post
fertilization | NOAEL = 0.021-
0.0341 mg AI/L;
LOAEL = 0.1326-
0.1845 mg AI/L | 0, 0.0082-0.0145,
0.0205-0.0341,
0.1326-0.1845 mg/L | Renewal, Measured,
Solvent: DMSO | Growth,
abnormal. SV-
BA distance; p53
mRNA; Tumor
necrosis factor
mRNA | Hong et al. (2015) | High | | | 134237-51-7 | Indian Medaka
(Oryzias
melastigma) | Salt | 8-day post fertilization | LOAEL = 0.0082-
0.0145 mg AI/L | 0, 0.0082-0.0145,
0.1326-0.1845 mg/L | Renewal, Measured,
Solvent: DMSO | Caspase 3;
Caspase 9 | Hong et al. (2015) | High | | | CAS RN | Test Species | Water
Type | Duration | Endpoint (s) | Concentration(s) | Test Analysis | Effect(s) | References | Data Quality
Rating | HERO ID | |-------------|--|---------------|-------------------------------------|---|---|-------------------------------------|---|--------------------|------------------------|---------| | 134237-51-7 | Indian Medaka (Oryzias melastigma) | Salt |
8-day post
fertilization | NOAEL = 0.0082-
0.0145 mg AI/L;
LOAEL = 0.1326-
0.1845 mg AI/L | 0, 0.0082-0.0145,
0.1326-0.1845 mg/L | Renewal, Measured,
Solvent: DMSO | Caspase 8 | Hong et al. (2015) | High | | | 134237-51-7 | Indian Medaka
(Oryzias
melastigma) | Salt | >8-<17-day
post
fertilization | NOAEL = 0.021-
0.0341 mg AI/L;
LOAEL = 0.1326-
0.1845 mg AI/L | 0, 0.0082-0.0145,
0.0205-0.0341,
0.1326-0.1845 mg/L | Renewal, Measured,
Solvent: DMSO | p53 mRNA,
newly hatched
larvae; Tumor
necrosis factor
mRNA, newly
hatched larvae | Hong et al. (2015) | High | | | 134237-51-7 | Indian Medaka
(Oryzias
melastigma) | Salt | 8-day post
fertilization | NOAEL = 0.0082-
0.0145 mg AI/L;
LOAEL = 0.0205-
0.0341 mg AI/L | 0, 0.0082-0.0145,
0.0205-0.0341,
0.1326-0.1845 mg/L | Renewal, Measured,
Solvent: DMSO | Interleukin 1 beta
mRNA | Hong et al. (2015) | High | | | 134237-51-7 | Indian Medaka (Oryzias melastigma) | Salt | >8-<17-day
post
fertilization | NOAEL = 0.1326-
0.1845 mg AI/L | 0, 0.0082-0.0145,
0.0205-0.0341,
0.1326-0.1845 mg/L | Renewal, Measured,
Solvent: DMSO | Interleukin 1 beta
mRNA, newly
hatched larvae | Hong et al. (2015) | High | | | 134237-51-7 | Indian Medaka
(Oryzias
melastigma) | Salt | 6-day post
fertilization | NOAEL = 0.021-
0.0341 mg AI/L;
LOAEL = 0.1326-
0.1845 mg AI/L | 0, 0.0082-0.0145,
0.0205-0.0341,
0.1326-0.1845 mg/L | Renewal, Measured,
Solvent: DMSO | 8-Oxo-2'-deoxy-
guanosine | Hong et al. (2015) | High | | | 134237-51-7 | Indian Medaka
(Oryzias
melastigma) | Salt | 17-day post
fertilization | NOAEL = 0.1326-
0.1845 mg AI/L | 0, 0.0082-0.0145,
0.0205-0.0341,
0.1326-0.1845 mg/L | Renewal, Measured,
Solvent: DMSO | Growth: Abnormal, Malformation rate; Mortality; Hatching rate | Hong et al. (2015) | High | | | 134237-50-6 | Indian Medaka (Oryzias melastigma) | Salt | 5-day post fertilization | LOAEL = 0.0097-
0.0141 mg AI/L | 0, 0.0097-0.0141,
0.0237-0.0375,
0.1252-0.1684 mg/L | Renewal, Measured,
Solvent: DMSO | Heart rate | Hong et al. (2015) | High | | | 134237-50-6 | Indian Medaka
(Oryzias
melastigma) | Salt | 8-day post fertilization | LOAEL = 0.0097-
0.0141 mg AI/L | 0, 0.0097-0.0141,
0.0237-0.0375,
0.1252-0.1684 mg/L | Renewal, Measured,
Solvent: DMSO | Heart rate | Hong et al. (2015) | High | | | 134237-50-6 | (Oryzias
melastigma) | Salt | 8-day post
fertilization | NOAEL = 0.024-
0.0375 mg AI/L
LOAEL = 0.1252-
0.1684 mg AI/L | 0, 0.0097-0.0141,
0.0237-0.0375,
0.1252-0.1684 mg/L | Renewal, Measured,
Solvent: DMSO | Growth, Abnormal; SV-BA length; Tumor necrosis factor mRNA | Hong et al. (2015) | High | | | 134237-50-6 | Indian Medaka
(Oryzias
melastigma) | Salt | 8-day post fertilization | LOAEL = 0.0097-
0.0141 mg AI/L | 0, 0.0097-0.0141,
0.1252-0.1684 mg/L | Renewal, Measured,
Solvent: DMSO | Caspase 3 | Hong et al. (2015) | High | | | CAS RN | Test Species | Water
Type | Duration | Endpoint(s) | Concentration(s) | Test Analysis | Effect(s) | References | Data Quality
Rating | HERO ID | |-------------|--|---------------|-------------------------------------|---|---|-------------------------------------|---|--------------------|------------------------|---------| | 134237-50-6 | Indian Medaka
(Oryzias
melastigma) | Salt | 8-day post
fertilization | NOAEL = 0.0097-
0.0141 mg AI/l;
LOAEL = 0.1252-
0.1684 mg AI/L | 0, 0.0097-0.0141,
0.1252-0.1684 mg/L | Renewal, Measured,
Solvent: DMSO | Caspase 8;
Caspase 9 | Hong et al. (2015) | High | | | 134237-50-6 | Indian Medaka
(Oryzias
melastigma) | Salt | 8-day post fertilization | NOAEL = 0.0097-
0.0141 mg AI/L;
LOAEL = 0.0237-
0.0375 mg/AI/L | 0, 0.0097-0.0141,
0.0237-0.0375,
0.1252-0.1684 mg/L | Renewal, Measured,
Solvent: DMSO | p53 mRNA;
Interleukin 1 beta
mRNA | Hong et al. (2015) |) High | | | 134237-50-6 | Indian Medaka
(Oryzias
melastigma) | Salt | >8-<17-day
post
fertilization | NOAEL = 0.024-
0.0375 mg AI/L;
LOAEL = 0.1252-
0.1684 mg AI/L | 0, 0.0097-0.0141,
0.0237-0.0375,
0.1252-0.1684 mg/L | Renewal, Measured,
Solvent: DMSO | p53 mRNA,
newly hatched
larvae; Interleukin
1 beta mRNA,
newly hatched
larvae; Tumor
necrosis factor
mRNA, newly
hatched larvae | Hong et al. (2015) | High | | | 134237-50-6 | Indian Medaka
(Oryzias
melastigma) | Salt | 6-day post
fertilization | NOAEL = 0.024-
0.0375 mg AI/L;
LOAEL = 0.1252-
0.1684 mg AI/L | 0, 0.0097-0.0141,
0.0237-0.0375,
0.1252-0.1684 mg/L | Renewal, Measured,
Solvent: DMSO | 8-Oxo-2'-
deoxyguanosine | Hong et al. (2015) | High | | | 134237-50-6 | Indian Medaka
(Oryzias
melastigma) | Salt | 17-day post
fertilization | NOAEL = 0.024-
0.0375 mg AI/L;
LOAEL = 0.1252-
0.1684 mg AI/L | 0, 0.0097-0.0141,
0.0237-0.0375,
0.1252-0.1684 mg/L | Renewal, Measured,
Solvent: DMSO | Growth:
Abnormal.
Malformation rate | Hong et al. (2015) | High | | | 134237-50-6 | Indian Medaka (Oryzias melastigma) | Salt | 17-day post fertilization | | 0, 0.0097-0.0141,
0.0237-0.0375,
0.1252-0.1684 mg/L | Renewal, Measured,
Solvent: DMSO | Mortality; Hatch rate | Hong et al. (2015) | High | | | 134237-52-8 | Zebrafish
(Danio rerio) | Fresh | 7-day | NOAEL = 0.01 mg
AI/L;
LOAEL = 0.1 mg
AI/L | 0, 0.001, 0.01, 0.1
mg/L | Renewal, Nominal,
Solvent: DMSO | Cyp1b1 mRNA; 7-Ethoxyresorufin O-deethylase; Cytochrome P1A messenger RNA; Aryl hydrocarbon receptor 1b mRNA | | High | 3350537 | | 134237-52-8 | Zebrafish (Danio rerio) | Fresh | 21-day | LOAEL = 0.001 mg
AI/L | 0, 0.001, 0.01, 0.1
mg/L | Renewal, Nominal,
Solvent: DMSO | Cyp1b1 mRNA | Du et al. (2015) | High | | | CAS RN | Test Species | Water
Type | Duration | Endpoint(s) | Concentration(s) | Test Analysis | Effect(s) | References | Data Quality
Rating | HERO ID | |-------------|----------------------------|---------------|----------|--|-----------------------------|------------------------------------|--|------------------|------------------------|---------| | 134237-52-8 | Zebrafish
(Danio rerio) | Fresh | 7-day | NOAEL = 0.001 mg
AI/L;
LOAEL = 0.01 mg
AI/L | 0, 0.001, 0.01, 0.1
mg/L | Renewal, Nominal,
Solvent: DMSO | Cytochrome P450, family 1, subfamily C, polypeptide 1 mRNA; Aryl hydrocarbon receptor 1a mRNA; Aryl hydrocarbon receptor 2 mRNA | Du et al. (2015) | High | | | 134237-52-8 | Zebrafish
(Danio rerio) | Fresh | 21-day | NOAEL = 0.001 mg
AI/L;
LOAEL = 0.01 mg
AI/L | 0, 0.001, 0.01, 0.1
mg/L | Renewal, Nominal,
Solvent: DMSO | Cytochrome P450, family 1, subfamily C, polypeptide 1 mRNA; 7- Ethoxyresorufin O-deethylase; Cytochrome P1A messenger RNA; Aryl hydrocarbon receptor 1a mRNA; Aryl hydrocarbon receptor 1b mRNA; Aryl hydrocarbon receptor 1b mRNA; Aryl | Du et al. (2015) | High | | | 134237-52-8 | Zebrafish (Danio rerio) | Fresh | 21-day | NOAEL = 0.1 mg
AI/L | 0, 0.001, 0.01, 0.1
mg/L | Renewal, Nominal,
Solvent: DMSO | Liver somatic index; Mortality | Du et al. (2015) | High | | | 134237-51-7 | Zebrafish
(Danio rerio) | Fresh | 7-day | NOAEL = 0.001 mg
AI/L;
LOAEL = 0.01 mg
AI/L | 0, 0.001, 0.01, 0.1
mg/L | Renewal, Nominal,
Solvent: DMSO | Cyp1b1 mRNA;
Cytochrome
P450, family 1,
subfamily C,
polypeptide 1
mRNA; Aryl
hydrocarbon
receptor 1a
mRNA; Aryl
hydrocarbon
receptor 2 mRNA | Du et al. (2015) | High | | | CAS RN | Test Species | Water
Type | Duration | Endpoint(s) | Concentration(s) | Test Analysis | Effect(s) | References | Data Quality
Rating | HERO ID | |-------------|----------------------------|---------------|----------|--|-----------------------------|------------------------------------|--|-------------------------|------------------------|---------| | 134237-51-7 | Zebrafish
(Danio rerio) | Fresh | 21-day | NOAEL = 0.001 mg
AI/L;
LOAEL = 0.01 mg
AI/L | 0, 0.001, 0.01, 0.1
mg/L | Renewal, Nominal,
Solvent: DMSO | Cyp1b1 mRNA;
Cytochrome
P450, family 1,
subfamily C,
polypeptide 1
mRNA;
Cytochrome P1A
messenger RNA;
Aryl hydrocarbon
receptor 1b
mRNA | Du et al. (2015) | High | | | 134237-51-7 | Zebrafish
(Danio rerio) | Fresh | 7-day | NOAEL = 0.01 mg
AI/L;
LOAEL = 0.1 mg
AI/L | 0, 0.001, 0.01, 0.1
mg/L | Renewal, Nominal,
Solvent: DMSO | 7-Ethoxyresorufin O-deethylase; Cytochrome P1A messenger RNA; Aryl hydrocarbon receptor 1b mRNA | Du et al. (2015) | High | | | 134237-51-7 | Zebrafish
(Danio rerio) | Fresh | 21-day | NOAEL = 0.01 mg
AI/L;
LOAEL = 0.1 mg
AI/L | 0, 0.001, 0.01, 0.1
mg/L | Renewal, Nominal,
Solvent: DMSO | 7-Ethoxyresorufin
O-deethylase;
Aryl hydrocarbon
receptor 2 mRNA | Du et al. (2015) | High | | | 134237-51-7 | Zebrafish
(Danio rerio) | Fresh | 21-day | NOAEL = 0.1 mg
AI/L | 0, 0.001, 0.01, 0.1
mg/L | Renewal, Nominal,
Solvent: DMSO | Aryl
hydrocarbon
receptor 1a
mRNA; Liver
somatic index;
Mortality | <u>Du et al. (2015)</u> | High | | | 134237-50-6 | Zebrafish
(Danio rerio) | Fresh | 7-day | NOAEL = 0.001 mg
AI/L;
LOAEL = 0.01 mg
AI/L | 0, 0.001, 0.01, 0.1
mg/L | Renewal, Nominal,
Solvent: DMSO | Cyp1b1 mRNA;
Cytochrome
P450, family 1,
subfamily C,
polypeptide 1
mRNA; Aryl
hydrocarbon
receptor 1a
mRNA; Aryl
hydrocarbon
receptor 1b
mRNA | Du et al. (2015) | High | | | CAS RN | Test Species | Water
Type | Duration | Endpoint(s) | Concentration(s) | Test Analysis | Effect(s) | References | Data Quality
Rating | HERO ID | |-------------|----------------------------|---------------|----------|--|-----------------------------|-------------------------------------|--|-------------------------|------------------------|---------| | 134237-50-6 | Zebrafish
(Danio rerio) | Fresh | 21-day | NOAEL = 0.001 mg
AI/L;
LOAEL = 0.01 mg
AI/L | 0, 0.001, 0.01, 0.1
mg/L | Renewal, Nominal,
Solvent: DMSO | Cyp1b1 mRNA;
Cytochrome
P450, family 1,
subfamily C,
polypeptide 1
mRNA; Aryl
hydrocarbon
receptor 1a
mRNA; Aryl
hydrocarbon
receptor 1b
mRNA; Aryl
hydrocarbon
receptor 2 mRNA | Du et al. (2015) | High | | | 134237-50-6 | Zebrafish
(Danio rerio) | Fresh | 7-day | NOAEL = 0.1 mg
AI/L | 0, 0.001, 0.01, 0.1
mg/L | Renewal, Nominal,
Solvent: DMSO | 7-Ethoxyresorufin
O-deethylase;
Aryl hydrocarbon
receptor 2 mRNA | Du et al. (2015) | High | | | 134237-50-6 | Zebrafish
(Danio rerio) | Fresh | 21-day | NOAEL = 0.01 mg
AI/L;
LOAEL = 0.1 mg
AI/L | 0, 0.001, 0.01, 0.1
mg/L | Renewal, Nominal,
Solvent: DMSO | 7-Ethoxyresorufin
O-deethylase;
Cytochrome P1A
messenger RNA | <u>Du et al. (2015)</u> | High | | | 134237-50-6 | Zebrafish
(Danio rerio) | Fresh | 7-day | NOAEL = 0.01 mg
AI/L;
LOAEL = 0.1 mg
AI/L | 0, 0.001, 0.01, 0.1
mg/L | Renewal, Nominal,
Solvent: DMSO | Cytochrome P1A
messenger RNA | <u>Du et al. (2015)</u> | High | | | 134237-50-6 | Zebrafish (Danio rerio) | Fresh | 21-day | NOAEL = 0.1 mg
AI/L | 0, 0.001, 0.01, 0.1
mg/L | Renewal, Nominal,
Solvent: DMSO | Liver somatic index; Mortality | Du et al. (2015) | High | | | 134237-52-8 | Zebrafish
(Danio rerio) | Fresh | 7-day | NOAEL = 0.02284
mg AI/kg | 0.00084, 0.02284
mg/kg | Food, Measured; lipid-
corrected | Triiodothyronine;
Thyroxine;
Thyroid gland
epithelial cell
height; Liver
somatic index | Palace et al. (2010) | High | 1403364 | | CAS RN | Test Species | Water
Type | Duration | Endpoint(s) | Concentration(s) | Test Analysis | Effect(s) | References | Data Quality
Rating | HERO ID | |-------------|----------------------------|---------------|---|-----------------------------|---------------------------|-------------------------------------|---|-----------------------------|------------------------|---------| | 134237-52-8 | Zebrafish
(Danio rerio) | Fresh | 14-day | NOAEL = 0.02284
mg AI/kg | 0.00084, 0.02284
mg/kg | Food, Measured; lipid-
corrected | Triiodothyronine; Thyroxine; 7- Ethoxyresorufin O-deethylase; T4 outer ring deiodinase enzyme activity; Thyroid gland epithelial cell height; Liver somatic index | Palace et al. (2010) | High | | | 134237-52-8 | Zebrafish
(Danio rerio) | Fresh | 56-day | LOAEL = 0.02284
mg AI/kg | 0.00084, 0.02284
mg/kg | Food, Measured; lipid-
corrected | Triiodothyronine; Thyroxine; T4 outer ring deiodinase enzyme activity; Thyroid gland epithelial cell height | <u>Palace et al.</u> (2010) | High | | | 134237-52-8 | Zebrafish (Danio rerio) | Fresh | 7-day | LOAEL = 0.02284
mg AI/kg | 0.00084, 0.02284
mg/kg | Food, Measured; lipid-
corrected | 7-Ethoxyresorufin
O-deethylase | Palace et al. (2010) | High | | | 134237-52-8 | Zebrafish
(Danio rerio) | Fresh | 56-day | NOAEL = 0.02284
mg AI/kg | 0.00084, 0.02284
mg/kg | Food, Measured; lipid-
corrected | 7-Ethoxyresorufin O-deethylase; Liver somatic index; Uridine diphosphate glucuronyl transferase, UDP glucuronyl transferase | Palace et al.
