
Office of Chemical Safety and Pollution Prevention

Final Risk Evaluation for Cyclic Aliphatic Bromides Cluster (HBCD)

Systematic Review Supplemental File:

Supplemental Information on General Population, Environmental and Consumer Exposures

> CASRN:25637-99-4 CASRN:3194-55-6 CASRN:3194-57-8

September 2020

Table of Contents

TABLE OF CONTENTS	2
LIST OF TABLES	5
LIST OF FIGURES	
LIST OF EQUATIONS	
1. OVERVIEW OF THE SYSTEMATIC REVIEW PROCESS	
 DATA EXTRACTION METHODS AND APPROACH DATA INTEGRATION METHODS AND APPROACH 	
1.2DATA INTEGRATION METHODS AND APPROACH1.3STATISTICAL APPROACH OF EXPOSURE ESTIMATES DERIVED FROM MEASURED	13
CONCENTRATIONS	14
1.3.1 Fitting lognormal distributions	
1.3.2 Fitting normal distributions	
1.3.3 Quality control of derived exposure estimates	
<i>1.3.4 Final risk estimates by media and location type</i>	
2.ENVIRONMENTAL MONITORING MEDIA	
2.1. AMBIENT AIR	
2.1.1. Ambient Air (ng/g) – Particulate Fraction 2.1.2. Ambient Air (ng/m ³) – Gas and/or Particulate Fraction	
2.1.2. Amblem Air (ng/m) – Gus una/or Furticulate Fraction	
2.2. Biosolids (ng/g) – Dry Fraction	
2.3. CONSUMER PRODUCTS	
2.3.1. Consumer Products (ng) – Bulk Fraction	
2.3.2. Consumer Products (ng/g) – Bulk Fraction	
2.3.2. Consumer Products (ng/cm^2) – Dry Fraction	
2.4. DIET – DAIRY	
2.4.1. Dairy (ng/g) – Dry Fraction	
2.4.2. Dairy (ng/g) – Lipid Fraction	
2.4.3. Dairy (ng/g) – Wet Fraction	
2.5. DIET – FATS	
2.5.1. Fats (ng/g) – Lipid Fraction	
2.5.2. Fats $(ng/g) - Wet$ Fraction	
2.6. DIET – FRUIT	
2.6.1. Fruit (ng/g) – Dry Fraction	
2.6.2. Fruit (ng/g) – Wet Fraction	
2.7. DIET – GRAIN	
2.7.1. Grain (ng/g) – Dry Fraction	
2.7.2. Grain (ng/g) – Lipid Fraction	
2.7.3. Grain (ng/g) – Wet Fraction	
2.8. DIET – MEAT	
2.8.1. Meat (ng/g) – Dry Fraction	
2.8.2. Meat (ng/g) – Lipid Fraction	
2.8.3. Meat (ng/g) – Wet Fraction	
2.9. DIET – OTHER FOOD	
2.9.1. Other Food (ng/g) – Dry Fraction	
2.9.2. Other Food (ng/g) – Lipid Fraction	

2.9.3. Other Food (ng/g) – Wet Fraction	
2.10. DIET – SEAFOOD	
2.10.1. Seafood (ng/g) – Lipid Fraction	
2.10.2. Seafood (ng/g) – Wet Fraction	
2.11. DIET – VEGETABLE	
2.11.1. Vegetable (ng/g) – Dry Fraction	
2.11.2. Vegetable (ng/g) – Wet Fraction	
2.12. INDOOR AIR	
2.12.1. Indoor Air (ng/m ³)	
2.13. INDOOR DUST	
2.13.1. Indoor Dust (ng/g) – Dry Fraction	
2.14. LANDFILL LEACHATE	
2.14.1. Landfill Leachate (ng/g) – Dry Fraction	
2.14.2. Landfill Leachate (ng/g) – Wet Fraction	
2.14.3. Landfill Leachate (ng/L) – Wet Fraction	
2.15. PRECIPITATION	61
2.15.1. Precipitation (ng/L) – Wet Fraction	61
2.16. SEAWATER	61
2.16.1. Seawater (ng/L) – Wet Fraction	61
2.17. Sediment	
2.17.1. Sediment (ng/g) – Dry Fraction	
2.17.2. Sediment (ng/g) – Wet Fraction	
2.18. Soil	
2.18.1. Soil (ng/g) – Dry Fraction	
2.19. SURFACE WATER	
2.19.1. Surface Water (ng/L) – Wet Fraction	
2.19.2. Surface Water $(ng/m^2) - Wet$ Fraction	75
2.20. VEGETATION	
2.20.1. Vegetation (ng/g) – Dry Fraction	
2.20.2. Vegetation (ng/g) – Lipid Fraction	
2.21. WASTEWATER (INFLUENT; EFFLUENT)	
2.21.1. Wastewater (ng/g) – Dry Fraction	
2.21.2. Wastewater (ng/L) – Wet Fraction	
3.ECOMONITORING MEDIA	
3.1. Amphibians	
3.1.1. Amphibians (ng/g) – Lipid Fraction	
3.2. Aquatic Invertebrates	
3.2.1. Aquatic Invertebrates (ng/g) – Dry Fraction	
3.2.2. Aquatic Invertebrates (ng/g) – Lipid Fraction	
3.2.3. Aquatic Invertebrates (ng/g) – Wet Fraction	
3.3. Aquatic Mammals	
3.3.1. Aquatic Mammals (ng/g) – Lipid Fraction	
3.3.2. Aquatic Mammals (ng/g) – Wet Fraction	
3.4. BIRDS	
3.4.1. Birds (ng/g) – Dry Fraction	
3.4.2. Birds (ng/g) – Lipid Fraction	
3.4.3. Birds (ng/g) – Wet Fraction	

3.5. Fish	98
3.5.1. Fish (ng/g) – Dry Fraction	98
3.5.2. Fish (ng/g) – Lipid Fraction	99
3.5.3. Fish $(ng/g) - Wet$ Fraction	
3.6. TERRESTRIAL INVERTEBRATES	
3.6.1. Terrestrial Invertebrates (ng/g) – Lipid Fraction	107
3.6.2. Terrestrial Invertebrates (ng/g) – Wet Fraction	
3.7. TERRESTRIAL MAMMALS	108
3.7.1. Terrestrial Mammals (ng/g) – Lipid Fraction	108
3.7.2. Terrestrial Mammals (ng/g) – Wet Fraction	109
4.BIOMONITORING MEDIA	110
4.1. Dermal Wipes	110
4.1.1. Dermal Wipes (ng) – Dry Fraction	
4.1.2. Dermal Wipes (ng/cm ²) – Dry Fraction	
4.2. HUMAN ADIPOSE TISSUE	
4.2.1. Human Adipose Tissue (ng/g) – Lipid Fraction	
4.3. HUMAN BLOOD	
4.3.1. Human Blood (ng/g) – Lipid Fraction	112
4.3.2. Human Blood (ng/L) – Serum Fraction	
4.3.3. Human Blood (ng/g) – Wet Fraction	114
4.4. HUMAN BREAST MILK	115
4.4.1. Human Breast Milk (ng/g) – Lipid Fraction	115
4.5. Human Feces	119
4.5.1. Human Feces (ng/g) – Lipid Fraction	
4.6. HUMAN FETAL TISSUE	
4.6.1. Human Fetal Tissue (ng/g) – Lipid Fraction	120
4.7. HUMAN HAIR	
4.7.1. Human Hair (ng/g) – Wet Fraction	
4.8. HUMAN PLACENTAL TISSUE	
4.8.1. Human Placental Tissue (ng/g) – Lipid Fraction	
4.9. HUMAN SERUM	
4.9.1. Human Serum (ng/g) – Lipid Fraction	
4.9.2. Human Serum (ng/g) – Wet Fraction	
5. OVERVIEW OF INDOOR SEMIVOLATILE ORGANIC COMPOUNDS EXPOSURE, FA	
AND TRANSPORT	
5.1. CHEMICAL MASS TRANSFER FROM SOURCE TO PARTICLES	
5.2. CHEMICAL MASS TRANSFER FROM SOURCE TO SKIN	
5.3. TRANSFER TO DUST BY SOURCE FRAGMENTATION AND DIRECT SOURCE-DUST CONTACT	
5.4. FATE AND TRANSPORT OF CHEMICAL SUBSTANCES WITHIN INDOOR ENVIRONMENTS	
5.5. CHEMICAL MASS TRANSFER BETWEEN AIR AND PARTICLES	
5.6. CHEMICAL MASS TRANSFER BETWEEN AIR AND SINKS	
5.7. RELATIONSHIP BETWEEN PREVALENCE IN MEDIA AND PHYSICAL-CHEMICAL PROPERTIES	
5.8. ESTIMATING EXPOSURE AND RELEVANT EXPOSURE PATHWAYS FOR SVOCS	
5.9. INGESTION OF SUSPENDED PARTICLES, SETTLED DUST, AND MOUTHING	
5.10. DERMAL CONTACT WITH SOURCE, AIRBORNE SVOCS, AND SINKS	
6.REFERENCES	132

List of Tables

TABLE 1-1. DISTRIBUTIONS PREFERRED DEPENDING ON AVAILABLE REPORTED STATISTICS	14
TABLE 1-2. ASSUMED PERCENTILE FOR CALCULATING ERROR BY STATISTICAL ESTIMATE TYPE	15
TABLE 1-3. AVAILABILITY OF MONITORING AND MODELED DATA BY COUNTRY USING WORLD BANK INCOME	
CLASSIFICATION ¹	16
TABLE 1-4. SUMMARY OF EXPOSURE ESTIMATES DERIVED FROM AVAILABLE MEASURED CONCENTRATIONS FROM	ſ
HIGH INCOME COUNTRIES	19
TABLE 2-1. SUMMARY OF PEER-REVIEWED LITERATURE THAT MEASURED HBCD (NG/G) LEVELS IN THE	
PARTICULATE FRACTION OF AMBIENT AIR	20
TABLE 2-2. SUMMARY OF PEER-REVIEWED LITERATURE THAT MEASURED HBCD (NG/M3) LEVELS IN THE OF	
Ambient Air	22
TABLE 2-3. SUMMARY OF PEER-REVIEWED LITERATURE THAT MEASURED HBCD (NG/G) LEVELS IN THE DRY	
FRACTION OF BIOSOLIDS	24
TABLE 2-4. SUMMARY OF PEER-REVIEWED LITERATURE THAT MEASURED HBCD (NG) LEVELS IN THE BULK	
FRACTION OF CONSUMER PRODUCTS	26
TABLE 2-5. SUMMARY OF PEER-REVIEWED LITERATURE THAT MEASURED HBCD (NG/G) LEVELS IN THE BULK	
FRACTION OF CONSUMER PRODUCTS	26
TABLE 2-6. SUMMARY OF PEER-REVIEWED LITERATURE THAT MEASURED HBCD (NG/CM2) LEVELS IN THE DRY	
FRACTION OF CONSUMER PRODUCTS	28
TABLE 2-7. SUMMARY OF PEER-REVIEWED LITERATURE THAT MEASURED HBCD (NG/G) LEVELS IN THE DRY	
FRACTION OF DAIRY	28
TABLE 2-8. SUMMARY OF PEER-REVIEWED LITERATURE THAT MEASURED HBCD (NG/G) LEVELS IN THE LIPID	
FRACTION OF DAIRY	29
TABLE 2-9. SUMMARY OF PEER-REVIEWED LITERATURE THAT MEASURED HBCD (NG/G) LEVELS IN THE WET	
FRACTION OF DAIRY	31
TABLE 2-10. SUMMARY OF PEER-REVIEWED LITERATURE THAT MEASURED HBCD (NG/G) LEVELS IN THE LIPID	
FRACTION OF FATS	32
TABLE 2-11. SUMMARY OF PEER-REVIEWED LITERATURE THAT MEASURED HBCD (NG/G) LEVELS IN THE WET	
FRACTION OF FATS	33
TABLE 2-12. SUMMARY OF PEER-REVIEWED LITERATURE THAT MEASURED HBCD (NG/G) LEVELS IN THE DRY	
FRACTION OF FRUIT	34
TABLE 2-13. SUMMARY OF PEER-REVIEWED LITERATURE THAT MEASURED HBCD (NG/G) LEVELS IN THE WET	
FRACTION OF FRUIT	35
TABLE 2-14. Summary of Peer-Reviewed Literature that Measured HBCD (NG/G) Levels in the Dry $$	
FRACTION OF GRAIN	36
TABLE 2-15. SUMMARY OF PEER-REVIEWED LITERATURE THAT MEASURED HBCD (NG/G) LEVELS IN THE LIPID	
FRACTION OF GRAIN	37
TABLE 2-16. SUMMARY OF PEER-REVIEWED LITERATURE THAT MEASURED HBCD (NG/G) LEVELS IN THE WET	
FRACTION OF GRAIN	37
TABLE 2-17. Summary of Peer-Reviewed Literature that Measured HBCD (NG/G) Levels in the Dry $$	
FRACTION OF MEAT	38
TABLE 2-18. SUMMARY OF PEER-REVIEWED LITERATURE THAT MEASURED HBCD (NG/G) LEVELS IN THE LIPID	
FRACTION OF MEAT	39
TABLE 2-19. SUMMARY OF PEER-REVIEWED LITERATURE THAT MEASURED HBCD (NG/G) LEVELS IN THE WET	
FRACTION OF MEAT	41
TABLE 2-20. Summary of Peer-Reviewed Literature that Measured HBCD (NG/G) Levels in the Dry $$	
Fraction of Other Food	42
TABLE 2-21. Summary of Peer-Reviewed Literature that Measured HBCD (NG/G) Levels in the Lipid	
FRACTION OF OTHER FOOD	43
TABLE 2-22. Summary of Peer-Reviewed Literature that Measured HBCD (NG/G) Levels in the Wet	
FRACTION OF OTHER FOOD	43

TABLE 2-23. SUMMARY OF PEER-REVIEWED LITERATURE THAT MEASURED HBCD (NG/G) LEVELS IN THE LIPID
FRACTION OF SEAFOOD
TABLE 2-24. SUMMARY OF PEER-REVIEWED LITERATURE THAT MEASURED HBCD (NG/G) LEVELS IN THE WET FRACTION OF SEAFOOD
TABLE 2-25. SUMMARY OF PEER-REVIEWED LITERATURE THAT MEASURED HBCD (NG/G) LEVELS IN THE DRY
FRACTION OF VEGETABLE
TABLE 2-26. SUMMARY OF PEER-REVIEWED LITERATURE THAT MEASURED HBCD (NG/G) LEVELS IN THE WET
FRACTION OF VEGETABLE
TABLE 2-27. SUMMARY OF PEER-REVIEWED LITERATURE THAT MEASURED HBCD (NG/M3) LEVELS IN INDOOR AIR
TABLE 2-28. SUMMARY OF PEER-REVIEWED LITERATURE THAT MEASURED HBCD (NG/G) LEVELS IN THE DRY
FRACTION OF INDOOR DUST
TABLE 2-29. SUMMARY OF PEER-REVIEWED LITERATURE THAT MEASURED HBCD (NG/G) LEVELS IN THE DRY
FRACTION OF LANDFILL LEACHATE
TABLE 2-30. SUMMARY OF PEER-REVIEWED LITERATURE THAT MEASURED HBCD (NG/G) LEVELS IN THE WET
FRACTION OF LANDFILL LEACHATE
TABLE 2-31. SUMMARY OF PEER-REVIEWED LITERATURE THAT MEASURED HBCD (NG/L) LEVELS IN THE WET
FRACTION OF LANDFILL LEACHATE
TABLE 2-32. Summary of Peer-Reviewed Literature that Measured HBCD (Ng/L) Levels in the Wet
FRACTION OF PRECIPITATION
TABLE 2-33. SUMMARY OF PEER-REVIEWED LITERATURE THAT MEASURED HBCD (NG/L) LEVELS IN THE WET
FRACTION OF SEAWATER
TABLE 2-34. Summary of Peer-Reviewed Literature that Measured HBCD (NG/G) Levels in the Dry (NG/G)
FRACTION OF SEDIMENT
TABLE 2-35. SUMMARY OF PEER-REVIEWED LITERATURE THAT MEASURED HBCD (NG/G) LEVELS IN THE WET
FRACTION OF SEDIMENT
TABLE 2-36. SUMMARY OF PEER-REVIEWED LITERATURE THAT MEASURED HBCD (NG/G) LEVELS IN THE DRY
FRACTION OF SOIL
TABLE 2-37. SUMMARY OF PEER-REVIEWED LITERATURE THAT MEASURED HBCD (NG/L) LEVELS IN THE WET
FRACTION OF SURFACE GROUNDWATER74
TABLE 2-38. SUMMARY OF PEER-REVIEWED LITERATURE THAT MEASURED HBCD (NG/M2) LEVELS IN THE WET
FRACTION OF SURFACE GROUNDWATER76
TABLE 2-39. SUMMARY OF PEER-REVIEWED LITERATURE THAT MEASURED HBCD (NG/G) LEVELS IN THE DRY
FRACTION OF VEGETATION77
TABLE 2-40. SUMMARY OF PEER-REVIEWED LITERATURE THAT MEASURED HBCD (NG/G) LEVELS IN THE LIPID
FRACTION OF VEGETATION
TABLE 2-41. SUMMARY OF PEER-REVIEWED LITERATURE THAT MEASURED HBCD (NG/G) LEVELS IN THE DRY
FRACTION OF WASTEWATER
TABLE 2-42. SUMMARY OF PEER-REVIEWED LITERATURE THAT MEASURED HBCD (NG/L) LEVELS IN THE WET
FRACTION OF WASTEWATER
TABLE 3-1. SUMMARY OF PEER-REVIEWED LITERATURE THAT MEASURED HBCD (NG/G) LEVELS IN THE LIPID
FRACTION OF AMPHIBIANS
TABLE 3-2. SUMMARY OF PEER-REVIEWED LITERATURE THAT MEASURED HBCD (NG/G) LEVELS IN THE DRY
FRACTION OF AQUATIC INVERTEBRATES
TABLE 3-3. SUMMARY OF PEER-REVIEWED LITERATURE THAT MEASURED HBCD (NG/G) LEVELS IN THE LIPID
FRACTION OF AQUATIC INVERTEBRATES
TABLE 3-4. SUMMARY OF PEER-REVIEWED LITERATURE THAT MEASURED HBCD (NG/G) LEVELS IN THE WET
FRACTION OF AQUATIC INVERTEBRATES
TABLE 3-5. SUMMARY OF PEER-REVIEWED LITERATURE THAT MEASURED HBCD (NG/G) LEVELS IN THE LIPID
FRACTION OF AQUATIC MAMMALS
TABLE 3-6. SUMMARY OF PEER-REVIEWED LITERATURE THAT MEASURED HBCD (NG/G) LEVELS IN THE WET
FRACTION OF AQUATIC MAMMALS

TABLE 3-7. SUMMARY OF PEER-REVIEWED LITERATURE THAT MEASURED HBCD (NG/G) LEVELS IN THE DRY FRACTION OF BIRDS	91
TABLE 3-8. SUMMARY OF PEER-REVIEWED LITERATURE THAT MEASURED HBCD (NG/G) LEVELS IN THE LIPID FRACTION OF BIRDS	
TABLE 3-9. SUMMARY OF PEER-REVIEWED LITERATURE THAT MEASURED HBCD (NG/G) LEVELS IN THE WET FRACTION OF BIRDS	
TABLE 3-10. SUMMARY OF PEER-REVIEWED LITERATURE THAT MEASURED HBCD (NG/G) LEVELS IN THE DRY FRACTION OF FISH	
TABLE 3-11. SUMMARY OF PEER-REVIEWED LITERATURE THAT MEASURED HBCD (NG/G) LEVELS IN THE LIPID FRACTION OF FISH	.101
TABLE 3-12. SUMMARY OF PEER-REVIEWED LITERATURE THAT MEASURED HBCD (NG/G) LEVELS IN THE WET FRACTION OF FISH	.105
TABLE 3-13. SUMMARY OF PEER-REVIEWED LITERATURE THAT MEASURED HBCD (NG/G) LEVELS IN THE LIPID FRACTION OF TERRESTRIAL INVERTEBRATES	107
TABLE 3-14. SUMMARY OF PEER-REVIEWED LITERATURE THAT MEASURED HBCD (NG/G) LEVELS IN THE WET FRACTION OF TERRESTRIAL INVERTEBRATES	.108
TABLE 3-15. SUMMARY OF PEER-REVIEWED LITERATURE THAT MEASURED HBCD (NG/G) LEVELS IN THE LIPID FRACTION OF TERRESTRIAL MAMMALS	.109
TABLE 3-16. SUMMARY OF PEER-REVIEWED LITERATURE THAT MEASURED HBCD (NG/G) LEVELS IN THE WET FRACTION OF TERRESTRIAL MAMMALS	
TABLE 4-1. SUMMARY OF PEER-REVIEWED LITERATURE THAT MEASURED HBCD (NG) LEVELS IN THE DRY FRACTION OF DERMAL WIPES	
TABLE 4-2. SUMMARY OF PEER-REVIEWED LITERATURE THAT MEASURED HBCD (NG/CM ²) LEVELS IN THE DRY FRACTION OF DERMAL WIPES	
TABLE 4-3. SUMMARY OF PEER-REVIEWED LITERATURE THAT MEASURED HBCD (NG/G) LEVELS IN THE LIPID FRACTION OF HUMAN ADIPOSE TISSUE	
TABLE 4-4. SUMMARY OF PEER-REVIEWED LITERATURE THAT MEASURED HBCD (NG/G) LEVELS IN THE LIPID FRACTION OF HUMAN BLOOD	
TABLE 4-5. SUMMARY OF PEER-REVIEWED LITERATURE THAT MEASURED HBCD (NG/L) LEVELS IN THE SERUM FRACTION OF HUMAN BLOOD	
TABLE 4-6. SUMMARY OF PEER-REVIEWED LITERATURE THAT MEASURED HBCD (NG/G) LEVELS IN THE WET FRACTION OF HUMAN BLOOD	
TABLE 4-7. SUMMARY OF PEER-REVIEWED LITERATURE THAT MEASURED HBCD (NG/G) LEVELS IN THE LIPID FRACTION OF HUMAN BREAST MILK	
TABLE 4-8. SUMMARY OF PEER-REVIEWED LITERATURE THAT MEASURED HBCD (NG/G) LEVELS IN THE LIPID FRACTION OF HUMAN FECES	
TABLE 4-9. SUMMARY OF PEER-REVIEWED LITERATURE THAT MEASURED HBCD (NG/G) LEVELS IN THE LIPID FRACTION OF HUMAN FETAL TISSUE	
TABLE 4-10. SUMMARY OF PEER-REVIEWED LITERATURE THAT MEASURED HBCD (NG/G) LEVELS IN THE WET FRACTION OF HUMAN HAIR.	
TABLE 4-11. SUMMARY OF PEER-REVIEWED LITERATURE THAT MEASURED HBCD (NG/G) LEVELS IN THE LIPID	
FRACTION OF HUMAN PLACENTAL TISSUE TABLE 4-12. SUMMARY OF PEER-REVIEWED LITERATURE THAT MEASURED HBCD (NG/G) LEVELS IN THE LIPID	
FRACTION OF HUMAN SERUM TABLE 4-13. SUMMARY OF PEER-REVIEWED LITERATURE THAT MEASURED HBCD (NG/G) LEVELS IN THE WET	
FRACTION OF HUMAN SERUM TABLE 5-1. MEASURED EMISSION RATES OF FLAME RETARDANTS FROM ARTICLES	

List of Figures

FIGURE 2-1. CONCENTRATION OF HBCD (NG/G) IN THE PARTICULATE FRACTION OF AMBIENT AIR IN BACKGROUND
LOCATIONS FROM 2010-2011
FIGURE 2-2. CONCENTRATION OF HBCD (NG/M3) IN THE GAS AND PARTICULATE FRACTION OF AMBIENT AIR IN
BACKGROUND LOCATIONS FROM 2002 TO 201321
FIGURE 2-3. CONCENTRATION OF HBCD (NG/M3) IN THE PARTICULATE FRACTION OF AMBIENT AIR IN BACKGROUND AND NEAR FACILITY LOCATIONS AND FOR MODELED DATA FROM 2000 TO 2012
FIGURE 2-4. CONCENTRATION OF HBCD (NG/G) IN THE DRY FRACTION OF BIOSOLIDS IN NEAR FACILITY LOCATIONS FROM 2000 TO 2016
FIGURE 2-5. CONCENTRATION OF HBCD (NG) IN THE BULK FRACTION OF CONSUMER PRODUCTS IN GENERAL LOCATIONS IN 2012
FIGURE 2-6. CONCENTRATION OF HBCD (NG/G) IN THE BULK FRACTION OF CONSUMER PRODUCTS IN GENERAL LOCATIONS FROM 2013 TO 2017
FIGURE 2-7. CONCENTRATION OF HBCD (NG/CM2) IN THE DRY FRACTION OF CONSUMER PRODUCTS IN GENERAL LOCATIONS IN 2008
FIGURE 2-8. CONCENTRATION OF HBCD (NG/G) IN THE DRY FRACTION OF DAIRY IN BACKGROUND LOCATIONS IN 2004
FIGURE 2-9. CONCENTRATION OF HBCD (NG/G) IN THE LIPID FRACTION OF DAIRY IN BACKGROUND LOCATIONS FROM 1999 TO 2015
FIGURE 2-10. CONCENTRATION OF HBCD (NG/G) IN THE WET FRACTION OF DAIRY IN BACKGROUND LOCATIONS FROM 2004 TO 2014
FIGURE 2-11. CONCENTRATION OF HBCD (NG/G) IN THE LIPID FRACTION OF FATS IN BACKGROUND LOCATIONS FROM 1999 TO 2009
FIGURE 2-12. CONCENTRATION OF HBCD (NG/G) IN THE WET FRACTION OF FATS IN BACKGROUND LOCATIONS FROM 2004 TO 2009
FIGURE 2-13. CONCENTRATION OF HBCD (NG/G) IN THE DRY FRACTION OF FRUIT IN BACKGROUND LOCATIONS IN 2004
FIGURE 2-14. CONCENTRATION OF HBCD (NG/G) IN THE WET FRACTION OF FRUIT IN BACKGROUND LOCATIONS FROM 2004 TO 2014
FIGURE 2-15. CONCENTRATION OF HBCD (NG/G) IN THE DRY FRACTION OF GRAIN IN BACKGROUND LOCATIONS FROM 2005 TO 2008
FIGURE 2-16. CONCENTRATION OF HBCD (NG/G) IN THE LIPID FRACTION OF GRAIN IN BACKGROUND LOCATIONS IN 2008
FIGURE 2-17. CONCENTRATION OF HBCD (NG/G) IN THE WET FRACTION OF GRAIN IN BACKGROUND LOCATIONS FROM 2004 TO 2014
FIGURE 2-18. CONCENTRATION OF HBCD (NG/G) IN THE DRY FRACTION OF MEAT IN BACKGROUND LOCATIONS IN 2014
FIGURE 2-19. CONCENTRATION OF HBCD (NG/G) IN THE LIPID FRACTION OF MEAT IN BACKGROUND LOCATIONS FROM 1999 TO 2015
FIGURE 2-20. CONCENTRATION OF HBCD (NG/G) IN THE WET FRACTION OF MEAT IN BACKGROUND LOCATIONS FROM 2004 TO 2014
FIGURE 2-21. CONCENTRATION OF HBCD (NG/G) IN THE DRY FRACTION OF OTHER FOOD IN BACKGROUND LOCATIONS FROM 2005 TO 2008
FIGURE 2-22. CONCENTRATION OF HBCD (NG/G) IN THE LIPID FRACTION OF OTHER FOOD IN BACKGROUND LOCATIONS IN 2007
FIGURE 2-23. CONCENTRATION OF HBCD (NG/G) IN THE WET FRACTION OF OTHER FOOD IN BACKGROUND LOCATIONS FROM 2002 TO 2016
FIGURE 2-24. CONCENTRATION OF HBCD (NG/G) IN THE LIPID FRACTION OF SEAFOOD IN BACKGROUND LOCATIONS FROM 1996 TO 2015
FIGURE 2-25. CONCENTRATION OF HBCD (NG/G) IN THE WET FRACTION OF SEAFOOD IN BACKGROUND LOCATIONS FROM 2002 TO 2014

FIGURE 2-26. CONCENTRATION OF HBCD (NG/G) IN THE DRY FRACTION OF VEGETABLE IN BACKGROUND LOCATIONS IN 2004
FIGURE 2-27. CONCENTRATION OF HBCD (NG/G) IN THE WET FRACTION OF VEGETABLE IN BACKGROUND
LOCATIONS FROM 2004 TO 2014
FIGURE 2-28. CONCENTRATION OF HBCD (NG/M3) IN INDOOR AIR IN RESIDENTIAL, COMMERCIAL, AND MIXED USE
LOCATIONS FROM 2001 TO 2012
FIGURE 2-29. CONCENTRATION OF HBCD (NG/G) IN THE DRY FRACTION OF INDOOR DUST IN RESIDENTIAL,
Commercial, Mixed Use, School, Vehicle, and Industrial Locations from 2000 to 2015
FIGURE 2-30. CONCENTRATION OF HBCD (NG/G) IN THE DRY FRACTION OF LANDFILL LEACHATE IN NEAR FACILITY
Locations in 2002
FIGURE 2-31. CONCENTRATION OF HBCD (NG/G) IN THE WET FRACTION OF LANDFILL LEACHATE IN BACKGROUND
LOCATIONS IN 2006
FIGURE 2-32. CONCENTRATION OF HBCD (NG/L) IN THE WET FRACTION OF LANDFILL LEACHATE IN NEAR FACILITY
LOCATIONS FROM 2000 TO 2014
FIGURE 2-33. CONCENTRATION OF HBCD (NG/L) IN THE WET FRACTION OF PRECIPITATION IN BACKGROUND
LOCATIONS FROM 2003 TO 2010
FIGURE 2-34. CONCENTRATION OF HBCD (NG/L) IN THE WET FRACTION OF SEAWATER IN BACKGROUND LOCATIONS
AND FOR MODELED DATA FROM 2012 TO 2014
FIGURE 2-35. CONCENTRATION OF HBCD (NG/G) IN THE DRY FRACTION OF SEDIMENT IN BACKGROUND AND NEAR
FACILITY LOCATIONS AND FOR MODELED DATA FROM 1974 TO 2016
FIGURE 2-36. CONCENTRATION OF HBCD (NG/G) IN THE WET FRACTION OF SEDIMENT IN NEAR FACILITY LOCATIONS
FROM 2006 TO 2013
FIGURE 2-37. CONCENTRATION OF HBCD (NG/G) IN THE DRY FRACTION OF SOIL IN BACKGROUND AND NEAR
FACILITY LOCATIONS AND FOR MODELED DATA FROM 1999 TO 2015
FIGURE 2-38. CONCENTRATION OF HBCD (NG/L) IN THE WET FRACTION OF SURFACE WATER IN BACKGROUND AND
NEAR FACILITY LOCATIONS AND FOR MODELED DATA FROM 2004 TO 2014
FIGURE 2-39. CONCENTRATION OF HBCD (NG/M2) IN THE WET FRACTION OF SURFACE WATER IN BACKGROUND
LOCATIONS FROM 2008 TO 2010
FIGURE 2-40. CONCENTRATION OF HBCD (NG/G) IN THE DRY FRACTION OF VEGETATION IN BACKGROUND AND NEAF
FACILITY LOCATIONS FROM 2010 TO 2015
FIGURE 2-41. CONCENTRATION OF HBCD (NG/G) IN THE LIPID FRACTION OF VEGETATION IN BACKGROUND
LOCATIONS FROM 2009 TO 2012
FIGURE 2-42. CONCENTRATION OF HBCD (NG/G) IN THE DRY FRACTION OF WASTEWATER IN NEAR FACILITY
LOCATIONS IN 2002
FIGURE 2-43. CONCENTRATION OF HBCD (NG/L) IN THE WET FRACTION OF WASTEWATER IN BACKGROUND AND
NEAR FACILITY LOCATIONS AND FOR MODELED DATA FROM 2000 TO 201280
FIGURE 3-1. CONCENTRATION OF HBCD (NG/G) IN THE LIPID FRACTION OF AMPHIBIANS IN BACKGROUND
LOCATIONS FROM 2011 TO 2013
FIGURE 3-2. CONCENTRATION OF HBCD (NG/G) IN THE DRY FRACTION OF AQUATIC INVERTEBRATES IN
BACKGROUND AND NEAR FACILITY LOCATIONS FROM 2008 TO 2017
FIGURE 3-3. CONCENTRATION OF HBCD (NG/G) IN THE LIPID FRACTION OF AQUATIC INVERTEBRATES IN
BACKGROUND AND NEAR FACILITY LOCATIONS FROM 2003 TO 2011
FIGURE 3-4. CONCENTRATION OF HBCD (NG/G) IN THE WET FRACTION OF AQUATIC INVERTEBRATES IN
BACKGROUND AND NEAR FACILITY LOCATIONS FROM 2002 TO 201486
FIGURE 3-5. CONCENTRATION OF HBCD (NG/G) IN THE LIPID FRACTION OF AQUATIC MAMMALS IN BACKGROUND
LOCATIONS FROM 1972 TO 2013
FIGURE 3-6. CONCENTRATION OF HBCD (NG/G) IN THE WET FRACTION OF AQUATIC MAMMALS IN BACKGROUND
LOCATIONS AND FOR MODELED DATA FROM 1993 TO 201290
FIGURE 3-7. CONCENTRATION OF HBCD (NG/G) IN THE DRY FRACTION OF BIRDS IN BACKGROUND LOCATIONS FROM
2006 то 2011
FIGURE 3-8. CONCENTRATION OF HBCD (NG/G) IN THE LIPID FRACTION OF BIRDS IN BACKGROUND AND NEAR
FACILITY LOCATIONS FROM 1969 TO 2014

FIGURE 3-9. CONCENTRATION OF HBCD (NG/G) IN THE WET FRACTION OF BIRDS IN BACKGROUND LOCATIONS 2001 TO 2013	
FIGURE 3-10. CONCENTRATION OF HBCD (NG/G) IN THE DRY FRACTION OF FISH IN BACKGROUND AND NEAR	
FACILITY LOCATIONS FROM 2000 TO 2014	98
FIGURE 3-11. CONCENTRATION OF HBCD (NG/G) IN THE LIPID FRACTION OF FISH IN BACKGROUND AND NEAR	
FACILITY LOCATIONS FROM 1979 TO 2014.	101
FIGURE 3-12. CONCENTRATION OF HBCD (NG/G) IN THE WET FRACTION OF FISH IN BACKGROUND AND NEAR FACILITY LOCATIONS AND FOR MODELED DATA FROM 2001 TO 2014	105
FIGURE 3-13. CONCENTRATION OF HBCD (NG/G) IN THE LIPID FRACTION OF TERRESTRIAL INVERTEBRATES IN	
BACKGROUND LOCATIONS FROM 2012 TO 2013	107
FIGURE 3-14. CONCENTRATION OF HBCD (NG/G) IN THE WET FRACTION OF TERRESTRIAL INVERTEBRATES IN	
MODELED DATA FROM 2008 TO 2017	108
FIGURE 3-15. CONCENTRATION OF HBCD (NG/G) IN THE LIPID FRACTION OF TERRESTRIAL MAMMALS IN	
BACKGROUND LOCATIONS FROM 1997 TO 2014	108
FIGURE 3-16. CONCENTRATION OF HBCD (NG/G) IN THE WET FRACTION OF TERRESTRIAL MAMMALS IN	
BACKGROUND LOCATIONS IN 2010	109
FIGURE 4-1. CONCENTRATION OF HBCD (NG) IN THE DRY FRACTION OF DERMAL WIPES IN THE GENERAL	
POPULATION FROM 2012 TO 2014	110
FIGURE 4-2. CONCENTRATION OF HBCD (NG/CM ²) IN THE DRY FRACTION OF DERMAL WIPES IN THE GENERAL	
POPULATION FROM 2013 TO 2014	
FIGURE 4-3. CONCENTRATION OF HBCD (NG/G) IN THE LIPID FRACTION OF HUMAN ADIPOSE TISSUE IN THE GE	
POPULATION FROM 2003 TO 2008	
FIGURE 4-4. CONCENTRATION OF HBCD (NG/G) IN THE LIPID FRACTION OF HUMAN BLOOD IN GENERAL AND H	
EXPOSED POPULATIONS FROM 1996 TO 2015	113
$FIGURE \ 4-5. \ CONCENTRATION \ OF \ HBCD \ (NG/L) \ IN \ THE \ SERUM \ FRACTION \ OF \ HUMAN \ BLOOD \ IN \ THE \ GENERAL$	
POPULATION FROM 2008 TO 2011	114
FIGURE 4-6. CONCENTRATION OF HBCD (NG/G) IN THE WET FRACTION OF HUMAN BLOOD IN THE GENERAL	
POPULATION IN 2003	
$FIGURE \ 4-7. \ CONCENTRATION \ OF \ HBCD \ (NG/G) \ IN \ THE \ LIPID \ FRACTION \ OF \ HUMAN \ BREAST \ MILK \ IN \ GENERAL \ MILK \ IN \ GENERAL \ MILK $	
EXPOSED, AND OCCUPATIONAL POPULATIONS FROM 1989 TO 2015	117
FIGURE 4-8. CONCENTRATION OF HBCD (NG/G) IN THE LIPID FRACTION OF HUMAN FECES IN THE GENERAL	
POPULATION FROM 2009 TO 2011	
FIGURE 4-9. CONCENTRATION OF HBCD (NG/G) IN THE LIPID FRACTION OF HUMAN FETAL TISSUE IN THE GENERATION OF HEAD AND A REPORT OF THE SECOND A REPORT OF THE SECONDA REPO	
POPULATION FROM 1998 TO 2010	
FIGURE 4-10. CONCENTRATION OF HBCD (NG/G) IN THE WET FRACTION OF HUMAN HAIR IN GENERAL AND HIG	
EXPOSED POPULATIONS IN 2008	
FIGURE 4-11. CONCENTRATION OF HBCD (NG/G) IN THE LIPID FRACTION OF HUMAN PLACENTAL TISSUE IN THI	
GENERAL POPULATION FROM 1998 TO 2010	121
FIGURE 4-12. CONCENTRATION OF HBCD (NG/G) IN THE LIPID FRACTION OF HUMAN SERUM IN THE GENERAL	
POPULATION IN 2007	122
FIGURE 4-13. CONCENTRATION OF HBCD (NG/G) IN THE WET FRACTION OF HUMAN SERUM IN THE GENERAL	
POPULATION IN 2004	
FIGURE 5-1. OVERVIEW OF INDOOR EMISSION, FATE, TRANSPORT, AND EXPOSURE TO SVOCS	
FIGURE 5-2. EXAMPLE EMISSION PATHWAYS FOR FLAME RETARDANTS	
FIGURE 5-3. RELEVANT FATE AND TRANSPORT PROCESSES IN THE INDOOR ENVIRONMENT	
FIGURE 5-4. PERCENTAGE OF INHALED PARTICLES THAT ARE TRAPPED IN EITHER THE LUNG OR NOSE BY PARTIC	
DIAMETER	
FIGURE 5-5. SUMMARY OF THE VARIOUS ROUTES OF EXPOSURE TO SVOCS	132

List of Equations

EQUATION 1	
EQUATION 2	
EQUATION 3	
EQUATION 4	
EQUATION 5	

1. Overview of the Systematic Review Process

EPA completed a comprehensive literature search for hexabromocyclododecane (HBCD) along with the first 10 chemicals, details on search strategy are documented in <u>U.S. EPA (2017)</u>. EPA also completed supplemental searches that incorporated additional articles from the following sources: references cited in public comments, references identified as part of earlier efforts to assess exposure to HBCD and other flame retardants, and references identified in EPA's Exposure and Use Assessment for Persistent Bioaccumulative Toxic (PBT) chemicals. Many of the articles that reported information for DecaBDE (one of the PBT5 chemicals, and brominated flame retardant) also reported information for HBCD.