(2010) | High | | | 134237-52-8 | Zebrafish
(Danio rerio) | Fresh | 168-
day*(112-
day
depuration
period after
56-day
exposure) | NOAEL = 0.02284
mg AI/kg | 0.00084, 0.02284
mg/kg | Food, Measured; lipid-
corrected | Growth: Weight | <u>Palace et al.</u> (2010) | High | | | CAS RN | Test Species | Water
Type | Duration | Endpoint(s) | Concentration(s) | Test Analysis | Effect(s) | References | Data Quality
Rating | HERO ID | |-------------|----------------------------|---------------|---|-----------------------------|------------------|-------------------------------------|---|-----------------------------|------------------------|---------| | 134237-51-7 | Zebrafish
(Danio rerio) | Fresh | 7-day | NOAEL = 0.01184
mg AI/kg | 0, 0.01184 mg/kg | Food, Measured; lipid-
corrected | Triiodothyronine;
Thyroxine;
Thyroid gland
epithelial cell
height; Liver
somatic index | <u>Palace et al.</u> (2010) | High | | | 134237-51-7 | Zebrafish
(Danio rerio) | Fresh | 14-day | NOAEL = 0.01184
mg AI/kg | 0, 0.01184 mg/kg | Food, Measured; lipid-
corrected | Triiodothyronine;
Thyroxine; 7-
Ethoxyresorufin
O-deethylase; T4
outer ring
deiodinase
enzyme activity;
Thyroid gland
epithelial cell
height; Liver
somatic index | Palace et al. (2010) | High | | | 134237-51-7 | Zebrafish
(Danio rerio) | Fresh | 56-day | NOAEL = 0.01184
mg AI/kg | 0, 0.01184 mg/kg | Food, Measured; lipid-
corrected | Triiodothyronine;
Thyroid gland
epithelial cell
height; Liver
somatic index | Palace et al. (2010) | High | | | 134237-51-7 | Zebrafish
(Danio rerio) | Fresh | 56-day | LOAEL = 0.01184
mg AI/kg | 0, 0.01184 mg/kg | Food, Measured; lipid-
corrected | Thyroxine; 7-
Ethoxyresorufin
O-deethylase; T4
outer ring
deiodinase
enzyme activity;
Uridine
diphosphate
glucuronyl
transferase, UDP
glucuronyl
transferase | Palace et al. (2010) | High | | | 134237-51-7 | Zebrafish (Danio rerio) | Fresh | 7-day | LOAEL = 0.01184
mg AI/kg | 0, 0.01184 mg/kg | corrected | 7-Ethoxyresorufin
O-deethylase | <u>Palace et al.</u> (2010) | High | | | 134237-51-7 | Zebrafish
(Danio rerio) | Fresh | 168-day*
(112-day
depuration
period after
56-day
exposure) | NOAEL = 0.01184
mg AI/kg | 0, 0.01184 mg/kg | Food, Measured; lipid-
corrected | Growth: Weight rate | <u>Palace et al.</u> (2010) | High | | | CAS RN | Test Species | Water
Type | Duration | Endpoint(s) | Concentration(s) | Test Analysis | Effect(s) | References | Data Quality
Rating | HERO ID | |-------------|----------------------------|---------------|---|-----------------------------|---------------------------|-------------------------------------|---|-----------------------------|------------------------|---------| | 134237-50-6 | Zebrafish
(Danio rerio) | Fresh | 7-day | NOAEL =
0.02914 mg AI/kg | 0.00047, 0.02914
mg/kg | Food, Measured; lipid-
corrected | Triiodothyronine;
Thyroxine;
Thyroid gland
epithelial cell
height; Liver
somatic index | Palace et al. (2010) | High | | | 134237-50-6 | Zebrafish
(Danio rerio) | Fresh | 14-day | NOAEL =
0.02914 mg AI/kg | 0.00047, 0.02914
mg/kg | Food, Measured; lipid-
corrected | Triiodothyronine; Thyroxine; 7- Ethoxyresorufin O-deethylase; T4 outer ring deiodinase enzyme activity; Thyroid gland epithelial cell height; Liver somatic index | Palace et al. (2010) | High | | | 134237-50-6 | Zebrafish
(Danio rerio) | Fresh | 56-day | NOAEL =
0.02914 mg AI/kg | 0.00047, 0.02914
mg/kg | Food, Measured; lipid-
corrected | Triiodothyronine;
Thyroid gland
epithelial cell
height; Liver
somatic index | <u>Palace et al.</u> (2010) | High | | | 134237-50-6 | Zebrafish
(Danio rerio) | Fresh | 56-day | LOAEL =
0.02914 mg AI/kg | 0.00047, 0.02914
mg/kg | Food, Measured; lipid-
corrected | Thyroxine; 7-
Ethoxyresorufin
O-deethylase; T4
outer ring
deiodinase
enzyme activity;
Uridine
diphosphate
glucuronyl
transferase, UDP
glucuronyl
transferase | <u>Palace et al.</u> (2010) | High | | | 134237-50-6 | Zebrafish (Danio rerio) | Fresh | 7-day | LOAEL = 0.02914 mg AI/kg | 0.00047, 0.02914
mg/kg | Food, Measured; lipid-
corrected | 7-Ethoxyresorufin
O-deethylase | <u>Palace et al.</u> (2010) | High | | | 134237-50-6 | Zebrafish
(Danio rerio) | Fresh | 168-day*
(112-day
depuration
period after
56-day
exposure) | NOAEL =
0.02914 mg AI/kg | 0.00047, 0.02914
mg/kg | Food, Measured; lipid-
corrected | Growth: Weight | <u>Palace et al.</u> (2010) | High | | | CAS RN | Test Species | Water
Type | Duration | Endpoint(s) | Concentration(s) | Test
Analysis | Effect(s) | References | Data Quality
Rating | HERO ID | |-------------|-------------------------------------|---------------|----------|---|------------------|---|--|-----------------------------|------------------------|---------| | 25637-99-4 | Rainbow trout (Oncorhynchus mykiss) | Fresh | 35-day | Steady-State BCF
(edible tissue) =
6,531 | 0.00018 mg/L | Flow-through, Measured,
Solvent: Acetone | Residue;
Bioconcentration | Wildlife Intl Ltd (2000) | High | 1928244 | | 25637-99-4 | Rainbow trout (Oncorhynchus mykiss) | Fresh | 35-day | Steady-State BCF
(edible tissue) =
4,650 | 0.0018 mg/L | Flow-through, Measured,
Solvent: Acetone | Residue;
Bioconcentration | Wildlife Intl Ltd (2000) | High | | | 25637-99-4 | Rainbow trout (Oncorhynchus mykiss) | Fresh | 35-day | Steady-State BCF
(non-edible tissue) = 20,726 | 0.00018 mg/L | Flow-through, Measured,
Solvent: Acetone | Residue;
Bioconcentration | Wildlife Intl Ltd
(2000) | High | | | 25637-99-4 | Rainbow trout (Oncorhynchus mykiss) | Fresh | 35-day | Steady-State BCF
(non-edible tissue) =
12,866 | 0.0018 mg/L | Flow-through, Measured,
Solvent: Acetone | Residue;
Bioconcentration | Wildlife Intl Ltd (2000) | High | | | 25637-99-4 | Rainbow trout (Oncorhynchus mykiss) | Fresh | 35-day | Steady-State BCF
(whole body) =
13,085 | 0.00018 mg/L | Flow-through, Measured,
Solvent: Acetone | Residue;
Bioconcentration | Wildlife Intl Ltd (2000) | High | | | 25637-99-4 | Rainbow trout (Oncorhynchus mykiss) | Fresh | 35-day | Steady-State BCF
(whole body) = 8,974 | 0.0018 mg/L | Flow-through, Measured,
Solvent: Acetone | Residue;
Bioconcentration | Wildlife Intl Ltd (2000) | High | | | 25637-99-4 | Rainbow trout (Oncorhynchus mykiss) | Fresh | 35-day | Kinetic BCF (edible tissue) = 14,039 | 0.00018 mg/L | Flow-through, Measured,
Solvent: Acetone | Residue;
Bioconcentration | Wildlife Intl Ltd (2000) | High | | | 25637-99-4 | Rainbow trout (Oncorhynchus mykiss) | Fresh | 35-day | Kinetic BCF (edible tissue) = 9,826 | 0.0018 mg/L | Flow-through, Measured,
Solvent: Acetone | Residue;
Bioconcentration | Wildlife Intl Ltd (2000) | High | | | 25637-99-4 | Rainbow trout (Oncorhynchus mykiss) | Fresh | 35-day | Kinetic BCF (non-
edible tissue) =
30,242 | 0.00018 mg/L | Flow-through, Measured,
Solvent: Acetone | Residue;
Bioconcentration | Wildlife Intl Ltd (2000) | High | | | 25637-99-4 | Rainbow trout (Oncorhynchus mykiss) | Fresh | 35-day | Kinetic BCF (non-
edible tissue) =
23,303 | 0.0018 mg/L | Flow-through, Measured,
Solvent: Acetone | Residue;
Bioconcentration | Wildlife Intl Ltd (2000) | High | | | 25637-99-4 | Rainbow trout (Oncorhynchus mykiss) | Fresh | 35-day | Kinetic BCF (whole body) = 21,940 | 0.00018 mg/L | Flow-through, Measured,
Solvent: Acetone | Residue;
Bioconcentration | Wildlife Intl Ltd (2000) | High | | | 25637-99-4 | Rainbow trout (Oncorhynchus mykiss) | Fresh | 35-day | Kinetic BCF (whole body) = 16,450 | 0.0018 mg/L | Flow-through, Measured,
Solvent: Acetone | Residue;
Bioconcentration | Wildlife Intl Ltd (2000) | High | | | 134237-52-8 | Rainbow trout (Oncorhynchus mykiss) | Fresh | ≥ 32-day | NOAEL = 0.005 mg
AI/kg | 0, 0.005 mg/kg | Food, Nominal; Solvent:
Corn oil | Mortality;
Weight; Length;
Condition | Palace et al. (2008) | High | 1409610 | | CAS RN | Test Species | Water
Type | Duration | Endpoint(s) | Concentration(s) | Test Analysis | Effect(s) | References | Data Quality
Rating | HERO ID | |-------------|---|---------------|------------------------------------|---------------------------|------------------|-------------------------------------|---|-----------------------------|------------------------|---------| | 134237-52-8 | Rainbow trout
(Oncorhynchus
mykiss) | Fresh | ≥ 32-day,
measured
on day 34 | NOAEL = 0.005 mg
AI/kg | 0, 0.005 mg/kg | Food, Nominal; Solvent:
Corn oil | Thyroxine; % recovery: muscle tissue, gallbladder tissue, thyroid tissue, intestine tissue, viscera tissue, liver tissue, blood | <u>Palace et al.</u> (2008) | High | | | 134237-52-8 | Rainbow trout
(Oncorhynchus
mykiss) | Fresh | ≥ 32-day,
measured
on day 36 | NOAEL = 0.005 mg
AI/kg | 0, 0.005 mg/kg | Food, Nominal; Solvent:
Corn oil | Thyroxine; % recovery:muscle tissue, gallbladder tissue, thyroid tissue, intestine tissue, viscera tissue, liver tissue, blood | Palace et al. (2008) | High | | | 134237-52-8 | Rainbow trout
(Oncorhynchus
mykiss) | Fresh | ≥ 32-day,
measured
on day 38 | NOAEL = 0.005
mg/kg | 0, 0.005 mg/kg | Food, Nominal; Solvent:
Corn oil | Thyroxine; % recovery: muscle tissue, gallbladder tissue, thyroid tissue, intestine tissue, viscera tissue, liver tissue, blood | Palace et al. (2008) | High | | | 134237-52-8 | Rainbow trout (Oncorhynchus mykiss) | Fresh | ≥ 32-day,
measured
on day 46 | NOAEL = 0.005 mg
AI/kg | 0, 0.005 mg/kg | Food, Nominal; Solvent:
Corn oil | Thyroxine; % recovery: muscle tissue; intestine tissue, viscera tissue, liver tissue | Palace et al. (2008) | High | | | 134237-52-8 | Rainbow trout (Oncorhynchus mykiss) | Fresh | ≥ 32-day,
measured
on day 46 | LOAEL = 0.005 mg
AI/kg | 0, 0.005 mg/kg | Food, Nominal; Solvent:
Corn oil | Thyroxine; %
recovery:gallblad
der tissue, thyroid
tissue, blood | <u>Palace et al.</u> (2008) | High | | | 134237-52-8 | Rainbow trout (Oncorhynchus mykiss) | Fresh | ≥ 32-day,
measured
on day 34 | LOAEL = 0.005 mg
AI/kg | 0, 0.005 mg/kg | Food, Nominal; Solvent:
Corn oil | Type II
iodothyronine
deiodinase | Palace et al. (2008) | High | | | 134237-51-7 | Rainbow trout (Oncorhynchus mykiss) | Fresh | ≥ 32-day,
measured
on day 32 | NOAEL = 0.005 mg
AI/kg | 0, 0.005 mg/kg | Food, Nominal; Solvent:
Corn oil | Mortality,
Weight, Length,
Condition | <u>Palace et al.</u> (2008) | High | | | CAS RN | Test Species | Water
Type | Duration | Endpoint(s) | Concentration(s) | Test Analysis | Effect(s) | References | Data Quality
Rating | HERO ID | |-------------|---|---------------|------------------------------------|---------------------------|------------------|-------------------------------------|---|-----------------------------|------------------------|---------| | 134237-51-7 | Rainbow trout (Oncorhynchus mykiss) | Fresh | ≥ 32-day,
measured
on day 34 | NOAEL = 0.005 mg
AI/kg | 0, 0.005 mg/kg | Food, Nominal; Solvent:
Corn oil | Thyroxine; % recovery: muscle tissue, gallbladder tissue, thyroid tissue, intestine tissue, viscera tissue, liver tissue, blood | Palace et al. (2008) | High | | | 134237-51-7 | Rainbow trout
(Oncorhynchus
mykiss) | Fresh | ≥ 32-day,
measured
on day 36 | NOAEL = 0.005 mg
AI/kg | 0, 0.005 mg/kg | Food, Nominal; Solvent:
Corn oil | Thyroxine; % recovery: muscle tissue, gallbladder tissue, thyroid tissue, intestine tissue, viscera tissue, liver tissue, blood | <u>Palace et al.</u> (2008) | High | | | 134237-51-7 | Rainbow trout (Oncorhynchus mykiss) | Fresh | ≥ 32-day,
measured
on day 38 | LOAEL = 0.005 mg
AI/kg | 0, 0.005 mg/kg | Food, Nominal; Solvent:
Corn oil | Thyroxine; % recovery: muscle tissue, | <u>Palace et al.</u> (2008) | High | | | 134237-51-7 | Rainbow trout
(Oncorhynchus
mykiss) | Fresh | ≥ 32-day,
measured
on day 46 | NOAEL = 0.005 mg
AI/kg | 0, 0.005 mg/kg | Food, Nominal; Solvent:
Corn oil | Thyroxine; % recovery: muscle tissue, intestine tissue , liver tissue | <u>Palace et al.</u> (2008) | High | | | 134237-51-7 | Rainbow trout
(Oncorhynchus
mykiss) | Fresh | ≥ 32-day,
measured
on day 38 | NOAEL = 0.005 mg
AI/kg | 0, 0.005 mg/kg | Food, Nominal; Solvent:
Corn oil | Thyroxine; % recovery, gallbladder tissue, thyroid tissue, intestine tissue, viscera tissue, liver tissue, blood | <u>Palace et al.</u> (2008) | High | | | 134237-51-7 | Rainbow trout
(Oncorhynchus
mykiss) | Fresh | ≥ 32-day,
measured
on day 46 | LOAEL = 0.005 mg
AI/kg | 0, 0.005 mg/kg | Food, Nominal; Solvent:
Corn oil | Thyroxine; % recovery, gallbladder tissue, thyroid tissue, viscera tissue, blood | <u>Palace et al.</u> (2008) | High | | | 134237-51-7 | Rainbow trout (Oncorhynchus mykiss) | Fresh | ≥ 32-day,
measured
on day 34 | LOAEL = 0.005 mg
AI/kg | 0, 0.005 mg/kg | Food, Nominal; Solvent:
Corn oil | Type II
iodothyronine
deiodinase | <u>Palace et al.</u> (2008) | High | | | CAS RN | Test Species | Water
Type | Duration | Endpoint(s) | Concentration(s) | Test Analysis | Effect(s) | References | Data Quality
Rating | HERO ID | |-------------|---|---------------|------------------------------------|---------------------------|------------------|-------------------------------------|---|-----------------------------|------------------------|---------| | 134237-50-6 | Rainbow trout (Oncorhynchus mykiss) | Fresh | ≥ 32-day,
measured
on day 32 | NOAEL = 0.005 mg
AI/kg | 0, 0.005 mg/kg | Food, Nominal; Solvent:
Corn oil | Mortality,
Weight, Length,
Condition | Palace et al. (2008) | High | | | 134237-50-6 | Rainbow trout (Oncorhynchus mykiss) | Fresh | ≥ 32-day,
measured
on day 34 | NOAEL = 0.005 mg
AI/kg | 0, 0.005 mg/kg
 Food, Nominal; Solvent:
Corn oil | Thyroxine; % recovery: muscle tissue, gallbladder tissue, thyroid tissue, intestine tissue, viscera tissue, liver tissue, blood; Type II iodothyronine deiodinase | <u>Palace et al.</u> (2008) | High | | | 134237-50-6 | Rainbow trout
(Oncorhynchus
mykiss) | Fresh | ≥ 32-day,
measured
on day 36 | NOAEL = 0.005 mg
AI/kg | 0, 0.005 mg/kg | Food, Nominal; Solvent:
Corn oil | Thyroxine; % recovery:muscle tissue, gallbladder tissue, thyroid tissue, intestine tissue, viscera tissue, liver tissue, blood | Palace et al. (2008) | High | | | 134237-50-6 | Rainbow trout (Oncorhynchus mykiss) | Fresh | ≥ 32-day,
measured
on day 38 | LOAEL = 0.005 mg
AI/kg | 0, 0.005 mg/kg | Food, Nominal; Solvent:
Corn oil | Thyroxine; % recovery: muscle tissue | Palace et al. (2008) | High | | | 134237-50-6 | Rainbow trout
(Oncorhynchus
mykiss) | Fresh | ≥ 32-day,
measured
on day 46 | NOAEL = 0.005 mg
AI/kg | 0, 0.005 mg/kg | Food, Nominal; Solvent:
Corn oil | Thyroxine; % recovery: muscle tissue, gallbladder tissue, thyroid tissue, intestine tissue, viscera tissue, liver tissue | <u>Palace et al.</u> (2008) | High | | | 134237-50-6 | Rainbow trout
(Oncorhynchus
mykiss) | Fresh | ≥ 32-day,
measured
on day 38 | NOAEL = 0.005 mg
AI/kg | 0, 0.005 mg/kg | Food, Nominal; Solvent:
Corn oil | Thyroxine; % recovery: gallbladder tissue, thyroid tissue, intestine tissue, viscera tissue, liver tissue, blood | Palace et al. (2008) | High | | | 134237-50-6 | Rainbow trout (Oncorhynchus mykiss) | Fresh | ≥ 32-day,
measured
on day 46 | LOAEL = 0.005 mg
AI/kg | 0, 0.005 mg/kg | Food, Nominal; Solvent:
Corn oil | Thyroxine; % recovery, blood | <u>Palace et al.</u> (2008) | High | | | CAS RN | Test Species | Water
Type | Duration | Endpoint(s) | Concentration(s) | Test Analysis | Effect(s) | References | Data Quality
Rating | HERO ID | |-------------|--|---------------|---|---|---|---|---|------------------------------|------------------------|---------| | 25637-99-4 | Common sole (Solea solea) | Salt | 6-day | NOEC = 0.25 mg/L | 0, 0.025, 0.08, 0.25
mg/L | Renewal, Nominal;
Solvent: DMSO | Hatching success | Foekema et al. (2014) | High | 2343709 | | 25637-99-4 | Common sole
(Solea solea) | Salt | 6-day
exposure*
followed by
34-day obs.
In clean
water | Internal Effect
Concentration
(IEC) ₅₀ = >12,400
mg/kg lipid weight | 2,280 – 12,400
mg/kg lipid weight | Renewal, Measured | Mortality;
Growth:
completion of
metamorphosis | Foekema et al.
(2014) | High | | | 134237-52-8 | Zebrafish (Danio rerio) | Fresh | 42-day | NOAEL = 0.04482
mg AI/kg | 0, 0.00486, 0.04482
mg/kg dry wt | Food, Measured | Growth: Weight;
% Lipid | <u>Du et al. (2012a)</u> | High | 1927579 | | 134237-52-8 | Zebrafish (Danio rerio) | Fresh | 42-day | NR-ZERO = 0.04482 $mg AI/kg$ | 0, 0.00486, 0.04482
mg/kg dry wt | Food, Measured | Mortality | <u>Du et al. (2012a)</u> | High | | | 134237-52-8 | Zebrafish (Danio rerio) | Fresh | 42-day | BMF = 7.61 | 0.0048 mg/kg dry wt | Food, Measured | Residue: biomagnification | Du et al. (2012a) | High | | | 134237-52-8 | Zebrafish (Danio rerio) | Fresh | 42-day | BMF = 7.76 | 0.04482 mg/kg dry
wt | Food, Measured | Residue: biomagnification | Du et al. (2012a) | High | | | 134237-51-7 | Zebrafish (Danio rerio) | Fresh | 42-day | NOAEL = 0.04748
mg AI/kg | 0, 0.00452, 0.04748
mg/kg dry wt | Food, Measured | Growth: Weight;
% Lipid | Du et al. (2012a) | High | | | 134237-51-7 | | Fresh | 42-day | NR-ZERO = 0.04748 $mg AI/kg$ | | Food, Measured | Mortality | <u>Du et al. (2012a)</u> | High | | | 134237-51-7 | Zebrafish (Danio rerio) | Fresh | 42-day | BMF = 11.63 | 0.00452 mg/kg dry
wt | Food, Measured | Residue: biomagnification | Du et al. (2012a) | High | | | 134237-51-7 | Zebrafish (Danio rerio) | Fresh | 42-day | BMF = 7.34 | 0.04748 mg/kg dry
wt | Food, Measured | Residue: biomagnification | Du et al. (2012a) | High | | | 134237-50-6 | Zebrafish (Danio rerio) | Fresh | 42-day | NOAEL = 0.04576
mg AI/kg | 0, 0.00443, 0.04576
mg/kg dry wt | Food, Measured | Growth: Weight;
% Lipid | Du et al. (2012a) | High | | | 134237-50-6 | Zebrafish (Danio rerio) | Fresh | 42-day | NR-ZERO = 0.04576
mg AI/kg | 0, 0.00443, 0.04576
mg/kg dry wt | Food, Measured | Mortality | Du et al. (2012a) | High | | | 134237-50-6 | Zebrafish (Danio rerio) | Fresh | 42-day | BMF = 29.71 | 0.00443 mg/kg dry
wt | Food, Measured | Residue: biomagnification | Du et al. (2012a) | High | | | 134237-50-6 | Zebrafish (Danio rerio) | Fresh | 42-day | BMF = 12.33 | 0.04576 mg/kg dry
wt | Food, Measured | Residue: biomagnification | Du et al. (2012a) | High | | | 25637-99-4 | Threespine
Stickleback
(Gasterosteus
aculeatus) | Salt | 30-day | NOAEL = 0.0003 mg
AI/L | mg/L | Flow-through, Nominal,
Solvent: Acetone | DNA methylation | Aniagu et al.
(2008) | High | 1412194 | | 25637-99-4 | Rainbow trout (Oncorhynchus mykiss) | Fresh | 33-day | NOEC = 0.0037 mg
AI/L | 0, 0.00025, 0.00047,
0.00083, 0.0018,
0.0037 mg/L | Flow-through, Measured.
Solvent: Acetone | Hatching success | <u>Drottar et al.</u> (2001) | High | 4796184 | | CAS RN | Test Species | Water
Type | Duration | Endpoint(s) | Concentration(s) | Test Analysis | Effect(s) | References | Data Quality
Rating | HERO ID | |-------------|-------------------------------------|---------------|----------|--|---|---|---|-----------------------|------------------------|---------| | 25637-99-4 | Rainbow trout (Oncorhynchus mykiss) | Fresh | 61-day | NOEC = 0.0037 mg
AI/L | 0, 0.00025, 0.00047,
0.00083, 0.0018,
0.0037 mg/L | Flow-through, Measured.
Solvent: Acetone | Mortality;
Growth: Weight;
Growth: Length;
Time to Swim-up | Drottar et al. (2001) | | | | 134237-52-8 | Common Carp
(Cyprinus
carpio) | Fresh | 60-day | Kinetic BCF (gill) = 237 | 0, 0.001 mg/L | Renewal, Measured | Residue;
Bioconcentration | Zhang et al. (2014b) | High | 2343723 | | 134237-52-8 | Common Carp
(Cyprinus
carpio) | Fresh | 60-day | Kinetic BCF
(viscera) = 584 | 0, 0.001 mg/L | Renewal, Measured | Residue;
Bioconcentration | Zhang et al. (2014b) | High | | | 134237-52-8 | Common Carp
(Cyprinus
carpio) | Fresh | 60-day | Kinetic BCF
(muscle) = 221 | 0, 0.001 mg/L | Renewal, Measured | Residue;
Bioconcentration | Zhang et al. (2014b) | High | | | 134237-52-8 | Common Carp
(Cyprinus
carpio) | Fresh | 60-day | Kinetic BCF (skin) = 227 | 0, 0.001 mg/L | Renewal, Measured | Residue;
Bioconcentration | Zhang et al. (2014b) | High | | | 134237-52-8 | Common Carp
(Cyprinus
carpio) | Fresh | 60-day | Lipid-Normalized
Kinetic BCF (gill) =
950 | 0, 0.001 mg/L | Renewal, Measured | Residue;
Bioconcentration | Zhang et al. (2014b) | High | | | 134237-52-8 | | Fresh | 60-day | Lipid-Normalized
Kinetic BCF
(viscera) = 1,730 | 0, 0.001 mg/L | Renewal, Measured | Residue;
Bioconcentration | Zhang et al. (2014b) | High | | | 134237-52-8 | Common Carp
(Cyprinus
carpio) | Fresh | 60-day | Lipid-Normalized
Kinetic BCF
(muscle) = 1,220 | 0, 0.001 mg/L | Renewal, Measured | Residue;
Bioconcentration | Zhang et al. (2014b) | High | | | 134237-52-8 | | Fresh | 60-day | Lipid-Normalized
Kinetic BCF (skin) =
1,610 | 0, 0.001 mg/L | Renewal, Measured | Residue;
Bioconcentration | Zhang et al. (2014b) | High | | | 134237-51-7 | Common Carp
(Cyprinus
carpio) | Fresh | 60-day | Kinetic BCF (gill) = 322 | 0, 0.001 mg/L | Renewal, Measured | Residue;
Bioconcentration | Zhang et al. (2014b) | High | | | 134237-51-7 | | Fresh | 60-day | Kinetic BCF
(viscera) = 642 | 0, 0.001 mg/L | Renewal, Measured | Residue;
Bioconcentration | Zhang et al. (2014b) | High | | | 134237-51-7 | | Fresh | 60-day | Kinetic BCF
(muscle) = 187 | 0, 0.001 mg/L | Renewal, Measured | Residue;
Bioconcentration | Zhang et al. (2014b) | High | | | 134237-51-7 | Common Carp
(Cyprinus
carpio) | Fresh | 60-day | Kinetic BCF (skin) = 204 | 0, 0.001 mg/L | Renewal, Measured | Residue;
Bioconcentration | Zhang et al. (2014b) | High | | | CAS RN | Test Species | Water
Type | Duration | Endpoint(s) | Concentration(s) | Test Analysis | Effect(s) | References | Data Quality
Rating | HERO ID | |-------------|-------------------------------------|---------------|----------|---|------------------|----------------------|------------------------------|-------------------------|------------------------|---------| | 134237-51-7 | Common Carp
(Cyprinus
carpio) | Fresh | 60-day | Lipid-Normalized
Kinetic BCF (gill) =
1,290 | 0, 0.001 mg/L | Renewal, Measured | Residue;
Bioconcentration | Zhang et al. (2014b) | High | | | 134237-51-7 | Common Carp
(Cyprinus
carpio) | Fresh | 60-day | Lipid-Normalized
Kinetic BCF
(viscera) = 1,900 | 0, 0.001 mg/L | Renewal, Measured | Residue;
Bioconcentration | Zhang et al. (2014b) | High | | | 134237-51-7 | Common Carp
(Cyprinus
carpio) | Fresh | 60-day | Lipid-Normalized
Kinetic BCF
(muscle) = 1,030 | 0, 0.001 mg/L | Renewal, Measured | Residue;
Bioconcentration | Zhang et al. (2014b) | High | | | 134237-51-7 | Common
Carp
(Cyprinus
carpio) | Fresh | 60-day | Lipid-Normalized
Kinetic BCF (skin) =
1,440 | 0, 0.001 mg/L | Renewal, Measured | Residue;
Bioconcentration | Zhang et al. (2014b) | High | | | 134237-50-6 | Common Carp
(Cyprinus
carpio) | Fresh | 60-day | Kinetic BCF (gill) = 8,580 | 0, 0.001 mg/L | Renewal, Measured | Residue;
Bioconcentration | Zhang et al. (2014b) | High | | | 134237-50-6 | Common Carp
(Cyprinus
carpio) | Fresh | 60-day | Kinetic BCF
(viscera) = 11,500 | 0, 0.001 mg/L | Renewal, Measured | Residue;
Bioconcentration | Zhang et al. (2014b) | High | | | 134237-50-6 | Common Carp
(Cyprinus
carpio) | Fresh | 60-day | Kinetic BCF
(muscle) = 5,570 | 0, 0.001 mg/L | Renewal, Measured | Residue;
Bioconcentration | Zhang et al. (2014b) | High | | | 134237-50-6 | Common Carp
(Cyprinus
carpio) | Fresh | 60-day | Kinetic BCF (skin) = 6,400 | 0, 0.001 mg/L | Renewal, Measured | Residue;
Bioconcentration | Zhang et al. (2014b) | High | | | 134237-50-6 | Common Carp
(Cyprinus
carpio) | Fresh | 60-day | Lipid-Normalized
Kinetic BCF (gill) =
34,500 | 0, 0.001 mg/L | Renewal, Measured | Residue;
Bioconcentration | Zhang et al. (2014b) | High | | | 134237-50-6 | Common Carp
(Cyprinus
carpio) | Fresh | 60-day | Lipid-Normalized
Kinetic BCF
(viscera) = 34,200 | 0, 0.001 mg/L | Renewal, Measured | Residue;
Bioconcentration | Zhang et al.
(2014b) | High | | | 134237-50-6 | Common Carp
(Cyprinus
carpio) | Fresh | 60-day | Lipid-Normalized
Kinetic BCF
(muscle) = 30,700 | 0, 0.001 mg/L | Renewal, Measured | Residue;
Bioconcentration | Zhang et al.
(2014b) | High | | | 134237-50-6 | Common Carp
(Cyprinus
carpio) | Fresh | 60-day | Lipid-Normalized
Kinetic BCF (skin) =
45,200 | 0, 0.001 mg/L | Renewal, Measured | Residue;
Bioconcentration | Zhang et al.