After all references from all sources were cross-walked and screened, remaining articles were evaluated and extracted. For an article to pass screening, it had to cover any part of the conceptual model describing potential exposures across the lifecycle of HBCD. It is also worth noting, that additional non-chemical specific sources such as model user guides, guidance documents, or articles that generally discuss exposure pathways of interest for chemicals like HBCD (semi-volatile organic compounds) are also referenced in this exposure assessment and supplemental file but are not part of the "count" of the universe of articles that went through EPA/OPPT's systematic review process.

1.1 Data Extraction Methods and Approach

Studies that were determined to be of sufficient data quality, as defined in Appendix E of U.S. EPA (2018), at the data quality evaluation stage that also contained primary quantitative monitoring data, modeled media data, or modeled intake or dose data were selected for extraction. Data were extracted in litstreamTM web-based data extraction forms designed to accommodate measured concentrations and modeled media concentrations reported in both environmental and biomonitoring mediums, as well as modeled estimates of intake and dose. The extraction forms were piloted and refined from previous use in the PBT5 exposure assessment. For environmental monitoring and biomonitoring studies values were extracted describing the overall range of data (minimum, maximum, mean, median, variation and frequency of detection) were extracted for each media presented in the study. Extracted data were further annotated with salient details such as population characteristics, species, location by country, sampling dates, sample media phase (e.g. gas versus particulate phase in air), weight fraction (e.g. lipid, wet or dry weight), tissue type, and location type (e.g. residential, commercial or vehicle for indoor environments and background or near facility for outdoor environments).

For studies that contained modeled estimates of intake or dose a similar approach was taken to capture the range of data; however, model estimates tended to either be point estimates or present a central tendency and high end. In all cases, the study data were extracted along with receptor characteristics, country, and pathways considered.

Quality Control

Extractors were provided group training and instruction for data extraction. Following training extractors were assigned a study for extraction. A senior reviewer verified completed extractions for accuracy and advised extractors on any errors from incorrect application of the instructions. If over 90% of the extracted fields were accurate then a screener passed the training review, otherwise extractors had to extract another study for review prior to proceeding with further assignments. Following the initial extraction phase, a targeted quality control phase was performed where studies missing critical fields (such as fractions or location types) required for aggregation were assigned to another extractor for review. Following data visualization another targeted quality control phase was employed for outlier studies identified in media plots. Given the nature of the statistical analysis, studies that carried forward to risk were revisited to verify reported statistics and ensure a complete extraction.

1.2 Data Integration Methods and Approach

Extracted study data required further processing to allow for the standardization and integration of HBCD data across all studies. Where studies reported isomers of HBCD (alpha, beta, gamma) separately, these values were summed and total HBCD was recorded in litstreamTM. For studies that reported a frequency of detection of less than 100%, meaning that HBCD was not detected in all samples, a value of one-half the highest reported limit of detection or limit of quantitation was imputed as the minimum value for each study and media combination. Reported intakes were converted into average daily doses based on exposure factors describing media intake rates by receptor U.S. EPA (2011).

Data were first aggregated by like media and sampling phase or weight fraction type. Further aggregation was performed to group data by location type. Finally, data from countries classified by the World Bank (June 2019) as high-income

(https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-andlending-groups) were grouped together. Data from high-income countries were used to augment the U.S. datasets due the limited amount of U.S. data available. High-income countries were selected as surrogate U.S. countries based on the assumption that these countries have manufacturing, processing, and use characteristics that are most likely to resemble those in the U.S.

All data and statistical analyses were performed on litstream[™] reports of quality control reviewed data using scripts in Python 3.7 using the pandas, scipy and xlrd libraries. All concentrations were converted to a common unit by media and the overall range (lowest reported value to highest reported value) and the range of central tendencies (means and medians) was determined for each study and each aggregated group. The plots in Section 2 of this supplement contain a data summary plot for each media by weight fraction or sampling phase. Each plot presents statistics for each individual study as well as summary statistics for the studies aggregated by location type (i.e., near facility or background) for the high-income countries. Within each location type, monitoring data from North America are presented first, followed by data from other countries in alphabetical order by country code, followed by modeled data where available. For each country, data are presented from newest to oldest, based on latest year of sampling. Differentiation by species and tissue type are not shown in these summary plots, but

are described in the tables accompanying each plot. The lighter region of each bar represents the overall range of data and the darker region represents the range of central tendency reported in each study. In media that carried forward to risk, central tendency and 90th percentile estimates were plotted over the bars for studies that reported enough stats to reconstruct a lognormal or normal distribution. For the summary bar, the overall central tendency and high-end estimates are presented. The following statistical methods were used to calculate the central and high-end estimates.

1.3 Statistical approach of exposure estimates derived from measured concentrations

Studies were aggregated by media, unit, fraction, location type, and high income classification, then means were calculated based on each reported stat type. Based on this aggregation and reported statistics, normal and lognormal distributions were estimated based on available data. In cases where measures of variability were provided, no fitting was required to build a distribution. If geometric means and geometric standard deviations (GSDs) were provided they were used directly to construct a lognormal distribution by using the mean of geometric means (μ) and mean of GSD (σ). Using this distribution, the central tendency was estimated by calculating the arithmetic mean and 90th percentile using the equations below.

Equation for arithmetic mean estimates from lognormal distribution: $e^{(\mu + \frac{\sigma^2}{2})}$ Equation for estimating 90th percentile from lognormal distribution: $e^{(\mu + \sigma * Norminv(0.90))}$ If (arithmetic) means and standard deviations (SDs) or variance were provided, then a normal distribution was also derived and the average of means and the 90th percentile was calculated for the high-end exposure estimate. The following table describes the preferred distributions used in each case. In some cases, the preferred distribution was not used, see the quality control section for this justification.

Case type	Description of available statistics per study aggregate	Distribution type preferred
Case 0A	Geometric mean and GSD	lognormal
Case 0B	Median and GSD	lognormal
Case 1A	(Mean == Median) and SD	normal
Case 1B	Mean and SD (no Median)	normal
Case 2A	Median and (min or max or percentile)	lognormal
Case 2B	Median and (FOD<1 and LOD/LOQ)	lognormal
Case 3A	Mean only and (min or max or percentile)	lognormal
Case 3B	Mean only and (FOD<1 and LOD/LOQ)	lognormal
Case 4	Median and mean only	lognormal
All other cases	Not enough data to build distribution	n/a

Table 1-1. Distributions Preferred Depending on A	Available Reported Statistics
---	--------------------------------------

GSD = geometric standard deviation

SD = standard deviation

FOD = frequency of detection

LOD = limit of detection LOQ = limit of quantitation

1.3.1 Fitting lognormal distributions

In cases where medians were provided the average median was substituted for geometric mean and the remaining statistics were used to estimate the GSD by minimizing the sum of squared errors for all provided statistical estimates. Sum of squared errors were calculated by comparing the mean of the statistic to the estimated value produced by the fitted distribution based on the following table of assumptions defining the percentiles assumed for each stat type.

Mean of statistical estimate by typeAssumed percentile for calculating errorMaximum0.99Minimum0.01nth percentile (eg. 25th percentile)n/100 (eg. 0.25)Half limit of quantitation substituted
minimum0.005Half limit of detection substituted minimum0.0025

Table 1-2. Assumed Percentile for Calculating Error by Statistical Estimate Type

This methodology requires that we begin with an estimate of central tendency and at least one point along the distribution. The lognormal distribution was fitted for studies that provided an arithmetic mean and at least one point along the curve. In this case both the geometric mean and the GSD was solved for by minimizing the sum of the squared errors for all estimates.

1.3.2 Fitting normal distributions

Normal distributions were also constructed for all study aggregates by using a similar approach. Study reported means were assumed to be medians and standard deviation was solved for by minimizing the sum squared error of all available estimates.

1.3.3 Quality control of derived exposure estimates

Initially estimated medians and arithmetic means were verified to fall within the range of the data reported. If estimates fell outside of the range of data, then estimates were not used. When derived GSDs exceeded 10 for lognormal distributions, mean estimates were not used if they exceeded 100% relative percent difference from actual means. In these cases, the estimates from the normal distributions were used when available.

1.3.4 Final risk estimates by media and location type

Central tendencies that carried forward to risk were summarized for each media aggregate by location type for high income countries by taking the mean of the arithmetic mean estimates from the selected distribution (lognormal or normal) that passed the QC process. Similarly, the

90th percentile was calculated by the mean of 90th percentile estimates. Table 1-3 below shows the data available by country. Table 1-4 shows the results and number of studies for each media, location and fraction.

Table 1-3. Availability of Monitoring and Modeled Data by Country Using	
World Bank Income Classification ¹	

				Dat	a Us	sed i	in R	isk	Esti	mat	tes ³	
Region	Economy	Extracted Monitoring or Modeled Data Available ²	Diet	Dust	Indoor Air	Ambient Air	Dermal	Mouthing	Surface	Sediment	Soil	Biosolids
	High Inco	ome Countries (a	all)									
North	Bermuda											
America	Canada (CA)	\checkmark										
	United States (US)											
East Asia &	Australia (AU)											
Pacific	Brunei Darussalam											
	French Polynesia											
	Guam											
	Hong Kong SAR, China (HK)	\checkmark										
	Japan (JP)	\checkmark										
	Korea, Rep. (KR)	\checkmark										
	Macao SAR, China											
	New Caledonia											
	New Zealand (NZ)	\checkmark										
	Northern Mariana Islands											
	Palau											
	Singapore (SG)	\checkmark										
	Taiwan, China											
Europe &	Andorra											
Central Asia	Austria											
	Belgium (BE)	\checkmark										
	Channel Islands											
	Croatia											
	Cyprus											
	Czech Republic (CZ)	\checkmark										
	Denmark (DK)	\checkmark										
	Estonia											
	Faroe Islands											
	Finland (FI)	\checkmark										
	France (FR)	\checkmark										
	Germany (DE)	\checkmark										
	Gibraltar											
	Greece (GR)	\checkmark										
	Greenland (GL)	\checkmark										

				Dat	a Us	sed i	in R	lisk	Esti	mat	tes ³	
Region	Economy	Extracted Monitoring or Modeled Data Available ²	Diet	Dust	Indoor Air	Ambient Air	Dermal	Mouthing	Surface	Sediment	Soil	Biosolids
	Hungary											
	Iceland (IS)	\checkmark										
	Ireland											
	Isle of Man											
	Italy (IT)	\checkmark										
	Latvia (LV)	\checkmark										
	Liechtenstein											
	Lithuania											
	Luxembourg											
	Monaco											
	Netherlands (NL)	\checkmark										
	Norway (NO)	V										
	Poland (PL)	\checkmark										
	Portugal (PT)	\checkmark		\bullet								
	San Marino											
	Slovak Republic											
	Slovenia											
	Spain (ES)	\checkmark										
	Sweden (SE)	\checkmark		\bullet								
	Switzerland (CH)	\checkmark		\bullet								
	United Kingdom (GB)	\checkmark										
Latin America	Antigua and Barbuda											
& Caribbean	Aruba											
	Bahamas, The											
	Barbados											
	British Virgin Islands											
	Cayman Islands											
	Chile (CL)	\checkmark										
	Curaçao											
	Panama											
	Puerto Rico											
	Sint Maarten (Dutch part)											
	St. Kitts and Nevis											
	St. Martin (French part)											
	Trinidad and Tobago											
	Turks and Caicos Islands											
	Uruguay											
	Virgin Islands (U.S.)											
Middle East &	Bahrain											
North Africa	Israel											
	Kuwait (KW)	\checkmark										
	Malta											

				Dat	a Us	sed i	in R	isk	Esti	mat	es ³	
Region	Economy	Extracted Monitoring or Modeled Data Available ²	Diet	Dust	Indoor Air	Ambient Air	Dermal	Mouthing	Surface	Sediment	Soil	Biosolids
	Oman											
	Qatar											
	Saudi Arabia											
	United Arab Emirates											
Sub-Saharan Africa	Seychelles											
	ower Middle Income, and Up	per Middle Inco	me (Cou	ntrie	es (o	nlv	wit	h Ex	atra	cted	
Data)		F				(-	5					
East Asia &	Cambodia (KH)	\checkmark										
Pacific	China (CN)	\checkmark										
	Indonesia (ID)	\checkmark										
	Lao PDR (LA)	\checkmark										
	Malaysia (MY)	\checkmark										
	Philippines (PH)	\checkmark										
	Vietnam (VN)	\checkmark										
Europe &	Romania (RO)	\checkmark										
Central Asia	Russian Federation (RU)	\checkmark										
Latin America & Caribbean	Mexico (MX)	✓										
Middle East & North Africa	Egypt, Arab Rep. (EG)	\checkmark										
South Asia	India (IN)	\checkmark										
	Nepal (NP)	\checkmark										
Sub-Saharan	Ghana (GH)	\checkmark										
Africa	South Africa (ZA)	\checkmark										
	Tanzania (TZ)	\checkmark										
	Uganda (UG)	\checkmark										
Other	Antarctica (AQ)	\checkmark										

¹ Countries are classified by income level based on the June 2019 World Bank list of economies. <u>https://blogs.worldbank.org/opendata/new-country-classifications-income-level-2018-2019</u> ² A checkmark indicates the presence of monitoring or modeled data for the country.

³ A bullet indicates that data from the country was used in the final risk estimation dataset following application of the statistical cleansing protocol.

Table 1-4. Summary of Exposure Estimates Derived from Available MeasuredConcentrations from High Income Countries

Matrices	Location type	Count of estimates from high income countries	Unit	Fracti on	Average of arithmetic mean estimates	Average of 90th percentile estimates
Fruits, grains, and veggies	n/a	5	mg/g	wet	9.0E-08	1.2E-07
Fruits	n/a	1	mg/g	wet	2.6E-08	5.5E-08
Grains	n/a	2	mg/g	wet	8.2E-08	1.1E-07
Veggies	n/a	2	mg/g	wet	1.6E-07	1.9E-07
Seafood	n/a	8	mg/g	wet	2.0E-06	4.1E-06
Meats, dairy, and fats	n/a	8	mg/g	wet	1.5E-07	2.2E-07
Meats	n/a	3	mg/g	wet	1.1E-07	1.8E-07
Dairy	n/a	3	mg/g	wet	1.6E-07	2.4E-07
Fats	n/a	2	mg/g	wet	1.7E-07	2.3E-07
Breast milk	general	17	mg/g	lipid	4.4E-06	8.7E-06
Indoor air	residential	3	$\mu g/m^3$	any	1.0E-03	2.3E-03
	commercial, school, mixed use	4	µg/m ³	any	9.1E-04	1.9E-03
	vehicle	2	$\mu g/m^3$	any	2.4E-04	3.3E-04
Ambient air	background	7	$\mu g/m^3$	any	2.0E-05	3.0E-05
Indoor dust	residential	24	µg/mg	dry	1.5E-03	2.9E-03
	commercial, school, mixed use	16	µg/mg	dry	1.5E-03	2.9E-03
	vehicle	5	µg/mg	dry	1.7E-02	3.2E-02
Soil	near facility	1	µg/mg	dry	1.0E-03	1.3E-03
	background	2	µg/mg	dry	1.4E-06	3.0E-06
Surface Water	near facility	3	µg/L	wet	8.4E-01	9.9E-01
	background	4	μg/L	wet	4.1E-04	8.0E-04
Sediment	near facility	6	µg/kg	dry	3.4E+03	5.1E+03
	background	14	µg/kg	dry	6.2E+00	2.0E+01

2. Environmental Monitoring Media

2.1. Ambient Air

2.1.1. Ambient Air (ng/g) – Particulate Fraction

Measured concentrations of HBCD in Ambient Air with unit of ng/g, extracted from 1 source, are summarized in Figure 2-1 and supplemental information is provided in Table 2-1. Overall, concentrations ranged from not-detected to 2.90E-04 ng/g from over 36 samples collected between 2010 and 2011 in 1 country, CN. Location types were categorized as Background. Reported detection frequency was 0.56.

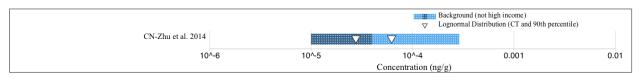


Figure 2-1. Concentration of HBCD (ng/g) in the Particulate Fraction of Ambient Air in Background Locations from 2010-2011

Table 2-1. Summary of Peer-Reviewed Literature that Measured HBCD (ng/g) Levels in
the Particulate Fraction of Ambient Air

Citation	Country	Location Type	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng/g)	Quality Score	Overall Quality Level
<u>Zhu et al.</u> (2014a)	CN	Background	2010- 2011	36	0.56	N/R	1.3	High

Abbreviations: N/R, Not reported

2.1.2. Ambient Air (ng/m³) – Gas and/or Particulate Fraction

Measured concentrations of HBCD in Ambient Air with unit of ng/m3, extracted from 6 studies with particulate and gas phase samples and 15 studies with particulate only samples, are summarized in Figure 2-2 and 2-3, respectively. Supplemental information is provided in Table 2-2. Overall, concentrations ranged from not-detected to 1,070 ng/m³ collected between 2000 and 2012 in at least 10 countries, including US, SE, CA, GL, CZ, GB, NO, CN, JP, and UG. Location types were categorized as Background and Near Facility. Reported detection frequencies ranged from 0.25 to 1.0. Following the statistical procedures described above to obtain a final dataset, central tendency and high-end estimates, respectively, were 0.02 and 0.03 ng/m³ for Background (n = 7 studies).

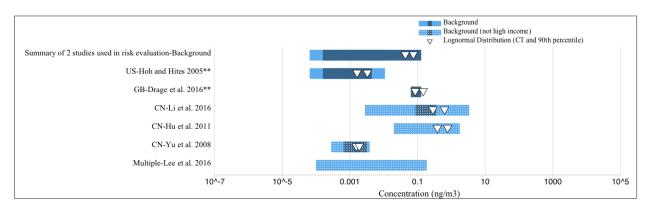
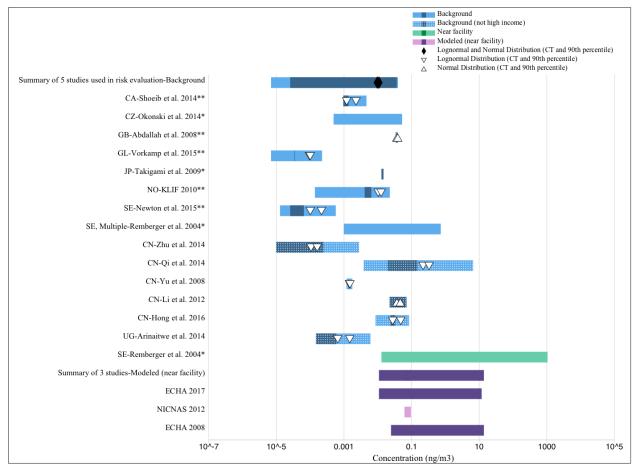



Figure 2-2. Concentration of HBCD (ng/m3) in the Gas and Particulate Fraction of Ambient Air in Background Locations from 2002 to 2013

Figure 2-3. Concentration of HBCD (ng/m3) in the Particulate Fraction of Ambient Air in Background and Near Facility Locations and for Modeled Data from 2000 to 2012

* Study conducted in a country/countries classified as "High Income" by the World Bank;

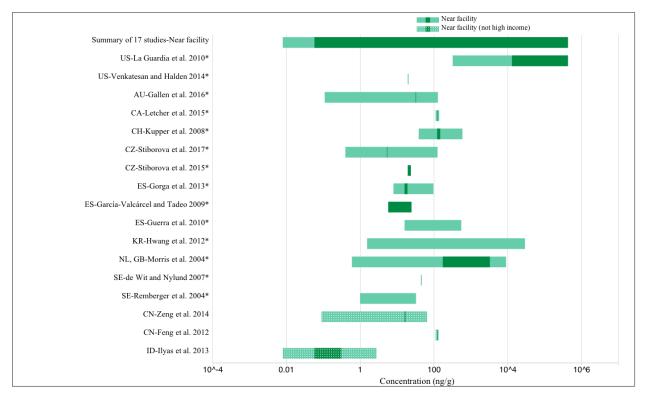
** Study conducted in a country/countries classified as "High Income" by the World Bank and used in risk evaluation final dataset

Table 2-2. Summary of Peer-Reviewed Literature that Measured HBCD (ng/m3) Levels in the of Ambient Air

Citation	Country	Location Type	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng/m3)	Quality Score	Overall Quality Level
			Gas and Pa	articulate F				
Hoh and <u>Hites</u> (2005)	US**	Background	2002- 2004	120	0.82	0.00013	2.0	Medium
<u>Drage et</u> al. (2016)	GB**	Background	2012- 2013	384	0.92	0.022	1.3	High
<u>Li et al.</u> (2016c)	CN	Background	2008- 2013	222	0.94	0.0056	1.8	Medium
<u>Hu et al.</u> (2011a)	CN	Background	2008- 2009	28	1.0	N/R	1.2	High
<u>Yu et al.</u> (2008a)	CN	Background	2004	64	0.95	N/R	1.8	Medium
<u>Lee et al.</u> (2016)	Multiple	Background	2005- 2006	160	0.56	0.0001	1.8	Medium
		•	Partic	ulate Fractic	n			
<u>Shoeib et</u> al. (2014)	CA**	Background	2010- 2011	70	0.67	N/R	2.0	Medium
<u>Okonski et</u> <u>al. (2014</u>)	CZ*	Background	2009- 2010	24	0.75	0.0005	1.2	High
<u>Abdallah</u> <u>et al.</u> (2008a)	GB**	Background	2007	5	1.0	0.0033	1.3	High
<u>Vorkamp</u> <u>et al.</u> (2015)	GL**	Background	2012	12	0.92	1.4e-05	1.2	High
<u>Takigami</u> <u>et al.</u> (2009b)	JP*	Background	2006	2	N/R	N/R	1.9	Medium
<u>Climate</u> and <u>Pollution</u> (2010)	NO**	Background	2007	26	N/R	N/R	1.4	High
<u>Newton et</u> <u>al. (2015</u>)	SE**	Background	2012	12	0.25	2.6e-05	2.0	Medium
Remberger et al. (2004)	SE, Multiple*	Background	2000- 2001	10	1.0	0.001	1.8	Medium
<u>Zhu et al.</u> (2014a)	CN	Background	2010- 2011	36	0.56	N/R	1.3	High
<u>Qi et al.</u> (2014a)	CN	Background	2007- 2008	57	N/R	0.0029	2.1	Medium
<u>Yu et al.</u> (2008b)	CN	Background	2006	4	1.0	N/R	2.1	Low

Citation	Country	Location Type	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng/m3)	Quality Score	Overall Quality Level
<u>Li et al.</u> (2012a)	CN	Background	2006	25	N/R	N/R	1.8	Medium
<u>Hong et al.</u> (2016)	CN	Background	2004- 2005	9	N/R	N/R	1.6	High
<u>Arinaitwe</u> <u>et al.</u> (2014)	UG	Background	2008- 2010	56	0.29	0.0003	1.4	High
Remberger et al. (2004)	SE*	Near facility	2000- 2001	3	1.0	0.001	1.8	Medium
<u>ECHA</u> (2017)	N/R	Modeled (near facility)	N/R	N/R	N/R	N/R	2.0	Medium
<u>NICNAS</u> (2012)	N/R	Modeled (near facility)	N/R	N/R	N/R	N/R	1.8	Medium
<u>KemI</u> (2008)	N/R	Modeled (near facility)	N/R	N/R	N/R	N/R	1.3	High

*Study conducted in a country/countries classified as "High Income" by the World Bank


**Study conducted in a country/countries classified as "High Income" by the World Bank and included in risk evaluation

Abbreviations: N/R, Not reported

2.2. Biosolids

2.2.1. Biosolids (ng/g) – Dry Fraction

Measured concentrations of HBCD in Biosolids with unit of ng/g, extracted from 17 sources, are summarized in Figure 2-4 and supplemental information is provided in Table 2-3. Overall, concentrations ranged from not-detected to 434,740 ng/g from over 343 samples collected between 2000 and 2016 in 12 countries, SE, CA, CZ, ES, NL, ID, US, CH, GB, AU, KR, and CN. Location types were categorized as Near Facility. Reported detection frequencies ranged from 0.29 to 1.0.

Figure 2-4. Concentration of HBCD (ng/g) in the Dry Fraction of Biosolids in Near Facility Locations from 2000 to 2016

* Study conducted in a country/countries classified as "High Income" by the World Bank

Table 2-3. Summary of Peer-Reviewed Literature that Measured HBCD (ng/g) Levels in
the Dry Fraction of Biosolids

Citation	Country	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng/g)	Quality Score	Overall Quality Level
<u>La Guardia</u> <u>et al. (2010</u>)	US*	2002-2008	8	1.0	N/R	2.0	Medium
Venkatesan and Halden (2014)	US*	2001	1	1.0	0.39	2.1	Medium
<u>Gallen et al.</u> (2016)	AU*	2014	16	1.0	0.26	1.8	Medium
<u>Letcher et al.</u> (2015)	CA*	2004	2	1.0	0.2	1.7	Medium
<u>Kupper et al.</u> (2008)	CH*	2003-2005	16	1.0	6.4	1.8	Medium
Stiborova et al. (2017)	CZ*	2016	15	0.87	0.8	1.7	Medium
Stiborova et al. (2015)	CZ*	2007	6	1.0	1.2	2.1	Medium
<u>Gorga et al.</u> (2013)	ES*	2009	34	0.47	16.0	1.7	Medium

Citation	Country	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng/g)	Quality Score	Overall Quality Level
García- Valcárcel and Tadeo (2009)	ES*	2008	76	1.0	0.8	1.3	High
<u>Guerra et al.</u> (2010)	ES*	2008	7	0.29	16.0	1.6	High
<u>Hwang et al.</u> (2012)	KR*	2010	11	N/R	4.2	1.8	Medium
<u>Morris et al.</u> (2004)	NL, GB*	2002	19	N/R	1.2	2.3	Low
<u>de Wit et al.</u> (2007)	SE*	2000	50	1.0	N/R	2.3	Low
Remberger et al. (2004)	SE*	2000	6	1.0	1.0	1.8	Medium
<u>Zeng et al.</u> (2014a)	CN	2010-2013	62	1.0	N/R	1.3	High
<u>Feng et al.</u> (2012)	CN	2009-2010	2	1.0	0.061	1.8	Medium
<u>Ilyas et al.</u> (2013)	ID	2008	12	0.92	N/R	1.4	High

*Study conducted in a country/countries classified as "High Income" by the World Bank Abbreviations: N/R, Not reported

2.3. Consumer Products

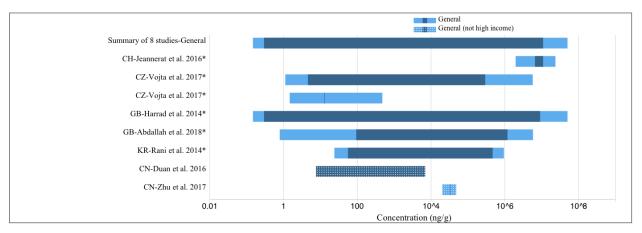
2.3.1. Consumer Products (ng) – Bulk Fraction

Measured concentrations of HBCD in Consumer Product with unit of ng, extracted from 1 source, are summarized in Figure 2-5 and supplemental information is provided in Table 2-4. Overall, concentrations ranged from not-detected to 230 ng from over 137 samples collected during 2012 in 1 country, AU. Location types were categorized as General. Reported detection frequency was 0.13.

Figure 2-5. Concentration of HBCD (ng) in the Bulk Fraction of Consumer Products in General Locations in 2012

* Study conducted in a country/countries classified as "High Income" by the World Bank;

 Table 2-4. Summary of Peer-Reviewed Literature that Measured HBCD (ng) Levels in the


 Bulk Fraction of Consumer Products

Citation	Country	Species	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng)	Quality Score	Overall Quality Level
<u>Gallen et</u> <u>al.</u> (2014)	AU*	Electronics, plastics, components	2012	137	0.13	N/R	2.0	Low

*Study conducted in a country/countries classified as "High Income" by the World Bank Abbreviations: N/R, Not reported

2.3.2. Consumer Products (ng/g) – Bulk Fraction

Measured concentrations of HBCD in Consumer Product with unit of ng/g, extracted from 8 sources, are summarized in Figure 2-6 and supplemental information is provided in Table 2-4. Overall, concentrations ranged from not-detected to 51,000,000 ng/g from over 950 samples collected between 2013 and 2017 in 5 countries, CZ, CH, GB, KR, and CN. Location types were categorized as General. Reported detection frequencies ranged from 0.89 to 1.0.

Figure 2-6. Concentration of HBCD (ng/g) in the Bulk Fraction of Consumer Products in General Locations from 2013 to 2017

* Study conducted in a country/countries classified as "High Income" by the World Bank

Table 2-5. Summary of Peer-Reviewed Literature that Measured HBCD (ng/g) Levels in the Bulk Fraction of Consumer Products

Citation	Country	Species	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng/g)	Quality Score	Overall Quality Level
<u>Jeannerat</u> <u>et al.</u> (2016)	CH*	N/R	2013- 2014	86	N/R	300000.0	2.2	Medium
<u>Vojta et</u> <u>al. (2017</u>)	CZ*	N/R	2017	130	0.89	2.3	1.5	High

Citation	Country	Species	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng/g)	Quality Score	Overall Quality Level
<u>Vojta et</u> al. (2017)	CZ*	N/R	2017	8	1.0	2.3	1.5	High
<u>Harrad et</u> <u>al. (2019</u>)	GB*	Construction and demolition waste samples, waste electronic and electrical equipment (weee), automotive waste samples, soft furnishings waste samples	2015- 2016	538	N/R	0.3	1.8	Medium
<u>Abdallah</u> <u>et al.</u> <u>(2018</u>)	GB*	Eps packaging, xps packaging, eps and xps packaging	2015- 2016	140	N/R	0.8	1.2	High
<u>Rani et</u> <u>al. (2014</u>)	KR*	Expanded polystyrene, extruded polystyrene foam, extruded polystyrene	2014	34	1.0	N/R	1.5	High
<u>Duan et</u> <u>al. (2016</u>)	CN	Construction and demolition waste: furniture, construction and demolition waste: pur foam floor mat, construction and demolition waste: pur foam insulating layer, construction and demolition waste: pur foam and sponge, construction and demolition waste: all other organic c&d waste	2015	9	N/R	0.005	1.9	Medium
<u>Zhu et al.</u> (2017b)	CN	Eps (extended polystyrene foam) waste	2014	5	1.0	0.022	1.7	Medium

*Study conducted in a country/countries classified as "High Income" by the World Bank Abbreviations: N/R, Not reported

2.3.3. Consumer Products (ng/cm²) – Dry Fraction

		General	
GB-Abdallah and Harrad 2018*		I I	
10^4	10^5	10^6	10^7
	Concentrat	ion (ng/cm2)	

Figure 2-7. Concentration of HBCD (ng/cm2) in the Dry Fraction of Consumer Products in General Locations in 2008

* Study conducted in a country/countries classified as "High Income" by the World Bank

Table 2-6. Summary of Peer-Reviewed Literature that Measured HBCD (ng/cm2) Levels in the Dry Fraction of Consumer Products

Citation	Country	Species	Sampling Year	Number of Samples	Frequency of Detection	of Limit		Overall Quality Level
<u>Abdallah</u> <u>and</u> <u>Harrad</u> (2018)	GB*	Fabric	2008	1	1.0	N/R	1.7	Medium

*Study conducted in a country/countries classified as "High Income" by the World Bank Abbreviations: N/R, Not reported

2.4. Diet – Dairy

2.4.1. Dairy (ng/g) – Dry Fraction

Measured concentrations of HBCD in Dairy with unit of ng/g, extracted from 1 source, are summarized in Figure 2-8 and supplemental information is provided in Table 2-7. Overall, concentrations ranged from not-detected to 0.56 ng/g from 1 sample collected during 2004 in 1 country, GB. Location types were categorized as Background. Reported detection frequency was 0.00.