(2014b) | High | | | CAS RN | Test Species | Water
Type | Duration | Endpoint(s) | Concentration(s) | Test Analysis | Effect(s) | References | Data Quality
Rating | HERO ID | |-------------|--|-------------------|---|--|--|--|---|--------------------------------|------------------------|---------| | 25637-99-4 | Starry,
European
Flounder
(Platichthys
flesus) | Brackish
Fresh | 78-day | mg/kg lipid diet with
800 mg/kg TOC
sediment OR
0 mg/kg lipid diet
with 8000 mg/kg
TOC sediment | (mg/kg total organic
carbon): 0/0;
0.3/0.08; 3/0.8; 30/8;
300/80; 3000/800;
0/8000 | Multiple routes (diet and
sediment), Nominal,
Solvent: Acetone | Thyroxine; Aromatase; 7- Ethoxyresorufin O-deethylase; Triiodothyronine; Benzylresorufin O-deethylase; Pentylresorufin O-deethylase | <u>Kuiper et al.</u> (2007) | High | 1412802 | | 25637-99-4 | Starry,
European
Flounder
(Platichthys
flesus) | Brackish | 78-day | mg/kg TOC
sediment; LOAEL =
300 mg/kg lipid diet
with 80 mg/kg TOC | Diet (mg/kg
lipid)/sediment
(mg/kg total organic
carbon): 0/0;
0.3/0.08; 3/0.8; 30/8;
300/80; 3000/800;
0/8000 | Multiple routes (diet and
sediment), Nominal,
Solvent: Acetone | Residue: α-
HBCD
concentration in
muscle; β-HBCD
concentration in
muscle | <u>Kuiper et al.</u> (2007) | High | | | 25637-99-4 | Starry,
European
Flounder
(Platichthys
flesus) | Brackish | 78-day | LOAEL = 0.3 mg/kg
lipid diet with 0.08
mg/kg TOC sediment | Diet (mg/kg
lipid)/sediment
(mg/kg total organic
carbon): 0/0;
0.3/0.08; 3/0.8; 30/8;
300/80; 3000/800;
0/8000 | Multiple routes (diet and
sediment), Nominal,
Solvent: Acetone | Residue; γ-HBCD
concentration in
muscle | <u>Kuiper et al.</u>
(2007) | High | | | 134237-52-8 | Rainbow trout
(Oncorhynchus
mykiss) | Fresh | 168-day
(56-day
exposure to
treated food
then 112
days
untreated
food) | BMF = 7.2 | 0.0003, 0.02284
mg/kg | Food, Measured; Lipid-
corrected | Residue;
biomagnification | Law et al. (2006) | High | 1443861 | | 134237-51-7 | Rainbow trout
(Oncorhynchus
mykiss) | Fresh | 168-day
(56-day
exposure to
treated food
then 112
days
untreated
food) | | 0.0003, 0.01184
mg/kg | Food, Measured; Lipid-
corrected | Residue;
biomagnification | Law et al. (2006) | High | | | CAS RN | Test Species | Water
Type | Duration | Endpoint(s) | Concentration(s) | Test Analysis | Effect(s) | References | Data Quality
Rating | HERO ID | |-------------|--|---------------|---|----------------------------|--------------------------|-------------------------------------|-----------------------------------|--------------------------|------------------------|---------| | 134237-50-6 | Rainbow trout
(Oncorhynchus
mykiss) | Fresh | 168-day
(56-day
exposure to
treated food
then 112
days
untreated
food) | BMF = 9.2 | 0.0003, 0.02914
mg/kg | Food, Measured; Lipid-
corrected | Residue;
biomagnification | Law et al. (2006) | High | | | Amphibians | | | | | | | | | | | | 25637-99-4 | African clawed frog (Xenopus laevis) | Fresh | 1-day | NOAEL = 6.417 mg
AI/L | 0, 0.64, 6.4 mg/L | In vitro, Nominal,
Solvent: DMSO | Developmental:
Tail resorption | Schriks et al. (2006) | High | 938764 | | 25637-99-4 | African clawed frog (Xenopus laevis) | Fresh | 2-day | NOAEL = 6.417mg
AI/L | 0, 0.64, 6.4 mg/L | In vitro, Nominal,
Solvent: DMSO | Developmental:
Tail resorption | Schriks et al. (2006) | High | | | 25637-99-4 | African clawed frog (Xenopus laevis) | Fresh | 3-day | NOAEL = 6.417 mg
AI/L | 0, 0.64, 6.4 mg/L | In vitro, Nominal,
Solvent: DMSO | Developmental:
Tail resorption | Schriks et al. (2006) | High | | | 25637-99-4 | African clawed
frog (Xenopus
laevis) | Fresh | 4-day | NOAEL = 6.417 mg
AI/L | 0, 0.64, 6.4 mg/L | In vitro, Nominal,
Solvent: DMSO | Developmental:
Tail resorption | Schriks et al. (2006) | High | | | 25637-99-4 | African clawed
frog (Xenopus
laevis) | Fresh | 5-day | NOAEL = 6.417 mg
AI/L | 0, 0.64, 6.4 mg/L | In vitro, Nominal,
Solvent: DMSO | Developmental:
Tail resorption | Schriks et al.
(2006) | High | | | 25637-99-4 | African clawed
frog (Xenopus
laevis) | Fresh | 6-day | NOAEL = 6.417 mg
AI/L | 0, 0.64, 6.4 mg/L | In vitro, Nominal,
Solvent: DMSO | Developmental:
Tail resorption | Schriks et al. (2006) | High | | | 25637-99-4 | African clawed
frog (Xenopus
laevis) | Fresh | 8-day | NOAEL = 0.642 mg
AI/L | 0, 0.64 mg/L | Renewal, Nominal,
Solvent: DMSO | Cell proliferation | Schriks et al. (2006) | High | | | 25637-99-4 | African clawed
frog (Xenopus
laevis) | Fresh | 8-day | NR-ZERO = 0.642
mg AI/L | 0, 0.64 mg/L | Renewal, Nominal,
Solvent: DMSO | Mortality | Schriks et al.
(2006) | High | | Table 2. On-topic terrestrial toxicity studies that were evaluated for HBCD | CASRN | Test Species | Media | Duration | Endpoint | Concentration(s) | Test Analysis | Effect(s) | Reference | Data
Quality
Rating | HERO ID | |-----------------|---------------------------------|--|----------|--|---|---|--|---------------------|---------------------------|---------| | Terrestrial Veg | etation | | | | | | | | | | | 3194-55-6 | Corn
(Zea mays) | 53 % sand,
30 % silt
and 17 %
clay with
an organic
content of
1.9 %. | 21-day | NOEC = 5,000
mg/kg dry soil
(Nominal)
NOEC = 6,200
mg/kg dry soil
(Mean Measured) | Nominal test
levels; 40, 105,
276, 725, 1904,
5,000 mg/kg dry
soil
Mean measured
test levels; 31.3,
97.8, 297, 764,
2230, and 6200
mg /kg dry soil | | No effects on
seedlings
emergence, survival,
dry weight or height
at the highest test
level | Porch et al. (2002) | High | 3809141 | | 3194-55-6 | Cucumber
(Cucumis
sativa) | 53 % sand,
30 % silt
and 17 %
clay with
an organic
content of
1.9 %. | 21-day | NOEC = 5,000
mg/kg dry soil
(Nominal)
NOEC = 6,200
mg/kg dry soil
(Mean Measured) | | | No effects on
seedlings
emergence, survival,
dry weight or height
at the highest test
level | Porch et al. (2002) | High | | | 3194-55-6 | Onion
(Allium cepa) | 53 % sand,
30 % silt
and 17 %
clay with
an organic
content of
1.9 %. | 21-day | NOEC = 5,000
mg/kg dry soil
(Nominal)
NOEC = 6,200
mg/kg dry soil
(Mean Measured) | | 53 % sand, 30 % silt
and 17 % clay with
an organic content
of 1.9 %. Soil pH
was 7.5.
Solvent;
Tetrahydrofuran
(THF) | No effects on
seedlings
emergence, survival,
dry weight or height
at the highest
test
level | Porch et al. (2002) | High | | | CASRN | Test Species | Media | Duration | Endpoint | Concentration(s) | Test Analysis | Effect(s) | Reference | Data
Quality
Rating | HERO ID | |-------------|--|--|----------|--|---|--|---|---------------------|---------------------------|---------| | 3194-55-6 | Ryegrass
(Lolium
perenne) | 53 % sand,
30 % silt
and 17 %
clay with
an organic
content of
1.9 %. | 21-day | NOEC = 5,000
mg/kg dry soil
(Nominal)
NOEC = 6,200
mg/kg dry soil
(Mean Measured) | Nominal test
levels; 40, 105,
276, 725, 1904,
5,000 mg/kg dry
soil
Mean measured
test levels; 31.3,
97.8, 297, 764,
2230, and 6200
mg /kg dry soil | | No effects on
seedlings
emergence, survival,
dry weight or height
at the highest test
level | Porch et al. (2002) | High | | | 3194-55-6 | Soybean
(Glycine max) | 53 % sand,
30 % silt
and 17 %
clay with
an organic
content of
1.9 %. | 21-day | NOEC = 5,000
mg/kg dry soil
(Nominal)
NOEC = 6,200
mg/kg dry soil
(Mean Measured) | | | No effects on
seedlings
emergence, survival,
dry weight or height
at the highest test
level | | High | | | 3194-55-6 | Tomato
(Lycopersicon
esculentum) | 53 % sand,
30 % silt
and 17 %
clay with
an organic
content of
1.9 %. | 21-day | NOEC = 5,000
mg/kg dry soil
(Nominal)
NOEC = 6,200
mg/kg dry soil
(Mean Measured) | | | No effects on
seedlings
emergence, survival,
dry weight or height
at the highest test
level | Porch et al. (2002) | | | | 134237-52-8 | Corn (Zea
mays) | Hydroponic | 3-hour | LOAEL = 0.002
mg/L | | Hydroponic solution
application,
Nominal | Reactive oxygen
species:
Radical relative
intensity in roots,
Radical relative
intensity in shoots | Wu et al. (2012) | High | 1927583 | | CASRN | Test Species | Media | Duration | Endpoint | Concentration(s) | Test Analysis | Effect(s) | Reference | Data
Quality
Rating | HERO ID | |-------------|--------------------|------------|----------|-----------------------|------------------|--|--|------------------|---------------------------|---------| | 134237-52-8 | Corn (Zea
mays) | Hydroponic | 7-hour | LOAEL = 0.002
mg/L | | Hydroponic solution
application,
Nominal | Reactive oxygen species: Radical relative intensity in roots; Histone H2AX mRNA: Relative γ-H2AX level in roots, Relative γ-H2AX level in shoots | Wu et al. (2012) | High | | | 134237-52-8 | Corn (Zea
mays) | Hydroponic | 12-hour | LOAEL = 0.002
mg/L | 0, 0.002 mg/L | Hydroponic solution
application,
Nominal | Reactive oxygen
species:
Radical relative
intensity in roots;
Histone H2AX
mRNA:
Relative γ-H2AX
level in roots,
Relative γ-H2AX
level in shoots | Wu et al. (2012) | High | | | 134237-52-8 | mays) | Hydroponic | 24-hour | LOAEL = 0.002
mg/L | | Hydroponic solution
application,
Nominal | Reactive oxygen
species:
Radical relative
intensity in roots,
Radical relative
intensity in shoots;
Histone H2AX
mRNA: Relative γ-
H2AX level in
shoots | Wu et al. (2012) | High | | | 134237-52-8 | Corn (Zea
mays) | Hydroponic | 72-hour | NOAEL = 0.002
mg/L | 0, 0.002 mg/L | Hydroponic solution
application,
Nominal | Reactive oxygen
species:
Radical relative
intensity in roots;
Histone H2AX
mRNA:
Relative γ-H2AX
level in roots,
Relative γ-H2AX
level in shoots | Wu et al. (2012) | High | | | CASRN | Test Species | Media | Duration | Endpoint | Concentration(s) | Test Analysis | Effect(s) | Reference | Data
Quality
Rating | HERO ID | |-------------|--------------------|------------|----------|-----------------------|------------------|--|---|------------------|---------------------------|---------| | 134237-52-8 | Corn (Zea
mays) | Hydroponic | 96-hour | NOAEL = 0.002
mg/L | 0, 0.002 mg/L | Hydroponic solution
application,
Nominal | Reactive oxygen species: Radical relative intensity in roots; Histone H2AX mRNA: Relative γ-H2AX level in roots, Relative γ-H2AX level in shoots | Wu et al. (2012) | High | | | 134237-52-8 | Corn (Zea
mays) | Hydroponic | 7-hour | NOAEL = 0.002
mg/L | 0, 0.002 mg/L | Hydroponic solution
application,
Nominal | Reactive oxygen
species:
Radical relative
intensity in shoots | Wu et al. (2012) | High | | | 134237-52-8 | Corn (Zea
mays) | Hydroponic | 12-hour | NOAEL = 0.002
mg/L | 0, 0.002 mg/L | Hydroponic solution
application,
Nominal | Reactive oxygen
species:
Radical relative
intensity in shoots | Wu et al. (2012) | High | | | 134237-52-8 | Corn (Zea
mays) | Hydroponic | 72-hour | LOAEL = 0.002
mg/L | 0, 0.002 mg/L | Hydroponic solution application, Nominal | Reactive oxygen
species:
Radical relative
intensity in shoots | Wu et al. (2012) | High | | | 134237-52-8 | Corn (Zea
mays) | Hydroponic | 96-hour | LOAEL = 0.002
mg/L | 0, 0.002 mg/L | Hydroponic solution
application,
Nominal | Reactive oxygen species: Radical relative intensity in shoots; Growth: Inhibition of seed germination; Growth: Inhibition of root biomass; Growth: Inhibition of shoot biomass; Growth: Root elongation; Growth: Shoot elongation | Wu et al. (2012) | High | | | CASRN | Test Species | Media | Duration | Endpoint | Concentration(s) | Test Analysis | Effect(s) | Reference | Data
Quality
Rating | HERO ID | |-------------|---------------------|------------|----------|-----------------------|------------------|--|--|------------------|---------------------------|---------| | 134237-52-8 | Corn (Zea
mays) | Hydroponic | 3-hour | NOAEL = 0.002
mg/L | 0, 0.002 mg/L | Hydroponic solution
application,
Nominal | Histone H2AX
mRNA:
Relative γ-H2AX
level in roots,
Relative γ-H2AX
level in shoots | Wu et al. (2012) | High | | | 134237-52-8 | Corn (Zea
mays) | Hydroponic | 24-hour | NOAEL = 0.002
mg/L | 0, 0.002 mg/L | Hydroponic solution
application,
Nominal | Histone H2AX
mRNA:
Relative γ-H2AX
level in roots | Wu et al. (2012) | High | | | 134237-51-7 | Corn (Zea
mays) | Hydroponic | 3-hour | NOAEL = 0.002
mg/L | 0, 0.002 mg/L | Hydroponic solution
application,
Nominal | species: Radical relative intensity in roots; Histone H2AX mRNA: Relative γ-H2AX level in roots, Relative γ-H2AX level in shoots | Wu et al. (2012) | High | | | 134237-51-7 | Corn (Zea
mays) | Hydroponic | 7-hour | LOAEL = 0.002
mg/L | 0, 0.002 mg/L | Hydroponic solution
application,
Nominal | Reactive oxygen species: Radical relative intensity in roots, Radical relative intensity in shoots; Histone H2AX mRNA: Relative γ-H2AX level in roots, Relative γ-H2AX level in shoots | Wu et al. (2012) | High | | | CASRN | Test Species | Media | Duration | Endpoint | Concentration(s) | Test Analysis | Effect(s) | Reference | Data
Quality
Rating | HERO ID | |-------------|---------------------|------------|----------|-----------------------|------------------|--|--|------------------|---------------------------|---------| | 134237-51-7 | Corn (Zea
mays) | Hydroponic | 12-hour | LOAEL = 0.002
mg/L | 0, 0.002 mg/L | Hydroponic solution
application,
Nominal | Reactive oxygen species: Radical relative intensity in roots, Radical relative intensity in shoots; Histone H2AX mRNA: Relative γ-H2AX level in roots, Relative γ-H2AX level in shoots | Wu et al. (2012) | High | | | 134237-51-7 | Corn (Zea
mays) | Hydroponic | 24-hour | LOAEL = 0.002
mg/L | 0, 0.002 mg/L | Hydroponic solution
application,
Nominal | | Wu et al. (2012) | High | | | 134237-51-7 | Corn (Zea
mays) | Hydroponic | 72-hour | NOAEL = 0.002
mg/L | 0, 0.002 mg/L | Hydroponic solution
application,
Nominal | | Wu et al. (2012) | High | | | CASRN | Test Species | Media | Duration | Endpoint | Concentration(s) | Test Analysis | Effect(s) | Reference | Data
Quality
Rating | HERO ID | |-------------|--------------------|------------|----------|-----------------------|------------------|--|---|------------------|---------------------------
---------| | 134237-51-7 | Corn (Zea
mays) | Hydroponic | 96-hour | NOAEL = 0.002
mg/L | 0, 0.002 mg/L | Hydroponic solution
application,
Nominal | Reactive oxygen species: Radical relative intensity in roots; Histone H2AX mRNA: Relative γ-H2AX level in roots, Relative γ-H2AX level in shoots | Wu et al. (2012) | High | | | 134237-51-7 | Corn (Zea
mays) | Hydroponic | 3-hour | LOAEL = 0.002
mg/L | | Hydroponic solution
application,
Nominal | Reactive oxygen
species:
Radical relative
intensity in shoots | Wu et al. (2012) | High | | | 134237-51-7 | Corn (Zea
mays) | Hydroponic | 72-hour | LOAEL = 0.002
mg/L | 0, 0.002 mg/L | Hydroponic solution
application,
Nominal | Reactive oxygen
species:
Radical relative
intensity in shoots | Wu et al. (2012) | High | | | 134237-51-7 | mays) | Hydroponic | | LOAEL = 0.002
mg/L | | Hydroponic solution
application,
Nominal | Reactive oxygen species: Radical relative intensity in shoots; Growth: Inhibition of seed germination; Growth: Inhibition of root biomass; Growth: Inhibition of shoot biomass; Growth: Root elongation; Growth: Shoot elongation | Wu et al. (2012) | High | | | 134237-50-6 | Corn (Zea
mays) | Hydroponic | 3-hour | LOAEL = 0.002
mg/L | 0, 0.002 mg/L | Hydroponic solution
application,
Nominal | Reactive oxygen
species:
Radical relative
intensity in roots,
Radical relative
intensity in shoots; | Wu et al. (2012) | High | | | CASRN | Test Species | Media | Duration | Endpoint | Concentration(s) | Test Analysis | Effect(s) | Reference | Data
Quality
Rating | HERO ID | |-------------|---------------------|------------|----------|-----------------------|------------------|--|--|------------------|---------------------------|---------| | 134237-50-6 | Corn (Zea
mays) | Hydroponic | 7-hour | LOAEL = 0.002
mg/L | 0, 0.002 mg/L | Hydroponic solution
application,
Nominal | Reactive oxygen species: Radical relative intensity in roots, Radical relative intensity in shoots; Histone H2AX mRNA: Relative γ-H2AX level in roots, Relative γ-H2AX level in shoots | Wu et al. (2012) | High | | | 134237-50-6 | Corn (Zea
mays) | Hydroponic | 12-hour | LOAEL = 0.002
mg/L | 0, 0.002 mg/L | Hydroponic solution
application,
Nominal | | Wu et al. (2012) | High | | | 134237-50-6 | Corn (Zea
mays) | Hydroponic | 24-hour | LOAEL = 0.002
mg/L | 0, 0.002 mg/L | Hydroponic solution
application,
Nominal | Reactive oxygen species: Radical relative intensity in roots, Radical relative intensity in shoots; Histone H2AX mRNA: Relative γ-H2AX level in roots, Relative γ-H2AX level in shoots | Wu et al. (2012) | High | | | CASRN | Test Species | Media | Duration | Endpoint | Concentration(s) | Test Analysis | Effect(s) | Reference | Data
Quality
Rating | HERO ID | |-------------|---------------------|------------|----------|-----------------------|------------------|--|---|------------------|---------------------------|---------| | 134237-50-6 | Corn (Zea
mays) | Hydroponic | 72-hour | LOAEL = 0.002
mg/L | 0, 0.002 mg/L | Hydroponic solution
application,
Nominal | Reactive oxygen
species:
Radical relative
intensity in roots,
Radical relative
intensity in shoots;
Histone H2AX
mRNA:
Relative γ-H2AX
level in roots | Wu et al. (2012) | High | | | 134237-50-6 | Corn (Zea
mays) | Hydroponic | 96-hour | NOAEL = 0.002
mg/L | 0, 0.002 mg/L | Hydroponic solution
application,
Nominal | Reactive oxygen
species:
Radical relative
intensity in roots;
Histone H2AX
mRNA:
Relative γ-H2AX
level in roots,
Relative γ-H2AX
level in shoots | Wu et al. (2012) | High | | | 134237-50-6 | mays) | Hydroponic | 96-hour | LOAEL = 0.002
mg/L | | Hydroponic solution
application,
Nominal | Reactive oxygen species: Radical relative intensity in shoots; Growth: Inhibition of seed germination; Growth: Inhibition of root biomass; Growth: Inhibition of shoot biomass; Growth: Root elongation; Growth: Shoot elongation | Wu et al. (2012) | High | | | 134237-50-6 | Corn (Zea
mays) | Hydroponic | 3-hour | NOAEL = 0.002
mg/L | 0, 0.002 mg/L | Hydroponic solution
application,
Nominal | Histone H2AX
mRNA:
Relative γ-H2AX
level in roots,
Relative γ-H2AX
level in shoots | Wu et al. (2012) | High | | | CASRN | Test Species | Media | Duration | Endpoint | Concentration(s) | Test Analysis | Effect(s) | Reference | Data
Quality
Rating | HERO ID | |-------------|---------------------------------------|--------------|----------|---|--|---|--|-------------------|---------------------------|---------| | 134237-50-6 | Corn (Zea
mays) | Hydroponic | 72-hour | NOAEL = 0.002
mg/L | 0, 0.002 mg/L | Hydroponic solution
application,
Nominal | Histone H2AX
mRNA:
Relative γ-H2AX
level in shoots | Wu et al. (2012) | High | | | 25637-99-4 | Corn (Zea
mays) | Filter paper | 4-day | LOAEL = 0.002
mg/L | 0, 0.002, 0.005,
0.01, 0.02, 0.05
mg/L | Renewal, Nominal,
Solvent: Methanol | Growth: Root
biomass; Growth:
Root length;
Growth: Shoot
biomass;
Germination | Wu et al. (2016) | High | 3350472 | | 25637-99-4 | Corn (Zea
mays) | Filter paper | 4-day | NOAEL = 0.002
mg/L;
LOAEL = 0.005
mg/L | 0, 0.002, 0.005,
0.01, 0.02, 0.05
mg/L | Renewal, Nominal,
Solvent: Methanol | Growth: Shoot
length; Histone
H2AX mRNA: Root | Wu et al. (2016) | High | | | 25637-99-4 | Corn (Zea
mays) | Filter paper | 4-day | NOAEL = 0.005
mg/L;
LOAEL = 0.01
mg/L | 0, 0.002, 0.005,
0.01, 0.02, 0.05
mg/L | Renewal, Nominal,
Solvent: Methanol | Histone H2AX
mRNA: Shoot | Wu et al. (2016) | High | | | 134237-52-8 | Bread Wheat
(Triticum
aestivum) | Natural soil | 1-week | BCF (root) =0.550 | 0, 0.0628 mg/kg
dry soil | Multiple routes
within environ-
mental exposure
chamber, Measured,
Solvent: Methylene
chloride | Residue;
Bioconcentration | Zhu et al. (2016) | High | 3350492 | | 134237-52-8 | Bread Wheat
(Triticum
aestivum) | Natural soil | 1-week | BCF (stem) = 0.100 | 0, 0.0628 mg/kg
dry soil | Multiple routes
within environ-
mental exposure
chamber Measured,
Solvent: Methylene
chloride | Residue;
Bioconcentration | Zhu et al. (2016) | High | | | 134237-52-8 | Bread Wheat
(Triticum
aestivum) | Natural soil | 1-week | BCF (leaf) = 0.157 | 0, 0.0628 mg/kg
dry soil | Multiple routes
within environ-
mental exposure
chamber Measured,
Solvent: Methylene
chloride | Residue;
Bioconcentration | Zhu et al. (2016) | High | | | CASRN | Test Species | Media | Duration | Endpoint | Concentration(s) | Test Analysis | Effect(s) | Reference | Data
Quality
Rating | HERO ID | |-------------|---------------------------------------|--------------|----------|--------------------|-----------------------------|---|------------------------------|-------------------|---------------------------|---------| | 134237-52-8 | Bread Wheat
(Triticum
aestivum) | Natural soil | 2-week | BCF (root) = 0.961 | 0, 0.0628 mg/kg
dry soil | Multiple routes
within environ-
mental exposure
chamber Measured,
Solvent: Methylene
chloride | Residue;
Bioconcentration | Zhu et al. (2016) | High | | | 134237-52-8 | Bread Wheat
(Triticum
aestivum) | Natural soil | 2-week | BCF (stem) = 0.203 | 0, 0.0628 mg/kg
dry soil | Multiple routes
within environ-
mental exposure
chamber Measured,
Solvent: Methylene
chloride | Residue;
Bioconcentration | Zhu et al. (2016) | High | | | 134237-52-8 | Bread Wheat
(Triticum
aestivum) | Natural soil | 2-week | BCF (leaf) = 0.259 | 0, 0.0628 mg/kg
dry soil | Multiple routes
within environ-
mental exposure
chamber Measured,
Solvent: Methylene
chloride | Residue;
Bioconcentration | Zhu et al. (2016) | High | | | 134237-52-8 | Bread Wheat
(Triticum
aestivum) | Natural soil | 3-week | BCF (root) = 1.27 | 0, 0.0628 mg/kg
dry soil | Multiple routes
within environ-
mental exposure
chamber, Measured,
Solvent: Methylene
chloride | Residue;
Bioconcentration | Zhu et al. (2016) | High | | | 134237-52-8 | Bread Wheat
(Triticum
aestivum) | Natural soil | 3-week | BCF (stem) = 0.284 | 0, 0.0628 mg/kg
dry soil | Multiple routes
within environ-
mental exposure
chamber Measured,
Solvent: Methylene
chloride | Residue;
Bioconcentration | Zhu et al. (2016) | High | | | 134237-52-8 | Bread Wheat
(Triticum
aestivum) | Natural soil | 3-week | BCF (leaf) = 0.473 | 0, 0.0628 mg/kg
dry soil | Multiple routes
within environ-
mental exposure
chamber Measured,
Solvent: Methylene
chloride | Residue;
Bioconcentration | Zhu et al. (2016) | High | | | CASRN | Test Species | Media | Duration | Endpoint | Concentration(s) | Test Analysis | Effect(s) | Reference | Data
Quality
Rating | HERO ID | |-------------|---------------------------------------
--------------|----------|--------------------|-----------------------------|--|------------------------------|-------------------|---------------------------|---------| | 134237-52-8 | Bread Wheat
(Triticum
aestivum) | Natural soil | 4-week | BCF (root) = 1.99 | 0, 0.0628 mg/kg
dry soil | Multiple routes
within environ-
mental exposure
chamber Measured,
Solvent: Methylene
chloride | Residue;
Bioconcentration | Zhu et al. (2016) | High | | | 134237-52-8 | Bread Wheat
(Triticum
aestivum) | Natural soil | 4-week | BCF (stem) = 0.472 | 0, 0.0628 mg/kg
dry soil | Multiple routes
within environ-
mental exposure
chamber Measured,
Solvent: Methylene
chloride | Residue;
Bioconcentration | Zhu et al. (2016) | High | | | 134237-52-8 | Bread Wheat
(Triticum
aestivum) | Natural soil | 4-week | BCF (leaf) = 0.755 | 0, 0.0628 mg/kg
dry soil | Multiple routes
within environ-
mental exposure
chamber Measured,
Solvent: Methylene
chloride | Residue;
Bioconcentration | Zhu et al. (2016) | High | | | 134237-51-7 | Bread Wheat
(Triticum
aestivum) | Natural soil | 1-week | BCF (root) = 1.10 | 0, 0.0908 mg/kg
dry soil | Multiple routes
within environ-
mental exposure
chamber Measured,
Solvent: Methylene
chloride | Residue;
Bioconcentration | Zhu et al. (2016) | High | | | 134237-51-7 | Bread Wheat
(Triticum
aestivum) | Natural soil | 1-week | BCF (stem) = 0.231 | 0, 0.0908 mg/kg
dry soil | Multiple routes
within environ-
mental exposure
chamber Measured,
Solvent: Methylene
chloride | Residue;
Bioconcentration | Zhu et al. (2016) | High | | | 134237-51-7 | Bread Wheat
(Triticum
aestivum) | Natural soil | 1-week | BCF (leaf) = 0.134 | 0, 0.0908 mg/kg
dry soil | Multiple routes
within environ-
mental exposure
chamber Measured,
Solvent: Methylene
chloride | Residue;
Bioconcentration | Zhu et al. (2016) | High | | | CASRN | Test Species | Media | Duration | Endpoint | Concentration(s) | Test Analysis | Effect(s) | Reference | Data
Quality
Rating | HERO ID | |-------------|---------------------------------------|--------------|----------|--------------------|-----------------------------|---|------------------------------|-------------------|---------------------------|---------| | 134237-51-7 | Bread Wheat
(Triticum
aestivum) | Natural soil | 2-week | BCF (root) = 1.36 | 0, 0.0908 mg/kg
dry soil | Multiple routes
within environ-
mental exposure
chamber Measured,
Solvent: Methylene
chloride | Residue;
Bioconcentration | Zhu et al. (2016) | High | | | 134237-51-7 | Bread Wheat
(Triticum
aestivum) | Natural soil | 2-week | BCF (stem) = 0.315 | 0, 0.0908 mg/kg
dry soil | Multiple routes
within environ-
mental exposure
chamber Measured,
Solvent: Methylene
chloride | Residue;
Bioconcentration | Zhu et al. (2016) | High | | | 134237-51-7 | Bread Wheat
(Triticum
aestivum) | Natural soil | 2-week | BCF (leaf) = 0.175 | 0, 0.0908 mg/kg
dry soil | Multiple routes
within environ-
mental exposure
chamber Measured,
Solvent: Methylene
chloride | Residue;
Bioconcentration | Zhu et al. (2016) | High | | | 134237-51-7 | Bread Wheat
(Triticum
aestivum) | Natural soil | 3-week | BCF (root) = 2.07 | 0, 0.0908 mg/kg
dry soil | Multiple routes
within environ-
mental exposure
chamber, Measured,
Solvent: Methylene
chloride | Residue;
Bioconcentration | Zhu et al. (2016) | High | | | 134237-51-7 | Bread Wheat
(Triticum
aestivum) | Natural soil | 3-week | BCF (stem) = 0.514 | 0, 0.0908 mg/kg
dry soil | Multiple routes
within environ-
mental exposure
chamber Measured,
Solvent: Methylene
chloride | Residue;
Bioconcentration | Zhu et al. (2016) | High | | | 134237-51-7 | Bread Wheat
(Triticum
aestivum) | Natural soil | 3-week | BCF (leaf) = 0.335 | 0, 0.0908 mg/kg
dry soil | Multiple routes
within environ-
mental exposure
chamber Measured,
Solvent: Methylene
chloride | Residue;
Bioconcentration | Zhu et al. (2016) | High | | | CASRN | Test Species | Media | Duration | Endpoint | Concentration(s) | Test Analysis | Effect(s) | Reference | Data
Quality
Rating | HERO ID | |-------------|---------------------------------------|--------------|----------|--------------------|-----------------------------|--|------------------------------|-------------------|---------------------------|---------| | 134237-51-7 | Bread Wheat
(Triticum
aestivum) | Natural soil | 4-week | BCF (root) = 3.08 | 0, 0.0908 mg/kg
dry soil | Multiple routes
within environ-
mental exposure
chamber Measured,
Solvent: Methylene
chloride | Residue;
Bioconcentration | Zhu et al. (2016) | High | | | 134237-51-7 | Bread Wheat
(Triticum
aestivum) | Natural soil | 4-week | BCF (stem) = 0.842 | 0, 0.0908 mg/kg
dry soil | Multiple routes
within environ-
mental exposure
chamber Measured,
Solvent: Methylene
chloride | Residue;
Bioconcentration | Zhu et al. (2016) | High | | | 134237-51-7 | Bread Wheat
(Triticum
aestivum) | Natural soil | 4-week | BCF (leaf) = 0.604 | 0, 0.0908 mg/kg
dry soil | Multiple routes
within environ-
mental exposure
chamber Measured,
Solvent: Methylene
chloride | Residue;
Bioconcentration | Zhu et al. (2016) | High | | | 134237-50-6 | Bread Wheat
(Triticum
aestivum) | Natural soil | 1-week | BCF (root) = 1.28 | 0, 0.0984 mg/kg
dry soil | Multiple routes
within environ-
mental exposure
chamber Measured,
Solvent: Methylene
chloride | Residue;
Bioconcentration | Zhu et al. (2016) | High | | | 134237-50-6 | Bread Wheat
(Triticum
aestivum) | Natural soil | 1-week | BCF (stem) = 0.286 | 0, 0.0984 mg/kg
dry soil | Multiple routes
within environ-
mental exposure
chamber Measured,
Solvent: Methylene
chloride | Residue;
Bioconcentration | Zhu et al. (2016) | High | | | 134237-50-6 | Bread Wheat
(Triticum
aestivum) | Natural soil | 1-week | BCF (leaf) = 0.141 | 0, 0.0984 mg/kg
dry soil | Multiple routes
within environ-
mental exposure
chamber Measured,
Solvent: Methylene
chloride | Residue;
Bioconcentration | Zhu et al. (2016) | High | | | CASRN | Test Species | Media | Duration | Endpoint | Concentration(s) | Test Analysis | Effect(s) | Reference | Data
Quality
Rating | HERO ID | |-------------|---------------------------------------|--------------|----------|--------------------|-----------------------------|--|------------------------------|-------------------|---------------------------|---------| | 134237-50-6 | Bread Wheat
(Triticum
aestivum) | Natural soil | 2-week | BCF (root) = 1.63 | 0, 0.0984 mg/kg
dry soil | Multiple routes
within environ-
mental exposure
chamber Measured,
Solvent: Methylene
chloride | Residue;
Bioconcentration | Zhu et al. (2016) | High | | | 134237-50-6 | Bread Wheat
(Triticum
aestivum) | Natural soil | 2-week | BCF (stem) = 0.405 | 0, 0.0984 mg/kg
dry soil | Multiple routes
within environ-
mental exposure
chamber Measured,
Solvent: Methylene
chloride | Residue;
Bioconcentration | Zhu et al. (2016) | High | | | 134237-50-6 | Bread Wheat
(Triticum
aestivum) | Natural soil | 2-week | BCF (leaf) = 0.225 | 0, 0.0984 mg/kg
dry soil | Multiple routes
within environ-
mental exposure
chamber Measured,
Solvent: Methylene
chloride | Residue;
Bioconcentration | Zhu et al. (2016) | High | | | 134237-50-6 | Bread Wheat
(Triticum
aestivum) | Natural soil | 3-week | BCF (root) = 2.13 | 0, 0.0984 mg/kg
dry soil | Multiple routes
within environ-
mental exposure
chamber Measured,
Solvent: Methylene
chloride | Residue;
Bioconcentration | Zhu et al. (2016) | High | | | 134237-50-6 | Bread Wheat
(Triticum
aestivum) | Natural soil | 3-week | BCF (stem) = 0.606 | 0, 0.0984 mg/kg
dry soil | Multiple routes
within environ-
mental exposure
chamber Measured,
Solvent: Methylene
chloride | Residue;
Bioconcentration | Zhu et al. (2016) | High | | | 134237-50-6 | Bread Wheat
(Triticum
aestivum) | Natural soil | 3-week | BCF (leaf) = 0.337 | 0, 0.0984 mg/kg
dry soil | Multiple routes
within environ-
mental exposure
chamber Measured,
Solvent: Methylene
chloride | Residue;
Bioconcentration | Zhu et al. (2016) | High | | | CASRN | Test Species | Media | Duration | Endpoint | Concentration(s) | Test Analysis | Effect(s) | Reference | Data
Quality
Rating | HERO ID | |-------------|---------------------------------------|--------------|----------|--------------------|-----------------------------|---|--|-------------------|---------------------------|---------| | 134237-50-6 | Bread Wheat