Figure 2-8. Concentration of HBCD (ng/g) in the Dry Fraction of Dairy in Background Locations in 2004

* Study conducted in a country/countries classified as "High Income" by the World Bank

Table 2-7. Summary of Peer-Reviewed Literature that Measured HBCD (ng/g) Levels in the Dry Fraction of Dairy

Citation	Country	Location Type	Species	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng/g)	Quality Score	Overall Quality Level
<u>Driffield</u> <u>et al.</u> (2008)	GB*	Background	Milk	2004	1	0.0	N/R	1.4	High

*Study conducted in a country/countries classified as "High Income" by the World Bank Abbreviations: N/R, Not reported

2.4.2. Dairy (ng/g) – Lipid Fraction

Measured concentrations of HBCD in Dairy with unit of ng/g, extracted from 6 sources, are summarized in Figure 2-9 and supplemental information is provided in Table 2-8. Overall, concentrations ranged from not-detected to 5.29 ng/g from over 174 samples collected between 1999 and 2015 in 5 countries, SE, ES, BE, GB, and CN. Location types were categorized as Background. Reported detection frequencies ranged from 0.25 to 1.0.

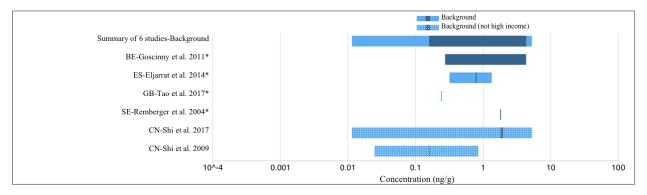
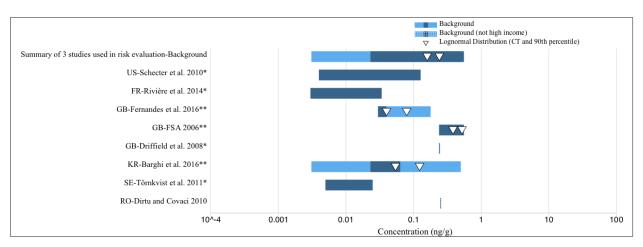


Figure 2-9. Concentration of HBCD (ng/g) in the Lipid Fraction of Dairy in Background Locations from 1999 to 2015

* Study conducted in a country/countries classified as "High Income" by the World Bank

Table 2-8. Summary of Peer-Reviewed Literature that Measured HBCD (ng/g) Levels in
the Lipid Fraction of Dairy


Citation	Country	Location Type	Species	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng/g)	Quality Score	Overall Quality Level
<u>Goscinny</u> <u>et al.</u> (2011)	BE*	Background	Milk, cheese, butter, pizza	2008	132	N/R	0.55	1.6	High
<u>Eljarrat et</u> <u>al. (2014</u>)	ES*	Background	Dairy products	2009	7	1.0	0.14	1.8	Medium
<u>Tao et al.</u> (2017)	GB*	Background	Cheese	2015	2	N/R	0.24	1.1	High
<u>Remberger</u> <u>et al.</u> (2004)	SE*	Background	Milk	1999	1	N/R	1.0	1.8	Medium

Citation	Country	Location Type	Species	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng/g)	Quality Score	Overall Quality Level
<u>Shi et al.</u> (2017a)	CN	Background	Milk	2011	20	0.95	0.023	2.0	Medium
<u>Shi et al.</u> (2009)	CN	Background	Milk	2007	12	0.25	0.05	1.6	High

*Study conducted in a country/countries classified as "High Income" by the World Bank Abbreviations: N/R, Not reported

2.4.3. Dairy (ng/g) – Wet Fraction

Measured concentrations of HBCD in Dairy with unit of ng/g, extracted from 8 sources, are summarized in Figure 2-10 and supplemental information is provided in Table 2-9. Overall, concentrations ranged from not-detected to 0.56 ng/g from over 404 samples collected between 2004 and 2014 in 6 countries, SE, US, FR, GB, KR, and RO. Location types were categorized as Background. Reported detection frequencies ranged from 0.00 to 0.89. Following the statistical procedures described above to obtain a final dataset, central tendency and high-end estimates, respectively, were 0.16 and 0.24 ng/g for Background (n = 3 studies).

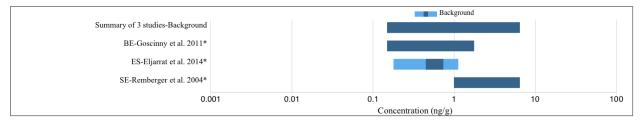
Figure 2-10. Concentration of HBCD (ng/g) in the Wet Fraction of Dairy in Background Locations from 2004 to 2014

* Study conducted in a country/countries classified as "High Income" by the World Bank; ** Study conducted in a country/countries classified as "High Income" by the World Bank and used in risk evaluation final dataset

Citation	Country	Location Type	Species	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng/g)	Quality Score	Overall Quality Level
<u>Schecter et</u> <u>al. (2010</u>)	US*	Background	Whole milk yogurt, cream cheese, frozen yogurt, ice cream, whole milk, other cheese, american cheese, butter	2009	N/R	N/R	0.13	2.0	Medium
<u>Rivière et</u> al. (2014)	FR*	Background	Milk, dairy products, cheese, butter, dairy-based desserts	2007- 2009	170	N/R	N/R	1.7	Medium
Fernandes et al. (2016)	GB**	Background	Milk, dairy products	2013	16	N/R	0.03	1.3	High
<u>Fsa (2006</u>)	GB**	Background	Dairy products, milk	2004	2	0.0	0.56	2.0	Medium
<u>Driffield et</u> <u>al. (2008</u>)	GB*	Background	Dairy products	2004	1	0.0	N/R	1.4	High
<u>Barghi et</u> al. (2016)	KR**	Background	Dairy products	2012- 2014	36	0.89	0.0062	1.3	High
<u>Törnkvist</u> <u>et al.</u> (2011)	SE*	Background	Milk (61%), sour milk (16%), yoghurt (8%), cream and sour cream (5%), cheese (8%), cottage cheese (2%), butter (9%), margarine (46%), low fat margarine (29%), oil (9%), mayonnaise (6%)	2005	142	N/R	0.05	1.8	Medium
Dirtu and Covaci (2010)	RO	Background	Dairy products (cheese, butter, milk, cream)	2007	37	0.0	N/R	2.6	Low

Table 2-9. Summary of Peer-Reviewed Literature that Measured HBCD (ng/g) Levels in the Wet Fraction of Dairy

*Study conducted in a country/countries classified as "High Income" by the World Bank


**Study conducted in a country/countries classified as "High Income" by the World Bank and included in risk evaluation

Abbreviations: N/R, Not reported

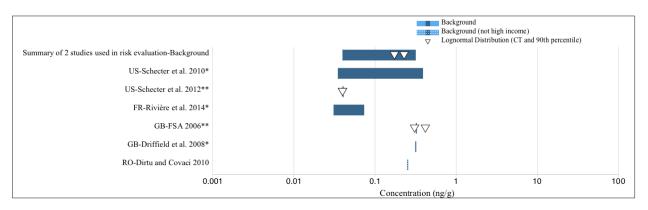
2.5. Diet – Fats

2.5.1. Fats (ng/g) – Lipid Fraction

Measured concentrations of HBCD in Fats with unit of ng/g, extracted from 3 sources, are summarized in Figure 2-11 and supplemental information is provided in Table 2-10. Overall, concentrations ranged from 0.15 to 6.5 ng/g from over 49 samples collected between 1999 and 2009 in 3 countries, SE, BE, and ES. Location types were categorized as Background. Reported detection frequency was 1.0.

Figure 2-11. Concentration of HBCD (ng/g) in the Lipid Fraction of Fats in Background Locations from 1999 to 2009

* Study conducted in a country/countries classified as "High Income" by the World Bank


Table 2-10. Summary of Peer-Reviewed Literature that Measured HBCD (ng/g) Levels in
the Lipid Fraction of Fats

Citation	Country	Location Type	Species	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng/g)	Quality Score	Overall Quality Level
<u>Goscinny</u> <u>et al.</u> (2011)	BE*	Background	Animal deep frying fat, vegetable oil, olive oil, arachide oil, sunflower oil, salad oil, choco spread	2008	38	N/R	0.55	1.6	High
<u>Eljarrat et</u> <u>al. (2014</u>)	ES*	Background	Animal fat, olive oil	2009	6	1.0	0.14	1.8	Medium
Remberger et al. (2004)	SE*	Background	Lamb fat, pork fat, beef fat, veal fat, chicken fat	1999	5	N/R	1.0	1.8	Medium

*Study conducted in a country/countries classified as "High Income" by the World Bank Abbreviations: N/R, Not reported

2.5.2. Fats (ng/g) – Wet Fraction

Measured concentrations of HBCD in Fats with unit of ng/g, extracted from 6 sources, are summarized in Figure 2-12 and supplemental information is provided in Table 2-11. Overall, concentrations ranged from not-detected to 0.39 ng/g from over 18 samples collected between 2004 and 2009 in 4 countries, RO, FR, US, and GB. Location types were categorized as Background. Reported detection frequencies ranged from 0.00 to 1.0. Following the statistical procedures described above to obtain a final dataset, central tendency and high-end estimates, respectively, were 0.17 and 0.23 ng/g for Background (n = 2 studies).

Figure 2-12. Concentration of HBCD (ng/g) in the Wet Fraction of Fats in Background Locations from 2004 to 2009

* Study conducted in a country/countries classified as "High Income" by the World Bank; ** Study conducted in a country/countries classified as "High Income" by the World Bank and used in risk

evaluation final dataset

Table 2-11. Summary of Peer-Reviewed Literature that Measured HBCD (ng/g) Levels in the Wet Fraction of Fats

Citation	Country	Location Type	Species	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng/g)	Quality Score	Overall Quality Level
<u>Schecter</u> <u>et al.</u> (2010)	US*	Background	Peanut butter, margarine, canola oil, olive oil	2009	N/R	N/R	0.39	2.0	Medium
<u>Schecter</u> <u>et al.</u> (2012)	US**	Background	Peanut butter	2009	3	1.0	0.02	1.2	High
<u>Rivière</u> <u>et al.</u> (2014)	FR*	Background	Oils, margarine, pizzas, quiches, and savory pastries	2007- 2009	11	N/R	N/R	1.7	Medium
<u>Fsa</u> (2006)	GB**	Background	Oils and fats	2004	1	0.0	0.32	2.0	Medium

Citation	Country	Location Type	Species	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng/g)	Quality Score	Overall Quality Level
Driffield et al. (2008)	GB*	Background	Oils and fats	2004	1	0.0	N/R	1.4	High
Dirtu and Covaci (2010)	RO	Background	Vegetable oil	2007	2	0.0	N/R	2.6	Low

*Study conducted in a country/countries classified as "High Income" by the World Bank

**Study conducted in a country/countries classified as "High Income" by the World Bank and included in risk evaluation

Abbreviations: N/R, Not reported

2.6. Diet – Fruit

2.6.1. Fruit (ng/g) – Dry Fraction

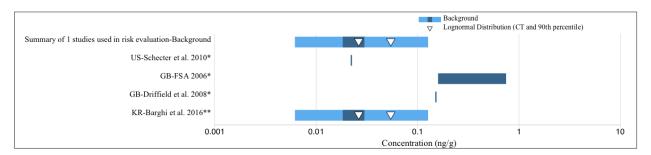
Measured concentrations of HBCD in Fruit with unit of ng/g, extracted from 1 source, are summarized in Figure 2-13 and supplemental information is provided in Table 2- 12. Overall, concentrations ranged from 0.27 to 0.75 ng/g from over 2 samples collected during 2004 in 1 country, GB. Location types were categorized as Background. Reported detection frequency was 1.0.

	Background						
GB-Driffield et al. 2008*							
0.001	0.01).1 1	10				
	Concentr	ation (ng/g)					

Figure 2-13. Concentration of HBCD (ng/g) in the Dry Fraction of Fruit in Background Locations in 2004

* Study conducted in a country/countries classified as "High Income" by the World Bank.

Table 2-12. Summary of Peer-Reviewed Literature that Measured HBCD (ng/g) Levels in the Dry Fraction of Fruit


Citation	Country	Location Type	Species	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng/g)	Quality Score	Overall Quality Level
<u>Driffield</u> <u>et al.</u> (2008)	GB*	Background	Fruit, fruit products	2004	2	1.0	N/R	1.4	High

*Study conducted in a country/countries classified as "High Income" by the World Bank Abbreviations: N/R, Not reported

2.6.2. Fruit (ng/g) – Wet Fraction

Measured concentrations of HBCD in Fruit with unit of ng/g, extracted from 4 sources, are summarized in Figure 2-14 and supplemental information is provided in Table 2-13. Overall, concentrations ranged from 0.01 to 0.75 ng/g from over 15 samples collected between 2004 and 2014 in 3 countries, GB, US, and KR. Location types were categorized as Background. Reported

detection frequency was 1.0. Following the statistical procedures described above to obtain a final dataset, central tendency and high-end estimates, respectively, were 0.03 and 0.05 ng/g for Background (n = 1 study).

Figure 2-14. Concentration of HBCD (ng/g) in the Wet Fraction of Fruit in Background Locations from 2004 to 2014

* Study conducted in a country/countries classified as "High Income" by the World Bank; ** Study conducted in a country/countries classified as "High Income" by the World Bank and used in risk evaluation final dataset

Table 2-13. Summary of Peer-Reviewed Literature that Measured HBCD (ng/g) Levels in
the Wet Fraction of Fruit

Citatio n	Countr y	Location Type	Species	Samplin g Year	Numbe r of Sample s	Frequenc y of Detection	Detectio n Limit (ng/g)	Qualit y Score	Overal l Qualit y Level
<u>Schecte</u> <u>r et al.</u> (2010)	US*	Backgroun d	Apples	2009	N/R	N/R	0.022	2.0	Mediu m
<u>Fsa</u> (2006)	GB*	Backgroun d	Fresh fruit, fruit products , sugars and preserve s	2004	3	1.0	N/R	2.0	Mediu m
<u>Driffiel</u> <u>d et al.</u> (2008)	GB*	Backgroun d	Sugars and preserve s	2004	1	1.0	N/R	1.4	High
<u>Barghi</u> <u>et al.</u> (2016)	KR**	Backgroun d	Fruit	2012- 2014	11	N/R	0.0062	1.3	High

*Study conducted in a country/countries classified as "High Income" by the World Bank

**Study conducted in a country/countries classified as "High Income" by the World Bank and included in risk evaluation

Abbreviations: N/R, Not reported

2.7. Diet – Grain

2.7.1. Grain (ng/g) – Dry Fraction

Measured concentrations of HBCD in Grain with unit of ng/g, extracted from 1 source, are summarized in Figure 2-15 and supplemental information is provided in Table 2-14. Overall, concentrations were around 0.02 ng/g from over 3 samples collected between 2005 and 2008 in 1 country, CN. Location types were categorized as Background. Reported detection frequency was 1.0.

		Background (not high income)						
CN-He et al. 2010								
0.0	001 0.	.01 C	.1 :	1	0 100			
			Concentration (ng/g)					

Figure 2-15. Concentration of HBCD (ng/g) in the Dry Fraction of Grain in Background Locations from 2005 to 2008

* Study conducted in a country/countries classified as "High Income" by the World Bank.

Table 2-14. Summary of Peer-Reviewed Literature that Measured HBCD (ng/g) Levels in the Dry Fraction of Grain

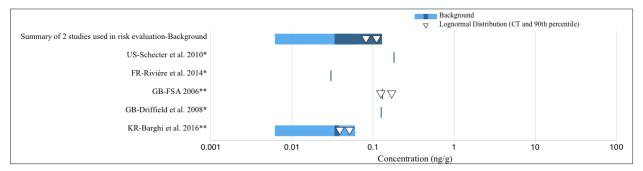
Citatio n	Countr y	Location Type	Species	Samplin g Year	Numbe r of Sample s	Frequenc y of Detection	Detectio n Limit (ng/g)	Qualit y Score	Overal l Qualit y Level
<u>He et</u> <u>al.</u> (2010)	CN	Backgroun d	Grain/ric e	2005- 2008	3	1.0	3.0	1.2	High

2.7.2. Grain (ng/g) – Lipid Fraction

Measured concentrations of HBCD in Grain with unit of ng/g, extracted from 1 source, are summarized in Figure 2-16 and supplemental information is provided in Table 2-15. Overall, concentrations ranged from 0.91 to 2.44 ng/g from over 80 samples collected during 2008 in 1 country, BE. Location types were categorized as Background. No detection frequencies were reported.

Figure 2-16. Concentration of HBCD (ng/g) in the Lipid Fraction of Grain in Background Locations in 2008

* Study conducted in a country/countries classified as "High Income" by the World Bank.


Table 2-15. Summary of Peer-Reviewed Literature that Measured HBCD (ng/g) Levels in
the Lipid Fraction of Grain

Citation	Country	Location Type	Species	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng/g)	Quality Score	Overall Quality Level
<u>Goscinny</u> <u>et al.</u> (2011)	BE*	Background	Croissant, cakes, pies, pastry, cookies/biscuits	2008	80	N/R	0.55	1.6	High

*Study conducted in a country/countries classified as "High Income" by the World Bank Abbreviations: N/R, Not reported

2.7.3. Grain (ng/g) – Wet Fraction

Measured concentrations of HBCD in Grain with unit of ng/g, extracted from 5 sources, are summarized in Figure 2-17 and supplemental information is provided in Table 2-16. Overall, concentrations ranged from not-detected to 0.18 ng/g from over 32 samples collected between 2004 and 2014 in 4 countries, FR, US, GB, and KR. Location types were categorized as Background. Reported detection frequency was 0.00. Following the statistical procedures described above to obtain a final dataset, central tendency and high-end estimates, respectively, were 0.08 and 0.11 ng/g for Background (n = 2 studies).

Figure 2-17. Concentration of HBCD (ng/g) in the Wet Fraction of Grain in Background Locations from 2004 to 2014

* Study conducted in a country/countries classified as "High Income" by the World Bank;

** Study conducted in a country/countries classified as "High Income" by the World Bank and used in risk evaluation final dataset

Table 2-16. Summary of Peer-Reviewed Literature that Measured HBCD (ng/g) Levels in
the Wet Fraction of Grain

Citation	Country	Location Type	Species	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng/g)	Quality Score	Overall Quality Level
<u>Schecter</u> <u>et al.</u> (2010)	US*	Background	Cereals	2009	N/R	N/R	0.18	2.0	Medium
<u>Rivière et</u> <u>al. (2014</u>)	FR*	Background	Sandwiches and snacks	2007-2009	18	N/R	N/R	1.7	Medium
<u>Fsa</u> (2006)	GB**	Background	Bread, cereal	2004	2	0.0	0.13	2.0	Medium

Citation	Country	Location Type	Species	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng/g)	Quality Score	Overall Quality Level
Driffield et al. (2008)	GB*	Background	Bread, cereals	2004	2	0.0	N/R	1.4	High
<u>Barghi et</u> al. (2016)		Background	White rice	2012-2014	10	N/R	0.0062	1.3	High

**Study conducted in a country/countries classified as "High Income" by the World Bank and included in risk evaluation Abbreviations: N/R, Not reported

2.8. Diet – Meat

2.8.1. Meat (ng/g) – Dry Fraction

Measured concentrations of HBCD in Meat with unit of ng/g, extracted from 1 source, are summarized in Figure 2-18 and supplemental information is provided in Table 2-17. Overall, concentrations were around 0.31 ng/g from over 5 samples collected during 2014 in 1 country, VN. Location types were categorized as Background. Reported detection frequency was 1.0.

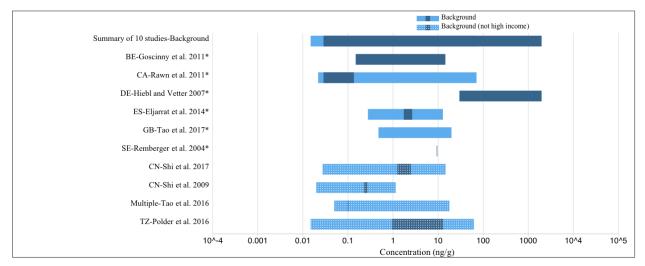

Figure 2-18. Concentration of HBCD (ng/g) in the Dry Fraction of Meat in Background Locations in 2014

Table 2-17. Summary of Peer-Reviewed Literature that Measured HBCD (ng/g) Levels in the Dry Fraction of Meat

Citation	Country	Location Type	Species	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng/g)	Quality Score	Overall Quality Level
<u>Tao et</u> <u>al.</u> (2016)	VN	Background	Pork	2014	5	1.0	0.05	2.0	Medium

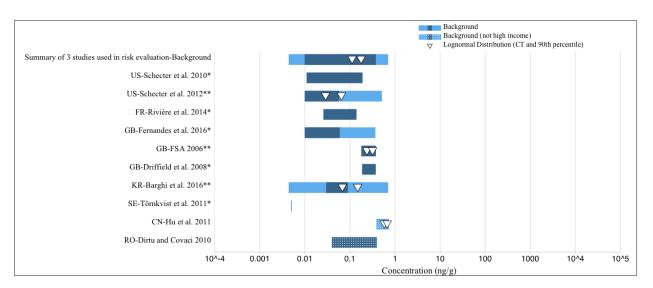
2.8.2. Meat (ng/g) – Lipid Fraction

Measured concentrations of HBCD in Meat with unit of ng/g, extracted from 10 sources, are summarized in Figure 2-19 and supplemental information is provided in Table 2-18. Overall, concentrations ranged from not-detected to 2000.0 ng/g from over 477 samples collected between 1999 and 2022 in at least 8 countries, including SE, CA, ES, TZ, BE, GB, CN, and DE. Location types were categorized as Background. Reported detection frequencies ranged from 0.54 to 1.0.

Figure 2-19. Concentration of HBCD (ng/g) in the Lipid Fraction of Meat in Background Locations from 1999 to 2015

* Study conducted in a country/countries classified as "High Income" by the World Bank.

Citation	Country	Location Type	Species	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng/g)	Quality Score	Overall Quality Level
<u>Goscinny</u> <u>et al.</u> (2011)	BE*	Background	Beef, veal, pork, sheep, turkey, horse, chicken, duck, rabbit, hind, pheasant, guinea hen, wild boar, quail, pigeon, sausages, salami, pie, meatloaf, pudding, horse filet, liver of veal, pork, rabbit, foie gras, eggs	2008	181	N/R	0.55	1.6	High
<u>Rawn et</u> <u>al. (2011</u>)	CA*	Background	Egg yolks	2005- 2006	162	1.0	0.022	2.0	Medium
Hiebl and Vetter (2007)	DE*	Background	Eggs	2007	3	N/R	20.0	2.1	Medium
<u>Eljarrat et</u> <u>al. (2014</u>)	ES*	Background	Meat, eggs	2009	12	1.0	0.14	1.8	Medium
<u>Tao et al.</u> (2017)	GB*	Background	Meat, egg	2015	19	N/R	0.48	1.1	High
<u>Remberge</u> <u>r et al.</u> (2004)	SE*	Background	Egg yolk	1999	1	N/R	1.0	1.8	Medium


Table 2-18. Summary of Peer-Reviewed Literature that Measured HBCD (ng/g) Levels in the Lipid Fraction of Meat

Citation	Country	Location Type	Species	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng/g)	Quality Score	Overall Quality Level
<u>Shi et al.</u> (2017a)	CN	Background	Eggs, meat	2011	40	0.95	0.055	2.0	Medium
<u>Shi et al.</u> (2009)	CN	Background	Meat, eggs	2007	24	0.54	0.04	1.6	High
<u>Tao et al.</u> (2016)	Multipl e	Background	Chicken (eggs), chicken (muscle, liver, and skin)	2014	8	N/R	0.05	2.0	Medium
<u>Polder et</u> al. (2016)	ΤZ	Background	Eggs	2012	27	0.63	0.03	1.9	Medium

*Study conducted in a country/countries classified as "High Income" by the World Bank Abbreviations: N/R, Not reported

2.8.3. Meat (ng/g) – Wet Fraction

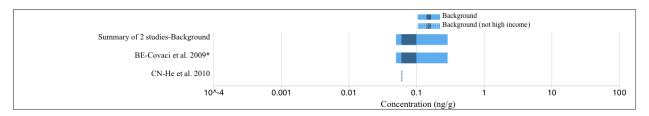
Measured concentrations of HBCD in Meat with unit of ng/g, extracted from 10 sources, are summarized in Figure 2-20 and supplemental information is provided in Table 2-19. Overall, concentrations ranged from not-detected to 0.74 ng/g from over 649 samples collected between 2004 and 2014 in 7 countries, SE, US, FR, GB, KR, CN, and RO. Location types were categorized as Background. Reported detection frequencies ranged from 0.00 to 1.0. Following the statistical procedures described above to obtain a final dataset, central tendency and high-end estimates, respectively, were 0.11 and 0.18 ng/g for Background (n = 3 studies).

Figure 2-20. Concentration of HBCD (ng/g) in the Wet Fraction of Meat in Background Locations from 2004 to 2014

* Study conducted in a country/countries classified as "High Income" by the World Bank; ** Study conducted in a country/countries classified as "High Income" by the World Bank and used in risk evaluation final dataset

Citation	Country	Location Type	Species	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng/g)	Quality Score	Overall Quality Level
Schecter et al. (2010)	US*	Background	Canned chili, roast beef, sliced chicken breast, ham, sausages, sliced turkey, bacon, hamburger, eggs	2009	N/R	N/R	0.06	2.0	Medium
<u>Schecter et</u> <u>al. (2012</u>)	US**	Background	Chili with beans, meat	2009	18	0.28	0.02	1.2	High
<u>Rivière et</u> <u>al. (2014</u>)	FR*	Background	Eggs, meats, poultry and game, offal	2007- 2009	228	N/R	N/R	1.7	Medium
Fernandes et al. (2016)	GB*	Background	Offal, meat, processed meat, eggs	2013	72	N/R	0.03	1.3	High
<u>Fsa (2006</u>)	GB**	Background	Meat, eggs, meat products, offal, poultry	2004	5	0.4	0.38	2.0	Medium
Driffield et al. (2008)	GB*	Background	Meat, offal, poultry, eggs	2004	5	0.4	N/R	1.4	High
<u>Barghi et</u> al. (2016)	KR**	Background	Meat, eggs	2012- 2014	142	N/R	0.0062	1.3	High
<u>Törnkvist</u> <u>et al.</u> (2011)	SE*	Background	Beef (24%), pork (23%), lamb (1%), chicken (12%), game (2%), processed meats except pizza (38%), eggs	2005	136	N/R	0.01	1.8	Medium
<u>Hu et al.</u> (2011b)	CN	Background	Eggs	2011	3	1.0	0.2	2.3	Low
Dirtu and Covaci (2010)	RO	Background	Meat (pork, beef, and chicken steak, salami and pork sausages), eggs	2007	40	0.0	N/R	2.6	Low

Table 2-19. Summary of Peer-Reviewed Literature that Measured HBCD (ng/g) Levels in the Wet Fraction of Meat


**Study conducted in a country/countries classified as "High Income" by the World Bank and included in risk evaluation

Abbreviations: N/R, Not reported

2.9. Diet – Other Food

2.9.1. Other Food (ng/g) – Dry Fraction

Measured concentrations of HBCD in Other Food with unit of ng/g, extracted from 2 sources, are summarized in Figure 2-21 and supplemental information is provided in Table 2-20. Overall, concentrations ranged from not-detected to 0.29 ng/g from over 8 samples collected between 2005 and 2008 in 2 countries, BE and CN. Location types were categorized as Background. Reported detection frequencies ranged from 0.2 to 1.0.

Figure 2-21. Concentration of HBCD (ng/g) in the Dry Fraction of Other Food in Background Locations from 2005 to 2008

* Study conducted in a country/countries classified as "High Income" by the World Bank.

Table 2-20. Summary of Peer-Reviewed Literature that Measured HBCD (ng/g) Levels in the Dry Fraction of Other Food

Citation	Country	Location Type	Species	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng/g)	Quality Score	Overall Quality Level
<u>Covaci</u> <u>et al.</u> (2009)	BE*	Background	Other - kitchen waste	2007	5	0.2	0.1	1.8	Medium
<u>He et</u> <u>al.</u> (2010)	CN	Background	Eucalyptus plant	2005- 2008	3	1.0	3.0	1.2	High

*Study conducted in a country/countries classified as "High Income" by the World Bank

2.9.2. Other Food (ng/g) – Lipid Fraction

Measured concentrations of HBCD in Other Food with unit of ng/g, extracted from 1 source, are summarized in Figure 2-22 and supplemental information is provided in Table 2-21. Overall, concentrations ranged from not-detected to 2.22 ng/g from over 12 samples collected during 2007 in 1 country, CN. Location types were categorized as Background. Reported detection frequency was 0.92.

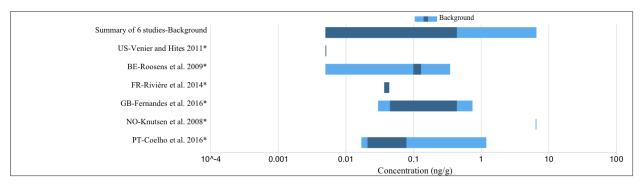

Figure 2-22. Concentration of HBCD (ng/g) in the Lipid Fraction of Other Food in Background Locations in 2007

Table 2-21. Summary of Peer-Reviewed Literature that Measured HBCD (ng/g) Levels in the Lipid Fraction of Other Food

Citation	Country	Location Type	Species	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng/g)	Quality Score	Overall Quality Level
<u>Shi et</u> <u>al.</u> (2009)	CN	Background	Various	2007	12	0.92	0.06	1.6	High

2.9.3. Other Food (ng/g) – Wet Fraction

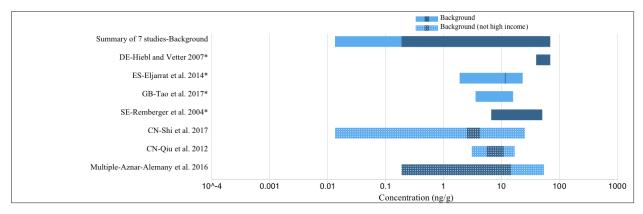
Measured concentrations of HBCD in Other Food with unit of ng/g, extracted from 6 sources, are summarized in Figure 2-23 and supplemental information is provided in Table 2-21. Overall, concentrations ranged from not-detected to 6.62 ng/g from over 231 samples collected between 2002 and 2016 in 6 countries, PT, US, FR, BE, NO, and GB. Location types were categorized as Background. Reported detection frequencies ranged from 0.08 to 1.0.

Figure 2-23. Concentration of HBCD (ng/g) in the Wet Fraction of Other Food in Background Locations from 2002 to 2016

* Study conducted in a country/countries classified as "High Income" by the World Bank.

Table 2-22. Summary of Peer-Reviewed Literature that Measured HBCD (ng/g) Levels in the Wet Fraction of Other Food

Citation	Country	Location Type	Species	Samplin g Year	Number of Samples	Frequency of Detection	Detection Limit (ng/g)	Quality Score	Overall Quality Level
Venier and <u>Hites</u> (2011)	US*	Background	Dog food	2010	16	1.0	N/R	1.9	Medium
<u>Roosens et</u> <u>al. (2009</u>)	BE*	Background	Duplicate diet for each participant on each day	2007	13	0.077	0.01	1.4	High


Citation	Country	Location Type	Species	Samplin g Year	Number of Samples	Frequency of Detection	Detection Limit (ng/g)	Quality Score	Overall Quality Level
<u>Rivière et</u> <u>al. (2014</u>)	FR*	Background	Mixed dishes, seasonings and sauces	2007- 2009	64	N/R	N/R	1.7	Medium
<u>Fernandes</u> <u>et al.</u> (2016)	GB*	Background	Other foods, processed foods, animal feed: composite feeds, animal feed: fish feeds, animal feed: oilseeds and cereals, animal feed: grasses	2013	63	N/R	0.13	1.3	High
<u>Knutsen et</u> <u>al. (2008</u>)	NO*	Background	Meat, dairy products, eggs, various foods (including vegetable oil, ice cream, biscuit, and banana).	2002- 2006	54	N/R	N/R	1.8	Medium
<u>Coelho et</u> <u>al. (2016b</u>)	PT*	Background	Multiple food types	2016	21	N/R	N/R	1.4	High

*Study conducted in a country/countries classified as "High Income" by the World Bank Abbreviations: N/R, Not reported

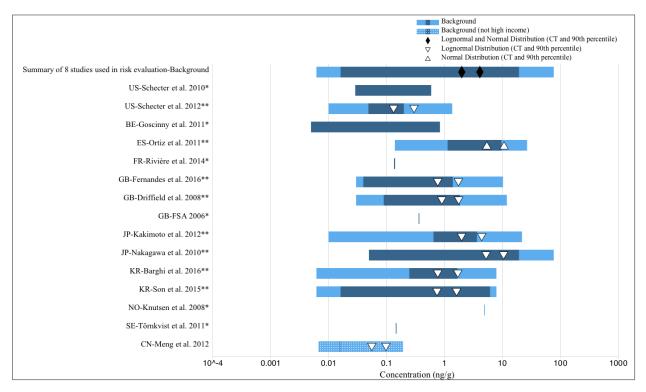
2.10. Diet – Seafood

2.10.1. Seafood (ng/g) – Lipid Fraction

Measured concentrations of HBCD in Seafood with unit of ng/g, extracted from 7 sources, are summarized in Figure 2-24 and supplemental information is provided in Table 2-22. Overall, concentrations ranged from not-detected to 70 ng/g from over 72 samples collected between 1996 and 2015 in at least 5 countries, including SE, ES, GB, CN, and DE. Location types were categorized as Background. Reported detection frequencies ranged from 0.95 to 1.0.

Figure 2-24. Concentration of HBCD (ng/g) in the Lipid Fraction of Seafood in Background Locations from 1996 to 2015

* Study conducted in a country/countries classified as "High Income" by the World Bank.


Table 2-23. Summary of Peer-Reviewed Literature that Measured HBCD (ng/g) Levels in
the Lipid Fraction of Seafood

Citation	Country	Location Type	Species	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng/g)	Quality Score	Overall Quality Level
Hiebl and Vetter (2007)	DE*	Background	Whole, fillets, fillet	2007	3	N/R	20.0	2.1	Medium
<u>Eljarrat et</u> al. (2014)	ES*	Background	Seafood	2009	22	1.0	0.14	1.8	Medium
<u>Tao et al.</u> (2017)	GB*	Background	Salmon, mackerel, tuna, trout	2015	9	N/R	N/R	1.1	High
<u>Remberger</u> <u>et al.</u> (2004)	SE*	Background	Seafood, salmon	1996- 1999	3	N/R	1.0	1.8	Medium
<u>Shi et al.</u> (2017a)	CN	Background	Fish	2011	20	0.95	0.027	2.0	Medium
<u>Qiu et al.</u> (2012)	CN	Background	Fish - mandarin fish (muscle)	2007- 2008	15	1.0	N/R	2.0	Medium
<u>Aznar-</u> <u>Alemany</u> <u>et al.</u> (2016)	Multiple	Background	Seafood	2014- 2015	N/R	N/R	2.0	1.7	Medium

*Study conducted in a country/countries classified as "High Income" by the World Bank Abbreviations: N/R, Not reported

2.10.2. Seafood (ng/g) – Wet Fraction

Measured concentrations of HBCD in Seafood with unit of ng/g, extracted from 15 sources, are summarized in Figure 2-25 and supplemental information is provided in Table 2-24. Overall, concentrations ranged from not-detected to 77.3 ng/g from over 898 samples collected between 2002 and 2014 in 10 countries, SE, ES, US, FR, BE, GB, KR, NO, CN, and JP. Location types were categorized as Background. Reported detection frequencies ranged from 0.67 to 1.0. Following the statistical procedures described above to obtain a final dataset, central tendency and high-end estimates, respectively, were 2.0 and 4.1 ng/g for Background (n = 8 studies).

Figure 2-25. Concentration of HBCD (ng/g) in the Wet Fraction of Seafood in Background Locations from 2002 to 2014

* Study conducted in a country/countries classified as "High Income" by the World Bank; ** Study conducted in a country/countries classified as "High Income" by the World Bank and used in risk evaluation final dataset

Table 2-24. Summary of Peer-Reviewed Literature that Measured HBCD (ng/g) Levels in	
the Wet Fraction of Seafood	

Citation	Country	Location Type	Species	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng/g)	Quality Score	Overall Quality Level
<u>Schecter et</u> <u>al. (2010</u>)	US*	Background	Frozen fish sticks, canned sardines, cod, tilapia, catfish fillet, canned tuna, salmon	2009	N/R	N/R	0.059	2.0	Medium

Citation	Country	Location Type	Species	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng/g)	Quality Score	Overall Quality Level
<u>Schecter et</u> <u>al. (2012)</u>	US**	Background	Seafood	2009	15	0.67	0.02	1.2	High
<u>Goscinny</u> <u>et al.</u> (2011)	BE*	Background	Salmon, tuna, cod, herring, sardine, mackerel, trout, halibut, sole, monkfish, saithe, hake, crustaceans, molluscs, tuna salad, crab salad, fish salad, surimi salad, fish stick, surimi	2008	118	N/R	0.55	1.6	High
<u>Ortiz et al.</u> (2011)	ES**	Background	Fish oil	2011	22	1.0	0.14	1.4	High
<u>Rivière et</u> al. (2014)	FR*	Background	Fish, crustaceans and mollusks	2007-2009	82	N/R	N/R	1.7	Medium
Fernandes et al. (2016)	GB**	Background	Fish, shellfish	2013	56	N/R	0.03	1.3	High
Driffield et al. (2008)	GB**	Background	Fish, oysters, mussels, scallops	2004-2006	36	0.83	N/R	1.4	High
Fsa (2006)	GB*	Background	Fish	2004	1	1.0	N/R	2.0	Medium
<u>Kakimoto</u> <u>et al.</u> (2012)	JP**	Background	Fish	2011	18	0.89	0.02	1.6	High
<u>Nakagawa</u> <u>et al.</u> (2010)	JP**	Background	Seafood: marine fish and invertebrates	2004-2008	64	N/R	0.05	1.4	High
<u>Barghi et</u> <u>al. (2016</u>)	KR**	Background	Fish	2012-2014	40	N/R	0.0062	1.3	High

Citation	Country	Location Type	Species	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng/g)	Quality Score	Overall Quality Level
<u>Son et al.</u> (2015)	KR**	Background	Fish - mackerel, cod, halibut, pacific saury, herring, anchovy, gray mullet (whole organism, entrails removed), fish - catfish (whole organism, entrails removed), marine invertebrates - snow crab, blue crab, king prawn, lobster, tiger prawn, sea urchin, jellyfish, sea cucumber, spoon worm, sea squirt, warty sea squirt, whelk, conch, pen shell, abalone, river snail, east asian white clam, cockle, white clam, scallop, mussel, oyster, octopus, mitra squid, squid, cuttlefish, beka squid, webfoot octopus, and long- legged octopus (whole organisms (some with entrails included))	2012-2013	227	N/R	0.0062	1.6	High
<u>Knutsen et</u> <u>al. (2008</u>)	NO*	Background	Seafood	2002-2006	55	N/R	N/R	1.8	Medium
<u>Törnkvist</u> <u>et al.</u> (2011)	SE*	Background	Fresh and frozen lean fish (26%), fresh and frozen fatty fish (15%), canned/ processed products (47%), prawns (12%)	2005	104	N/R	N/R	1.8	Medium
<u>Meng et al.</u> (2012)	CN	Background	Tilapia, bighead carp, bluntsnout bream, grass carp, northern snakehead, largemouth bass, and mandarin fish; snubnose pompano, crimson snapper, red drum, hairtail and gold thread (muscle)	2004-2005	60	0.7	0.013	1.3	High

**Study conducted in a country/countries classified as "High Income" by the World Bank and included in risk evaluation

Abbreviations: N/R, Not reported

2.11. Diet – Vegetable

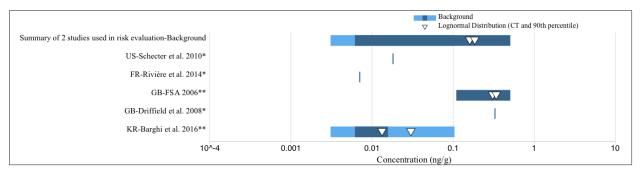
2.11.1. Vegetable (ng/g) – Dry Fraction

Measured concentrations of HBCD in Vegetable with unit of ng/g, extracted from 1 source, are summarized in Figure 2-26 and supplemental information is provided in Table 2-25. Overall, concentrations ranged from not-detected to 0.51 ng/g from over 4 samples collected during 2004 in 1 country, GB. Location types were categorized as Background. Reported detection frequency was 0.75.

			Back	ground		
GB-Driffield et al. 2008*						
10/	-4 0.0	0.0	01 0	.1 1	10	5
			Concentration (ng/g)			

Figure 2-26. Concentration of HBCD (ng/g) in the Dry Fraction of Vegetable in Background Locations in 2004

* Study conducted in a country/countries classified as "High Income" by the World Bank.


Table 2-25. Summary of Peer-Reviewed Literature that Measured HBCD (ng/g) Levels in the Dry Fraction of Vegetable

Citation	Country	Location Type	Species	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng/g)	Quality Score	Overall Quality Level
Driffield et al. (2008)	GB*	Background	Green vegetables, potatoes, other vegetables, canned vegetables	2004	4	0.75	N/R	1.4	High

*Study conducted in a country/countries classified as "High Income" by the World Bank Abbreviations: N/R, Not reported

2.11.2. Vegetable (ng/g) – Wet Fraction

Measured concentrations of HBCD in Vegetable with unit of ng/g, extracted from 5 sources, are summarized in Figure 2-27 and supplemental information is provided in Table 2-26. Overall, concentrations ranged from not-detected to 0.51 ng/g from over 34 samples collected between 2004 and 2014 in 4 countries, FR, US, GB, and KR. Location types were categorized as Background. Reported detection frequencies ranged from 0.8 to 1.0. Following the statistical procedures described above to obtain a final dataset, central tendency and high-end estimates, respectively, were 0.16 and 0.19 ng/g for Background (n = 2 studies).

Figure 2-27. Concentration of HBCD (ng/g) in the Wet Fraction of Vegetable in Background Locations from 2004 to 2014

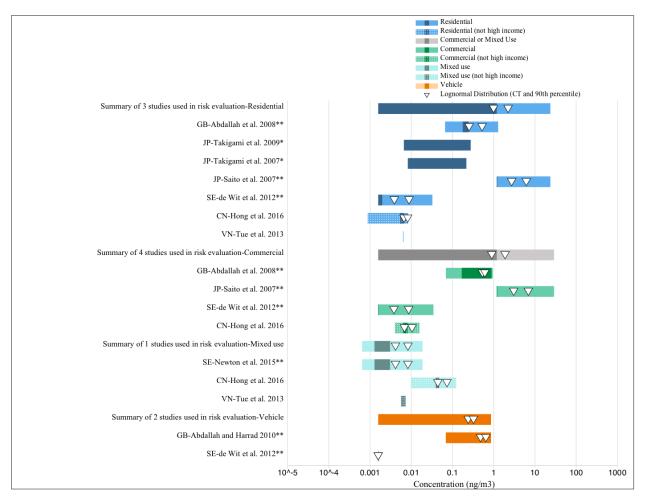
* Study conducted in a country/countries classified as "High Income" by the World Bank; ** Study conducted in a country/countries classified as "High Income" by the World Bank and used in risk evaluation final dataset

Table 2-26. Summary of Peer-Reviewed Literature that Measured HBCD (ng/g) Levels in the Wet Fraction of Vegetable

Citation	Country	Location Type	Species	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng/g)	Quality Score	Overall Quality Level
<u>Schecter</u> <u>et al.</u> (2010)	US*	Background	Potatoes	2009	N/R	N/R	0.018	2.0	Medium
<u>Rivière</u> <u>et al.</u> (2014)	FR*	Background	Vegetables	2007- 2009	3	N/R	N/R	1.7	Medium
<u>Fsa</u> (2006)	GB**	Background	Canned vegetables, green vegetables, nuts, other vegetables, potatoes	2004	5	0.8	0.51	2.0	Medium
Driffield et al. (2008)	GB*	Background	Nuts	2004	1	1.0	N/R	1.4	High
<u>Barghi</u> <u>et al.</u> (2016)	KR**	Background	Vegetables	2012- 2014	25	0.88	0.0062	1.3	High

*Study conducted in a country/countries classified as "High Income" by the World Bank

**Study conducted in a country/countries classified as "High Income" by the World Bank and included in risk evaluation


Abbreviations: N/R, Not reported

2.12. Indoor Air

2.12.1. Indoor Air (ng/m³)

Measured concentrations of HBCD in Indoor Air with unit of ng/m3, extracted from 16 sources with particulate and/or gas fractions are summarized in Figure 2-28 and supplemental

information is provided in Table 2-27. Overall, concentrations ranged from not-detected to 29.5 ng/m3 between 2001 and 2012 in 5 countries, SE, VN, GB, CN, and JP. Location types were categorized as Residential, Mixed Use, Commercial, and Vehicle. Reported detection frequencies ranged from 0.15 to 1.0. Following the statistical procedures described above to obtain a final data set, central tendency and high-end estimates, respectively, were 1.0 and 2.3 ng/m³ for Residential (n = 3 studies), 0.91 and 1.9 ng/m³ for Commercial/Mixed Use/Schools (n = 4 studies), 0.24 and 0.33 ng/m³ Vehicle (n = 2 studies).

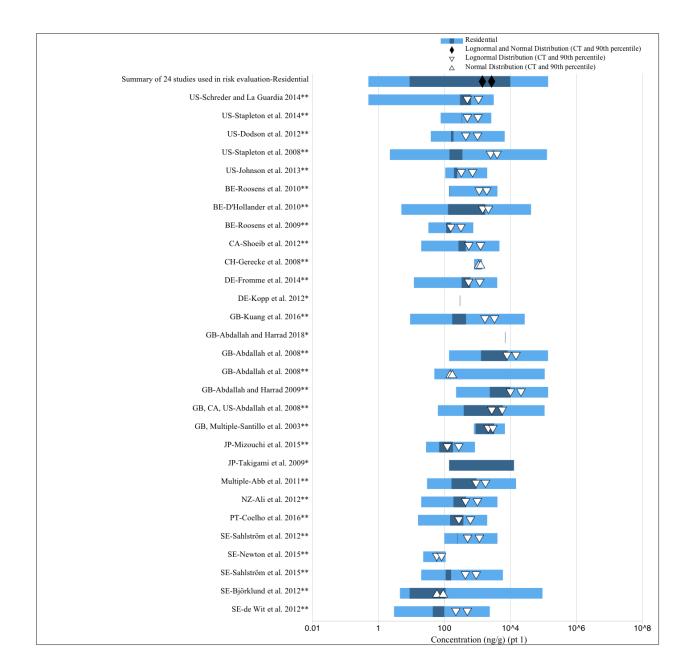
Figure 2-28. Concentration of HBCD (ng/m3) in Indoor Air in Residential, Commercial, and Mixed Use Locations from 2001 to 2012

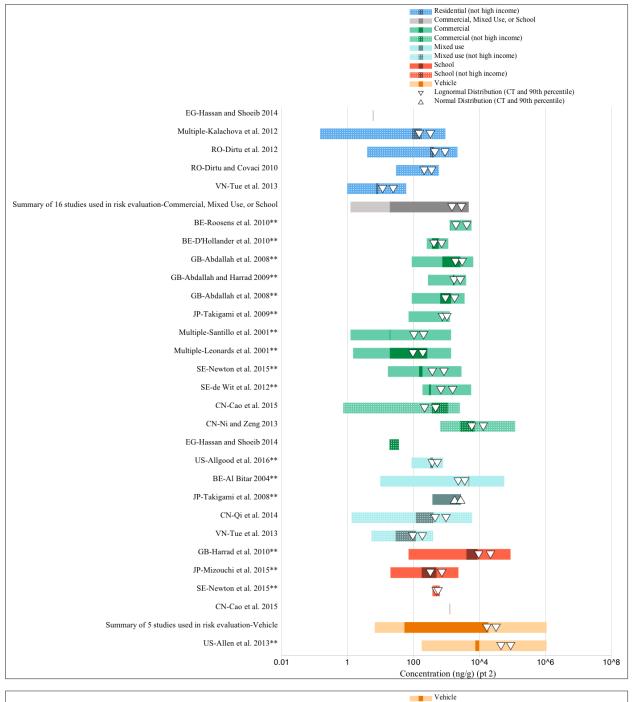
* Study conducted in a country/countries classified as "High Income" by the World Bank; ** Study conducted in a country/countries classified as "High Income" by the World Bank and used in risk evaluation final dataset

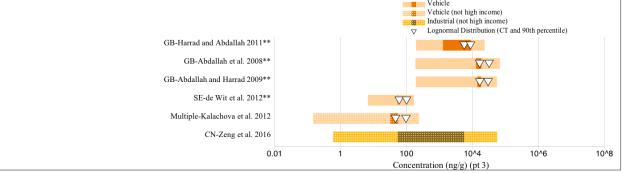
Citation	Country	Location Type	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng/m3)	Quality Score	Overall Quality Level
			Partic	ulate Fracti	on			
<u>Abdallah</u> <u>et al.</u> (2008a)	GB**	Residential	2007	33	1.0	0.0033	1.3	High
<u>Takigami</u> <u>et al.</u> (2009b)	JP*	Residential	2006	4	N/R	N/R	1.9	Medium
<u>Takigami</u> <u>et al.</u> (2007)	JP*	Residential	2006	4	1.0	N/R	2.2	Medium
<u>Saito et al.</u> (2007)	JP**	Residential	2001	18	N/R	1.2	1.9	Medium
<u>Hong et al.</u> (2016)	CN	Residential	2004- 2005	12	N/R	N/R	1.6	High
<u>Tue et al.</u> (2013)	VN	Residential	2008	N/R	N/R	N/R	1.9	Medium
<u>Abdallah</u> <u>et al.</u> (2008a)	GB**	Commercial	2007	29	1.0	0.0033	1.3	High
<u>Saito et al.</u> (2007)	JP**	Commercial	2001	14	N/R	1.2	1.9	Medium
<u>Hong et al.</u> (2016)	CN	Commercial	2004- 2005	5	N/R	N/R	1.6	High
<u>Newton et</u> <u>al. (2015)</u>	SE**	Mixed use	2012	13	0.15	0.0013	2.0	Medium
<u>Hong et al.</u> (2016)	CN	Mixed use	2004- 2005	10	N/R	N/R	1.6	High
<u>Tue et al.</u> (2013)	VN	Mixed use	2008	N/R	N/R	N/R	1.9	Medium
			Gas and Pa	articulate F	raction			
<u>de Wit et</u> <u>al. (2012</u>)	SE**	Residential	2006	54	N/R	0.0016	1.1	High
<u>de Wit et</u> <u>al. (2012</u>)	SE**	Commercial	2006	20	N/R	0.0016	1.1	High
<u>Abdallah</u> <u>and</u> <u>Harrad</u> (2010)	GB**	Vehicle	2008- 2009	39	1.0	N/R	1.4	High
<u>de Wit et</u> <u>al. (2012</u>)	SE**	Vehicle	2006	24	N/R	0.0016	1.1	High

Table 2-27. Summary of Peer-Reviewed Literature that Measured HBCD (ng/m3) Levels in Indoor Air

**Study conducted in a country/countries classified as "High Income" by the World Bank and included in risk


evaluation


Abbreviations: N/R, Not reported


2.13. Indoor Dust

2.13.1. Indoor Dust (ng/g) – Dry Fraction

Measured concentrations of HBCD in Indoor Dust with unit of ng/g, extracted from 63 sources, are summarized in Figure 2-29 and supplemental information is provided in Table 2-28. Overall, concentrations ranged from not-detected to 1100000.0 ng/g from over 1711 samples collected between 2000 and 2015 in at least 14 countries, including SE, CA, PT, NZ, RO, US, CH, EG, BE, GB, VN, CN, JP, and DE. Location types were categorized as Vehicle, School, Residential, Industrial, Commercial, and Mixed Use. Reported detection frequencies ranged from 0.2 to 1.0. Following the statistical procedures described above to obtain a final dataset, central tendency and high-end estimates, respectively, were 1431.95 and 2721.92 ng/g for Residential (n = 26 studies), 900.97 and 1627.54 ng/g for Commercial (n = 10 studies), 1492.96 and 2303.79 ng/g for Mixed Use (n = 3 studies), 3479.34 and 7718.1 ng/g for School (n = 3 studies), and 17014.78 and 32326.8 ng/g for Vehicle (n = 5 studies).

Page 55 of 160

Figure 2-29. Concentration of HBCD (ng/g) in the Dry Fraction of Indoor Dust in Residential, Commercial, Mixed Use, School, Vehicle, and Industrial Locations from 2000 to 2015

* Study conducted in a country/countries classified as "High Income" by the World Bank;

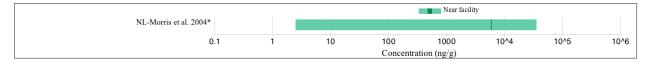
** Study conducted in a country/countries classified as "High Income" by the World Bank and used in risk evaluation final dataset

Citation	Country	Location Type	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng/g)	Quality Score	Overall Quality Level
Schreder and La Guardia (2014)	US**	Residential	2011-2012	20	0.95	1.0	1.6	Medium
Stapleton et al. (2014)	US**	Residential	2012	30	1.0	N/R	1.8	Medium
<u>Dodson et al.</u> (2012)	US**	Residential	2006-2011	32	1.0	5.0	1.4	High
Stapleton et al. (2008)	US**	Residential	2006	35	0.94	4.5	2.1	Medium
Johnson et al. (2013)	US**	Residential	2002-2003	38	0.97	N/R	2.1	Medium
Roosens et al. (2010a)	BE**	Residential	2008	43	1.0	N/R	1.7	Medium
D'Hollander et al. (2010)	BE**	Residential	2008	43	1.0	N/R	1.6	High
<u>Roosens et</u> al. (2009)	BE**	Residential	2007	16	1.0	N/R	1.4	High
<u>Shoeib et al.</u> (2012)	CA**	Residential	2007-2008	116	1.0	N/R	2.0	Medium
Gerecke et al. (2008)	CH**	Residential	2003-2007	3	1.0	N/R	1.8	Medium
Fromme et al. (2014)	DE**	Residential	2013	40	1.0	1.0	2.0	Medium
<u>Kopp et al.</u> (2012)	DE*	Residential	2012	5	1.0	3.0	1.8	Medium
<u>Kuang et al.</u> (2016)	GB**	Residential	2015	60	1.0	0.56	1.4	High
Abdallah and Harrad (2018)	GB*	Residential	2008	1	1.0	N/R	1.7	Medium
Abdallah et al. (2008a)	GB**	Residential	2006-2007	45	1.0	0.1	1.3	High
Abdallah et al. (2008b)	GB**	Residential	2007	37	1.0	0.2	1.7	Medium
Abdallah and Harrad (2009)	GB**	Residential	2007	21	1.0	0.3	1.2	High
Abdallah et al. (2008c)	GB, CA, US**	Residential	2006	52	1.0	N/R	1.8	Medium
Santillo et al. (2003)	GB, Multiple**	Residential	2002	12	1.0	2.5	1.6	High

Table 2-28. Summary of Peer-Reviewed Literature that Measured HBCD (ng/g) Levels in the Dry Fraction of Indoor Dust

Citation	Country	Location Type	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng/g)	Quality Score	Overall Quality Level
Mizouchi et al. (2015)	JP**	Residential	2009-2010	10	1.0	20.0	1.9	Medium
Takigami et al. (2009b)	JP*	Residential	2006	2	N/R	N/R	1.9	Medium
<u>Abb et al.</u> (2011)	Multiple**	Residential	2011	26	1.0	N/R	1.9	Medium
<u>Ali et al.</u> (2012)	NZ**	Residential	2008	50	1.0	N/R	1.9	Medium
Coelho et al. (2016a)	PT**	Residential	2010-2011	56	1.0	0.23	2.0	Medium
Sahlström et al. (2012)	SE**	Residential	2012	6	1.0	N/R	1.9	Medium
<u>Newton et al.</u> (2015)	SE**	Residential	2012	4	1.0	N/R	2.0	Medium
Sahlström et al. (2015a)	SE**	Residential	2009-2010	27	1.0	N/R	1.7	Medium
Björklund et al. (2012)	SE**	Residential	2008-2009	37	0.86	9.1	1.9	Medium
<u>de Wit et al.</u> (2012)	SE**	Residential	2006	44	N/R	3.0	1.1	High
Hassan and Shoeib (2014)	EG	Residential	2013	17	N/R	N/R	1.6	Medium
Kalachova et al. (2012)	Multiple	Residential	2008	24	0.88	0.3	1.7	Medium
<u>Dirtu et al.</u> (2012)	RO	Residential	2010	47	1.0	6.0	1.3	High
Dirtu and Covaci (2010)	RO	Residential	2007	18	1.0	N/R	2.6	Low
<u>Tue et al.</u> (2013)	VN	Residential	2008	13	1.0	N/R	1.9	Medium
Roosens et al. (2010a)	BE**	Commercial	2008	10	1.0	N/R	1.7	Medium
D'Hollander et al. (2010)	BE**	Commercial	2008	10	1.0	N/R	1.6	High
Abdallah et al. (2008a)	GB**	Commercial	2006-2007	32	1.0	0.1	1.3	High
Abdallah and <u>Harrad</u> (2009)	GB**	Commercial	2007	21	1.0	0.3	1.2	High
Abdallah et al. (2008c)	GB**	Commercial	2006	6	1.0	N/R	1.8	Medium
Takigami et al. (2009a)	JP**	Commercial	2006	8	1.0	20.0	1.7	Medium
Santillo et al. (2001)	Multiple**	Commercial	2000-2001	7	0.71	2.5	2.0	Medium
Leonards et al. (2001)	Multiple**	Commercial	2000	10	0.7	3.0	1.8	Medium
<u>Newton et al.</u> (2015)	SE**	Commercial	2012	27	1.0	N/R	2.0	Medium

Citation	Country	Location Type	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng/g)	Quality Score	Overall Quality Level
<u>de Wit et al.</u> (2012)	SE**	Commercial	2006	20	N/R	3.0	1.1	High
<u>Cao et al.</u> (2015)	CN	Commercial	2012	65	N/R	1.5	1.8	Medium
<u>Ni and Zeng</u> (2013)	CN	Commercial	2009	56	1.0	N/R	1.4	High
Hassan and Shoeib (2014)	EG	Commercial	2013	14	N/R	N/R	1.6	Medium
<u>Allgood et</u> <u>al. (2016</u>)	US**	Mixed use	2013	20	1.0	1.0	1.3	High
<u>Al Bitar</u> (2004)	BE**	Mixed use	2003	23	0.26	20.0	1.4	Low
Takigami et al. (2008)	JP**	Mixed use	2005	15	0.2	400.0	1.8	Medium
<u>Qi et al.</u> (2014b)	CN	Mixed use	2010-2011	81	0.99	2.7	1.4	High
<u>Tue et al.</u> (2013)	VN	Mixed use	2008	20	1.0	N/R	1.9	Medium
<u>Harrad et al.</u> (2010)	GB**	School	2007-2008	36	0.83	N/R	2.0	Medium
Mizouchi et al. (2015)	JP**	School	2009-2010	18	1.0	20.0	1.9	Medium
<u>Newton et al.</u> (2015)	SE**	School	2012	2	1.0	N/R	2.0	Medium
<u>Cao et al.</u> (2015)	CN	School	2012	2	N/R	1.5	1.8	Medium
<u>Allen et al.</u> (2013)	US**	Vehicle	2010	40	1.0	0.12	2.1	Medium
Harrad and Abdallah (2011)	GB**	Vehicle	2009	28	1.0	N/R	2.0	Medium
Abdallah et al. (2008a)	GB**	Vehicle	2006-2007	20	1.0	0.1	1.3	High
Abdallah and Harrad (2009)	GB**	Vehicle	2007	12	1.0	0.3	1.2	High
<u>de Wit et al.</u> (2012)	SE**	Vehicle	2006	4	N/R	3.0	1.1	High
Kalachova et al. (2012)	Multiple	Vehicle	2008	26	0.96	0.3	1.7	Medium
<u>Zeng et al.</u> (2016)	CN	Industrial	2013	48	0.92	1.2	1.2	High


**Study conducted in a country/countries classified as "High Income" by the World Bank and included in risk evaluation

Abbreviations: N/R, Not reported

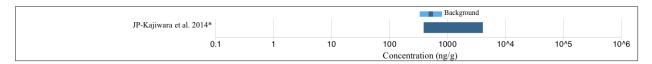
2.14. Landfill Leachate

2.14.1. Landfill Leachate (ng/g) – Dry Fraction

Measured concentrations of HBCD in Landfill Leachate with unit of ng/g, extracted from 1 source, are summarized in Figure 2-30 and supplemental information is provided in Table 2-29. Overall, concentrations ranged from 2.5 to 36000 ng/g from over 11 samples collected during 2002 in 1 country, NL. Location types were categorized as Near Facility. Reported detection frequency was 1.0.

Figure 2-30. Concentration of HBCD (ng/g) in the Dry Fraction of Landfill Leachate in Near Facility Locations in 2002

* Study conducted in a country/countries classified as "High Income" by the World Bank.


Table 2-29. Summary of Peer-Reviewed Literature that Measured HBCD (ng/g) Levels in the Dry Fraction of Landfill Leachate

Citation	Country	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng/g)	Quality Score	Overall Quality Level
<u>Morris et</u> al. (2004)	NL*	2002	11	1.0	1.2	2.3	Low

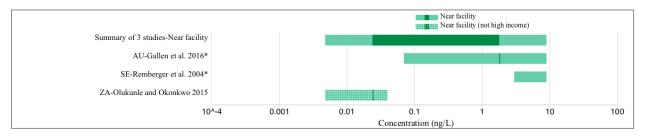
*Study conducted in a country/countries classified as "High Income" by the World Bank

2.14.2. Landfill Leachate (ng/g) – Wet Fraction

Measured concentrations of HBCD in Landfill Leachate with unit of ng/g, extracted from 1 source, are summarized in Figure 2-31 and supplemental information is provided in Table 2-30. Overall, concentrations ranged from 390 to 4100 ng/g from over 2 samples collected during 2006 in 1 country, JP. Location types were categorized as Background. Reported detection frequency was 1.0.

Figure 2-31. Concentration of HBCD (ng/g) in the Wet Fraction of Landfill Leachate in Background Locations in 2006

* Study conducted in a country/countries classified as "High Income" by the World Bank.


Table 2-30. Summary of Peer-Reviewed Literature that Measured HBCD (ng/g) Levels in the Wet Fraction of Landfill Leachate

Citation	Country	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng/g)	Quality Score	Overall Quality Level
<u>Kajiwara et</u> <u>al. (2014</u>)	JP*	2006	2	1.0	N/R	2.0	Medium

*Study conducted in a country/countries classified as "High Income" by the World Bank Abbreviations: N/R, Not reported

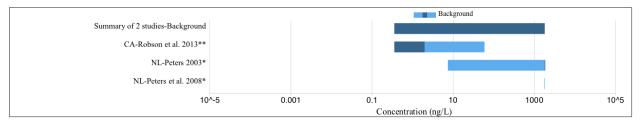
2.14.3. Landfill Leachate (ng/L) – Wet Fraction

Measured concentrations of HBCD in Landfill Leachate with unit of ng/l, extracted from 3 sources, are summarized in Figure 2-32 and supplemental information is provided in Table 2-31. Overall, concentrations ranged from 4.80E-03 to 9.0 ng/l from over 33 samples collected between 2000 and 2014 in 3 countries, SE, ZA, and AU. Location types were categorized as Near Facility. Reported detection frequency was 1.0.

Figure 2-32. Concentration of HBCD (ng/L) in the Wet Fraction of Landfill Leachate in Near Facility Locations from 2000 to 2014

* Study conducted in a country/countries classified as "High Income" by the World Bank.

Table 2-31. Summary of Peer-Reviewed Literature that Measured HBCD (ng/L) Levels in the Wet Fraction of Landfill Leachate


Citation	Country	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng/L)	Quality Score	Overall Quality Level
<u>Gallen et al.</u> (2016)	AU*	2014	13	N/R	0.3	1.8	Medium
Remberger et al. (2004)	SE*	2000	2	1.0	N/R	1.8	Medium
<u>Olukunle</u> <u>and</u> <u>Okonkwo</u> <u>(2015</u>)	ZA	2013	18	N/R	25000.0	1.8	Medium

*Study conducted in a country/countries classified as "High Income" by the World Bank Abbreviations: N/R, Not reported

2.15. Precipitation

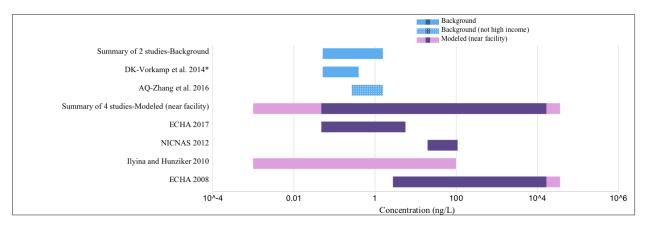
2.15.1. Precipitation (ng/L) – Wet Fraction

Measured concentrations of HBCD in Precipitation with unit of ng/l, extracted from 3 sources, are summarized in Figure 2-33 and supplemental information is provided in Table 2-32. Overall, concentrations ranged from not-detected to 1835 ng/l from over 494 samples collected between 2003 and 2010 in 2 countries, NL and CA. Location types were categorized as Background. Reported detection frequencies ranged from 0.00 to 0.02.

Figure 2-33. Concentration of HBCD (ng/L) in the Wet Fraction of Precipitation in Background Locations from 2003 to 2010

* Study conducted in a country/countries classified as "High Income" by the World Bank; ** Study conducted in a country/countries classified as "High Income" by the World Bank and used in risk evaluation final dataset

Table 2-32. Summary of Peer-Reviewed Literature that Measured HBCD (ng/L) Levels in the Wet Fraction of Precipitation


Citation	Country	Location Type	Species	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng/L)	Quality Score	Overall Quality Level
<u>Robson</u> <u>et al.</u> (2013)	CA*	Background	Rain, snow	2004- 2010	443	N/R	N/R	1.4	High
<u>Peters</u> (2003)	NL*	Background	Precipitation	2003	50	0.02	15.0	1.7	Medium
<u>Peters et</u> <u>al.</u> (2008)	NL*	Background	Rainwater	2003	1	0.0	15.0	2.0	Medium

*Study conducted in a country/countries classified as "High Income" by the World Bank

2.16. Seawater

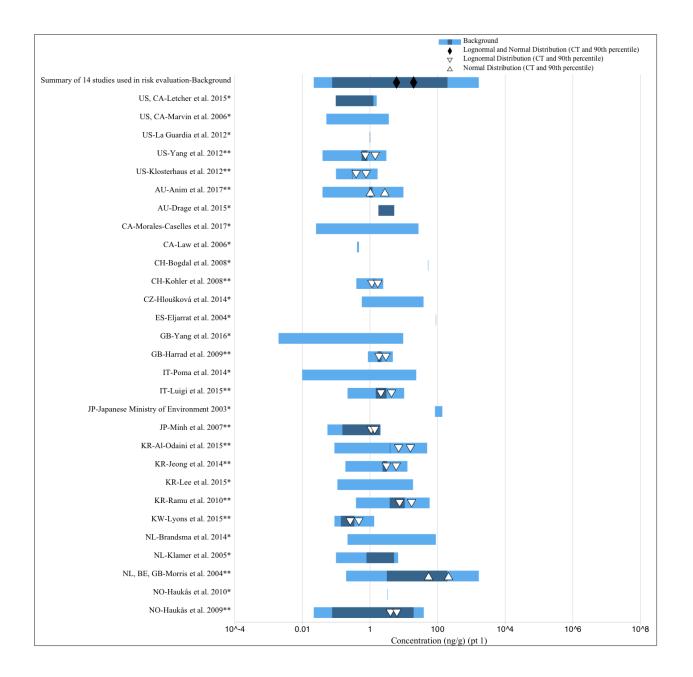
2.16.1. Seawater (ng/L) – Wet Fraction

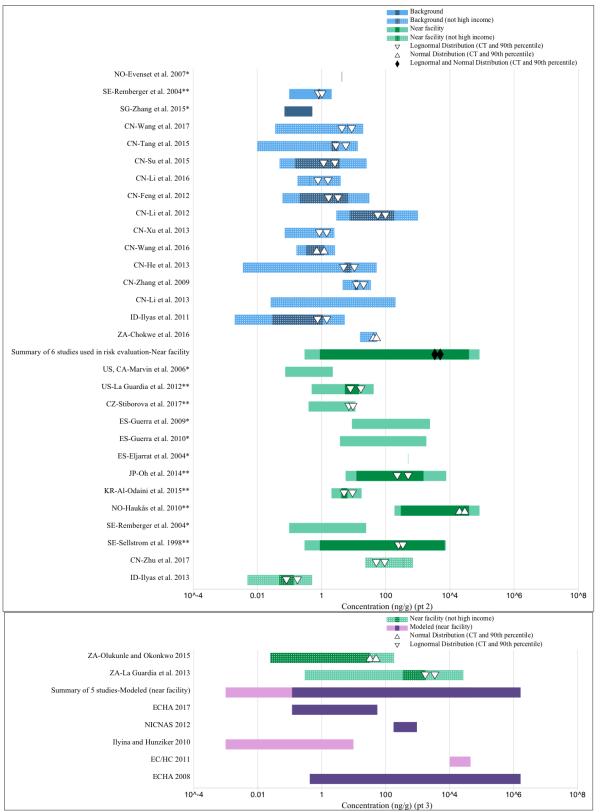
Measured concentrations of HBCD in Seawater with unit of ng/l, extracted from 2 sources, are summarized in Figure 2-34 and supplemental information is provided in Table 2-33. Overall, concentrations ranged from 0.05 to 1.58 ng/l from over 15 samples collected between 2012 and 2014 in 2 countries, AQ and DK. Location types were categorized as Background. Reported detection frequency was 1.0.