(Triticum
aestivum) | Natural soil | 4-week | BCF (root) = 3.21 | 0, 0.0984 mg/kg
dry soil | Multiple routes
within environ-
mental exposure
chamber Measured,
Solvent: Methylene
chloride | Residue;
Bioconcentration | Zhu et al. (2016) | High | | | 134237-50-6 | Bread Wheat
(Triticum
aestivum) | Natural soil | 4-week | BCF (stem) = 0.880 | 0, 0.0984 mg/kg
dry soil | Multiple routes
within environ-
mental exposure
chamber
Measured,
Solvent: Methylene
chloride | Residue;
Bioconcentration | Zhu et al. (2016) | High | | | 134237-50-6 | Bread Wheat
(Triticum
aestivum) | Natural soil | 4-week | BCF (leaf) = 0.663 | 0, 0.0984 mg/kg
dry soil | Multiple routes
within environ-
mental exposure
chamber Measured,
Solvent: Methylene
chloride | Residue;
Bioconcentration | Zhu et al. (2016) | High | | | 134237-52-8 | Bread Wheat
(Triticum
aestivum) | Natural soil | 1-week | TF = 0.177 | 0, 0.0628 mg/kg
dry soil | Multiple routes
within environ-
mental exposure
chamber Measured,
Solvent: Methylene
chloride | Residue;
Translocation factor
(TF: [stem]/ [root]) | Zhu et al. (2016) | High | | | 134237-52-8 | Bread Wheat
(Triticum
aestivum) | Natural soil | 2-week | TF = 0.206 | 0, 0.0628 mg/kg
dry soil | Multiple routes
within environ-
mental exposure
chamber, Measured,
Solvent: Methylene
chloride | Residue;
Translocation factor
(TF: [stem]/ [root]) | Zhu et al. (2016) | High | | | 134237-52-8 | Bread Wheat
(Triticum
aestivum) | Natural soil | 3-week | TF = 0.203 | 0, 0.0628 mg/kg
dry soil | Multiple routes
within environ-
mental exposure
chamber Measured,
Solvent: Methylene
chloride | Residue;
Translocation factor
(TF: [stem]/ [root]) | Zhu et al. (2016) | High | | | CASRN | Test Species | Media | Duration | Endpoint | Concentration(s) | Test Analysis | Effect(s) | Reference | Data
Quality
Rating | HERO ID | |-------------|---------------------------------------|--------------|----------|------------|-----------------------------|---|--|-------------------|---------------------------|---------| | 134237-52-8 | Bread Wheat
(Triticum
aestivum) | Natural soil | 4-week | TF = 0.216 | 0, 0.0628 mg/kg
dry soil | Multiple routes
within environ-
mental exposure
chamber Measured,
Solvent: Methylene
chloride | Residue;
Translocation factor
(TF: [stem]/ [root]) | Zhu et al. (2016) | High | | | 134237-51-7 | Bread Wheat
(Triticum
aestivum) | Natural soil | 1-week | TF = 0.202 | 0, 0.0908 mg/kg
dry soil | Multiple routes
within environ-
mental exposure
chamber, Measured,
Solvent: Methylene
chloride | Residue;
Translocation factor
(TF: [stem]/ [root]) | Zhu et al. (2016) | High | | | 134237-51-7 | Bread Wheat
(Triticum
aestivum) | Natural soil | 2-week | TF = 0.224 | 0, 0.0908 mg/kg
dry soil | Multiple routes
within environ-
mental exposure
chamber Measured,
Solvent: Methylene
chloride | Residue;
Translocation factor
(TF: [stem]/ [root]) | Zhu et al. (2016) | High | | | 134237-51-7 | Bread Wheat
(Triticum
aestivum) | Natural soil | 3-week | TF = 0.242 | 0, 0.0908 mg/kg
dry soil | Multiple routes
within environ-
mental exposure
chamber Measured,
Solvent: Methylene
chloride | Residue;
Translocation factor
(TF: [stem]/ [root]) | Zhu et al. (2016) | High | | | 134237-51-7 | Bread Wheat
(Triticum
aestivum) | Natural soil | 4-week | TF = 0.264 | 0, 0.0908 mg/kg
dry soil | Multiple routes
within environ-
mental exposure
chamber Measured,
Solvent: Methylene
chloride | Residue;
Translocation factor
(TF: [stem]/ [root]) | Zhu et al. (2016) | High | | | 134237-50-6 | Bread Wheat
(Triticum
aestivum) | Natural soil | 1-week | TF = 0.218 | 0, 0.0984 mg/kg
dry soil | Multiple routes
within environ-
mental exposure
chamber Measured,
Solvent: Methylene
chloride | Residue;
Translocation factor
(TF: [stem]/ [root]) | Zhu et al. (2016) | High | | | CASRN | Test Species | Media | Duration | Endpoint | Concentration(s) | Test Analysis | Effect(s) | Reference | Data
Quality
Rating | HERO ID | |------------------|---------------------------------------|--------------------|----------|---|--|--|--|---------------------------|---------------------------|---------| | 134237-50-6 | Bread Wheat
(Triticum
aestivum) | Natural soil | 2-week | TF = 0.244 | 0, 0.0984 mg/kg
dry soil | Multiple routes
within environ-
mental exposure
chamber Measured,
Solvent: Methylene
chloride | Residue;
Translocation factor
(TF: [stem]/ [root]) | Zhu et al. (2016) | High | | | 134237-50-6 | (Triticum
aestivum) | Natural soil | 3-week | TF = 0.280 | 0, 0.0984 mg/kg
dry soil | Multiple routes
within environ-
mental exposure
chamber Measured,
Solvent: Methylene
chloride | Residue;
Translocation factor
(TF: [stem]/ [root]) | Zhu et al. (2016) | High | | | 134237-50-6 | (Triticum
aestivum) | Natural soil | 4-week | TF = 0.269 | 0, 0.0984 mg/kg
dry soil | Multiple routes
within environ-
mental exposure
chamber Measured,
Solvent: Methylene
chloride | Residue;
Translocation factor
(TF: [stem]/ [root]) | Zhu et al. (2016) | High | | | Terrestrial Inve | | 1 | | T | T | T | T | | | , | | 3194-55-6 | Earthworm
(Eisenia fetida) | | 28-day | EC50 = >4,190
mg/kg | 61.2, 145, 244, 578, 1150, 2180, and 4190 mg /kg dry soil <0.200 (control), 3.40, 7.32, 16.8, 15.3,53.0, 71.2, and 150 µg/gram of tissue | Measured | Survival | Aufderheide et al. (2003) | High | 3809173 | | 3194-55-6 | Earthworm
(Eisenia fetida) | Artificial
soil | 28-day | EC10 = >4,190
mg/kg | 61.2, 145, 244,
578, 1150, 2180,
and 4190 mg /kg
dry soil | Measured | Survival | Aufderheide et al. (2003) | High | | | 3194-55-6 | Earthworm
(Eisenia fetida) | | 28-day | NOEC = >4,190
mg/kg | 61.2, 145, 244,
578, 1150, 2180,
and 4190 mg /kg
dry soil | Measured | Survival | Aufderheide et al. (2003) | High | | | 3194-55-6 | Earthworm
(Eisenia fetida) | Artificial
soil | 56-day | EC ₅₀ = 771 mg/kg
(225 to 4,900
mg/kg) | 51.5, 128,
235,543, 1,070,
2,020, and 3,990
mg/kg dry soil | Measured | Reproduction | Aufderheide et al. (2003) | High | | | CASRN | Test Species | Media | Duration | Endpoint | Concentration(s) | Test Analysis | Effect(s) | Reference | Data
Quality
Rating | HERO ID | |-------------|---------------------------------|--------------------|-----------|--|--|--|---|---------------------------|---------------------------|---------| | 3194-55-6 | Earthworm
(Eisenia fetida) | Artificial
soil | 56-day | $EC_{10} = 21.6 \ mg/kg \\ (0.000468 \ to \ 110 \\ mg/kg)$ | 51.5, 128,
235,543, 1,070,
2,020, and 3,990
mg/kg dry soil | Measured | Reproduction | Aufderheide et al. (2003) | High | | | 3194-55-6 | Earthworm
(Eisenia fetida) | Artificial
soil | 56-day | NOEC = 128
mg/kg | 51.5, 128, 235,
543, 1,070, 2,020,
and 3,990 mg/kg
dry soil | Measured | Reproduction | Aufderheide et al. (2003) | High | | | 3194-55-6 | Earthworm
(Eisenia fetida) | Artificial
soil | 56-day | LOEC = 235
mg/kg | 51.5, 128,
235,543, 1,070,
2,020, and 3,990
mg/kg dry soil | Measured | Reproduction | Aufderheide et al. (2003) | High | | | 3194-55-6 | Earthworm
(Eisenia fetida) | Artificial
soil | 56-day | GMATC = 173
mg/kg | 51.5, 128,
235,543, 1,070,
2,020, and 3,990
mg/kg dry soil | Measured | Reproduction | Aufderheide et al. (2003) | High | | | 3194-55-6 | Earthworm (Eisenia fetida) | Artificial
soil | 0-4-day | NOAEL = 400 mg
AI/kg | 0, 50, 100, 200,
400 mg/kg dry
soil | Static, Nominal,
Solvent: Acetone | Growth rate | Shi et al. (2015) | High | 2965902 | | 3194-55-6 | Earthworm (Eisenia fetida) | Artificial soil | 4-7-day | NOAEL = 400 mg
AI/kg | 0, 50, 100, 200,
400 mg/kg dry
soil | Static, Nominal,
Solvent: Acetone | Growth rate | Shi et al. (2015) | High | | | 3194-55-6 | Earthworm (Eisenia fetida) | Artificial
soil | 7-10-day | NOAEL = 400 mg
AI/kg | 0, 50, 100, 200,
400 mg/kg dry
soil | Static, Nominal,
Solvent: Acetone | Growth rate | Shi et al. (2015) | High | | | 3194-55-6 | Earthworm (Eisenia fetida) | Artificial
soil | 10-14-day | NOAEL = 400 mg
AI/kg | 0, 50, 100, 200,
400 mg/kg dry
soil | Static, Nominal,
Solvent: Acetone | Growth rate | Shi et al. (2015) | High | | | 3194-55-6 | Earthworm (Eisenia fetida) | | 14-day | NOAEL = 400 mg
AI/kg | 0, 50, 100, 200,
400 mg/kg dry
soil | Static, Nominal,
Solvent: Acetone | Growth rate
Catalase mRNA | Shi et al. (2015) | High | | | 3194-55-6 | Earthworm (Eisenia fetida) | Artificial
soil | 14-day | NOAEL = 200 mg
AI/kg; LOAEL =
400 mg AI/kg | 0, 50, 100, 200,
400 mg/kg dry
soil | Static, Nominal,
Solvent: Acetone | Superoxide
dismutase mRNA;
HSP70 mRNA | Shi et al. (2015) | High | | | 134237-52-8 | Earthworm (Eisenia fetida) | Natural soil | 21-day | | 0, 0.172 mg/g dry
soil | Static, Measured,
Solvent:
Unspecified | Residue;
Bioaccumulation | Li et al. (2016) | Low | 3350510 | | 134237-52-8 | Earthworm (Metaphire guillelmi) | Natural soil | 21-day | BAF = 1.16 | 0, 0.172 mg/g dry
soil | Static, Measured,
Solvent:
Unspecified | Residue;
Bioaccumulation | Li et al. (2016) | Low | | | CASRN | Test Species | Media | Duration | Endpoint | Concentration(s) | Test Analysis | Effect(s) | Reference | Data
Quality
Rating | HERO ID | |------------------
---|--|----------|--|---------------------------------------|--|--|-----------------------------------|---------------------------|---------| | 134237-51-7 | Earthworm
(Eisenia fetida) | Natural soil | 21-day | BAF = 2.28 | 0, 0.156 mg/g dry
soil | Static, Measured,
Solvent:
Unspecified | Residue;
Bioaccumulation | Li et al. (2016) | Low | | | 134237-51-7 | (Metaphire
guillelmi) | Natural soil | 21-day | BAF = 2.81 | 0, 0.156 mg/g dry
soil | Static, Measured,
Solvent:
Unspecified | Residue;
Bioaccumulation | <u>Li et al. (2016)</u> | Low | | | 134237-50-6 | (Eisenia fetida) | | 21-day | BAF = 21.8 | 0, 0.186 mg/g dry
soil | Static, Measured,
Solvent:
Unspecified | Residue;
Bioaccumulation | <u>Li et al. (2016)</u> | Low | | | 134237-50-6 | (Metaphire
guillelmi) | Natural soil | 21-day | BAF = 6.21 | 0, 0.186 mg/g dry
soil | Static, Measured,
Solvent:
Unspecified | Residue;
Bioaccumulation | Li et al. (2016) | Low | | | Terrestrial Vert | tebrates | | | | | | | | | | | 134237-50-6 | Domestic chicken (Gallus domesticus) | Culture of embryonic hepatocytes Culture of | 24-hour | NOAEL = 0.06
mg/L;
LOAEL = 0.6
mg/L | 0, 0.006, 0.06,
0.6, 1.9, 6.4 mg/L | In vitro, Nominal,
Solvent: DMSO | Cytochrome P450 2H1 mRNA; UGT- 1A9; Fatty acid- binding protein 10- A, liver basic mRNA; Cyto- chrome P450 3A37 mRNA Cytochrome P450 | Crump et al. (2008) Crump et al. | High
High | 1408111 | | 10.120, 00 0 | chicken | embryonic
hepatocytes | 30 H341 | mg/L;
LOAEL = 0.06
mg/L | 0.6, 1.9, 6.4 mg/L | Solvent: DMSO | 2H1 mRNA | (2008) | 111811 | | | 134237-50-6 | Domestic
chicken
(Gallus
domesticus) | Culture of
embryonic
hepatocytes | 36-hour | NOAEL = 0.06
mg/L;
LOAEL = 0.6
mg/L | 0, 0.006, 0.06,
0.6, 1.9, 6.4 mg/L | <i>In vitro</i> , Nominal,
Solvent: DMSO | UGT- 1A9; Fatty
acid-binding protein
10-A, liver basic
mRNA; Cyto-
chrome P450 3A37
mRNA | <u>Crump et al.</u> (2008) | High | | | 134237-50-6 | Domestic chicken (Gallus domesticus) | Culture of
embryonic
hepatocytes | 24-hour | NOAEL = 6.4
mg/L | 0, 0.006, 0.06,
0.6, 1.9, 6.4 mg/L | <i>In vitro</i> , Nominal,
Solvent: DMSO | Xenobiotic-sensing
orphan nuclear
receptor (CXR)
mRNA | <u>Crump et al.</u> (2008) | High | | | CASRN | Test Species | Media | Duration | Endpoint | Concentration(s) | Test Analysis | Effect(s) | Reference | Data
Quality
Rating | HERO ID | |--|---|--|----------|--|---------------------------------------|--|--|----------------------------|---------------------------|---------| | 134237-50-6 | Domestic
chicken
(Gallus
domesticus) | Culture of
embryonic
hepatocytes | 24-hour | NOAEL = 1.9
mg/L;
LOAEL = 6.4
mg/L | 0, 0.006, 0.06,
0.6, 1.9, 6.4 mg/L | In vitro, Nominal,
Solvent: DMSO | Transthyretin (pre-
albumin, amyloid-
osis type I) mRNA;
Thyroid hormone
responsive spot 14
alpha mRNA | <u>Crump et al.</u> (2008) | High | | | 134237-50-6 | Domestic chicken (Gallus domesticus) | Culture of embryonic hepatocytes | 36-hour | NOAEL = 6.4
mg/L | 0, 0.006, 0.06,
0.6, 1.9, 6.4 mg/L | In vitro, Nominal,
Solvent: DMSO | Trans-thyretin (pre-
albumin, amyloid-
osis type I) mRNA | <u>Crump et al.</u> (2008) | High | | | 134237-50-6 | Domestic
chicken
(Gallus
domesticus) | Culture of embryonic hepatocytes | 36-hour | NOAEL = 1.9
mg/L;
LOAEL = 6.4
mg/L | 0, 0.006, 0.06,
0.6, 1.9, 6.4 mg/L | <i>In vitro</i> , Nominal, Solvent: DMSO | Thyroid hormone
responsive spot 14
alpha mRNA | <u>Crump et al.</u> (2008) | High | | | 134237-50-6
HBCD-
Technical
Mixture | Domestic
chicken
(Gallus
domesticus) | Culture of
embryonic
hepatocytes | 24-hour | NOAEL = 0.06
mg/L;
LOAEL = 0.6
mg/L | 0, 0.006, 0.06,
0.6, 1.9, 6.4 mg/L | In vitro, Nominal,
Solvent: DMSO | Thyroid hormone
responsive spot 14
alpha mRNA; Cyto-
chrome P450 2H1
mRNA; Cyto-
chrome P450 3A37
mRNA | <u>Crump et al.</u> (2008) | High | | | 134237-50-6
HBCD-
Technical
Mixture | Domestic
chicken
(Gallus
domesticus) | Culture of
embryonic
hepatocytes | 36-hour | NOAEL = 0.06
mg/L;
LOAEL = 0.6
mg/L | 0, 0.006, 0.06,
0.6, 1.9, 6.4 mg/L | In vitro, Nominal,
Solvent: DMSO | Thyroid hormone
responsive spot 14
alpha mRNA; Fatty
acid-binding protein
10-A, liver basic
mRNA; Cyto-
chrome P450 2H1
mRNA; Cyto-
chrome P450 3A37
mRNA | <u>Crump et al.</u> (2008) | High | | | 134237-50-6
HBCD-
Technical
Mixture | Domestic chicken (Gallus domesticus) | Culture of embryonic hepatocytes | 24-hour | NOAEL = 6.4
mg/L | 0, 0.006, 0.06,
0.6, 1.9, 6.4 mg/L | In vitro, Nominal,
Solvent: DMSO | UGT- 1A9 | <u>Crump et al.</u> (2008) | High | | | 134237-50-6
HBCD-
Technical
Mixture | Domestic
chicken
(Gallus
domesticus) | Culture of embryonic hepatocytes | 36-hour | NOAEL = 6.4
mg/L | 0, 0.006, 0.06,
0.6, 1.9, 6.4 mg/L | In vitro, Nominal,
Solvent: DMSO | UGT- 1A9; Trans-
thyretin (pre-
albumin, amyloid-
osis type I) mRNA | <u>Crump et al.</u> (2008) | High | | | CASRN | Test Species | Media | Duration | Endpoint | Concentration(s) | Test Analysis | Effect(s) | Reference | Data
Quality
Rating | HERO ID | |--|---|--|---------------------------------|---|---------------------------------------|--|---|----------------------------|---------------------------|---------| | 134237-50-6
HBCD-
Technical
Mixture | Domestic
chicken
(Gallus
domesticus) | Culture of
embryonic
hepatocytes | 24-hour | NOAEL = 1.9
mg/L;
LOAEL = 6.4
mg/L | 0, 0.006, 0.06,
0.6, 1.9, 6.4 mg/L | In vitro, Nominal,
Solvent: DMSO | Transthyretin (pre-
albumin, amyloid-
osis type I) mRNA;
Fatty acid-binding
protein 10-A, liver
basic mRNA | <u>Crump et al.</u> (2008) | High | | | 134237-52-8 | Domestic chicken (Gallus domesticus) | Diet | 1-day | NOAEL = 0.001
mg AI/kg food | 0, 0.001 mg/kg
food | Food, Nominal,
Solvent: Rapeseed
oil | Residue:
Bioaccumulation in
Abdominal fat | Fournier et al. (2012) | High | 1927629 | | 134237-52-8 | Domestic chicken (Gallus domesticus) | Diet | 4-day | NOAEL = 0.001
mg AI/kg food | 0, 0.001 mg/kg
food | Food, Nominal,
Solvent: Rapeseed
oil | Residue:
Bioaccumulation in
Abdominal fat | Fournier et al. (2012) | High | | | 134237-52-8 | Domestic
chicken
(Gallus
domesticus) | Diet | 8-day | LOAEL = 0.001
mg AI/kg food | 0, 0.001 mg/kg
food | Food, Nominal,
Solvent: Rapeseed
oil | Residue:
Bioaccumulation in
Abdominal fat | Fournier et al.