Figure 2-34. Concentration of HBCD (ng/L) in the Wet Fraction of Seawater in Background Locations and for Modeled Data from 2012 to 2014

* Study conducted in a country/countries classified as "High Income" by the World Bank.

Table 2-33. Summary of Peer-Reviewed Literature that Measured HBCD (ng/L) Levels in
the Wet Fraction of Seawater


Citation	Country	Location Type	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng/L)	Quality Score	Overall Quality Level
<u>Vorkamp</u> <u>et al.</u> (2014)	DK*	Background	2012	5	1.0	0.012	2.0	Medium
<u>Zhang et</u> <u>al.</u> (2016a)	AQ	Background	2013- 2014	10	1.0	0.004	1.8	Medium
<u>ECHA</u> (2017)	N/R	Modeled (near facility)	N/R	N/R	N/R	N/R	2.0	Medium
<u>NICNAS</u> (2012)	N/R	Modeled (near facility)	N/R	N/R	N/R	N/R	1.8	Medium
<u>Ilyina</u> <u>and</u> <u>Hunziker</u> (2010)	N/R	Modeled (near facility)	N/R	N/R	N/R	N/R	2.2	Medium
<u>KemI</u> (2008)	N/R	Modeled (near facility)	N/R	N/R	N/R	N/R	1.3	High


*Study conducted in a country/countries classified as "High Income" by the World Bank Abbreviations: N/R, Not reported

2.17. Sediment

2.17.1. Sediment (ng/g) – Dry Fraction

Measured concentrations of HBCD in Sediment with unit of ng/g, extracted from 60 sources, are summarized in Figure 2-35 and supplemental information is provided in Table 2-34. Overall, concentrations ranged from not-detected to 85000 ng/g from over 1244 samples collected between 1974 and 2016 in 19 countries, CA, CZ, ES, KW, AU, NO, CN, ZA, NL, CH, SE, SG, ID, US, KR, JP, IT, BE, and GB. Location types were categorized as Background and Near Facility. Reported detection frequencies ranged from 0 to 1.0. Following the statistical procedures described above to obtain a final dataset, central tendency and high-end estimates, respectively, were 6.19 and 19.78 ng/g for Background (n = 14 studies) and 3442.64 and 5072.51 ng/g for Near Facility (n = 6 studies).

Figure 2-35. Concentration of HBCD (ng/g) in the Dry Fraction of Sediment in Background and Near Facility Locations and for Modeled Data from 1974 to 2016

* Study conducted in a country/countries classified as "High Income" by the World Bank;

** Study conducted in a country/countries classified as "High Income" by the World Bank and used in risk evaluation final dataset

Citation	Country	Location Type	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng/g)	Quality Score	Overall Quality Level
<u>Letcher et al.</u> (2015)	US, CA*	Background	2004	37	0.35	0.2	1.7	Medium
<u>Marvin et al.</u> (2006)	US, CA*	Background	2001	49	0.65	0.075	1.8	Medium
La Guardia et al. (2012)	US*	Background	2009	1	N/R	1.0	1.7	Medium
<u>Yang et al.</u> (2012)	US**	Background	2007	16	N/R	N/R	1.6	High
Klosterhaus et al. (2012)	US**	Background	2007	10	1.0	N/R	1.7	Medium
<u>Anim et al.</u> (2017)	AU**	Background	2014- 2015	48	N/R	N/R	1.3	High
<u>Drage et al.</u> (2015)	AU*	Background	2014	4	1.0	N/R	1.7	Medium
<u>Morales-</u> <u>Caselles et</u> <u>al. (2017)</u>	CA*	Background	2011	7	0.57	0.0	1.8	Medium
<u>Law et al.</u> (2006a)	CA*	Background	2003	4	N/R	0.16	1.2	High
Bogdal et al. (2008)	CH*	Background	2005	34	N/R	N/R	1.9	Medium
<u>Kohler et al.</u> (2008)	CH**	Background	1974- 2001	5	1.0	N/R	1.9	Medium
<u>Hloušková</u> <u>et al. (2014</u>)	CZ*	Background	2010	31	0.97	0.9	1.7	Medium
Eljarrat et al. (2004)	ES*	Background	2002	1	1.0	N/R	1.8	Medium
<u>Yang et al.</u> (2016)	GB*	Background	2011- 2012	74	0.76	0.01	1.9	Medium
<u>Harrad et al.</u> (2009)	GB**	Background	2008- 2009	9	1.0	N/R	1.7	Medium
<u>Poma et al.</u> (2014b)	IT*	Background	2011- 2012	17	0.88	0.01	1.6	High
<u>Luigi et al.</u> (2015)	IT**	Background	2010	5	1.0	0.011	1.9	Medium
<u>Japanese</u> <u>Ministry of</u> (2003)	JP*	Background	2003	1	0.0	23.0	2.6	Low
<u>Minh et al.</u> (2007)	JP**	Background	2002	9	1.0	0.03	2.1	Medium
Al-Odaini et al. (2015)	KR**	Background	2010	19	1.0	N/R	1.9	Medium
<u>Jeong et al.</u> (2014)	KR**	Background	2010	12	1.0	0.02	1.3	High
<u>Lee et al.</u> (2015)	KR*	Background	2009	24	1.0	0.006	1.6	High
<u>Ramu et al.</u> (2010)	KR**	Background	2005	29	1.0	N/R	1.4	High
<u>Lyons et al.</u> (2015)	KW**	Background	2013- 2014	29	1.0	0.18	1.4	High

Table 2-34. Summary of Peer-Reviewed Literature that Measured HBCD (ng/g) Levels in the Dry Fraction of Sediment

Citation	Country	Location Type	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng/g)	Quality Score	Overall Quality Level
Brandsma et al. (2014b)	NL*	Background	2008	6	1.0	0.5	2.0	Medium
<u>Klamer et al.</u> (2005)	NL*	Background	2000	10	0.9	0.2	2.1	Medium
<u>Morris et al.</u> (2004)	NL, BE, GB**	Background	1999- 2002	78	N/R	1.2	2.3	Low
<u>Haukås et al.</u> (2010b)	NO*	Background	2007	4	0.0	3.3	1.9	Medium
Haukås et al. (2009)	NO**	Background	2006- 2007	25	1.0	0.005	1.9	Medium
Evenset et al. (2007)	NO*	Background	2001	1	1.0	0.06	2.2	Medium
Remberger et al. (2004)	SE**	Background	1996- 2000	11	1.0	0.1	1.8	Medium
Zhang et al. (2015)	SG*	Background	2014	12	1.0	0.007	1.7	Medium
<u>Wang et al.</u> (2017)	CN	Background	2016	23	0.96	0.073	1.9	Medium
<u>Tang et al.</u> (2015)	CN	Background	2012	40	1.0	N/R	1.4	High
<u>Su et al.</u> (2015b)	CN	Background	2010	40	N/R	0.011	1.9	Medium
<u>Li et al.</u> (2016a)	CN	Background	2010	17	N/R	0.18	1.4	High
<u>Feng et al.</u> (2012)	CN	Background	2009- 2010	121	N/R	0.061	1.8	Medium
<u>Li et al.</u> (2012b)	CN	Background	2010	6	1.0	N/R	1.1	High
<u>Xu et al.</u> (2013)	CN	Background	2010	12	0.83	0.14	1.8	Medium
<u>Wang et al.</u> (2016)	CN	Background	2009	26	N/R	0.011	1.9	Medium
<u>He et al.</u> (2013)	CN	Background	2009	85	N/R	N/R	1.3	High
Zhang et al. (2009)	CN	Background	2006	7	1.0	N/R	1.8	Medium
<u>Li et al.</u> (2013)	CN	Background	2003- 2004	34	0.59	0.4	1.4	High
$\frac{\underline{\text{Ilyas et al.}}}{(2011b)}$	ID	Background	2008	33	0.94	N/R	2.0	Medium
<u>Chokwe et</u> al. (2016)	ZA	Background	2013	6	1.0	N/R	1.7	Medium
<u>Marvin et al.</u> (2006)	US, CA*	Near facility	2001	14	0.71	0.075	1.8	Medium
La Guardia et al. (2012)	US**	Near facility	2009	4	1.0	1.0	1.7	Medium
Stiborova et al. (2017)	CZ**	Near facility	2016	12	0.58	0.8	1.7	Medium
<u>Guerra et al.</u> (2009)	ES*	Near facility	2002- 2006	12	N/R	9.0	2.0	Medium
<u>Guerra et al.</u> (2010)	ES*	Near facility	2006	7	0.86	3.8	1.6	High

Citation	Country	Location Type	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng/g)	Quality Score	Overall Quality Level
<u>Eljarrat et al.</u> (2004)	ES*	Near facility	2002	1	1.0	N/R	1.8	Medium
<u>Oh et al.</u> (2014)	JP**	Near facility	2011	17	1.0	N/R	1.4	High
<u>Al-Odaini et</u> <u>al. (2015</u>)	KR**	Near facility	2010	10	1.0	N/R	1.9	Medium
<u>Haukås et al.</u> (2010b)	NO**	Near facility	2007	8	1.0	270.0	1.9	Medium
<u>Remberger</u> <u>et al. (2004</u>)	SE*	Near facility	2000	6	1.0	0.1	1.8	Medium
<u>Sellstrom et</u> <u>al. (1998</u>)	SE**	Near facility	1995	9	0.78	0.6	2.0	Medium
<u>Zhu et al.</u> (2017b)	CN	Near facility	2015	4	1.0	0.022	1.7	Medium
<u>Ilyas et al.</u> (2013)	ID	Near facility	2008	5	0.8	N/R	1.4	High
Olukunle and Okonkwo (2015)	ZA	Near facility	2013	18	N/R	N/R	1.8	Medium
<u>La Guardia</u> et al. (2013)	ZA	Near facility	2011	45	0.69	0.6	1.9	Medium
<u>ECHA</u> (2017)	N/R	Modeled (near facility)	N/R	N/R	N/R	N/R	2.0	Medium
<u>NICNAS</u> (2012)	N/R	Modeled (near facility)	N/R	N/R	N/R	N/R	1.8	Medium
<u>Ilyina and</u> <u>Hunziker</u> (2010)	N/R	Modeled (near facility)	N/R	N/R	N/R	N/R	2.2	Medium
Environment Canada and Health Canada (2011)	N/R	Modeled (near facility)	N/R	N/R	N/R	N/R	1.8	Medium
<u>KemI (2008</u>)	N/R	Modeled (near facility)	N/R	N/R	N/R	N/R	1.3	High

**Study conducted in a country/countries classified as "High Income" by the World Bank and included in risk evaluation

Abbreviations: N/R, Not reported

2.17.2. Sediment (ng/g) – Wet Fraction

Measured concentrations of HBCD in Sediment with unit of ng/g, extracted from 2 sources, are summarized in Figure 2-36 and supplemental information is provided in Table 2-35. Overall, concentrations ranged from not-detected to 169 ng/g from over 15 samples collected between 2006 and 2013 in 2 countries, ZA and CN. Location types were categorized as Near Facility. Reported detection frequencies ranged from 0.67 to 1.0.

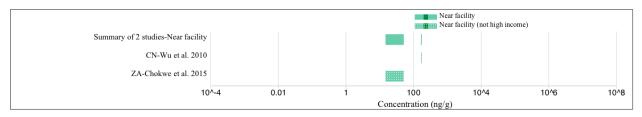
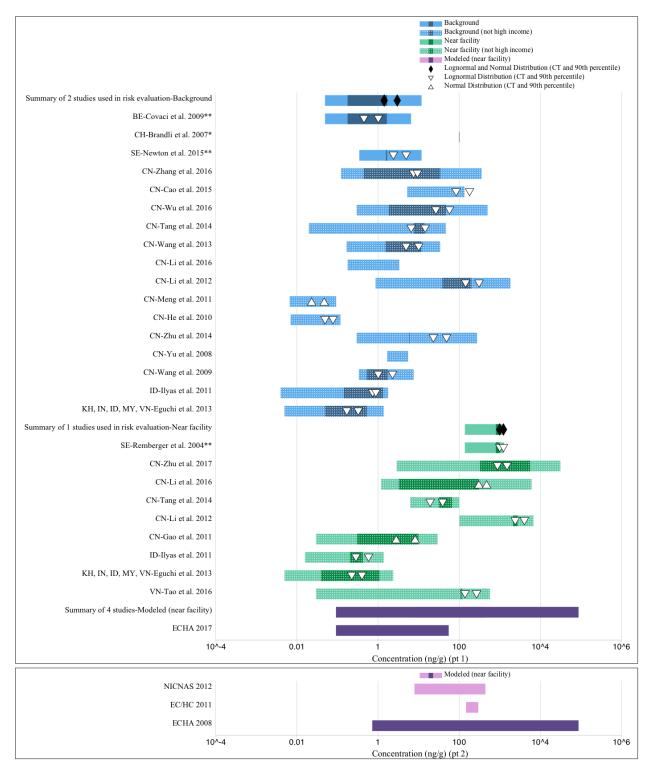


Figure 2-36. Concentration of HBCD (ng/g) in the Wet Fraction of Sediment in Near Facility Locations from 2006 to 2013

Table 2-35. Summary of Peer-Reviewed Literature that Measured HBCD (ng/g) Levels in the Wet Fraction of Sediment


Citation	Country	Location Type	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng/g)	Quality Score	Overall Quality Level
<u>Wu et al.</u> (2010)	CN	Near facility	2006	3	0.67	N/R	2.0	Medium
<u>Chokwe</u> <u>et al.</u> (2015)	ZA	Near facility	2013	12	1.0	0.48	1.6	High

Abbreviations: N/R, Not reported

2.18. Soil

2.18.1. Soil (ng/g) – Dry Fraction

Measured concentrations of HBCD in Soil with unit of ng/g, extracted from 26 sources, are summarized in Figure 2-37 and supplemental information is provided in Table 2-36. Overall, concentrations ranged from not-detected to 317,52 ng/g from over 706 samples collected between 1999 and 2015 in 9 countries, SE, ID, CH, BE, IN, CN, VN, MY, and KH. Location types were categorized as Background and Near Facility. Reported detection frequencies ranged from 0.75 to 1.0. Following the statistical procedures described above to obtain a final dataset, central tendency and high-end estimates, respectively, were 1.44 and 3.01 ng/g for Background (n = 2 studies) and 1015.69 and 1253.76 ng/g for Near Facility (n = 1 study).

Figure 2-37. Concentration of HBCD (ng/g) in the Dry Fraction of Soil in Background and Near Facility Locations and for Modeled Data from 1999 to 2015

* Study conducted in a country/countries classified as "High Income" by the World Bank;

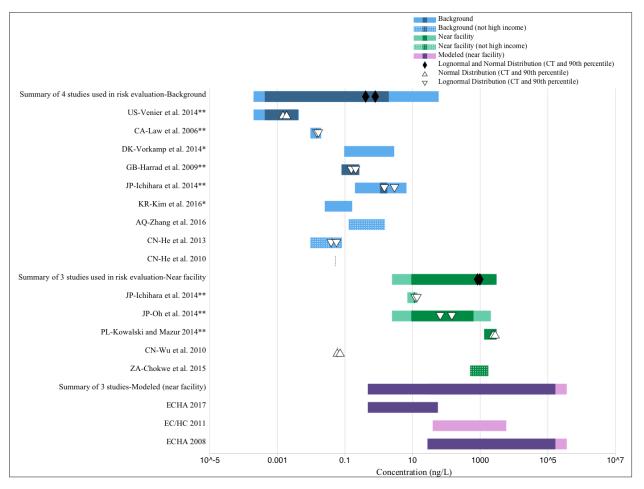
** Study conducted in a country/countries classified as "High Income" by the World Bank and used in risk evaluation final dataset

Citation	Country	Location Type	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng/g)	Quality Score	Overall Quality Level
<u>Covaci et al.</u> (2009)	BE**	Background	2006- 2007	20	0.75	0.1	1.8	Medium
<u>Brandli et al.</u> (2007)	CH*	Background	2006	18	N/R	N/R	2.0	Medium
<u>Newton et al.</u> (2015)	SE**	Background	2012	8	1.0	N/R	2.0	Medium
<u>Zhang et al.</u> (2016b)	CN	Background	2013	188	1.0	0.017	1.3	High
<u>Cao et al.</u> (2015)	CN	Background	2012	10	N/R	1.5	1.8	Medium
<u>Wu et al.</u> (2016)	CN	Background	2012	74	1.0	0.03	1.6	High
<u>Tang et al.</u> (2014)	CN	Background	2012	53	1.0	0.02	1.6	High
<u>Wang et al.</u> (2013)	CN	Background	2010- 2011	24	1.0	N/R	1.9	Medium
<u>Li et al.</u> (2016a)	CN	Background	2010	17	N/R	0.18	1.4	High
<u>Li et al.</u> (2012b)	CN	Background	2010	11	1.0	N/R	1.1	High
<u>Meng et al.</u> (2011)	CN	Background	2009	22	0.86	0.013	1.3	High
<u>He et al.</u> (2010)	CN	Background	2005- 2008	4	1.0	3.0	1.2	High
Zhu et al. (2014b)	CN	Background	2008	38	N/R	0.003	1.8	Medium
<u>Yu et al.</u> (2008b)	CN	Background	2006	3	1.0	N/R	2.1	Low
<u>Wang et al.</u> (2009)	CN	Background	2006	17	N/R	0.34	1.4	High
<u>Ilyas et al.</u> (2011a)	ID	Background	2008	17	0.88	N/R	1.7	Medium
<u>Eguchi et al.</u> (2013)	KH, IN, ID, MY, VN	Background	1999- 2007	N/R	N/R	0.005	1.4	High
Remberger et al. (2004)	SE**	Near facility	2000	3	1.0	N/R	1.8	Medium
<u>Zhu et al.</u> (2017b)	CN	Near facility	2015	14	1.0	0.022	1.7	Medium
<u>Li et al.</u> (2016b)	CN	Near facility	2014	81	N/R	1.2	1.8	Medium
<u>Tang et al.</u> (2014)	CN	Near facility	2012	37	1.0	0.02	1.6	High
<u>Li et al.</u> (2012b)	CN	Near facility	2010	4	1.0	N/R	1.1	High
<u>Gao et al.</u> (2011)	CN	Near facility	2006- 2008	32	1.0	0.011	1.4	High
<u>Ilyas et al.</u> (2011a)	ID	Near facility	2008	6	1.0	N/R	1.7	Medium

Table 2-36. Summary of Peer-Reviewed Literature that Measured HBCD (ng/g) Levels in the Dry Fraction of Soil

Citation	Country	Location Type	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng/g)	Quality Score	Overall Quality Level
<u>Eguchi et al.</u> (2013)	KH, IN, ID, MY, VN	Near facility	1999- 2007	N/R	N/R	0.005	1.4	High
<u>Tao et al.</u> (2016)	VN	Near facility	2014	5	1.0	0.05	2.0	Medium
ECHA (2017)	N/R	Modeled (near facility)	N/R	N/R	N/R	N/R	2.0	Medium
<u>NICNAS</u> (2012)	N/R	Modeled (near facility)	N/R	N/R	N/R	N/R	1.8	Medium
Environment Canada and Health Canada (2011)	N/R	Modeled (near facility)	N/R	N/R	N/R	N/R	1.8	Medium
<u>KemI (2008</u>)	N/R	Modeled (near facility)	N/R	N/R	N/R	N/R	1.3	High

*Study conducted in a country/countries classified as "High Income" by the World Bank


**Study conducted in a country/countries classified as "High Income" by the World Bank and included in risk evaluation

Abbreviations: N/R, Not reported

2.19. Surface Water

2.19.1. Surface Water (ng/L) – Wet Fraction

Measured concentrations of HBCD in Surface/Ground Water with unit of ng/l, extracted from 14 sources, are summarized in Figure 2-38 and supplemental information is provided in Table 2-37. Overall, concentrations ranged from not-detected to 3100 ng/l from over 157 samples collected between 2004 and 2014 in 10 countries, AQ, PL, CA, ZA, US, DK, GB, KR, CN, and JP. Location types were categorized as Background and Near Facility. Reported detection frequencies ranged from 0.61 to 1.0. Following the statistical procedures described above to obtain a final dataset, central tendency and high-end estimates, respectively, were 0.41 and 0.8 ng/L for Background (n = 4 studies) and 840.91 and 992.93 ng/L for Near Facility (n = 3 studies).

Figure 2-38. Concentration of HBCD (ng/L) in the Wet Fraction of Surface Water in Background and Near Facility Locations and for Modeled Data from 2004 to 2014

* Study conducted in a country/countries classified as "High Income" by the World Bank; ** Study conducted in a country/countries classified as "High Income" by the World Bank and used in risk evaluation final dataset

Citation	Country	Location Type	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng/L)	Quality Score	Overall Quality Level
<u>Venier et al.</u> (2014)	US**	Background	2011- 2012	23	0.61	N/R	1.7	Medium
<u>Law et al.</u> (2006a)	CA**	Background	2004	3	1.0	0.013	1.2	High
<u>Vorkamp et</u> <u>al. (2014</u>)	DK*	Background	2012	5	1.0	0.012	2.0	Medium
<u>Harrad et al.</u> (2009)	GB**	Background	2008- 2009	27	1.0	N/R	1.7	Medium
<u>Ichihara et</u> <u>al. (2014)</u>	JP**	Background	2012- 2013	16	1.0	N/R	1.4	High

Table 2-37. Summary of Peer-Reviewed Literature that Measured HBCD (ng/L) Levels in the Wet Fraction of Surface Groundwater

Citation	Country	Location Type	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng/L)	Quality Score	Overall Quality Level
<u>Kim et al.</u> (2016)	KR*	Background	2010	13	1.0	N/R	1.4	High
<u>Zhang et al.</u> (2016a)	AQ	Background	2013- 2014	12	1.0	N/R	1.8	Medium
<u>He et al.</u> (2013)	CN	Background	2009	5	N/R	N/R	1.3	High
<u>He et al.</u> (2010)	CN	Background	2005- 2008	3	1.0	N/R	1.2	High
<u>Ichihara et</u> <u>al. (2014</u>)	JP**	Near facility	2012- 2013	3	1.0	N/R	1.4	High
<u>Oh et al.</u> (2014)	JP**	Near facility	2011	17	1.0	N/R	1.4	High
<u>Kowalski</u> and Mazur (2014)	PL**	Near facility	2014	15	N/R	320.0	2.3	Low
<u>Wu et al.</u> (2010)	CN	Near facility	2006	3	0.67	N/R	2.0	Medium
<u>Chokwe et</u> al. (2015)	ZA	Near facility	2013	12	1.0	200.0	1.6	High
<u>ECHA</u> (2017)	N/R	Modeled (near facility)	N/R	N/R	N/R	N/R	2.0	Medium
Environment Canada and Health Canada (2011)	N/R	Modeled (near facility)	N/R	N/R	N/R	N/R	1.8	Medium
<u>KemI (2008</u>)	N/R	Modeled (near facility)	N/R	N/R	N/R	N/R	1.3	High

*Study conducted in a country/countries classified as "High Income" by the World Bank

**Study conducted in a country/countries classified as "High Income" by the World Bank and included in risk evaluation

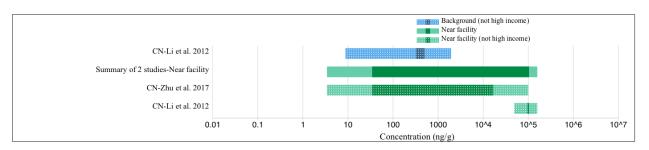
Abbreviations: N/R, Not reported

2.19.2. Surface Water (ng/m²) – Wet Fraction

Measured concentrations of HBCD in Surface/Ground Water with unit of ng/m2, extracted from 1 source, are summarized in Figure 2-39 and supplemental information is provided in Table 2-38. Overall, concentrations ranged from 0.58 to 4.56 ng/m² from over 12 samples collected between 2008 and 2010 in 1 country, UG. Location types were categorized as Background. Reported detection frequency was 1.0.

Figure 2-39. Concentration of HBCD (ng/m2) in the Wet Fraction of Surface Water in Background Locations from 2008 to 2010

Table 2-38. Summary of Peer-Reviewed Literature that Measured HBCD (ng/m2) Levels in the Wet Fraction of Surface Groundwater


Citation	Country	Location Type	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng/m2)	Quality Score	Overall Quality Level
<u>Arinaitwe</u> <u>et al.</u> (2014)	UG	Background	2008- 2010	12	1.0	N/R	1.4	High

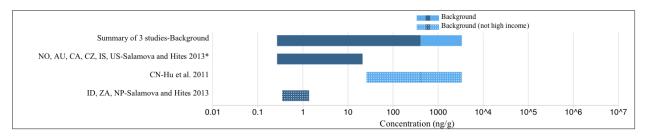
Abbreviations: N/R, Not reported

2.20. Vegetation

2.20.1. Vegetation (ng/g) – Dry Fraction

Measured concentrations of HBCD in Vegetation with unit of ng/g, extracted from 3 sources, are summarized in Figure 2-40 and supplemental information is provided in Table 2-39. Overall, concentrations ranged from 3.45 to 160,241 ng/g from over 90 samples collected between 2010 and 2015 in 1 country, CN. Location types were categorized as Background and Near Facility. Reported detection frequency was 1.0.

Figure 2-40. Concentration of HBCD (ng/g) in the Dry Fraction of Vegetation in Background and Near Facility Locations from 2010 to 2015


Table 2-39. Summary of Peer-Reviewed Literature that Measured HBCD (ng/g) Levels in the Dry Fraction of Vegetation

Citation	Country	Location Type	Species	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng/g)	Quality Score	Overall Quality Level
<u>Li et al.</u> (2012b)	CN	Background	Reed, cyprus, seepweed	2010	14	1.0	N/R	1.1	High
<u>Zhu et</u> <u>al.</u> (2017b)	CN	Near facility	Holly, cyprus, pine (includes wax, inner leaf, branch, and bark samples for each)	2015	70	1.0	0.022	1.7	Medium
<u>Li et al.</u> (2012b)	CN	Near facility	Reed, cyprus, seepweed	2010	6	1.0	N/R	1.1	High

Abbreviations: N/R, Not reported

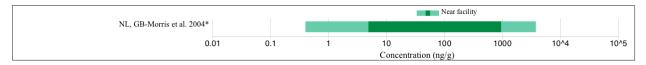
2.20.2. Vegetation (ng/g) – Lipid Fraction

Measured concentrations of HBCD in Vegetation with unit of ng/g, extracted from 3 sources, are summarized in Figure 2-41 and supplemental information is provided in Table 2-40. Overall, concentrations ranged from 0.27 to 3400 ng/g from over 59 samples collected between 2009 and 2012 in 10 countries, CA, ZA, IS, CZ, ID, US, NO, AU, CN, and NP. Location types were categorized as Background. Reported detection frequency was 1.0.

Figure 2-41. Concentration of HBCD (ng/g) in the Lipid Fraction of Vegetation in Background Locations from 2009 to 2012

* Study conducted in a country/countries classified as "High Income" by the World Bank.

Table 2-40. Summary of Peer-Reviewed Literature that Measured HBCD (ng/g) Levels in the Lipid Fraction of Vegetation


Citation	Country	Location Type	Species	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng/g)	Quality Score	Overall Quality Level
Salamova and Hites (2013)	NO, AU, CA, CZ, IS, US*	Background	Tree bark from full- grown hardwood and coniferous trees with coarse bark such as, pine, fir, and spruce	2009-2012	32	1.0	N/R	2.0	Medium
<u>Hu et al.</u> (2011a)	CN	Background	N/R	2009-2010	15	1.0	N/R	1.2	High
<u>Salamova</u> <u>and Hites</u> <u>(2013</u>)	ID, ZA, NP	Background	Tree bark from full- grown hardwood and coniferous trees with coarse bark such as, pine, fir, and spruce	2009-2012	12	1.0	N/R	2.0	Medium

*Study conducted in a country/countries classified as "High Income" by the World Bank Abbreviations: N/R, Not reported

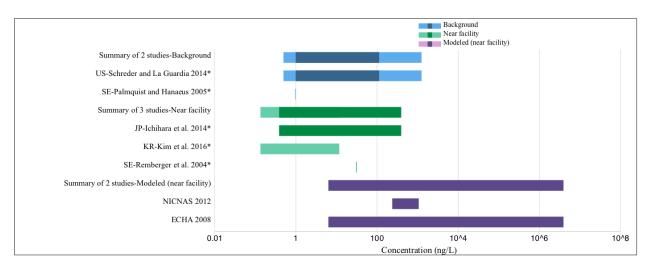
2.21. Wastewater (Influent; Effluent)

2.21.1. Wastewater (ng/g) – Dry Fraction

Measured concentrations of HBCD in Wastewater (Influent; Effluent) with unit of ng/g, extracted from 1 source, are summarized in Figure 2-42 and supplemental information is provided in Table 2-41. Overall, concentrations ranged from 0.4 to 3800 ng/g from over 15 samples collected during 2002 in 2 countries, NL and GB. Location types were categorized as Near Facility. No detection frequencies were reported.

Figure 2-42. Concentration of HBCD (ng/g) in the Dry Fraction of Wastewater in Near Facility Locations in 2002

* Study conducted in a country/countries classified as "High Income" by the World Bank.


Table 2-41. Summary of Peer-Reviewed Literature that Measured HBCD (ng/g) Levels in the Dry Fraction of Wastewater

Citation	Country	Location Type	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng/g)	Quality Score	Overall Quality Level
<u>Morris et</u> <u>al. (2004</u>)	NL, GB*	Near facility	2002	15	N/R	1.2	2.3	Low

*Study conducted in a country/countries classified as "High Income" by the World Bank Abbreviations: N/R, Not reported

2.21.2. Wastewater (ng/L) – Wet Fraction

Measured concentrations of HBCD in Wastewater (Influent; Effluent) with unit of ng/l, extracted from 5 sources, are summarized in Figure 2-43 and supplemental information is provided in Table 2-42. Overall, concentrations ranged from not-detected to 1270 ng/l from over 80 samples collected between 2000 and 2012 in 4 countries, SE, JP, US, and KR. Location types were categorized as Background and Near Facility. Reported detection frequencies ranged from 0.00 to 1.0.

Figure 2-43. Concentration of HBCD (ng/L) in the Wet Fraction of Wastewater in Background and Near Facility Locations and for Modeled Data from 2000 to 2012

* Study conducted in a country/countries classified as "High Income" by the World Bank.

Citation	Country	Location Type	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng/L)	Quality Score	Overall Quality Level
Schreder and La Guardia (2014)	US*	Background	2011- 2012	19	19 0.26		1.6	Medium
Palmquist and <u>Hanaeus</u> (2005)	SE*	Background	2004	7	0.0	1.0	2.1	Medium
<u>Ichihara et</u> al. (2014)	JP*	Near facility	2012	30	1.0	N/R	1.4	High
<u>Kim et al.</u> (2016)	KR*	Near facility	2010	23	1.0	N/R	1.4	High
Remberger et al. (2004)	SE*	Near facility	2000	1	1.0	N/R	1.8	Medium
<u>NICNAS</u> (2012)	N/R	Modeled (near facility)	N/R	N/R	N/R	N/R	1.8	Medium
<u>KemI</u> (2008)	N/R	Modeled (near facility)	N/R	N/R	N/R	N/R	1.3	High

Table 2-42. Summary of Peer-Reviewed Literature that Measured HBCD (ng/L) Levels in
the Wet Fraction of Wastewater

*Study conducted in a country/countries classified as "High Income" by the World Bank Abbreviations: N/R, Not reported

3. Ecomonitoring Media

3.1. Amphibians

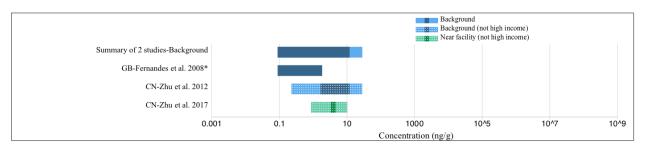
3.1.1. Amphibians (ng/g) – Lipid Fraction

Measured concentrations of HBCD in Amphibian with unit of ng/g, extracted from 2 sources, are summarized in Figure 3-1 and supplemental information is provided in Table 3-1. Overall, concentrations ranged from 4.22 to 96.24 ng/g from over 14 samples collected between 2011 and 2013 in 1 country, CN. Location types were categorized as Background. Reported detection frequency was 1.0.

Figure 3-1. Concentration of HBCD (ng/g) in the Lipid Fraction of Amphibians in Background Locations from 2011 to 2013

* Study conducted in a country/countries classified as "High Income" by the World Bank.

Table 3-1. Summary of Peer-Reviewed Literature that Measured HBCD (ng/g) Levels in the Lipid Fraction of Amphibians


Citation	Country	Location Type	Species	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng/g)	Quality Score	Overall Quality Level
<u>Zhu et</u> <u>al.</u> (2017a)	CN	Background	Frog	2012- 2013	11	1.0	N/R	2.0	Low
<u>Zhang</u> <u>et al.</u> (2013)	CN	Background	Pond green frog	2011	3	1.0	0.022	1.7	Medium

Abbreviations: N/R, Not reported

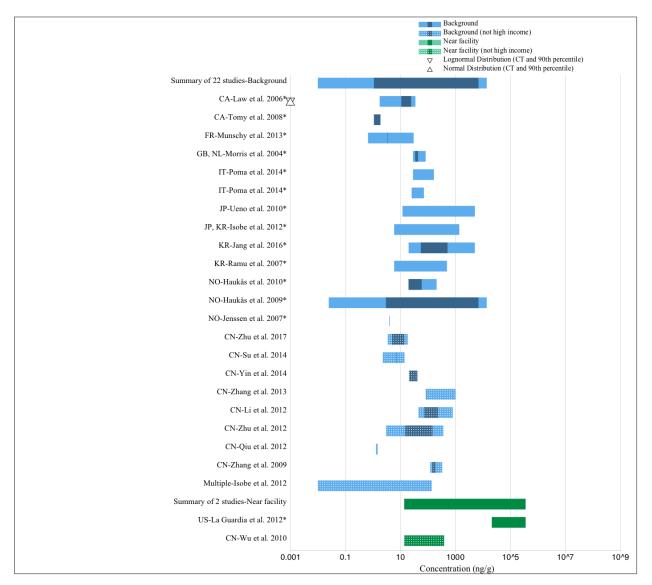
3.2. Aquatic Invertebrates

3.2.1. Aquatic Invertebrates (ng/g) – Dry Fraction

Measured concentrations of HBCD in Aquatic Invertebrates with unit of ng/g, extracted from 3 sources, are summarized in Figure 3-2 and supplemental information is provided in Table 3-2. Overall, concentrations ranged from 0.09 to 28.8 ng/g from over 187 samples collected between 2006 and 2014 in 2 countries, GB and CN. Location types were categorized as Background and Near Facility. Reported detection frequency was 1.0.

Figure 3-2. Concentration of HBCD (ng/g) in the Dry Fraction of Aquatic Invertebrates in Background and Near Facility Locations from 2008 to 2017

* Study conducted in a country/countries classified as "High Income" by the World Bank.


Table 3-2. Summary of Peer-Reviewed Literature that Measured HBCD (ng/g) Levels in the Dry Fraction of Aquatic Invertebrates

Citation	Country	Location Type	Species	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng/g)	Quality Score	Overall Quality Level
<u>Fernandes</u> <u>et al.</u> (2008)	GB*	Background	Oysters , mussels , scallops (gonad tissue), scallop (adductor tissue)	2006	40	N/R	N/R	1.7	Medium
<u>Zhu et al.</u> (2012)	CN	Background	Amusium veneriformis, chinese scallop , chinese venus , surf clam, asiatic hard clam, soft- shell clam, blue mussel, bladder moon snail, crassostrea talienwhanensis , veined rapa whelk, ark clam	2009- 2010	131	1.0	0.2	1.9	Medium
<u>Zhu et al.</u> (2017b)	CN	Near facility	Mantis shrimp, helice crab	2014	16	1.0	0.022	1.7	Medium

*Study conducted in a country/countries classified as "High Income" by the World Bank Abbreviations: N/R, Not reported

3.2.2. Aquatic Invertebrates (ng/g) – Lipid Fraction

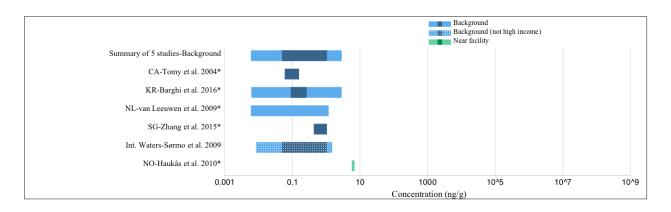
Measured concentrations of HBCD in Aquatic Invertebrates with unit of ng/g, extracted from 24 sources, are summarized in Figure 3-3 and supplemental information is provided in Table 3-3. Overall, concentrations ranged from not-detected to 362,900 ng/g from over 741 samples collected between 1999 and 2013 in at least 10 countries, including CA, NL, US, IT, FR, GB, KR, NO, CN, and JP. Location types were categorized as Background and Near Facility. Reported detection frequencies ranged from 0.17 to 1.0.

Figure 3-3. Concentration of HBCD (ng/g) in the Lipid Fraction of Aquatic Invertebrates in Background and Near Facility Locations from 2003 to 2011

* Study conducted in a country/countries classified as "High Income" by the World Bank.

Table 3-3. Summary of Peer-Reviewed Literature that Measured HBCD (ng/g) Levels in the Lipid Fraction of Aquatic Invertebrates

Citation	Country	Location Type	Species	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng/g)	Quality Score	Overall Quality Level
<u>Law et al.</u> (2006a)	CA*	Background	Mussels (muscle), zooplankton, phytoplankton, and small fish	2002	10	1.0	0.16	1.2	High
<u>Tomy et</u> al. (2008)	CA*	Background	Copepods , shrimp , clams	2000-2002	15	N/R	0.0042	1.7	Medium


Citation	Country	Location Type	Species	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng/g)	Quality Score	Overall Quality Level
<u>Munschy</u> <u>et al.</u> (2013)	FR*	Background	Filter-feeding molluscs	2008-2010	17	1.0	0.006	2.2	Low
<u>Morris et</u> <u>al. (2004</u>)	GB, NL*	Background	Whelk , sea star (digestive system)	1999	6	N/R	1.2	2.3	Low
<u>Poma et</u> <u>al.</u> (2014c)	IT*	Background	Zooplankton	2011-2012	4	1.0	0.1	1.2	High
<u>Poma et</u> <u>al.</u> (2014a)	IT*	Background	Dreissena polymorpha	2011-2012	32	1.0	0.01	1.9	Medium
<u>Ueno et</u> al. (2010)	JP*	Background	Oysters , blue mussels	2005	26	1.0	0.3	1.8	Medium
<u>Isobe et</u> <u>al. (2012</u>)	JP, KR*	Background	Green and blue mussels	2003-2008	41	1.0	0.01	2.4	Low
<u>Jang et al.</u> (2016)	KR*	Background	Mussels	2013	63	N/R	N/R	1.7	Medium
<u>Ramu et</u> <u>al. (2007</u>)	KR*	Background	Blue mussels	2005	17	1.0	0.015	2.0	Medium
<u>Haukås et</u> <u>al.</u> (2010a)	NO*	Background	Blue mussels (whole specimen), shorecrab (whole specimen with exoskeleton), lugworm (whole specimen)	2006-2007	34	0.79	N/R	1.9	Medium
<u>Haukås et</u> <u>al. (2009</u>)	NO*	Background	Lugworm, blue mussel , shore crab	2006-2007	65	0.88	0.05	1.9	Medium
<u>Jenssen et</u> <u>al. (2007</u>)	NO*	Background	Zooplankton	2003	3	N/R	N/R	1.6	High
<u>Zhu et al.</u> (2017a)	CN	Background	Apple snail , stone snail	2012-2013	8	1.0	N/R	2.0	Low
<u>Su et al.</u> (2014)	CN	Background	Shrimp (whole organism)	2009-2012	N/R	N/R	N/R	2.2	Medium
<u>Yin et al.</u> (2014)	CN	Background	Blue mussel (whole tissue), clam (whole tissue)	2010-2011	18	1.0	N/R	1.8	Medium
<u>Zhang et</u> <u>al. (2013</u>)	CN	Background	Chinese mystery snail, chinese mitten crab, mantis shrimp, veinadrapa whelk, helice crab, octopus	2011	28	1.0	0.022	1.7	Medium
<u>Li et al.</u> (2012b)	CN	Background	Crab (spermary, ovary, gill), freshwater shrimp (whole body)	2011	171	1.0	N/R	1.1	High

Citation	Country	Location Type	Species	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng/g)	Quality Score	Overall Quality Level
<u>Zhu et al.</u> (2012)	CN	Background	Amusium veneriformis, Chinese scallop, Chinese venus, surf clam, asiatic hard clam, soft- shell clam, blue mussel, bladder moon snail, crassostrea talienwhanensis, veined rapa whelk, ark clam	2009-2010	131	1.0	0.2	1.9	Medium
<u>Qiu et al.</u> (2012)	CN	Background	Crawfish (butter-like gland)	2007	1	1.0	N/R	2.0	Medium
<u>Zhang et</u> <u>al. (2009</u>)	CN	Background	Winkle	2006	9	1.0	N/R	1.8	Medium
<u>Isobe et</u> al. (2012)	Multiple	Background	Green and blue mussels	2003-2008	29	0.97	0.01	2.4	Low
La Guardia et al. (2012)	US*	Near facility	Filter feeding bivalve, filter- feeding bivalve, grazing gastropod,	2009	7	1.0	1.0	1.7	Medium
<u>Wu et al.</u> (2010)	CN	Near facility	Snail, prawn	2006	6	0.17	3.0	2.0	Medium

*Study conducted in a country/countries classified as "High Income" by the World Bank Abbreviations: N/R, Not reported

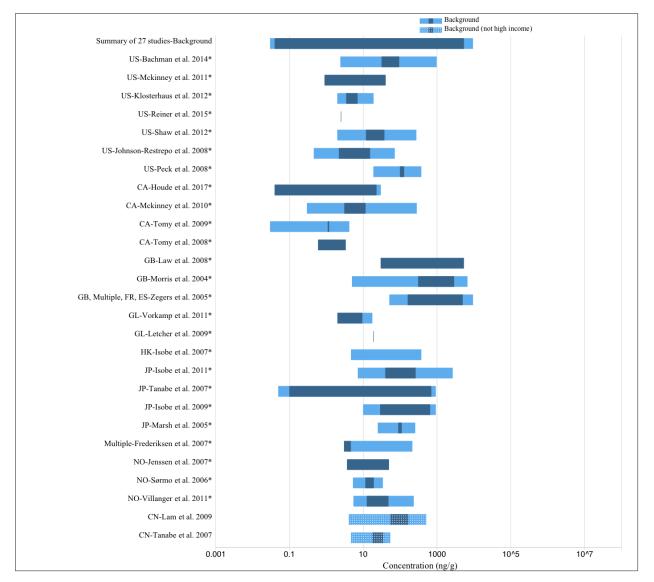
3.2.3. Aquatic Invertebrates (ng/g) – Wet Fraction

Measured concentrations of HBCD in Aquatic Invertebrates with unit of ng/g, extracted from 6 sources, are summarized in Figure 3-4 and supplemental information is provided in Table 3-4. Overall, concentrations ranged from not-detected to 7.0 ng/g from over 347 samples collected between 2002 and 2014 in 6 countries, Int. Waters, SG, CA, NL, NO, and KR. Location types were categorized as Background and Near Facility. Reported detection frequencies ranged from 0.97 to 1.0.

Figure 3-4. Concentration of HBCD (ng/g) in the Wet Fraction of Aquatic Invertebrates in Background and Near Facility Locations from 2002 to 2014

* Study conducted in a country/countries classified as "High Income" by the World Bank.

Citation	Country	Location Type	Species	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng/g)	Quality Score	Overall Quality Level
<u>Tomy et</u> <u>al. (2004</u>)	CA*	Backgro und	Mysis (shrimp), diporeia (shrimp), plankton	2002	6	1.0	N/R	2.0	Medium
<u>Barghi et</u> <u>al. (2016</u>)	KR*	Backgro und	Multiple species	2012- 2014	248	N/R	0.0062	1.3	High
<u>van</u> <u>Leeuwen</u> <u>et al.</u> (2009)	NL*	Backgro und	Shrimp (shrimp)	2007- 2008	6	1.0	N/R	2.1	Medium
<u>Zhang et</u> <u>al. (2015</u>)	SG*	Backgro und	Polychaete (tissue), clam (tissue)	2014	11	N/R	0.0054	1.7	Medium
<u>Sørmo et</u> <u>al. (2009</u>)	Int. Waters	Backgro und	Calanoid copepods (whole specimen), whiting (whole specimen), sand goby (whole specimen), black goby (whole specimen), northern shrimp (whole specimen), shore shrimp (whole specimen), saithe (whole specimen), sandeels (whole specimen)	2003- 2004	34	0.97	0.017	2.1	Medium
<u>Haukås et</u> <u>al.</u> (2010b)	NO*	Near facility	Mussels (soft tissue)	2007	42	1.0	N/R	1.9	Medium


Table 3-4. Summary of Peer-Reviewed Literature that Measured HBCD (ng/g) Levels in the Wet Fraction of Aquatic Invertebrates

*Study conducted in a country/countries classified as "High Income" by the World Bank Abbreviations: N/R, Not reported

3.3. Aquatic Mammals

3.3.1. Aquatic Mammals (ng/g) – Lipid Fraction

Measured concentrations of HBCD in Aquatic Mammals with unit of ng/g, extracted from 27 sources, are summarized in Figure 3-5 and supplemental information is provided in Table 3-5. Overall, concentrations ranged from not-detected to 9590.0 ng/g from over 1590 samples collected between 1972 and 2013 in at least 10 countries, including HK, CA, ES, GL, US, FR, GB, NO, CN, and JP. Location types were categorized as Background. Reported detection frequencies ranged from 0.94 to 1.0.

Figure 3-5. Concentration of HBCD (ng/g) in the Lipid Fraction of Aquatic Mammals in Background Locations from 1972 to 2013

* Study conducted in a country/countries classified as "High Income" by the World Bank.

Table 3-5. Summary of Peer-Reviewed Literature that Measured HBCD (ng/g) Levels in the Lipid Fraction of Aquatic Mammals

Citation	Country	Location Type	Species	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng/g)	Quality Score	Overall Quality Level
Bachman et al. (2014)	US*	Background	Pygmy killer whale, longman's beaked whale, pygmy sperm whale, dwarf sperm whale, humpback whale, blainville's beaked whale, killer whale, melon-headed whale, sperm whale, false killer whale, spotted dolphin, striped dolphin, striped dolphin, spinner dolphin, rough-toothed dolphin, bottlenose dolphin, and cuvier's beaked whale (blubber)	1997- 2011	42	N/R	2.4	1.9	Medium
<u>McKinney</u> <u>et al.</u> (2011)	US*	Background	Polar bear (adipose tissue)	2006- 2008	144	N/R	0.3	1.9	Medium
Klosterhau s et al. (2012)	US*	Background	Adult harbor seals (blubber), harbor seal (blubber)	2007- 2008	17	1.0	N/R	1.7	Medium
<u>Reiner et</u> al. (2015)	US*	Background	Northern fur seal (blubber)	1987- 2007	50	0.96	N/R	1.8	Medium
<u>Shaw et al.</u> (2012)	US*	Background	Harbor seals (seal liver), harbor seals (seal blubber)	2001- 2006	65	1.0	5.5	1.8	Medium
<u>Johnson-</u> <u>Restrepo et</u> al. (2008)	US*	Background	Bottlenose dolphin (blubber)	1991- 2004	15	1.0	0.0013	1.9	Medium
Peck et al. (2008)	US*	Background	White-sided dolphins (blubber)	1993- 2004	57	1.0	0.4	1.8	Medium
<u>Houde et</u> <u>al. (2017</u>)	CA*	Background	Ringed seals (blubber)	1998- 2013	370	N/R	N/R	2.0	Medium
<u>McKinney</u> <u>et al.</u> (2010)	CA*	Background	Polar bear	1991- 2008	92	N/R	0.3	2.0	Medium
<u>Tomy et al.</u> (2009)	CA*	Background	Beluga (blubber and liver), ringed seal	2004- 2007	18	N/R	N/R	2.4	Low
<u>Tomy et al.</u> (2008)	CA*	Background	Walrus , beluga , narwhal	1996- 2000	15	N/R	0.023	1.7	Medium
<u>Law et al.</u> (2008)	GB*	Background	Porpoises (blubber)	1995- 2006	222	1.0	N/R	2.0	Medium
<u>Morris et</u> <u>al. (2004</u>)	GB*	Background	Porpoise (blubber), harbor seal (blubber), harbor porpoise (blubber)	1998- 1999	11	N/R	1.2	2.3	Low
<u>Zegers et</u> <u>al. (2005</u>)	GB, Multiple, FR, ES*	Background	Harbor porpoises (blubber), common dolphins (blubber)	2005	104	1.0	N/R	2.0	Medium

Citation	Country	Location Type	Species	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng/g)	Quality Score	Overall Quality Level
<u>Vorkamp et</u> <u>al. (2011</u>)	GL*	Background	Ringed seal (blubber)	1986- 2008	50	N/R	2.5	2.0	Medium
<u>Letcher et</u> al. (2009)	GL*	Background	Ringed seals (blubber)	2001- 2002	15	1.0	N/R	2.1	Medium
<u>Isobe et al.</u> (2007)	HK*	Background	Finless porpoises (blubber), indo- pacific humpback dolphins (blubber)	1990- 2001	19	1.0	N/R	2.4	Low
<u>Isobe et al.</u> (2011)	JP*	Background	Finless porpoises (blubber)	1999- 2007	51	0.96	N/R	1.9	Medium
<u>Tanabe et</u> <u>al. (2007</u>)	JP*	Background	Fur seal (blubber), striped dolphin (blubber), melon- headed whale (blubber)	1972- 2006	70	0.96	0.1	2.0	Medium
<u>Isobe et al.</u> (2009a)	JP*	Background	Striped dolphins (blubber)	1978- 2003	21	1.0	N/R	1.9	Medium
<u>Marsh et al.</u> (2005)	JÞ*	Background	Striped dolphin (fresh blubber and cooked liver), bottlenose dolphin (sliced bacon), minke whale (fresh blubber), baird's beaked whale (shredded bacon)	1999	5	1.0	N/R	2.2	Medium
<u>Frederiksen</u> <u>et al.</u> (2007)	Multiple *	Background	Minke whale (blubber), pilot whale (blubber), pilot whale (liver), polar bear (adipose), polar bear (liver), ringed seal (blubber), ringed seal (liver), ringed seal (liver), ringed seal (blubber) w greenland	2006	32	0.94	7.9	2.1	Medium
<u>Jenssen et</u> <u>al. (2007</u>)	NO*	Background	Harbor seals (blubber), ringed seals (blubber)	1998- 2003	25	N/R	N/R	1.6	High
<u>Sørmo et</u> <u>al. (2006</u>)	NO*	Background	Polar bear (adipose tissue), ringed seal (blubber)	2003	10	N/R	N/R	2.2	Medium
Villanger et al. (2011)	NO*	Background	White whale (blubber)	1996- 2001	9	1.0	2.5	2.0	Medium
<u>Lam et al.</u> (2009)	CN	Background	Dolphins, porpoises	2002- 2008	49	1.0	0.9	1.9	Medium
<u>Tanabe et</u> al. (2007)	CN	Background	Finless porpoise (blubber)	1990- 2001	12	1.0	N/R	2.0	Medium

*Study conducted in a country/countries classified as "High Income" by the World Bank Abbreviations: N/R, Not reported

3.3.2. Aquatic Mammals (ng/g) – Wet Fraction

Measured concentrations of HBCD in Aquatic Mammals with unit of ng/g, extracted from 5 sources, are summarized in Figure 3-6 and supplemental information is provided in Table 3-6.

Overall, concentrations ranged from not-detected to 19208.0 ng/g from over 142 samples collected between 1993 and 2012 in 4 countries, GB, NO, US, and GL. Location types were categorized as Background. Reported detection frequencies ranged from 0.13 to 1.0.

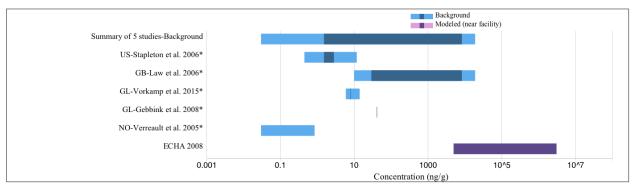
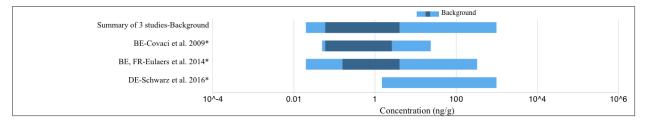


Figure 3-6. Concentration of HBCD (ng/g) in the Wet Fraction of Aquatic Mammals in Background Locations and for Modeled Data from 1993 to 2012

* Study conducted in a country/countries classified as "High Income" by the World Bank.

Table 3-6. Summary of Peer-Reviewed Literature that Measured HBCD (ng/g) Levels in	
the Wet Fraction of Aquatic Mammals	


Citation	Country	Location Type	Species	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng/g)	Quality Score	Overall Quality Level
<u>Stapleton</u> <u>et al.</u> (2006)	US*	Background	California sea lions	1993- 2003	25	0.8	0.9	1.3	High
<u>Law et</u> <u>al.</u> (2006c)	GB*	Background	Harbor porpoises (blubber)	1994- 2003	84	1.0	N/R	1.9	Medium
<u>Vorkamp</u> <u>et al.</u> (2015)	GL*	Background	Ringed seal (blubber)	2012	5	1.0	N/R	1.2	High
<u>Gebbink</u> <u>et al.</u> (2008)	GL*	Background	Polar bear (tissue)	1999- 2001	13	0.62	N/R	2.0	Medium
Verreault et al. (2005)	NO*	Background	Polar bears	2002	15	0.13	0.03	1.4	High
<u>KemI</u> (2008)	N/R	Modeled (near facility)	N/R	N/R	N/R	N/R	N/R	1.3	High

*Study conducted in a country/countries classified as "High Income" by the World Bank Abbreviations: N/R, Not reported

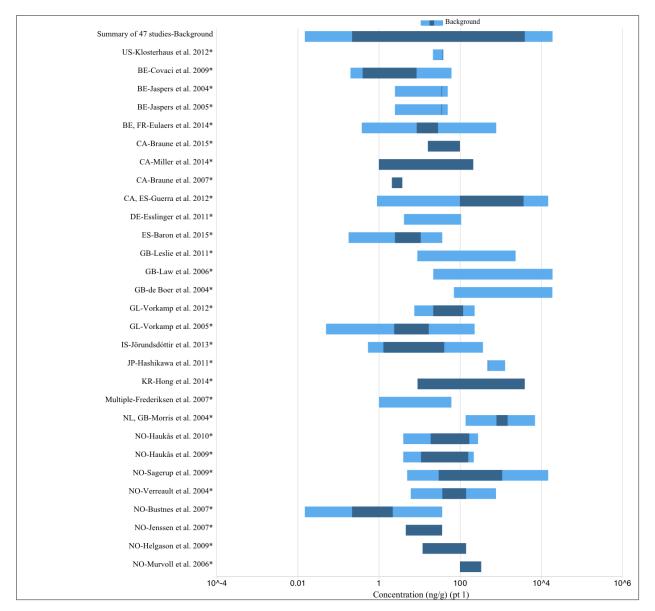
3.4. Birds

3.4.1. Birds (ng/g) – Dry Fraction

Measured concentrations of HBCD in Birds with unit of ng/g, extracted from 3 sources, are summarized in Figure 3-7 and supplemental information is provided in Table 3-7. Overall, concentrations ranged from not-detected to 1000.0 ng/g from over 143 samples collected between 2006 and 2011 in 3 countries, FR, BE, and DE. Location types were categorized as Background. Reported detection frequencies ranged from 0.5 to 1.0.

Figure 3-7. Concentration of HBCD (ng/g) in the Dry Fraction of Birds in Background Locations from 2006 to 2011

* Study conducted in a country/countries classified as "High Income" by the World Bank.


Table 3-7. Summary of Peer-Reviewed Literature that Measured HBCD (ng/g) Levels in	
the Dry Fraction of Birds	

Citation	Country	Location Type	Species	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng/g)	Quality Score	Overall Quality Level
<u>Covaci</u> <u>et al.</u> (2009)	BE*	Background	Chickens (feces)	2006- 2007	20	0.6	0.1	1.8	Medium
<u>Eulaers</u> <u>et al.</u> (2014)	BE, FR*	Background	Barn owl (feathers)	2008- 2009	73	1.0	N/R	2.0	Medium
<u>Schwarz</u> <u>et al.</u> (2016)	DE*	Background	Peregrine falcon (egg contents)	2006- 2011	50	0.5	3.0	2.2	Medium

*Study conducted in a country/countries classified as "High Income" by the World Bank Abbreviations: N/R, Not reported

3.4.2. Birds (ng/g) – Lipid Fraction

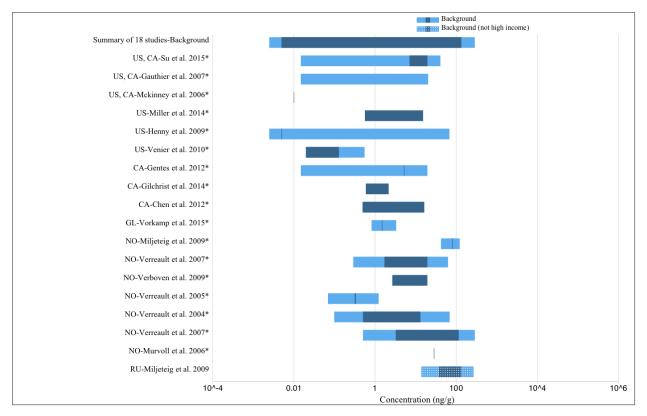
Measured concentrations of HBCD in Birds with unit of ng/g, extracted from 51 sources, are summarized in Figure 3-8 and supplemental information is provided in Table 3-8. Overall, concentrations ranged from not-detected to 19200.0 ng/g from over 2253 samples collected between 1969 and 2014 in at least 18 countries, including CA, ES, GL, FR, NO, CN, DE, ZA, IS, NL, PL, SE, US, VN, KR, JP, BE, and GB. Location types were categorized as Background and Near Facility. Reported detection frequencies ranged from 0.05 to 1.0.

Figure 3-8. Concentration of HBCD (ng/g) in the Lipid Fraction of Birds in Background and Near Facility Locations from 1969 to 2014

* Study conducted in a country/countries classified as "High Income" by the World Bank.

Table 3-8. Summary of Peer-Reviewed Literature that Measured HBCD (ng/g) Levels in	
the Lipid Fraction of Birds	

Citation	Country	Location Type	Species	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng/g)	Quality Score	Overall Quality Level
Klosterhaus et al. (2012)	US*	Background	Double-crested cormorant (eggs)	2008	3	1.0	N/R	1.7	Medium
<u>Covaci et al.</u> (2009)	BE*	Background	Chicken (eggs), chickens (eggs)	2006-2007	20	0.55	0.4	1.8	Medium
<u>Jaspers et al.</u> (2004)	BE*	Background	Little owl (eggs)	1998-2000	40	0.05	5.0	2.2	Medium
Jaspers et al. (2005)	BE*	Background	Little owls	1998-2000	40	0.05	5.0	2.2	Medium
Eulaers et al. (2014)	BE, FR*	Background	Barn owl (muscle), barn owl (liver tissue), barn owl (gland tissue), barn owl (adipose tissue), barn owl (muscle), barn owl (liver tissue), barn owl (gland tissue)	2008-2009	88	1.0	N/R	2.0	Medium
Braune et al. (2015)	CA*	Background	Glaucous gull (eggs), black-legged kitiwake (eggs)	2008-2013	51	N/R	1.0	1.9	Medium
Miller et al. (2014b)	CA*	Background	Rhinoceros auklets (eggs), leach's storm- petrel (eggs), ancient murrelet (eggs)	1990-2011	25	0.68	1.0	1.9	Medium
Braune et al. (2007)	CA*	Background	Ivory gull (eggs)	1976-2004	24	1.0	0.3	2.0	Medium
<u>Guerra et al.</u> (2012)	CA, ES*	Background	Peregrine falcon (eggs)	2003-2009	25	0.8	N/R	1.8	Medium
Esslinger et al. (2011)	DE*	Background	Herring gulls (eggs)	1988-2008	26	N/R	0.00025	1.7	Medium
<u>Baron et al.</u> (2015)	ES*	Background	Black kite, white stork, greater flamingo	1999-2013	108	N/R	0.7	1.4	High
<u>Leslie et al.</u> (2011)	GB*	Background	Peregrine falcon (eggs), sparrow hawk (muscle)	1973-2002	127	0.17	N/R	1.7	Medium
<u>Law et al.</u> (2006b)	GB*	Background	Falcon (eggs), sparrowhawk (muscle)	1973-2002	21	0.19	N/R	1.8	Medium
<u>de Boer et</u> <u>al. (2004</u>)	GB*	Background	Falcon (eggs), sparrowhawk (muscle)	1973-2002	116	0.18	N/R	1.9	Medium
<u>Vorkamp et</u> <u>al. (2012</u>)	GL*	Background	Gulls (liver)	1994-2010	44	1.0	0.76	2.1	Medium
Vorkamp et al. (2005)	GL*	Background	Falcon (eggs)	1986-2003	33	0.88	0.1	2.0	Medium
Jörundsdóttir et al. (2013)	IS*	Background	Guillemot (eggs), fulmar (eggs), arctic tern (eggs), common eider (eggs), gulls (eggs), great skua (eggs)	2002-2004	63	N/R	4.7	2.0	Medium
Hashikawa et al. (2011)	JP*	Background	Common cormorants (muscle)	1993-2007	41	N/R	N/R	2.3	Low


Citation	Country	Location Type	Species	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng/g)	Quality Score	Overall Quality Level
<u>Hong et al.</u> (2014)	KR*	Background	Gull (muscle), pigeon (muscle), loon (muscle), heron, egrets (muscle)	2009	15	1.0	N/R	1.9	Medium
Frederiksen et al. (2007)	Multiple*	Background	Black guillemot (egg), black guillemot (liver), fulmar (liver), fulmar (subcutaneous fat)	2006	20	0.9	4.6	2.1	Medium
<u>Morris et al.</u> (2004)	NL, GB*	Background	Tern (eggs), cormorant (liver)	1999-2001	15	1.0	1.2	2.3	Low
Haukås et al. (2010a)	NO*	Background	Great blackbeaked gull (whole seabird eggs without shell), common eider (whole seabird eggs without shell)	2006-2007	55	1.0	N/R	1.9	Medium
<u>Haukås et al.</u> (2009)	NO*	Background	Common eider	2006-2007	32	1.0	0.05	1.9	Medium
<u>Sagerup et</u> al. (2009)	NO*	Background	Gulls (liver), gulls (brain)	2003-2005	42	1.0	0.3	2.0	Medium
Verreault et al. (2004)	NO*	Background	Glaucous gulls	2002-2004	30	1.0	N/R	1.2	High
Bustnes et al. (2007)	NO*	Background	Owl (eggs)	1986-2004	139	0.24	0.03	1.8	Medium
<u>Jenssen et al.</u> (2007)	NO*	Background	Common terns (eggs), arctic terns (eggs)	2003	30	N/R	N/R	1.6	High
<u>Helgason et</u> <u>al. (2009</u>)	NO*	Background	Herring (eggs), kittiwake (eggs), puffin (eggs)	1983-2003	89	1.0	N/R	1.7	Medium
<u>Murvoll et</u> <u>al. (2006b</u>)	NO*	Background	North atlantic kittiwake (yolk sac)	2002	37	N/R	1.5	2.1	Medium
<u>Murvoll et</u> <u>al. (2007</u>)	NO*	Background	Brunnich's guillemot (yolk sac), common eider (yolk sac)	2002	23	0.43	1.5	2.1	Medium
<u>Murvoll et</u> <u>al. (2006a</u>)	NO*	Background	European shag (yolk sac)	2002	30	1.0	1.5	2.1	Medium
<u>Sørmo et al.</u> (2011)	NO*	Background	Herring gulls (liver)	1998	16	1.0	N/R	1.8	Medium
<u>Reindl and</u> <u>Falkowska</u> (2014)	PL*	Background	African penguin (whole egg), african penguin (egg yolk), african penguin (egg albumen), african penguin (muscle), african penguin (brain), african penguin (liver), african penguin (adipose)	2008-2010	21	1.0	1.4	2.2	Medium
Johansson et al. (2011)	SE*	Background	Peregrine falcons (eggs)	1974-2007	25	0.72	20.0	1.6	High
<u>Nordlöf et</u> <u>al. (2010</u>)	SE*	Background	Sea eagle (eggs)	1992-2005	44	1.0	13.0	1.9	Medium

Citation	Country	Location Type	Species	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng/g)	Quality Score	Overall Quality Level
Lundstedt- Enkel et al. (2006)	SE*	Background	Baltic sea guillemot (eggs), baltic sea guillemot (muscle)	2000-2002	50	N/R	N/R	2.0	Medium
Sellström et al. (2003)	SE*	Background	Guillemot (eggs)	1969-2001	137	1.0	N/R	1.8	Medium
Lundstedt- Enkel et al. (2005)	SE*	Background	Guillemot	2000	30	N/R	N/R	2.0	Medium
Lindberg et al. (2004)	SE*	Background	Falcon	1987-1999	21	0.81	N/R	2.0	Medium
Johansson et al. (2009)	SE*	Background	Peregrine falcons (eggs)	1991-1999	34	0.94	11.0	1.7	Medium
<u>Sun et al.</u> (2012)	CN	Background	Bulbul (muscle), shrike (muscle), oriental magpie-robin (muscle)	2009-2011	39	N/R	1.0	1.9	Medium
<u>Zhang et al.</u> (2013)	CN	Background	Herring gull	2011	3	1.0	0.022	1.7	Medium
<u>Yu et al.</u> (2014)	CN	Background	Tree sparrow (muscle), common magpie (muscle)	2009-2011	68	1.0	1.6	1.9	Medium
<u>Zheng et al.</u> (2012)	CN	Background	Hens	2010	8	1.0	4.7	1.9	Medium
<u>He et al.</u> (2010)	CN	Background	Pond heron (muscle), white-breasted waterhen (muscle), common snipe (muscle), slaty- breasted rail (muscle), spotted dove (muscle), chinese francolin (muscle)	2005-2008	40	N/R	3.0	1.2	High
<u>Yu et al.</u> (2013)	CN	Background	Common kestrel , eagle owl , eurasian tree sparrow	2005-2007	87	1.0	0.3	2.0	Medium
<u>Polder et al.</u> (2008c)	ZA	Background	African darter, reed cormorant, cattle egret, african sacred ibis, crowned plover, little grebe, white- fronted plover, kelp gull (eggs)	2004-2005	43	N/R	0.2	1.9	Medium
<u>Haukås et al.</u> (2009)	NO*	Near facility	Great black backed gull	2006-2007	42	1.0	0.05	1.9	Medium
<u>Sun et al.</u> (2012)	CN	Near facility	Bulbul (muscle), shrike (muscle), oriental magpie-robin (muscle)	2009-2011	30	N/R	1.0	1.9	Medium
<u>Zheng et al.</u> (2012)	CN	Near facility	Hens	2010	33	1.0	4.7	1.9	Medium
<u>Tao et al.</u> (2016) *Studu a	VN	Near facility	Chicken (eggs), chicken muscle, liver, and skin	2014	30	1.0 Vorld Dorl	0.05	2.0	Medium

*Study conducted in a country/countries classified as "High Income" by the World Bank Abbreviations: N/R, Not reported

3.4.3. Birds (ng/g) – Wet Fraction

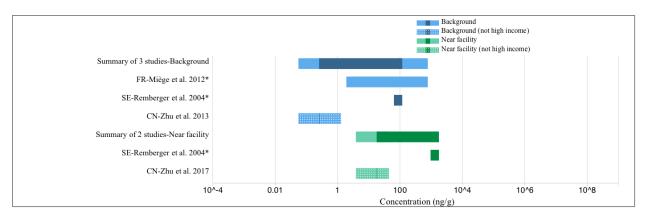
Measured concentrations of HBCD in Birds with unit of ng/g, extracted from 18 sources, are summarized in Figure 3-9 and supplemental information is provided in Table 3-9. Overall, concentrations ranged from not-detected to 292 ng/g from over 825 samples collected between 2001 and 2013 in 5 countries, CA, GL, US, RU, and NO. Location types were categorized as Background. Reported detection frequencies ranged from 0.00 to 1.0.