(2012) | High | | | 134237-52-8 | Domestic
chicken
(Gallus
domesticus) | Diet | 11-day | LOAEL = 0.001
mg AI/kg food | 0, 0.001 mg/kg
food | Food, Nominal,
Solvent: Rapeseed
oil | Residue:
Bioaccumulation in
Abdominal fat | Fournier et al.
(2012) | High | | | 134237-52-8 | Domestic chicken (Gallus domesticus) | Diet | 16-day | LOAEL = 0.001
mg AI/kg food | 0, 0.001 mg/kg
food | Food, Nominal,
Solvent: Rapeseed
oil | Residue:
Bioaccumulation in
Abdominal fat | Fournier et al. (2012) | High | | | 134237-52-8 | Domestic chicken (Gallus domesticus) | Diet | 21-day | LOAEL = 0.001
mg AI/kg food | 0, 0.001 mg/kg
food | Food, Nominal,
Solvent: Rapeseed
oil | Residue:
Bioaccumulation in
Abdominal fat | Fournier et al.
(2012) | High | | | 134237-52-8 | Domestic
chicken
(Gallus
domesticus) | Diet | 21-day, 1
day
depuration | LOAEL = 0.001
mg A/kg food | 0, 0.001 mg/kg
food | Food, Nominal,
Solvent: Rapeseed
oil | Residue:
Bioaccumulation in
Abdominal fat | Fournier et al.
(2012) | High | | | 134237-52-8 | Domestic chicken (Gallus domesticus) | Diet | 21-day, 3
days
depuration | LOAEL = 0.001
mg AI/kg food | 0, 0.001 mg/kg
food | Food, Nominal,
Solvent: Rapeseed
oil | Residue:
Bioaccumulation in
Abdominal fat | Fournier et al. (2012) | High | | | CASRN | Test Species | Media | Duration | Endpoint | Concentration(s) | Test Analysis | Effect(s) | Reference | Data
Quality
Rating | HERO ID | |-------------|---|-------|----------------------------------|--------------------------------|------------------------|--|---|---------------------------|---------------------------|---------| | 134237-52-8 | Domestic
chicken
(Gallus
domesticus) | Diet | 21-day, 8
days
depuration | LOAEL = 0.001
mg AI/kg food | 0, 0.001 mg/kg
food | Food, Nominal,
Solvent: Rapeseed
oil | Residue:
Bioaccumulation in
Abdominal fat | Fournier et al.
(2012) | High | | | 134237-52-8 | Domestic chicken (Gallus domesticus) | Diet
 21-day, 18
days
depuration | LOAEL = 0.001
mg AI/kg food | 0, 0.001 mg/kg
food | Food, Nominal,
Solvent: Rapeseed
oil | Residue:
Bioaccumulation in
Abdominal fat | Fournier et al. (2012) | High | | | 134237-52-8 | Domestic chicken (Gallus domesticus) | Diet | 1-day | LOAEL = 0.001
mg AI/kg food | 0, 0.001 mg/kg
food | Food, Nominal,
Solvent: Rapeseed
oil | Residue:
Bioaccumulation in
Liver | Fournier et al. (2012) | High | | | 134237-52-8 | Domestic chicken (Gallus domesticus) | Diet | 4-day | LOAEL = 0.001
mg AI/kg food | 0, 0.001 mg/kg
food | Food, Nominal,
Solvent: Rapeseed
oil | Residue:
Bioaccumulation in
Liver | Fournier et al. (2012) | High | | | 134237-52-8 | Domestic chicken (Gallus domesticus) | Diet | 8-day | LOAEL = 0.001
mg AI/kg food | 0, 0.001 mg/kg
food | Food, Nominal,
Solvent: Rapeseed
oil | Residue:
Bioaccumulation in
Liver | Fournier et al. (2012) | High | | | 134237-52-8 | Domestic chicken (Gallus domesticus) | Diet | 11-day | LOAEL = 0.001
mg AI/kg food | 0, 0.001 mg/kg
food | Food, Nominal,
Solvent: Rapeseed
oil | Residue:
Bioaccumulation in
Liver | Fournier et al. (2012) | High | | | 134237-52-8 | Domestic chicken (Gallus domesticus) | Diet | 16-day | LOAEL = 0.001
mg AI/kg food | 0, 0.001 mg/kg
food | Food, Nominal,
Solvent: Rapeseed
oil | Residue:
Bioaccumulation in
Liver | Fournier et al. (2012) | High | | | 134237-52-8 | Domestic chicken (Gallus domesticus) | Diet | 21-day | LOAEL = 0.001
mg AI/kg food | 0, 0.001 mg/kg
food | Food, Nominal,
Solvent: Rapeseed
oil | Residue:
Bioaccumulation in
Liver | Fournier et al.
(2012) | High | | | 134237-52-8 | Domestic
chicken
(Gallus
domesticus) | Diet | 21-day, 1
day
depuration | NOAEL = 0.001
mg AI/kg food | 0, 0.001 mg/kg
food | Food, Nominal,
Solvent: Rapeseed
oil | Residue:
Bioaccumulation in
Liver | Fournier et al.
(2012) | High | - | | 134237-52-8 | Domestic chicken (Gallus domesticus) | Diet | 21-day, 3
days
depuration | NOAEL = 0.001
mg AI/kg food | 0, 0.001 mg/kg
food | Food, Nominal,
Solvent: Rapeseed
oil | Residue:
Bioaccumulation in
Liver | Fournier et al.
(2012) | High | | | CASRN | Test Species | Media | Duration | Endpoint | Concentration(s) | Test Analysis | Effect(s) | Reference | Data
Quality
Rating | HERO ID | |-------------|---|-------|---|---|--------------------------|---|--|---------------------------|---------------------------|---------| | 134237-52-8 | Domestic chicken (Gallus domesticus) | Diet | 21-day, 8
days
depuration | NOAEL = 0.001
mg AI/kg food | 0, 0.001 mg/kg
food | Food, Nominal,
Solvent: Rapeseed
oil | Residue:
Bioaccumulation in
Liver | Fournier et al. (2012) | High | | | 134237-52-8 | Domestic chicken (Gallus domesticus) | Diet | 21-day, 18
days
depuration | NOAEL = 0.001
mg AI/kg food | 0, 0.001 mg/kg
food | Food, Nominal,
Solvent: Rapeseed
oil | Residue:
Bioaccumulation in
Liver | Fournier et al. (2012) | High | | | 134237-52-8 | Domestic chicken (Gallus domesticus) | Diet | 21-day | BCF (egg yolk) = 0.4 | 0, 0.001 mg/kg
food | Food, Nominal,
Solvent: Rapeseed
oil | Residue:
Bioconcentration | Fournier et al. (2012) | High | | | 134237-52-8 | Domestic
chicken
(Gallus
domesticus) | Diet | 21-day | BCF (liver) = 0.3 | 0, 0.001 mg/kg
food | Food, Nominal,
Solvent: Rapeseed
oil | Residue:
Bioconcentration | Fournier et al.
(2012) | High | | | 25637-99-4 | American
Kestrel (Falco
sparverius) | Diet | 4 weeks
prior to
pairing,
continuing
through
incubation
until 2 days
prior to
hatch | LOAEL (males
and females) =
0.51 mg AI/kg
food | 0, 0.51 mg/kg-
bw/day | Food, Nominal,
Solvent: Safflower
oil | Decreased activity,
general: measured
during courtship,
measured at 5 days
after pairing | Marteinson et al. (2012) | High | 1927590 | | CASRN | Test Species | Media | Duration | Endpoint | Concentration(s) | Test Analysis | Effect(s) | Reference | Data
Quality
Rating | HERO ID | |------------|---|-------|---|--|--------------------------|---|---|--------------------------|---------------------------|---------| | 25637-99-4 | American
Kestrel (Falco
sparverius) | Diet | 4 weeks prior to pairing, continuing through incubation until 2 days prior to hatch | LOAEL (males) =
0.51 mg/kg-bw/day | 0, 0.51 mg/kg-
bw/day | Food, Nominal,
Solvent: Safflower
oil | Decreased activity, general and flying measured during brood-rearing; Courtship behavior: Reduced vocalizations, effect observed throughout courtship; Pairbonding nesting behavior: Reduced Displays; Care of young, nest attentiveness: Reduced frequency of entry into nestbox and Decreased food retrieval | Marteinson et al. (2012) | High | | | 25637-99-4 | American
Kestrel (Falco
sparverius) | Diet | 4 weeks prior to pairing, continuing through incubation until 2 days prior to hatch | LOAEL (females)
= 0.51 mg/kg-
bw/day | 0, 0.51 mg/kg-
bw/day | Food, Nominal,
Solvent: Safflower
oil | Courtship behavior: Reduced vocalizations, effect observed only at 5 days after pairing, Reduced courtship displays, effect observed at 5 days after pairing; Pair- bonding nesting behavior: Increased displays; Care of young, nest attentiveness: Increased frequency of entry into nest- box and Increased food retrieval | Marteinson et al. (2012) | High | | | CASRN | Test Species | Media | Duration | Endpoint | Concentration(s) | Test Analysis | Effect(s) | Reference | Data
Quality
Rating | HERO ID | |------------|---|-------|--|-------------------------------|--------------------------|---|--|--------------------------|---------------------------|---------| | 25637-99-4 | American
Kestrel (Falco
sparverius) | Diet | 4 weeks
prior to
pairing,
continuing
through
incubation
until 2 days
prior to
hatch | LOAEL = 0.51
mg/kg-bw/day | 0, 0.51 mg/kg-
bw/day | Food, Nominal,
Solvent: Safflower
oil | Reduced mass of
first egg; Care of
young, nest
attentiveness:
Incubation nest
temperature | Marteinson et al. (2012) | High | | | 25637-99-4 | American
Kestrel (Falco
sparverius) | Diet | 75 days: 3
weeks prior
to pairing,
continuing
through
incubation
until first
chick
hatched | LOAEL = 0.51 mg
AI/kg food | 0, 0.51 mg/kg-
bw/day | Food, Nominal,
Solvent: Safflower
oil | Residue: Accumulation in Eggs; Reproductive: Decreased time to first egg laid after pairing, decreased clutch size, decreased egg volume per clutch, decreased egg volume per pair, decreased egg mass per clutch, Decreased egg mass at mid-incubation, Increased egg weight loss at mid-incubation | | High | 1401837 | | CASRN | Test Species | Media | Duration | Endpoint | Concentration(s) | Test Analysis | Effect(s) | Reference | Data
Quality
Rating | HERO ID | |------------|---|-----------------|--|-------------------------------|-------------------------------|--|--|--------------------------|---------------------------|---------| | 25637-99-4 | American
Kestrel (Falco
sparverius) | Diet | 75 days: 3
weeks prior
to pairing,
continuing
through
incubation
until first
chick
hatched | NOAEL = 0.51 mg
AI/kg food | 0, 0.51 mg/kg-
bw/day | Food, Nominal,
Solvent: Safflower
oil | Lipid concentration in eggs; Reproductive: Egg shell thickness, Overall hatching success (number of hatchlings), Overall reproductive success (number of fledglings per brood/number of eggs per female), Fertility (percentage fertile eggs laid per female), Hatching success (percentage hatchlings of fertile eggs per female), Fledgling success (percentage fledglings of hatchlings per
female) | Fernie et al. (2011) | High | | | 25637-99-4 | American
Kestrel (Falco
sparverius) | Diet
exposed | 21-day | LOAEL | 3.27 ng/g ww (low exposure) | Food, Nominal,
Solvent: Safflower
oil | Reproduction | Marteinson et al. (2010) | High | 1927669 | | 25637-99-4 | American
Kestrel (Falco
sparverius) | Diet
exposed | 21-day | LOAEL | 15.61 ng/g ww (high exposure) | Food, Nominal,
Solvent: Safflower
oil | Reproduction | Marteinson et al. (2010) | High | | | 25637-99-4 | American
Kestrel (Falco
sparverius) | Diet
exposed | 21-day | LOAEL | 0.51 mg/kg-day | HBCD dissolved in safflower oil was injected into the brains of dead cockerels daily; kestrels fed from the cockerels <i>ad libitum</i> and received a dose of approximately 0.51 mg/kg-day. | Increased testes
weight in unpaired
males | Marteinson et al. (2011) | High | 1927624 | | CASRN | Test Species | Media | Duration | Endpoint | Concentration(s) | Test Analysis | Effect(s) | Reference | Data
Quality
Rating | HERO ID | |------------|---|-------|---|--------------------------------|--|---|---|--------------------------|---------------------------|---------| | 25637-99-4 | American
Kestrel (Falco
sparverius) | Diet | 21-day
exposure;
25-day
depuration | Depletion rate = 0.22 ng/g Day | 800 ng/g ww | in safflower oil and
injected into their
cockerel [brain]
diet), followed by a
25-d depuration
period. | Increase update of
alpha-HBCDD,
especially in fat and
eggs | Letcher et al.
(2015) | High | 3350539 | | 3194-55-6 | Japanese Quail
(Coturnix
japonica) | Diet | 6-week | LOAEL= 17.5
mg/kg/day | 0, 17.5, 33.4, 61.5
or 126.9
mg/kg/day | Food exposure | Reduction in
eggshell thickness;
reduction in
hatchability | MOEJ (2009) | High | 3809153 | | 3194-55-6 | Japanese Quail
(Coturnix
japonica) | Diet | 6-week | LOAEL= 2.1
mg/kg/day | 0, 17.5, 33.4, 61.5
or 126.9
mg/kg/day | Food exposure | Reduction in hatchability | Zhang et al.
(2014a) | High | 2528343 | | 3194-55-6 | Japanese Quail
(Coturnix
japonica) | Diet | 6-week | NOAEL = 0.7
mg/kg/day | 0, 17.5, 33.4, 61.5
or 126.9
mg/kg/day | Food exposure | reproductive performance | Zhang et al.
(2014a) | High | | ## References - ACC. (2003a). Hexabromocyclododecane (HBCD): A Prolonged Sediment Toxicity Test with Hyalella azteca Using Spiked Sediment with 2% Total Organic Carbon. In Wildlife International Ltd (pp. 150). (OTS: NA; 8EHQ Num: FYI-03-01472; DCN: 84040000010; TSCATS RefID: NA; CIS: FYI-03-01472). Easton, MD. - ACC. (2003b). Hexabromocyclododecane (HBCD): A Prolonged Sediment Toxicity Test with Hyalella azteca Using Spiked Sediment with 5% Total Organic Carbon. (OTS: NA; 8EHQ Num: FYI-03-01472; DCN: 84040000010; TSCATS RefID: NA; CIS: FYI-03-01472). - Aniagu, SO; Williams, TD; Allen, Y; Katsiadaki, I; Chipman, JK. (2008). Global genomic methylation levels in the liver and gonads of the three-spine stickleback (Gasterosteus aculeatus) after exposure to hexabromocyclododecane and 17-beta oestradiol. Environ Int 34: 310-317. http://dx.doi.org/10.1016/j.envint.2007.03.009 - Anselmo, HMR; Koerting, L; Devito, S; van den Berg, JHJ; Dubbeldam, M; Kwadijk, C; Murk, AJ. (2011). Early life developmental effects of marine persistent organic pollutants on the sea urchin Psammechinus miliaris. Ecotoxicol Environ Saf 74: 2182-2192. http://dx.doi.org/10.1016/j.ecoenv.2011.07.037 - Aufderheide, J; Jones, A; MacGregor, JA; Nixon, WB. (2003). Effect of hexabromocyclododecane on the survival and reproduction of the earthworm, Eisenia fetida (pp. 94). (ABC Study No. 47222). Columbia, MO, and Easton, MD: ABC Laboratories and Wildlife International Ltd. - BASF. (1990). Determination of the acute toxicity of hexabromid S to the waterflea Daphnia magna straus with cover letter dated 040590. (EPA/OTS Doc #86-900000392). Wyandotte, MI. - Crump, D; Chiu, S; Egloff, C; Kennedy, SW. (2008). Effects of hexabromocyclododecane and polybrominated diphenyl ethers on mRNA expression in chicken (Gallus domesticus) hepatocytes. Toxicol Sci 106: 479-487. http://dx.doi.org/10.1093/toxsci/kfn196 - Deng, J; Yu, L; Liu, C; Yu, K; Shi, X; Yeung, LW; Lam, PK; Wu, RS; Zhou, B. (2009). Hexabromocyclododecane-induced developmental toxicity and apoptosis in zebrafish embryos. Aquat Toxicol 93: 29-36. http://dx.doi.org/10.1016/j.aquatox.2009.03.001 - Desjardins, D; MacGregor, JA; Krueger, HO. (2005). Final report. Chapter 1, Hexabromocyclododecane (HBCD): A 72-hour toxicity test with the marine diatom (Skeletonema costatum) using a co-solvent. Easton, MD: Wildlife International Ltd. - Drottar, KR; Macgregor, JA; Krueger, HO. (2001). Hexabromocyclododecane (HBCD): An early life-stage toxicity test with the rainbow trout (Onchorhynchus mykiss). (PROJECT NUMBER: 439A-112; 8EHQ-01201-15037). Easton, MD: Wildlife International Ltd. - Du, M; Fang, C; Qiu, L; Dong, S; Zhang, X; Yan, C. (2015). Diastereoisomer-specific effects of hexabromocyclododecanes on hepatic aryl hydrocarbon receptors and cytochrome P450s in zebrafish (Danio rerio). Chemosphere 132: 24-31. http://dx.doi.org/10.1016/j.chemosphere.2015.02.049 - Du, M; Lin, L; Yan, C; Zhang, X. (2012a). Diastereoisomer- and enantiomer-specific accumulation, depuration, and bioisomerization of hexabromocyclododecanes in zebrafish (Danio rerio). Environ Sci Technol 46: 11040-11046. http://dx.doi.org/10.1021/es302166p - Du, M; Zhang, D; Yan, C; Zhang, X. (2012b). Developmental toxicity evaluation of three hexabromocyclododecane diastereoisomers on zebrafish embryos. Aquat Toxicol 112-113: 1-10. http://dx.doi.org/10.1016/j.aquatox.2012.01.013 - Fernie, KJ; Marteinson, SC; Bird, DM; Ritchie, IJ; Letcher, RJ. (2011). Reproductive changes in American kestrels (Falco sparverius) in relation to exposure to technical hexabromocyclododecane flame retardant. Environ Toxicol Chem 30: 2570-2575. http://dx.doi.org/10.1002/etc.652 - Foekema, EM; Lopez Parron, M; Mergia, MT; Carolus, ER; Vd Berg, JH; Kwadijk, C; Dao, Q; Murk, AJ. (2014). Internal effect concentrations of organic substances for early life development of egg-exposed fish. Ecotoxicol Environ Saf 101: 14-22. http://dx.doi.org/10.1016/j.ecoenv.2013.12.006 - Fournier, A; Feidt, C; Marchand, P; Vénisseau, A; Le Bizec, B; Sellier, N; Engel, E; Ratel, J; Travel, A; Jondreville, C. (2012). Kinetic study of γ-hexabromocyclododecane orally given to laying hens (Gallus domesticus). "Transfer of HBCD in laying hens". Environ Sci Pollut Res Int 19: 440-447. http://dx.doi.org/10.1007/s11356-011-0573-6 - Great Lakes Chem Corp. (1994). Initial submission: Letter from Great Lakes Chem Corp to Dynamac Corp/USEPA submitting info re hexabromocyclododecane and bis(tribromophenoxy) ethane w/attchmts, dated 2/13/89. In EPA/OTS Doc #0001055 (pp. 203 p.). (EPA/OTS; Doc #FYI-OTS-0794-1055). - Hong, H; Li, D; Shen, R; Wang, X; Shi, D. (2014). Mechanisms of hexabromocyclododecanes induced developmental toxicity in marine medaka (Oryzias melastigma) embryos. Aquat Toxicol 152: 173-185. http://dx.doi.org/10.1016/j.aquatox.2014.04.010 - Hong, H; Shen, R; Liu, W; Li, D; Huang, L; Shi, D. (2015). Developmental toxicity of three hexabromocyclododecane diastereoisomers in embryos of the marine medaka Oryzias melastigma. Mar Pollut Bull 101: 110-118. http://dx.doi.org/10.1016/j.marpolbul.2015.11.009 - Hu, J; Liang, Y; Chen, M; Wang, X. (2009). Assessing the toxicity of TBBPA and HBCD by zebrafish embryo toxicity assay and biomarker analysis. Environ Toxicol 24: 334-342. http://dx.doi.org/10.1002/tox.20436 - Kuiper, RV; Cantón, RF; Leonards, PE; Jenssen, BM; Dubbeldam, M; Wester, PW; van den Berg, M; Vos, JG; Vethaak, AD. (2007). Long-term exposure of European flounder (Platichthys flesus) to the flame-retardants tetrabromobisphenol A (TBBPA) and hexabromocyclododecane (HBCD). Ecotoxicol Environ Saf 67: 349-360. http://dx.doi.org/10.1016/j.ecoenv.2006.12.001 - Law, K; Palace, VP; Halldorson, T; Danell, R; Wautier, K; Evans, B; Alaee, M; Marvin, C; Tomy, GT. (2006). Dietary accumulation of hexabromocyclododecane diastereoisomers in juvenile rainbow trout (Oncorhynchus mykiss). I: Bioaccumulation parameters and evidence of bioisomerization. Environ Toxicol Chem 25: 1757. http://dx.doi.org/10.1897/05-445r.1 - Letcher, RJ; Mattioli, LC; Marteinson, SC; Bird, D; Ritchie, IJ; Fernie, KJ. (2015). Uptake, distribution, depletion, and in ovo transfer of isomers of hexabromocyclododecane flame retardant in diet-exposed American kestrels (Falco sparverius). Environ Toxicol Chem 34: 1103-1112. http://dx.doi.org/10.1002/etc.2903 - Li, B; Yao, T; Sun, H; Zhang, Y; Yang, J. (2016). Diastereomer- and enantiomer-specific accumulation, depuration, bioisomerization, and metabolism of - hexabromocyclododecanes (HBCDs) in two ecologically different species of earthworms. Sci Total Environ 542: 427-434. http://dx.doi.org/10.1016/j.scitotenv.2015.10.100 - Lower, N. (2008) The effects of contaminants on various life-cycle stages of atlantic salmon (Salmo salar L.). (Doctoral Dissertation). University of Portsmouth, Portsmouth, UK. - Lower, N; Moore, A. (2007). The impact of a brominated flame retardant on smoltification and olfactory function in Atlantic salmon (Salmo salar L.) smolts. Mar Behav Physiol 40: 267-284. http://dx.doi.org/10.1080/10236240701592104 - Marteinson, SC; Bird, DM; Letcher, RJ; Sullivan, KM; Ritchie, IJ; Fernie, KJ. (2012). Dietary exposure to technical hexabromocyclododecane (HBCD) alters courtship, incubation and parental behaviors in American kestrels (Falco sparverius). Chemosphere 89: 1077-1083.
http://dx.doi.org/10.1016/j.chemosphere.2012.05.073 - Marteinson, SC; Bird, DM; Shutt, JL; Letcher, RJ; Ritchie, IJ; Fernie, KJ. (2010). Multigenerational effects of polybrominated diphenylethers exposure: embryonic exposure of male American kestrels (Falco sparverius) to DE-71 alters reproductive success and behaviors. Environ Toxicol Chem 29: 1740-1747. http://dx.doi.org/10.1002/etc.200 - Marteinson, SC; Kimmins, S; Letcher, RJ; Palace, VP; Bird, DM; Ritchie, IJ; Fernie, KJ. (2011). Diet exposure to technical hexabromocyclododecane (HBCD) affects testes and circulating testosterone and thyroxine levels in American kestrels (Falco sparverius). Environ Res 111: 1116-1123. http://dx.doi.org/10.1016/j.envres.2011.08.006 - MOEJ. (2009). 6-Week Administration Study of 1,2,5,6,9,10-Hexabromocyclododecane for avian reproduction toxicity under long-day conditions using Japanese Quail. Tokyo, Japan: Ministry of the Environment, Japan. file:///C:/Users/37882/Downloads/UNEP-POPS-POPRC5FU-SUBM-HBCD-E-Japan-100108-I.En.pdf - Oetken, M; Ludwichowski, K; Nagel, R. (2001). Validation of the preliminary EU-concept of assessing the impact of chemicals to organisms in sediment by using selected substances. (UBA-FB 299 67 411). Dresden, Germany: Dresden University of Technology, Institute of Hydrobiology. - Palace, V; Park, B; Pleskach, K; Gemmill, B; Tomy, G. (2010). Altered thyroxine metabolism in rainbow trout (Oncorhynchus mykiss) exposed to hexabromocyclododecane (HBCD). Chemosphere 80: 165-169. http://dx.doi.org/10.1016/j.chemosphere.2010.03.016 - Palace, VP; Pleskach, K; Halldorson, T; Danell, R; Wautier, K; Evans, B; Alaee, M; Marvin, C; Tomy, GT. (2008). Biotransformation enzymes and thyroid axis disruption in juvenile rainbow trout (Oncorhynchus mykiss) exposed to hexabromocyclododecane diastereoisomers. Environ Sci Technol 42: 1967-1972. http://dx.doi.org/10.1021/es702565h - Porch, JR; Kendall, TZ; Krueger, HO. (2002). Hexabromocyclododecane (HBCD): A toxicity test to determine the effects of the test substance on seedling emergence of six species of plants. (126 pp.). Easton, MD: Porch, JR; Kendall, TZ; Krueger, HO. - Reindl, KM; Kittilson, JD; Bergan, HE; Sheridan, MA. (2011). Growth hormone-stimulated insulin-like growth factor-1 expression in rainbow trout (Oncorhynchus mykiss) hepatocytes is mediated by ERK, PI3K-AKT, and JAK-STAT. 301: R236-R243. - Ronisz, D; Finne, EF; Karlsson, H; Förlin, L. (2004). Effects of the brominated flame retardants hexabromocyclododecane (HBCDD), and tetrabromobisphenol A (TBBPA), on hepatic enzymes and other biomarkers in juvenile rainbow trout and feral eelpout. Aquat Toxicol 69: 229-245. http://dx.doi.org/10.1016/j.aquatox.2004.05.007 - Schriks, M; Zvinavashe, E; Furlow, JD; Murk, AJ. (2006). Disruption of thyroid hormone-mediated Xenopus laevis tadpole tail tip regression by hexabromocyclododecane (HBCD) and 2,2',3,3',4,4',5,5',6-nona brominated diphenyl ether (BDE206). Chemosphere 65: 1904-1908. http://dx.doi.org/10.1016/j.chemosphere.2006.07.077 - Shi, D; Lv, D; Liu, W; Shen, R; Li, D; Hong, H. (2017). Accumulation and developmental toxicity of hexabromocyclododecanes (HBCDs) on the marine copepod Tigriopus japonicus. Chemosphere 167: 155-162. http://dx.doi.org/10.1016/j.chemosphere.2016.09.160 - Shi, YJ; Xu, XB; Zheng, XQ; Lu, YL. (2015). Responses of growth inhibition and antioxidant gene expression in earthworms (Eisenia fetida) exposed to tetrabromobisphenol A, hexabromocyclododecane and decabromodiphenyl ether. Comp Biochem Physiol C Toxicol Pharmacol 174-175: 32-38. http://dx.doi.org/10.1016/j.cbpc.2015.06.005 - Smolarz, K; Berger, A. (2009). Long-term toxicity of hexabromocyclododecane (HBCDD) to the benthic clam Macoma balthica (L.) from the Baltic Sea. Aquat Toxicol 95: 239-247. http://dx.doi.org/10.1016/j.aquatox.2009.09.010 - Thienpont, B; Tingaud-Sequeira, A; Prats, E; Barata, C; Babin, PJ; Raldúa, D. (2011). Zebrafish eleutheroembryos provide a suitable vertebrate model for screening chemicals that impair thyroid hormone synthesis. Environ Sci Technol 45: 7525-7532. http://dx.doi.org/10.1021/es202248h - Walsh, GE; Yoder, MJ; Mclaughlin, LL; Lores, EM. (1987). Responses of marine unicellular algae to brominated organic compounds in six growth media. Ecotoxicol Environ Saf 14: 215-222. - Wildlife Intl Ltd. (1997a). HEXABROMOCYCLODODECANE (HBCD): A 48-HOUR FLOW-THROUGH ACUTE TOXICITY TEST WITH THE CLADOCERAN (DAPHNIA MAGNA) WITH COVER LETTER DATED 06/20/1997. In Technical Report TSCATS 452984 (pp. (EPA/OTS 1097-1300)). (TSCATS/452984). - Wildlife Intl Ltd. (1997b). Letter from Chem MFGS Assoc to USEPA regarding: toxicological investigation of hexabromocyclododecane (HBCD) with attachments, dated 06/27/1997 [TSCA Submission]. (EPA/OTS Doc #FYI-OTS-1097-1306). https://ntrl.ntis.gov/NTRL/dashboard/searchResults/titleDetail/OTS0001306.xhtml - Wildlife Intl Ltd. (1998). Initial submission: Hexabromocyclododecane (HBCD) a flow-through life-cycle toxicity test with the cladoceran (Daphnia magna), final report, with cover letter dated 5/18/1998 (pp. EPA/OTS; Doc #FYI-OTS-0698-1333). - Wildlife Intl Ltd. (2000). Letter from Amer Chem Cncl submitting flow-through bioconcentration test w/rainbow trout and end-user survey-phase 1 study of brominated flame retardant, w/attchmts and dated 8/28/00 [TSCA Submission]. (EPA/OTS Doc #FYI-OTS-1000-1392). Arlington, VA: American Chemistry Council. - Wu, M; Zuo, Z; Li, B; Huang, L; Chen, M; Wang, C. (2013). Effects of low-level hexabromocyclododecane (HBCD) exposure on cardiac development in zebrafish embryos. Ecotoxicology 22: 1200-1207. http://dx.doi.org/10.1007/s10646-013-1107-4 - Wu, T; Huang, H; Zhang, S. (2016). Accumulation and phytotoxicity of technical hexabromocyclododecane in maize. J Environ Sci 42: 97-104. http://dx.doi.org/10.1016/j.jes.2015.06.018 - Wu, T; Wang, S; Huang, H; Zhang, S. (2012). Diastereomer-specific uptake, translocation, and toxicity of hexabromocyclododecane diastereoisomers to maize. J Agric Food Chem 60: 8528-8534. http://dx.doi.org/10.1021/jf302682p - Zhang, H; Pan, L; Tao, Y. (2014a). Antioxidant responses in clam Venerupis philippinarum exposed to environmental pollutant hexabromocyclododecane. Environ Sci Pollut Res Int 21: 8206-8215. http://dx.doi.org/10.1007/s11356-014-2801-3 - Zhang, X; Yang, F; Zhang, X; Xu, Y; Liao, T; Song, S; Wang, J. (2008). Induction of hepatic enzymes and oxidative stress in Chinese rare minnow (Gobiocypris rarus) exposed to waterborne hexabromocyclododecane (HBCDD). Aquat Toxicol 86: 4-11. http://dx.doi.org/10.1016/j.aquatox.2007.07.002 - Zhang, Y; Sun, H; Ruan, Y. (2014b). Enantiomer-specific accumulation, depuration, metabolization and isomerization of hexabromocyclododecane (HBCD) diastereomers in mirror carp from water. J Hazard Mater 264: 8-15. http://dx.doi.org/10.1016/j.jhazmat.2013.10.062 - Zhang, Y; Sun, H; Zhu, H; Ruan, Y; Liu, F; Liu, X. (2014c). Accumulation of hexabromocyclododecane diastereomers and enantiomers in two microalgae, Spirulina subsalsa and Scenedesmus obliquus. Ecotoxicol Environ Saf 104: 136-142. http://dx.doi.org/10.1016/j.ecoenv.2014.02.027 - Zhu, H; Sun, H; Zhang, Y; Xu, J; Li, B; Zhou, Q. (2016). Uptake pathway, translocation, and isomerization of hexabromocyclododecane diastereoisomers by wheat in closed chambers. Environ Sci Technol 50: 2652-2659. http://dx.doi.org/10.1021/acs.est.5b05118