Figure 3-9. Concentration of HBCD (ng/g) in the Wet Fraction of Birds in Background Locations from 2001 to 2013

* Study conducted in a country/countries classified as "High Income" by the World Bank.

Table 3-9. Summary of Peer-Reviewed Literature that Measured HBCD (ng/g) Levels in the Wet Fraction of Birds

Citation	Country	Location Type	Species	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng/g)	Quality Score	Overall Quality Level
<u>Su et al.</u> (2015a)	US, CA*	Background	Herring gull (eggs)	2012-2013	130	0.98	0.03	1.3	High
<u>Gauthier et</u> <u>al. (2007</u>)	US, CA*	Background	Herring gulls (eggs)	2004	6	0.83	0.03	1.9	Medium
McKinney et al. (2006)	US, CA*	Background	Bald eagle (plasma)	2001-2003	29	0.0	0.01	2.0	Medium


Citation	Country	Location Type	Species	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng/g)	Quality Score	Overall Quality Level
Miller et al. (2014a)	US*	Background	Double-crested cormorant (egg), great blue heron (egg)	2003-2012	50	N/R	1.0	2.2	Medium
<u>Henny et</u> <u>al. (2009</u>)	US*	Background	Osprey (eggs), cormorant (eggs)	2002-2007	119	0.11	0.005	2.0	Medium
<u>Venier et</u> <u>al. (2010</u>)	US*	Background	Bald eagle	2005	15	0.47	N/R	1.7	Medium
<u>Gentes et</u> <u>al. (2012</u>)	CA*	Background	Ring-billed gull (plasma), ring-billed gull (liver)	2010	58	0.43	0.03	1.4	High
Gilchrist et al. (2014)	CA*	Background	Tree swallows (eggs)	2007-2010	87	N/R	N/R	1.9	Medium
<u>Chen et al.</u> (2012)	CA*	Background	Gulls: glaucous- winged, california, ring-billed, herring	2008	26	N/R	0.28	1.9	Medium
<u>Vorkamp</u> <u>et al.</u> (2015)	GL*	Background	Glaucous gull (liver)	2012	4	1.0	N/R	1.2	High
Miljeteig et al. (2009)	NO*	Background	Ivory gull (eggs)	2007	10	N/R	N/R	1.4	High
<u>Verreault</u> <u>et al.</u> (2007a)	NO*	Background	Glaucous gulls (blood plasma), glaucaus gull (blood plasma), glaucaus gull (egg yolk)	2006	80	0.76	0.59	1.6	High
Verboven et al. (2009)	NO*	Background	Gulls (eggs), gulls (plasma)	2006	42	N/R	N/R	1.9	Medium
Verreault et al. (2005)	NO*	Background	Gulls	2004	27	1.0	0.03	1.4	High
Verreault et al. (2004)	NO*	Background	Glaucous gulls	2002-2004	30	1.0	N/R	1.2	High
<u>Verreault</u> <u>et al.</u> (2007b)	NO*	Background	Glaucous gulls (blood), glaucous gulls (liver), glaucous gulls (whole body homogenate with feathers), glaucous gulls (whole body homogenate without feathers)	2002	57	1.0	N/R	1.6	High
Murvoll et al. (2006a)	NO*	Background	European shag (yolk sac)	2002	30	1.0	1.5	2.1	Medium
Miljeteig et al. (2009)	RU	Background	Ivory gull (eggs)	2006	25	N/R	N/R	1.4	High

*Study conducted in a country/countries classified as "High Income" by the World Bank Abbreviations: N/R, Not reported

3.5. Fish

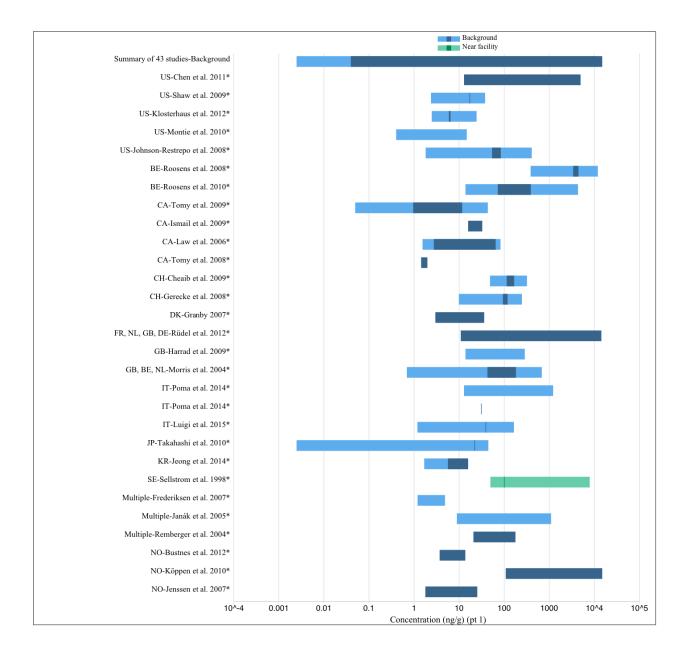
3.5.1. Fish (ng/g) – Dry Fraction

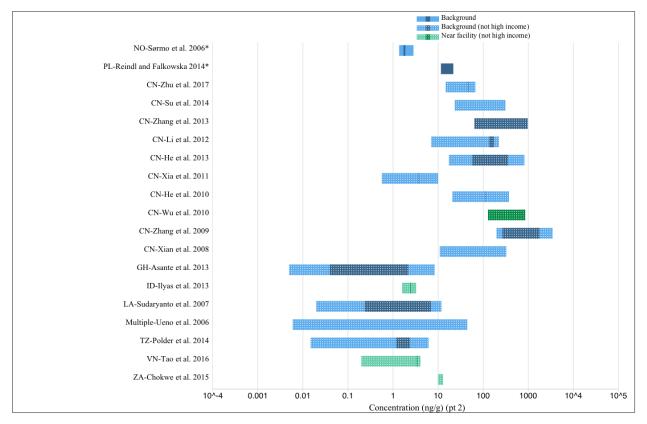
Measured concentrations of HBCD in Fish with unit of ng/g, extracted from 5 sources, are summarized in Figure 3-10 and supplemental information is provided in Table 3-10. Overall, concentrations ranged from not-detected to 1,800 ng/g from over 100 samples collected between 2000 and 2014 in 3 countries, FR, SE, and CN. Location types were categorized as Background and Near Facility. Reported detection frequencies ranged from 0.65 to 1.0.

Figure 3-10. Concentration of HBCD (ng/g) in the Dry Fraction of Fish in Background and Near Facility Locations from 2000 to 2014

*Study conducted in a country/countries classified as "High Income" by the World Bank

Table 3-10. Summary of Peer-Reviewed Literature that Measured HBCD (ng/g) Levels in
the Dry Fraction of Fish


Citation	Country	Location Type	Species	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng/g)	Quality Score	Overall Quality Level
<u>Miège et</u> <u>al. (2012</u>)	FR*	Background	Barbel, common bream, white bream and chub (whole specimen)	2008- 2009	32	1.0	0.36	1.7	Medium
Remberger et al. (2004)	SE*	Background	Pike (muscle) and eel	2000	4	1.0	N/R	1.8	Medium


Citation	Country	Location Type	Species	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng/g)	Quality Score	Overall Quality Level
<u>Zhu et al.</u> (2013)	CN	Background	(oxygymnocypris stewartii, schizopygopsis younghusbandi, schizothorax macropogon, schizothorax o'connori, schizothorax waltoni, gymoncypris waddellii, gymoncypris przewalskii and racoma tibetanus	2007- 2011	52	0.65	0.11	1.3	High
Remberger et al. (2004)	SE*	Near facility	Pike (muscle) and eel	2000	4	1.0	N/R	1.8	Medium
<u>Zhu et al.</u> (2017b)	CN	Near facility	Bartial flathead	2014	8	1.0	0.022	1.7	Medium

*Study conducted in a country/countries classified as "High Income" by the World Bank Abbreviations: N/R, Not reported

3.5.2. Fish (ng/g) – Lipid Fraction

Measured concentrations of HBCD in Fish with unit of ng/g, extracted from 48 sources, are summarized in Figure 3-11 and supplemental information is provided in Table 3-11. Overall, concentrations ranged from not-detected to 15,158.39 ng/g from over 1602 samples collected between 1979 and 2014 in at least 22 countries, including CA, FR, NO, CN, LA, DE, ZA, NL, CH, PL, SE, ID, US, TZ, VN, KR, JP, DK, IT, BE, GB, and GH. Location types were categorized as Background and Near Facility. Reported detection frequencies ranged from 0.33 to 1.0.

Figure 3-11. Concentration of HBCD (ng/g) in the Lipid Fraction of Fish in Background and Near Facility Locations from 1979 to 2014

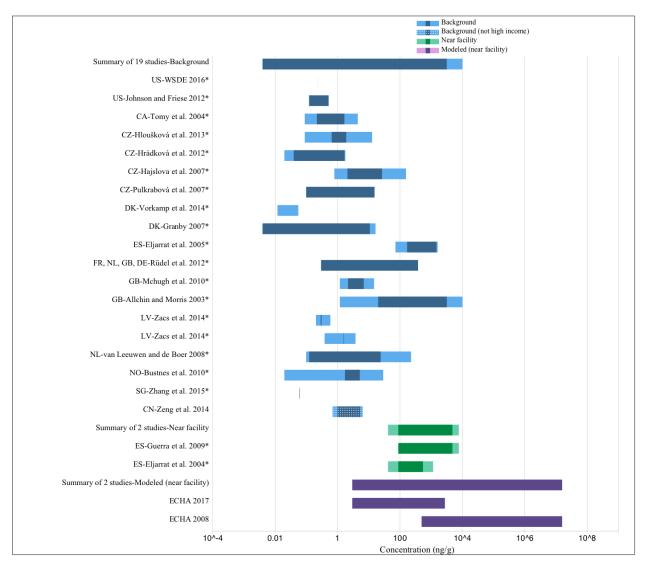
*Study conducted in a country/countries classified as "High Income" by the World Bank

Table 3-11. Summary of Peer-Reviewed Literature that Measured HBCD (ng/g) Levels in the Lipid Fraction of Fish

Citation	Country	Location Type	Species	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng/g)	Quality Score	Overall Quality Level
<u>Chen et al.</u> (2011)	US*	Background	Common carp (fish fillet)	1999-2007	9	N/R	0.2	1.4	High
<u>Shaw et al.</u> (2009)	US*	Background	Silver hake, white hake, atlantic herring, american plaice, alewife, winter flounder, atlantic mackerel	2006	12	0.83	N/R	1.1	High
Klosterhaus et al. (2012)	US*	Background	White croaker (whole specimen), shiner surfperch (whole specimen)	2006	14	N/R	N/R	1.7	Medium
<u>Montie et</u> <u>al. (2010</u>)	US*	Background	Flounder	2004	6	0.17	0.81	2.1	Medium
Johnson- Restrepo et al. (2008)	US*	Background	Bull shark (muscle), atlantic sharpnose shark (muscle)	1993-2004	16	1.0	0.0013	1.9	Medium

Citation	Country	Location Type	Species	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng/g)	Quality Score	Overall Quality Level
Roosens et al. (2008)	BE*	Background	Multiple fish species and eel (whole fish/eel)	2006	35	1.0	2.0	1.7	Medium
Roosens et al. (2010c)	BE*	Background	European eel	2000-2006	50	1.0	5.0	1.9	Medium
<u>Tomy et al.</u> (2009)	CA*	Background	Arctic cod , pacific herring , arctic cisco	2004-2005	29	N/R	N/R	2.4	Low
<u>Ismail et al.</u> (2009)	CA*	Background	Lake trout (whole specimen)	1979-2004	29	1.0	N/R	1.8	Medium
Law et al. (2006a)	CA*	Background	Walleye, whitefish, emerald shiner, burbot, white sucker, and goldeye (muscle)	2000-2002	28	1.0	0.16	1.2	High
<u>Tomy et al.</u> (2008)	CA*	Background	Redfish , arctic cod	2000-2001	10	N/R	0.0036	1.7	Medium
<u>Cheaib et</u> <u>al. (2009</u>)	CH*	Background	Lake trout	2004	9	1.0	N/R	1.6	High
<u>Gerecke et</u> <u>al. (2008)</u>	CH*	Background	Brown trout , whitefish, multiple	2003	75	1.0	N/R	1.8	Medium
Granby and Cederberg (2007)	DK*	Background	Cod - north sea, cod liver , farmed eels, herring, mackerel, plaice, salmon - baltic sea, salmon - farmed, trout - farmed	2002-2006	63	N/R	0.01	2.1	Low
<u>Rüdel et al.</u> (2012)	FR, NL, GB, DE*	Background	Bream (muscle), sole (muscle)	2007-2010	270	1.0	13.0	1.6	High
<u>Harrad et</u> <u>al. (2009</u>)	GB*	Background	Multiple species (muscle)	2008	30	1.0	N/R	1.7	Medium
<u>Morris et</u> al. (2004)	GB, BE, NL*	Background	Cod (liver), yellow eels , yellow eels	1999-2000	32	N/R	1.2	2.3	Low
<u>Poma et al.</u> (2014c)	IT*	Background	Shad, whitefish (muscle), shad, whitefish (liver)	2011-2012	26	1.0	0.1	1.2	High
<u>Poma et al.</u> (2014a)	IT*	Background	Rutilus rutilus	2011-2012	5	1.0	0.01	1.9	Medium
<u>Luigi et al.</u> (2015)	IT*	Background	Common carp, bream, sander, and sheatfish (liver)	2010	10	1.0	0.011	1.9	Medium
<u>Takahashi</u> <u>et al.</u> (2010)	JP*	Background	Deep sea fishes	2005	20	0.9	0.005	1.2	High
<u>Jeong et al.</u> (2014)	KR*	Background	Crucian carp (muscle), crucian carp (eggs)	2010	15	1.0	0.02	1.3	High
Frederiksen et al. (2007)	Multiple*	Background	Shorthorn sculpin (liver)	2006	5	0.6	1.1	2.1	Medium
<u>Janák et al.</u> (2005)	Multiple*	Background	Eel, sole, plaice, bib, whiting	2005	10	N/R	0.11	2.2	Medium

Citation	Country	Location Type	Species	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng/g)	Quality Score	Overall Quality Level
Remberger et al. (2004)	Multiple*	Background	Fish - herring (muscle)	1999-2000	6	1.0	N/R	1.8	Medium
Bustnes et al. (2012)	NO*	Background	Saithe , cod	2007	80	1.0	0.01	1.2	High
<u>Köppen et</u> <u>al. (2010</u>)	NO*	Background	Mackerel, codfish, thorny skate, pollack, flounder	2006	25	1.0	0.006	1.9	Medium
<u>Jenssen et</u> <u>al. (2007</u>)	NO*	Background	Atlantic cod (whole body), atlantic cod (whole body), polar cod (whole body)	2003	52	N/R	N/R	1.6	High
<u>Sørmo et</u> al. (2006)	NO*	Background	Polar cod	2003	7	N/R	N/R	2.2	Medium
Reindl and Falkowska (2014)	PL*	Background	Herring (whole fish), herring (herring muscle), herring (herring liver)	2009-2010	24	1.0	1.4	2.2	Medium
<u>Zhu et al.</u> (2017a)	CN	Background	Grass carp	2012-2013	5	1.0	N/R	2.0	Low
<u>Su et al.</u> (2014)	CN	Background	Common carp (whole organism), yellow catfish (whole organism)	2009-2012	62	1.0	N/R	2.2	Medium
<u>Zhang et al.</u> (2013)	CN	Background	Mud fish, topmouth gudgeon, crucian carp, ricefield eel,	2011	42	1.0	0.022	1.7	Medium
<u>Li et al.</u> (2012b)	CN	Background	Loach, silver carp, goby, crucian carp,	2011	153	1.0	N/R	1.1	High
<u>He et al.</u> (2013)	CN	Background	Mud carp , nile tilapia , suckermouth catfish	2009	34	N/R	N/R	1.3	High
<u>Xia et al.</u> (2011)	CN	Background	Yellow croaker and silver pomfret (fillet)	2008	46	1.0	0.3	1.7	Medium
<u>He et al.</u> (2010)	CN	Background	Crucian carp (muscle)	2005-2008	7	1.0	3.0	1.2	High
Zhang et al. (2009)	CN	Background	Crucian carp, loach	2006	19	1.0	N/R	1.8	Medium
<u>Xian et al.</u> (2008)	CN	Background	Multiple species (9 different species) (muscle, liver, whole, egg)	2006	24	1.0	0.005	1.1	High
<u>Asante et</u> al. (2013)	GH	Background	Tilapia	2010	40	N/R	0.01	1.2	High
Sudaryanto et al. (2007)	LA	Background	Snakehead (muscle), tilapia (muscle), carp (muscle)	2005	30	N/R	0.02	1.9	Medium


Citation	Country	Location Type	Species	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng/g)	Quality Score	Overall Quality Level
<u>Ueno et al.</u> (2006)	Multiple	Background	Skipjack tuna (muscle)	1997-2001	62	0.95	0.006	1.5	High
<u>Polder et</u> al. (2014)	ΤZ	Background	Tilapia (muscle)	2011	13	0.77	0.03	1.8	Medium
<u>Montie et</u> al. (2010)	US*	Near facility	Flounder	2004	6	0.5	0.81	2.1	Medium
Sellstrom et al. (1998)	SE*	Near facility	Pike (muscle)	1995	15	0.33	100.0	2.0	Medium
<u>Wu et al.</u> (2010)	CN	Near facility	Carp, crucian carp, snakehead, water snake	2006	23	0.7	3.0	2.0	Medium
<u>Ilyas et al.</u> (2013)	ID	Near facility	Nile tilapia	2008	2	1.0	N/R	1.4	High
<u>Tao et al.</u> (2016)	VN	Near facility	Tilapia (oreochromis mossambicus)	2014	5	1.0	0.05	2.0	Medium
<u>Chokwe et</u> <u>al. (2015</u>)	ZA	Near facility	Carp (muscle)	2013	12	1.0	0.48	1.6	High

*Study conducted in a country/countries classified as "High Income" by the World Bank

Abbreviations: N/R, Not reported

3.5.3. Fish (ng/g) – Wet Fraction

Measured concentrations of HBCD in Fish with unit of ng/g, extracted from 21 sources, are summarized in Figure 3-12 and supplemental information is provided in Table 3-12. Overall, concentrations ranged from not-detected to 10275.0 ng/g from over 936 samples collected between 2001 and 2014 in 13 countries, SG, CA, ES, CZ, NL, US, DK, FR, GB, LV, NO, CN, and DE. Location types were categorized as Background and Near Facility. Reported detection frequencies ranged from 0.27 to 1.0.

Figure 3-12. Concentration of HBCD (ng/g) in the Wet Fraction of Fish in Background and Near Facility Locations and for Modeled Data from 2001 to 2014

*Study conducted in a country/countries classified as "High Income" by the World Bank

Table 3-12. Summary of Peer-Reviewed Literature that Measured HBCD (ng/g) Levels in the Wet Fraction of Fish

Citation	Country	Location Type	Species	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng/g)	Quality Score	Overall Quality Level
Wsde (2016)	US*	Background	Multiple species	2014	44	0.27	100.0	1.1	High
Johnson and Friese ()	US*	Background	Common carp (muscle), large scale sucker (whole fish)	2011	8	N/R	100.0	1.4	High
<u>Tomy et al.</u> (2004)	CA*	Background	Lake trout, alewife, rainbow smelt, and slimy sculpin	2002	14	1.0	N/R	2.0	Medium

Citation	Country	Location Type	Species	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng/g)	Quality Score	Overall Quality Level
<u>Hloušková</u> <u>et al. (2013</u>)	CZ*	Background	Freshwater river fish: common breams, european chubs, roaches, crucian carp, european perch, gudgeon, grayling, common carp, rainbow trout and rudd (muscle)	2010	48	0.79	N/R	1.7	Medium
Hrádková et al. (2012)	CZ*	Background	Chub (fillet), common bream (fillet), roaches (fillet)	2008-2009	38	0.82	N/R	1.2	High
<u>Hajslova et</u> <u>al. (2007</u>)	CZ*	Background	Bream, chub, perch	2005	80	1.0	N/R	1.4	Medium
<u>Pulkrabová</u> <u>et al. (2007)</u>	CZ*	Background	Perch, chub, bream, barbel	2001-2003	N/R	N/R	0.1	2.0	Medium
<u>Vorkamp et</u> <u>al. (2014</u>)	DK*	Background	Multiple freshwater and seawater fish	2012	11	0.91	0.012	2.0	Medium
<u>Granby and</u> <u>Cederberg</u> (2007)	DK*	Background	Cod - north sea, cod liver , farmed eels, herring, mackerel, plaice, salmon - baltic sea, salmon - farmed, trout - farmed	2002-2006	63	N/R	0.01	2.1	Low
<u>Eljarrat et</u> <u>al. (2005</u>)	ES*	Background	Bleak	2002	15	1.0	N/R	1.7	Medium
<u>Rüdel et al.</u> (2012)	FR, NL, GB, DE*	Background	Bream (muscle)	2007-2010	240	1.0	13.0	1.6	High
<u>McHugh et</u> <u>al. (2010</u>)	GB*	Background	European eel	2005	5	1.0	N/R	2.2	Medium
Allchin and Morris (2003)	GB*	Background	Brown trout and eel (muscle)	2003	10	1.0	1.2	2.1	Medium
<u>Zacs et al.</u> (2014b)	LV*	Background	Eel (muscle)	2013	24	1.0	0.045	2.1	Low
<u>Zacs et al.</u> (2014a)	LV*	Background	Salmon (fillets)	2012	25	1.0	0.006	1.2	High
van Leeuwen and de Boer (2008)	NL*	Background	Multiple freshwater fish, marine fish, and shellfish species	2003	44	N/R	0.1	1.5	High
<u>Bustnes et</u> <u>al. (2010</u>)	NO*	Background	Saithe , cod	2007	155	N/R	0.01	1.7	Medium
<u>Zhang et al.</u> (2015)	SG*	Background	Marine catfish (tissue)	2014	11	0.36	0.0054	1.7	Medium

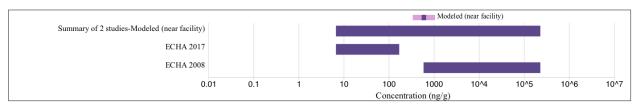
Citation	Country	Location Type	Species	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng/g)	Quality Score	Overall Quality Level
<u>Zeng et al.</u> (2014b)	CN	Background	Mud carp (serum), northern snakehead (serum)	2010	6	1.0	0.004	1.8	Medium
<u>Guerra et al.</u> (2009)	ES*	Near facility	Barbels, bleaks, and southwestern nases (whole fish (bleaks and nases); muscle and liver (barbels))	2002-2004	73	N/R	7.0	2.0	Medium
<u>Eljarrat et</u> <u>al. (2004</u>)	ES*	Near facility	Barbel fish (muscle), barbel fish (liver)	2002	22	1.0	N/R	1.8	Medium
<u>ECHA</u> (2017)	N/R	Modeled (near facility)	N/R	N/R	N/R	N/R	N/R	2.0	Medium
<u>KemI (2008</u>)	N/R	Modeled (near facility)	N/R	N/R	N/R	N/R	N/R	1.3	High

*Study conducted in a country/countries classified as "High Income" by the World Bank Abbreviations: N/R, Not reported

3.6. Terrestrial Invertebrates

3.6.1. Terrestrial Invertebrates (ng/g) – Lipid Fraction

Measured concentrations of HBCD in Terrestrial Invertebrates with unit of ng/g, extracted from 1 source, are summarized in Figure 3-13 and supplemental information is provided in Table 3-13. Overall, concentrations ranged from 0.16 to 30.34 ng/g from over 10 samples collected between 2012 and 2013 in 1 country, CN. Location types were categorized as Background. Reported detection frequency was 1.0.


Figure 3-13. Concentration of HBCD (ng/g) in the Lipid Fraction of Terrestrial Invertebrates in Background Locations from 2012 to 2013

* Study conducted in a country/countries classified as "High Income" by the World Bank.

Table 3-13. Summary of Peer-Reviewed Literature that Measured HBCD (ng/g) Levels in the Lipid Fraction of Terrestrial Invertebrates

Citation	Country	Location Type	Species	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng/g)	Quality Score	Overall Quality Level
<u>Zhu et</u> <u>al.</u> (2017a)	CN	Background	Butterfly, dragonfly, grasshopper	2012- 2013	10	1.0	N/R	2.0	Low

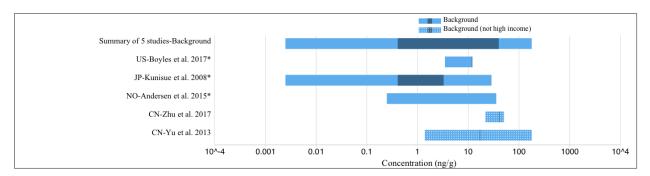
Abbreviations: N/R, Not reported

3.6.2. Terrestrial Invertebrates (ng/g) – Wet Fraction

Figure 3-14. Concentration of HBCD (ng/g) in the Wet Fraction of Terrestrial Invertebrates in Modeled Data from 2008 to 2017

* Study conducted in a country/countries classified as "High Income" by the World Bank.

Table 3-14. Summary of Peer-Reviewed Literature that Measured HBCD (ng/g) Levels in the Wet Fraction of Terrestrial Invertebrates


Citation	Country	Location Type	Species	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng/g)	Quality Score	Overall Quality Level
<u>ECHA</u> (2017)	N/R	Modeled (near facility)	N/R	N/R	N/R	N/R	N/R	2.0	Medium
<u>KemI</u> (2008)	N/R	Modeled (near facility)	N/R	N/R	N/R	N/R	N/R	1.3	High

Abbreviations: N/R, Not reported

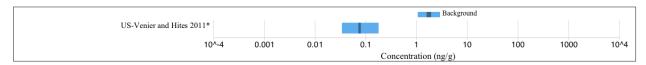
3.7. Terrestrial Mammals

3.7.1. Terrestrial Mammals (ng/g) – Lipid Fraction

Measured concentrations of HBCD in Terrestrial Mammals with unit of ng/g, extracted from 5 sources, are summarized in Figure 3-15 and supplemental information is provided in Table 3-15. Overall, concentrations ranged from not-detected to 180.0 ng/g from over 243 samples collected between 1997 and 2014 in 4 countries, NO, JP, US, and CN. Location types were categorized as Background. Reported detection frequencies ranged from 0.01 to 1.0.

Figure 3-15. Concentration of HBCD (ng/g) in the Lipid Fraction of Terrestrial Mammals in Background Locations from 1997 to 2014

* Study conducted in a country/countries classified as "High Income" by the World Bank.


Table 3-15. Summary of Peer-Reviewed Literature that Measured HBCD (ng/g) Levels in the Lipid Fraction of Terrestrial Mammals

Citation	Country	Location Type	Species	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng/g)	Quality Score	Overall Quality Level
<u>Boyles et</u> al. (2017)	US*	Background	Bobcat (liver)	2013-2014	44	N/R	3.5	1.7	Medium
<u>Kunisue et</u> <u>al. (2008</u>)	JP*	Background	Raccoon dogs (liver tissue), raccoon dogs (adipose tissue)	2001-2006	47	0.77	0.005	1.9	Medium
<u>Andersen</u> <u>et al.</u> (2015)	NO*	Background	Arctic fox (liver)	1997-2013	141	0.014	0.5	1.8	Medium
<u>Zhu et al.</u> (2017a)	CN	Background	Rat	2012-2013	3	1.0	N/R	2.0	Low
<u>Yu et al.</u> (2013)	CN	Background	Brown rat	2005-2007	8	1.0	0.3	2.0	Medium

*Study conducted in a country/countries classified as "High Income" by the World Bank Abbreviations: N/R, Not reported

3.7.2. Terrestrial Mammals (ng/g) – Wet Fraction

Measured concentrations of HBCD in Terrestrial Mammals with unit of ng/g, extracted from 1 source, are summarized in Figure 3-16 and supplemental information is provided in Table 3-16. Overall, concentrations ranged from not-detected to 0.18 ng/g from over 17 samples collected during 2010 in 1 country, US. Location types were categorized as Background. Reported detection frequency was 0.94.

Figure 3-16. Concentration of HBCD (ng/g) in the Wet Fraction of Terrestrial Mammals in Background Locations in 2010

* Study conducted in a country/countries classified as "High Income" by the World Bank.

Table 3-16. Summary of Peer-Reviewed Literature that Measured HBCD (ng/g) Levels in the Wet Fraction of Terrestrial Mammals

Citation	Country	Location Type	Species	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng/g)	Quality Score	Overall Quality Level
<u>Venier</u> and Hites (2011)	US*	Background	Dogs (serum)	2010	17	0.94	N/R	1.9	Medium

*Study conducted in a country/countries classified as "High Income" by the World Bank Abbreviations: N/R, Not reported

4. Biomonitoring Media

4.1. Dermal Wipes

4.1.1. Dermal Wipes (ng) – Dry Fraction

Measured concentrations of HBCD in Dermal Wipes with unit of ng, extracted from 2 sources, are summarized in Figure 4-1 and supplemental information is provided in Table 4-1. Overall, concentrations ranged from not-detected to 8,900 ng from over 83 samples collected between 2012 and 2014 in 2 countries, NO and US. Location types were categorized as General. Reported detection frequencies ranged from 0.52 to 1.0.

Figure 4-1. Concentration of HBCD (ng) in the Dry Fraction of Dermal Wipes in the General Population from 2012 to 2014

* Study conducted in a country/countries classified as "High Income" by the World Bank.

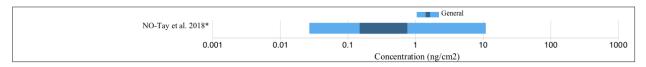

Citation	Country	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng)	Quality Score	Overall Quality Level
Stapleton et al. (2014)	US*	2012	23	0.52	0.05	1.8	Medium
<u>Tay et al.</u> (2018)	NO*	2013-2014	60	1.0	68.0	1.1	High

Table 4-1. Summary of Peer-Reviewed Literature that Measured HBCD (ng) Levels in the Dry Fraction of Dermal Wipes

*Study conducted in a country/countries classified as "High Income" by the World Bank

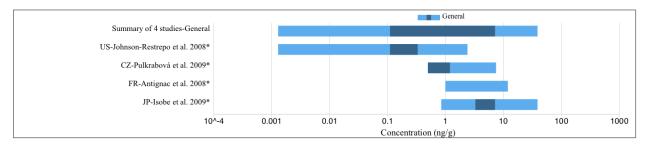
4.1.2. Dermal Wipes (ng/cm²) – Dry Fraction

Measured concentrations of HBCD in Dermal Wipes with unit of ng/cm2, extracted from 1 source, are summarized in Figure 4-2 and supplemental information is provided in Table 4-2. Overall, concentrations ranged from 0.03 to 11.0 ng/cm² from over 60 samples collected between 2013 and 2014 in 1 country, NO. Location types were categorized as General. Reported detection frequency was 1.0.

Figure 4-2. Concentration of HBCD (ng/cm²) in the Dry Fraction of Dermal Wipes in the General Population from 2013 to 2014

* Study conducted in a country/countries classified as "High Income" by the World Bank.

Table 4-2. Summary of Peer-Reviewed Literature that Measured HBCD (ng/cm²) Levels in the Dry Fraction of Dermal Wipes


Citation	Country	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng/cm2)	Quality Score	Overall Quality Level
<u>Tay et al.</u> (2018)	NO*	2013-2014	60	1.0	N/R	1.1	High

*Study conducted in a country/countries classified as "High Income" by the World Bank Abbreviations: N/R, Not reported

4.2. Human Adipose Tissue

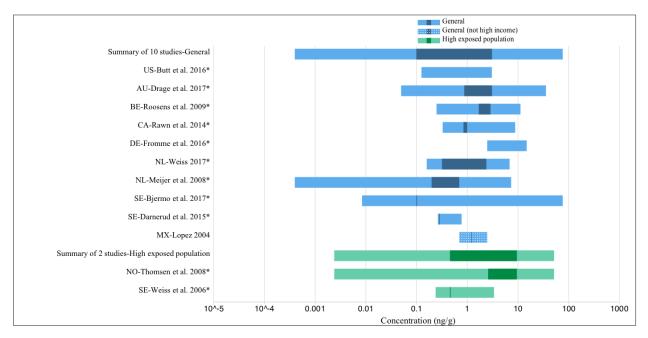
4.2.1. Human Adipose Tissue (ng/g) – Lipid Fraction

Measured concentrations of HBCD in Human Adipose Tissue with unit of ng/g, extracted from 4 sources, are summarized in Figure 4-3 and supplemental information is provided in Table 4-3. Overall, concentrations ranged from not-detected to 39 ng/g from over 214 samples collected between 2003 and 2008 in 4 countries, FR, JP, US, and CZ. Location types were categorized as General. Reported detection frequencies ranged from 0.5 to 0.85.

Figure 4-3. Concentration of HBCD (ng/g) in the Lipid Fraction of Human Adipose Tissue in the General Population from 2003 to 2008

* Study conducted in a country/countries classified as "High Income" by the World Bank.

Table 4-3. Summary of Peer-Reviewed Literature that Measured HBCD (ng/g) Levels in the Lipid Fraction of Human Adipose Tissue


Citation	Country	Location Type	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng/g)	Quality Score	Overall Quality Level
<u>Johnson-</u> <u>Restrepo et</u> <u>al. (2008)</u>	US*	General	2003- 2004	20	0.85	0.0026	1.9	Medium
Pulkrabová et al. (2009)	CZ*	General	2008	98	N/R	0.5	1.8	Medium
Antignac et al. (2008)	FR*	General	2004- 2005	26	0.5	N/R	1.6	High
<u>Isobe et al.</u> (2009b)	JP*	General	2003- 2004	70	N/R	0.05	1.7	Medium

*Study conducted in a country/countries classified as "High Income" by the World Bank Abbreviations: N/R, Not reported

4.3. Human Blood

4.3.1. Human Blood (ng/g) – Lipid Fraction

Measured concentrations of HBCD in Human Blood with unit of ng/g, extracted from 12 sources, are summarized in Figure 4-4 and supplemental information is provided in Table 4-4. Overall, concentrations ranged from not-detected to 77 ng/g from over 695 samples collected between 1996 and 2015 in 9 countries, SE, CA, NL, US, BE, NO, AU, MX, and DE. Location types were categorized as High Exposed Population and General. Reported detection frequencies ranged from 0.07 to 1.0.

Figure 4-4. Concentration of HBCD (ng/g) in the Lipid Fraction of Human Blood in General and High Exposed Populations from 1996 to 2015

* Study conducted in a country/countries classified as "High Income" by the World Bank.

Citation	Country	Location Type	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng/g)	Quality Score	Overall Quality Level
<u>Butt et al.</u> (2016)	US*	General	2008- 2010	43	0.07	0.084	1.9	Medium
<u>Drage et</u> al. (2017)	AU*	General	2002- 2015	63	0.73	0.1	1.4	High
<u>Roosens</u> <u>et al.</u> (2009)	BE*	General	2007	9	0.56	0.5	1.4	High
<u>Rawn et</u> <u>al.</u> (2014b)	CA*	General	2007- 2009	57	1.0	0.004	1.3	High
<u>Fromme</u> <u>et al.</u> (2016)	DE*	General	2013	42	0.095	5.0	1.8	Medium
<u>Weiss et</u> <u>al. (2017</u>)	NL*	General	2004	90	N/R	0.16	1.6	High
<u>Meijer et</u> <u>al. (2008</u>)	NL*	General	2001- 2002	81	0.89	0.0008	1.8	Medium
<u>Bjermo et</u> <u>al. (2017)</u>	SE*	General	2010- 2011	170	0.61	0.017	1.6	High
<u>Darnerud</u> <u>et al.</u> (2015)	SE*	General	1996- 2010	36	0.11	0.53	1.8	Medium

Table 4-4. Summary of Peer-Reviewed Literature that Measured HBCD (ng/g) Levels in
the Lipid Fraction of Human Blood

Citation	Country	Location Type	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng/g)	Quality Score	Overall Quality Level
<u>López et</u> <u>al. (2004</u>)	MX	General	2003	5	N/R	N/R	2.1	Medium
<u>Thomsen</u> <u>et al.</u> (2008)	NO*	High exposed population	2004- 2005	49	0.76	0.0048	1.5	High
<u>Weiss et</u> <u>al. (2006</u>)	SE*	High exposed population	2000	50	N/R	0.24	1.4	High

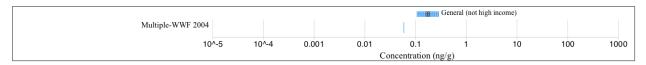
*Study conducted in a country/countries classified as "High Income" by the World Bank Abbreviations: N/R, Not reported

4.3.2. Human Blood (ng/L) – Serum Fraction

Measured concentrations of HBCD in Human Blood with unit of ng/l, extracted from 1 source, are summarized in Figure 4-5 and supplemental information is provided in Table 4-5. Overall, concentrations ranged from 30 to 234 ng/l from over 515 samples collected between 2008 and 2011 in 1 country, BE. Location types were categorized as General. No detection frequencies were reported.

Figure 4-5. Concentration of HBCD (ng/L) in the Serum Fraction of Human Blood in the General Population from 2008 to 2011

* Study conducted in a country/countries classified as "High Income" by the World Bank.


Table 4-5. Summary of Peer-Reviewed Literature that Measured HBCD (ng/L) Levels in the Serum Fraction of Human Blood

Citation	Country	Location Type	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng/L)	Quality Score	Overall Quality Level
<u>Kiciński</u> <u>et al.</u> (2012)	BE*	General	2008-2011	515	N/R	30.0	1.9	Medium

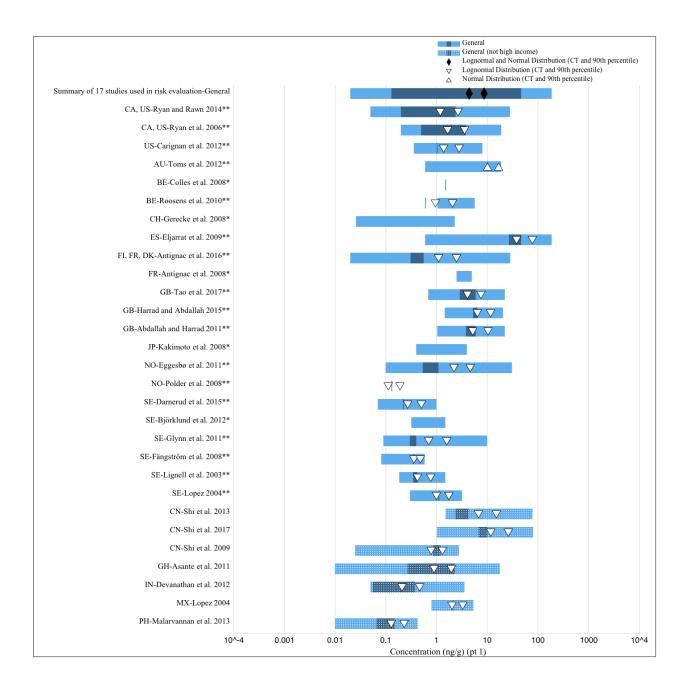
*Study conducted in a country/countries classified as "High Income" by the World Bank Abbreviations: N/R, Not reported

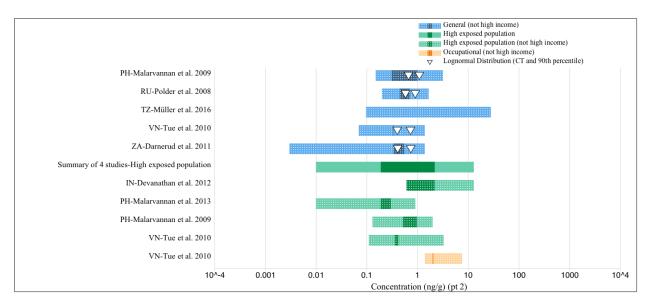
4.3.3. Human Blood (ng/g) – Wet Fraction

Measured concentrations of HBCD in Human Blood with unit of ng/g, extracted from 1 source, are summarized in Figure 4-6 and supplemental information is provided in Table 4-6. Overall, concentrations ranged from not-detected to 0.06 ng/g from over 40 samples collected during 2003 in an unknown number of countries. Location types were categorized as General. Reported detection frequency was 0.02.

Figure 4-6. Concentration of HBCD (ng/g) in the Wet Fraction of Human Blood in the General Population in 2003

Table 4-6. Summary of Peer-Reviewed Literature that Measured HBCD (ng/g) Levels in the Wet Fraction of Human Blood


Citation	Country	Location Type	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng/g)	Quality Score	Overall Quality Level
<u>Wwf</u> (2004)	Multiple	General	2003	40	0.025	N/R	2.4	Low


Abbreviations: N/R, Not reported

4.4. Human Breast Milk

4.4.1. Human Breast Milk (ng/g) – Lipid Fraction

Measured concentrations of HBCD in Human Breast Milk with unit of ng/g, extracted from 39 sources, are summarized in Figure 4-7 and supplemental information is provided in Table 4-7. Overall, concentrations ranged from not-detected to 188 ng/g from over 2115 samples collected between 1973 and 2015 in 22 countries, CA, GH, ES, FR, NO, AU, CN, ZA, CH, RU, IN, SE, US, TZ, FI, VN, MX, JP, DK, BE, GB, and PH. Location types were categorized as High Exposed Population, Occupational, and General. Reported detection frequencies ranged from 0.00 to 1.0. Following the statistical procedures described above to obtain a final dataset, central tendency and high-end estimates, respectively, were 4.44 and 8.74 ng/g for General (n = 17 studies).

Figure 4-7. Concentration of HBCD (ng/g) in the Lipid Fraction of Human Breast Milk in General, High Exposed, and Occupational Populations from 1989 to 2015

* Study conducted in a country/countries classified as "High Income" by the World Bank.

Citation	Country	Location Type	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng/g)	Quality Score	Overall Quality Level
<u>Ryan and</u> <u>Rawn (2014</u>)	CA, US**	General	1989-2005	109	0.78	0.1	1.8	Medium
<u>Ryan et al.</u> (2006)	CA, US**	General	2002-2003	17	N/R	N/R	2.1	Medium
<u>Carignan et</u> <u>al. (2012</u>)	US**	General	2004-2005	43	1.0	0.036	1.2	High
<u>Toms et al.</u> (2012)	AU**	General	1993-2009	13	0.69	1.2	1.8	Medium
<u>Colles et al.</u> (2008)	BE*	General	2008	1	1.0	0.8	2.6	Low
Roosens et al. (2010b)	BE**	General	2006	22	0.27	2.1	1.8	Medium
<u>Gerecke et</u> <u>al. (2008</u>)	CH*	General	2003-2007	36	N/R	N/R	1.8	Medium
Eljarrat et al. (2009)	ES**	General	2006-2007	33	0.91	1.2	1.3	High
Antignac et al. (2016)	FI, FR, DK**	General	1997-2014	498	0.98	N/R	1.4	High
Antignac et al. (2008)	FR*	General	2004-2005	23	0.3	N/R	1.6	High
<u>Tao et al.</u> (2017)	GB**	General	2010-2015	35	N/R	N/R	1.1	High

Table 4-7. Summary of Peer-Reviewed Literature that Measured HBCD (ng/g) Levels in the Lipid Fraction of Human Breast Milk

Citation	Country	Location Type	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng/g)	Quality Score	Overall Quality Level
<u>Harrad and</u> <u>Abdallah</u> (2015)	GB**	General	2010-2011	120	1.0	0.036	1.9	Medium
Abdallah and <u>Harrad</u> (2011)	GB**	General	2010	34	1.0	N/R	1.6	High
<u>Kakimoto et</u> <u>al. (2008</u>)	JP*	General	1973-2006	18	0.83	0.4	1.3	High
<u>Eggesbø et</u> al. (2011)	NO**	General	2003-2006	193	0.68	N/R	2.0	Medium
<u>Polder et al.</u> (2008b)	NO**	General	2000-2002	10	0.1	0.05	1.7	Medium
Darnerud et al. (2015)	SE**	General	2010	30	0.97	N/R	1.8	Medium
Björklund et al. (2012)	SE*	General	2008-2009	18	0.17	N/R	1.9	Medium
<u>Glynn et al.</u> (2011)	SE**	General	2000-2004	387	0.77	N/R	1.7	Medium
Fängström et al. (2008)	SE**	General	1980-2004	28	1.0	N/R	2.0	Medium
<u>Lignell et al.</u> (2003)	SE**	General	2002-2003	30	0.8	0.37	2.1	Medium
<u>López et al.</u> (2004)	SE**	General	2003	5	N/R	N/R	2.1	Medium
<u>Shi et al.</u> (2013)	CN	General	2011	103	N/R	N/R	1.6	High
<u>Shi et al.</u> (2017b)	CN	General	2011	29	1.0	0.28	1.8	Medium
<u>Shi et al.</u> (2009)	CN	General	2007	24	0.92	0.05	1.6	High
<u>Asante et al.</u> (2011)	GH	General	2004-2009	67	N/R	0.01	1.7	Medium
Devanathan et al. (2012)	IN	General	2009	17	N/R	0.05	1.9	Medium
<u>López et al.</u> (2004)	MX	General	2003	7	N/R	N/R	2.1	Medium
Malarvannan et al. (2013)	PH	General	2008	10	N/R	0.01	1.8	Medium
Malarvannan et al. (2009)	PH	General	2004	11	1.0	N/R	1.3	High
<u>Polder et al.</u> (2008a)	RU	General	2000	37	0.3	N/R	1.8	Medium
<u>Müller et al.</u> (2016)	TZ	General	2012	1	0.0	0.097	1.9	Medium
<u>Tue et al.</u> (2010)	VN	General	2007	9	N/R	N/R	1.8	Medium
<u>Darnerud et</u> <u>al. (2011)</u>	ZA	General	2004	14	0.93	0.006	1.6	High

Citation	Country	Location Type	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng/g)	Quality Score	Overall Quality Level
Devanathan et al. (2012)	IN	High exposed population	2009	8	1.0	0.05	1.9	Medium
Malarvannan et al. (2013)	РН	High exposed population	2008	20	N/R	0.01	1.8	Medium
Malarvannan et al. (2009)	РН	High exposed population	2004	22	1.0	N/R	1.3	High
<u>Tue et al.</u> (2010)	VN	High exposed population	2007	24	N/R	N/R	1.8	Medium
<u>Tue et al.</u> (2010)	VN	Occupational	2007	9	N/R	N/R	1.8	Medium

*Study conducted in a country/countries classified as "High Income" by the World Bank

**Study conducted in a country/countries classified as "High Income" by the World Bank and included in risk evaluation Abbreviations: N/R, Not reported

4.5. Human Feces

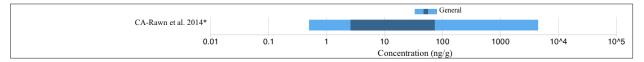
4.5.1. Human Feces (ng/g) – Lipid Fraction

Measured concentrations of HBCD in Human Feces with unit of ng/g, extracted from 1 source, are summarized in Figure 4-8 and supplemental information is provided in Table 4-8. Overall, concentrations ranged from 0.21 to 59 ng/g from over 22 samples collected between 2009 and 2011 in 1 country, SE. Location types were categorized as General. No detection frequencies were reported.

Figure 4-8. Concentration of HBCD (ng/g) in the Lipid Fraction of Human Feces in the General Population from 2009 to 2011

* Study conducted in a country/countries classified as "High Income" by the World Bank.

Table 4-8. Summary of Peer-Reviewed Literature that Measured HBCD (ng/g) Levels in the Lipid Fraction of Human Feces


Citation	Country	Location Type	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng/g)	Quality Score	Overall Quality Level
Sahlström et al. (2015b)	SE*	General	2009- 2011	22	N/R	N/R	1.8	Medium

*Study conducted in a country/countries classified as "High Income" by the World Bank Abbreviations: N/R, Not reported

4.6. Human Fetal Tissue

4.6.1. Human Fetal Tissue (ng/g) – Lipid Fraction

Measured concentrations of HBCD in Human Fetal Tissue with unit of ng/g, extracted from 1 source, are summarized in Figure 4-9 and supplemental information is provided in Table 4-9. Overall, concentrations ranged from not-detected to 4,500 ng/g from over 51 samples collected between 1998 and 2010 in 1 country, CA. Location types were categorized as General. Reported detection frequency was 0.9.

Figure 4-9. Concentration of HBCD (ng/g) in the Lipid Fraction of Human Fetal Tissue in the General Population from 1998 to 2010

* Study conducted in a country/countries classified as "High Income" by the World Bank.

Table 4-9. Summary of Peer-Reviewed Literature that Measured HBCD (ng/g) Levels in the Lipid Fraction of Human Fetal Tissue

Citation	Country	Location Type	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng/g)	Quality Score	Overall Quality Level
<u>Rawn et</u> <u>al.</u> (2014a)	CA*	General	1998-2010	51	0.9	1.0	1.4	High

*Study conducted in a country/countries classified as "High Income" by the World Bank

4.7. Human Hair

4.7.1. Human Hair (ng/g) – Wet Fraction

Measured concentrations of HBCD in Human Hair with unit of ng/g, extracted from 2 sources, are summarized in Figure 4-10 and supplemental information is provided in Table 4-10. Overall, concentrations ranged from 0.3 to 5.4 ng/g from over 30 samples collected during 2008 in 1 country, PH. Location types were categorized as High Exposed Population and General. No detection frequencies were reported.

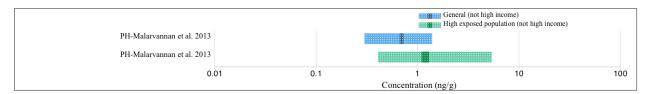


Figure 4-10. Concentration of HBCD (ng/g) in the Wet Fraction of Human Hair in General and High Exposed Populations in 2008

Table 4-10. Summary of Peer-Reviewed Literature that Measured HBCD (ng/g) Levels inthe Wet Fraction of Human Hair

Citation	Country	Location Type	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng/g)	Quality Score	Overall Quality Level
Malarvannan et al. (2013)	PH	General	2008	10	N/R	0.01	1.8	Medium
Malarvannan et al. (2013)	РН	High exposed population	2008	20	N/R	0.01	1.8	Medium

Abbreviations: N/R, Not reported

4.8. Human Placental Tissue

4.8.1. Human Placental Tissue (ng/g) – Lipid Fraction

Measured concentrations of HBCD in Human Placental Tissue with unit of ng/g, extracted from 1 source, are summarized in Figure 4-11 and supplemental information is provided in Table 4-11. Overall, concentrations ranged from not-detected to 5,600 ng/g from over 142 samples collected between 1998 and 2010 in 1 country, CA. Location types were categorized as General. Reported detection frequency was 0.97.

Figure 4-11. Concentration of HBCD (ng/g) in the Lipid Fraction of Human Placental Tissue in the General Population from 1998 to 2010

* Study conducted in a country/countries classified as "High Income" by the World Bank.

Table 4-11. Summary of Peer-Reviewed Literature that Measured HBCD (ng/g) Levels in the Lipid Fraction of Human Placental Tissue

Citation	Country	Location Type	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng/g)	Quality Score	Overall Quality Level
<u>Rawn et</u> al. (2014a)	CA*	General	1998-2010	142	0.97	1.0	1.4	High

*Study conducted in a country/countries classified as "High Income" by the World Bank

4.9. Human Serum

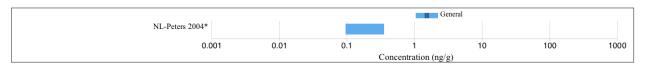
4.9.1. Human Serum (ng/g) – Lipid Fraction

Measured concentrations of HBCD in Human Serum with unit of ng/g, extracted from 1 source, are summarized in Figure 4-12 and supplemental information is provided in Table 4-12. Overall, concentrations ranged from not-detected to 38.8 ng/g from over 61 samples collected during 2007 in 1 country, GR. Location types were categorized as General. Reported detection frequency was 0.7.

			G	eneral		
GR-Kalantzi et al. 2011*						
0.001	0.01	0.1	1	10	100	1000
			Concentration (ng/	g)		

Figure 4-12. Concentration of HBCD (ng/g) in the Lipid Fraction of Human Serum in the General Population in 2007

* Study conducted in a country/countries classified as "High Income" by the World Bank.


Table 4-12. Summary of Peer-Reviewed Literature that Measured HBCD (ng/g) Levels in the Lipid Fraction of Human Serum

Citation	Country	Location Type	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng/g)	Quality Score	Overall Quality Level
<u>Kalantzi</u> <u>et al.</u> (2011)	GR*	General	2007	61	0.7	1.0	1.8	Medium

*Study conducted in a country/countries classified as "High Income" by the World Bank

4.9.2. Human Serum (ng/g) – Wet Fraction

Measured concentrations of HBCD in Human Serum with unit of ng/g, extracted from 1 source, are summarized in Figure 4-13 and supplemental information is provided in Table 4-13. Overall, concentrations ranged from not-detected to 0.36 ng/g from over 91 samples collected during 2004 in 1 country, NL. Location types were categorized as General. Reported detection frequency was 0.12.

Figure 4-13. Concentration of HBCD (ng/g) in the Wet Fraction of Human Serum in the General Population in 2004

* Study conducted in a country/countries classified as "High Income" by the World Bank.

Table 4-13. Summary of Peer-Reviewed Literature that Measured HBCD (ng/g) Levels in the Wet Fraction of Human Serum

Citation	Country	Location Type	Sampling Year	Number of Samples	Frequency of Detection	Detection Limit (ng/g)	Quality Score	Overall Quality Level
<u>Peters</u> (2004)	NL*	General	2004	91	0.12	0.08	1.3	High

*Study conducted in a country/countries classified as "High Income" by the World Bank

5. Overview of Indoor Semivolatile Organic Compounds Exposure, Fate, and Transport

The indoor environment is complex. Research on emissions from sources and assessment of human exposure to indoor pollutants is of increasing interest (Guo (2014); Liagkouridis et al. (2014); Guo (2013); Salthammer and Bahadir (2009)). A detailed understanding of most relevant chemical substances, including their physical-chemical properties, sources, distribution among indoor media (such as the gas phase, airborne particles and settled dust), and contact with receptors is needed to more accurately estimate exposure. Sources may include building products, furnishings and other indoor materials that often contain semi-volatile organic compounds (SVOCs) such as flame retardants and plasticizers. Many studies have shown that the types of sources in residential and commercial indoor environments, the range of emitted compounds and the duration of emission can vary widely [see for example Stapleton et al. (2004); Singer et al. (2004); Zhao et al. (2004)].

SVOCs including flame retardants and plasticizers are commonly found in many products used in homes or other indoor environments and have been detected in a wide variety of indoor air and dust samples [see for example <u>Weschler and Nazaroff (2010</u>); <u>Allen et al. (2008</u>)]. Exposure may occur via inhalation, dermal or oral pathways from several sources including indoor and ambient air, drinking water, soil, food, indoor surfaces, and household dust. However, the relative contributions from various chemicals in these media are not well characterized. Because products containing these chemicals are often retained in the indoor environment for several years over their lifecycle, there is the potential for chronic exposures. See Figure 5-1. Overview of Indoor Emission, Fate, Transport, and Exposure to SVOCs. Figure 5-1 shows the process flow for SVOC emissions, fate, transport, and ultimately exposure in the indoor environment.

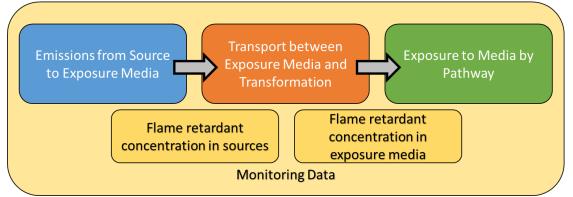


Figure 5-1. Overview of Indoor Emission, Fate, Transport, and Exposure to SVOCs

Flame retardants or other SVOCs can enter indoor air by volatilization from the consumer articles; the airborne SVOCs can be adsorbed or absorbed by settled dust, suspended particles and interior surfaces. The dust may absorb SVOCs by direct contact with the article; and the article itself can be abraded such that small pieces of the article become constituents of indoor dust. Human receptors in the indoor environment can interact with the article via dermal contact (touching) or mouthing of the article itself. Flame retardant additives can also be

emitted/extracted from the article during cleaning, such as washing textiles. These processes are presented graphically in Figure 5-2 and detailed in the following sections.

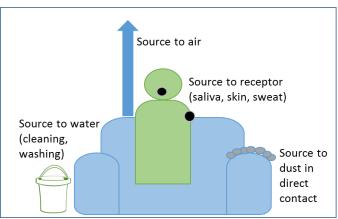


Figure 5-2. Example Emission Pathways for Flame Retardants

Chemical Mass Transfer from Source to Air: Flame retardant additives are SVOCs with low vapor pressures (~10-14 to 10-4 atm). Because SVOCs have a strong affinity to indoor surfaces and particles, measuring their emission rates has been challenging. Given the low concentrations in air, methods with detection limits in the pg/m³ range are required. Furthermore, SVOCs are often adsorbed to the sampling apparatus itself, hindering the measurement [Liang and Xu (2014);Liu et al. (2013); Katsumata et al. (2008)]. It is important to note that while the SVOC emissions are relatively slow, the emissions can be nearly constant over time and last for years or even decades. Besides, indoor SVOC sources often cover large surface areas.

Emission of flame retardants via volatilization can be described by the two-phase mass transfer theory and depends on the chemical-polymer specific diffusion, partitioning, and mass transfer coefficients, as shown in Equation 1. In the first phase of mass transfer the chemical diffuses through the article to the surface. The chemical flux is described by the solid phase mass transfer coefficient $(2D_s/L)$ and the concentration gradient in the solid. In the second phase, at the surface of the article, the gas-phase mass transfer coefficient (h_a), along with gas-phase concentration gradient, is used to describe the rate of chemical movement from the surface to the air. By combining the two resistances in series, the overall gas-phase mass transfer coefficient (H_{source}) can be estimated <u>Guo (2013</u>).

Equation 1

$$\frac{1}{H_{source}} = \frac{1}{\frac{2D_s}{L}K_{source}} + \frac{1}{h_a}$$

where:

 H_{source} = Overall gas-phase mass transfer coefficient for interior source (m/hr) D_s = the SVOC solid-phase diffusion coefficient (m²/hr) L=the thickness of the solid layer (m) K_{source} =the SVOC material-air partition coefficient (unitless) h_a =the SVOC gas-phase mass transfer coefficient (m/hr)

A simpler approach that may be used in a screening model is to assume a constant concentration of flame retardant in the article (i.e., the flame retardant levels are not appreciably reduced by emissions). With this approach, diffusion in solid phase can be ignored, and the emission factor is described in Equation 2.

Equation 2

$$\mathbf{E} = h_a \times (y_o - y)$$

where:

E = Emission factor $(mg/m^2/hr)$ h_a = the SVOC gas-phase mass transfer coefficient (m/hr) y_o = the SVOC concentration in the air immediately adjacent to the article (mg/m^3) y = gas-phase SVOC concentration in bulk air (mg/m^3)

This methodology relies upon measurement or estimation of y_0 . In the absence of experimental data, y_0 can be estimated by either the saturation concentration or the ratio of the SVOC concentration in the article to the material-air partition coefficient. These methodologies will result in the upper-bound estimates of the emission rates [Xu et al. (2012); Xu et al. (2009); Xu and Little (2006)].

Emission rates have been measured for flame retardant article combinations, as shown in Table 5-1. In general, emission rates are on the order of micrograms per hour, with whole house emission rates of various brominated flame retardants calculated on the order of hundreds of milligrams per year <u>Batterman et al. (2010</u>). While changes in relative humidity do not appear to affect emissions appreciably <u>Clausen et al. (2004</u>), increased temperatures are shown to increase emissions <u>Kajiwara et al. (2013</u>); <u>Destaillats et al. (2008</u>); <u>Carlsson et al. (2000</u>). This is of importance as flame retardants are added to electronics, foam insulation, automobile interiors, and other materials that could be exposed to heat while in use.

Flame Retardant	Article	Emission Factor	Source
HBCD	computer casing	0.4 ng/m ² /hr	Kemmlein et al. (2003)
HBCD	textile	0-8,000 ng/m ² /hr	<u>Kajiwara et al. (2013</u>)

	insulation	0.1-30 ng/m ² /hr	Kemmlein et al. (2003)
ТСРР	computer casing	24 ng/unit/hr	Destaillats et al. (2008)
	PUF / insulation	12-140,000 ng/m ² /hr	Kemmlein et al. (2003)

5.1. Chemical Mass Transfer from Source to Particles

The transfer rates of flame retardants from the article surface directly to the dust in contact with the article are difficult to measure and more research is needed Liagkouridis et al. (2015). Currently, no models exist to predict dynamic transfer rates directly to dust. Elevated levels of flame retardants have been measured in dust found near or on flame retardant sources as compared to the whole house dust <u>Brandsma et al. (2014a</u>). In the case of HBCD, the surface concentrations greater than 400 ng/m² have been measured on the surface of electronics <u>Di</u> <u>Napoli-Davis and Owens (2013</u>). HBCD has been measured in the dust inside television casings at levels of 240 ng/g and 2.5 ng/g, respectively <u>Takigami et al. (2008</u>). In one study, the presence of dust on the surface of sources was shown to increase emission rates for SVOCs by increasing the external concentration gradient above the surface of the substrate <u>Clausen et al. (2004</u>).

If the dust-air and source-air partition coefficients are known for the chemical of interest, the maximum SVOC concentration that would be found in dust in direct contact with the surface of an article can be described by the material-dust partitioning coefficient as shown in Equation 3.

Equation 3

$$\mathbf{K}_{dm} = \frac{C_d}{C_m} = \frac{\mathbf{K}_{da}}{\mathbf{K}_{ma}}$$

where:

K_{dm}	=	the SVOC solid-solid partition coefficient between dust and source (unitless)
C_d	=	equilibrium SVOC concentration in dust (mg/m3)
C_m	=	equilibrium SVOC concentration in source material (mg/m3)
K _{da}	=	the SVOC solid-air partition coefficient between dust and air (unitless)
K _{ma}	=	the SVOC solid-air partition coefficient between source and air (unitless)

5.2. Chemical Mass Transfer from Source to Skin

Dermal exposure to flame retardants can occur via direct skin contact with the source article. While flame retardants can partition into skin surface lipids and be subsequently absorbed, skin functions as a barrier to xenobiotic chemicals. However, sweat on the surface of the skin can mediate this process. Migration rates for TCPP from foam to simulated sweat have been measured upwards of 130 μ g/cm²/hr KemI (2008).

In general, dermal absorption is described as a flux through the skin that is based on a chemicalspecific skin permeability coefficient <u>Weschler and Nazaroff (2012</u>). For more volatile compounds, a competing evaporative flux away from the skin must also be considered. In general, the permeability is the rate-limiting step rather than the mass of flame retardant available on the skin, which makes comparisons of published data based on fraction absorbed challenging. Absorption rates of 2-20% have been reported for HBCD <u>Abdallah et al. (2015a</u>). Associated permeability coefficients for HBCD have been shown to be on the order of 10-3 cm/hr; permeability coefficients for HBCD have been measured on the order of 10-4 cm/hr with associated fluxes ranging from approximately 0.5 to 1.5 ng/cm²/hr <u>Abdallah et al. (2015b</u>).

Although measuring the flux through the skin is challenging, measurement of flame retardants on the skin can provide evidence of transfer to the skin, making the chemical available for subsequent absorption. <u>Mäkinen et al. (2009</u>) measured TCEP, TCPP, TDCPP, and HBCD residues on hands via wipe sampling in occupational settings as a surrogate for dermal exposure and found the average levels ranging from 2 to 70 ng/2 hands. <u>Keller et al. (2014</u>) showed that touching tent fabrics resulted in a transfer of TDCPP to the hands; less evidence of transfer of HBCD was presented.

5.3. Transfer to Dust by Source Fragmentation and Direct Source-Dust Contact

In addition to volatilization, the article itself can be abraded to the extent that small pieces of the article are ground into dust. This portion of the dust would have elevated additive levels, equal to that of the original source article. This pathway, though not well characterized, is believed to be a possible explanation for underpredictions of flame retardant concentrations in dust from exposure models used to characterize emissions. <u>Rauert et al. (2014</u>) mimicked physical abrasion of HBCD-treated textiles and saw an increase of HBCD in deposited dust from 110 ng/g to 4,020-52,500 ng/g. Additionally, the dust fibers were analyzed via microscopy and determined to be consistent with fragments of the source article. These results are supported by <u>Cao et al.</u> (2012); <u>Cao et al. (2013</u>); <u>Cao et al. (2014</u>); <u>Suzuki et al. (2009</u>) who analyzed flame retardant levels in dust by particle size. Flame retardant concentrations were highest in the finest particle range. This is hypothesized to be due to gas-phase partitioning. A second peak of flame retardant concentration was found in dust particles in the mid-size range. These findings suggest that the abrasion of materials such as upholstery that contain flame retardants plays an important role in determining the levels of flame retardant in dust.

If dust is present on the surface of an article, a chemical can directly transfer from the source to the dust. This process has been reported for HBCD-treated textiles in modified chambers <u>Rauert</u> <u>et al. (2016)</u>, and for PCB treated primer and caulk in modified chambers <u>Liu et al. (2015)</u>. This pathway, though not well characterized, can explain the high dust concentrations reported on the surfaces of some objects.

5.4. Fate and Transport of Chemical Substances within Indoor Environments

Once emitted to the indoor environment, flame retardants undergo a variety of fate and transport processes. Vapor-phase flame retardants can be transferred via diffusion and partitioning to particles or other sinks, such as furnishings, building materials, or clothing. Sinks can also become secondary sources of SVOCs. Airborne chemicals, either in the vapor phase or particle-bound, can then be removed from the indoor environment (and released to the outdoor environment) via ventilation. Flame retardants in settled dust can be removed via surface cleaning. Articles containing flame retardants can be disposed of via trash or recycling, and flame retardants can be removed from articles via washing. These processes are shown in **Figure 5-3** and discussed in the following sections.

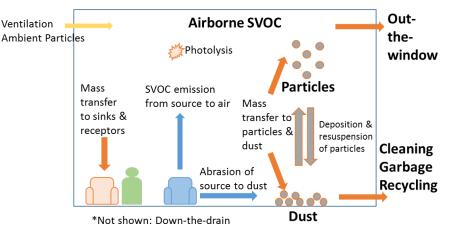


Figure 5-3. Relevant Fate and Transport Processes in the Indoor Environment

5.5. Chemical Mass Transfer between Air and Particles

Gas-phase SVOCs, including flame retardants, will partition between the gas-phase and airborne and settled particles. The equilibrium concentration between the gas and particle phases is described by the gas-particle partition coefficient. This is a function of the flame retardant itself, the composition of the particles, and temperature. Particle-air partition coefficients are difficult to measure and data is rare. An empirical relationship for partitioning between air and particles is presented in <u>Weschler and Nazaroff (2010)</u> and shown in Equation 4.

Equation 4

$$K_p = f_{om_part} \times \frac{K_{oa}}{\rho_{part}}$$

where:

- K_p = SVOC partition coefficient between air and TSP (KTSP) or dust (KDust) (m³/mg)
- $f_{om_part} =$ volume fraction of organic matter in airborne particles (unitless)

 K_{oa} = octanol-air partition coefficient (unitless)

 ρ_{part} = density of airborne particles (mg/m³)

However, the gas and particle phases do not reach instantaneous equilibrium. The rate of transfer between the air and gas phase is described by the gas-phase mass transfer coefficient. Available measured mass transfer coefficients are presented. An empirical relationship between the molecular weight and the gas phase mass transfer coefficient is presented in the Arthur D Little Migration Estimation Model (AMEM) and is shown below in Equation 5. Recent research <u>U.S.</u> <u>EPA (2007)</u> has shown that partitioning is dependent on the vapor pressure, temperature, particle size, indoor air velocities, and can be described to varying degrees in relation to other partitioning coefficients, including Henry's Law constant and the octanol-water partition coefficient Lyng et al. (2015); <u>Salthammer and Schripp (2015); Guo (2014); Liu et al. (2014</u>)

Equation 5

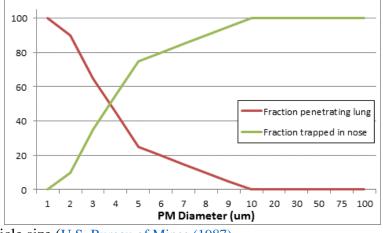
$$h_a = 46.8 \times \frac{3.3}{(2.5 + MW^{1/3})^2}$$

where:

 h_a = gas phase mass transfer coefficient for SVOC between bulk air and surface (m/hr) MW = molecular weight (g/mol)

5.6. Chemical Mass Transfer between Air and Sinks

The behavior that describes SVOC release from a source to the air can also be used to describe the SVOC transfer between the air and the sink. In reality, SVOC transfer to particles is a special case of transfer to a sink. The equilibrium concentrations are described by the material-air partition coefficient, and the rate of transfer is described by the mass-transfer coefficient and fugacity difference between the two phases. Common indoor sinks, such as furnishings and building materials, have a much larger mass and volume than indoor particles, meaning that much more SVOC mass can be absorbed by the sink before equilibrium is reached. In addition to the concentration gradient, the rate of transfer will be determined by the room temperature and properties of the sink itself <u>Bi et al. (2015)</u>; <u>Guo (2013)</u>; <u>Guo (2014</u>; <u>Stapleton et al. (2004</u>). It is important to note that after a primary source has been removed, lowering the air concentration of the SVOC and reversing the concentration gradient, the sink can become a secondary source <u>Zhao et al. (2004</u>). A particular sink of emerging interest is clothing and bedding, which can absorb SVOCs between washings and then, when used in close contact with a receptor, serve as a secondary source of both inhalation and dermal exposures <u>Morrison et al. (2015</u>). Few data are available to describe the partitioning and mass transfer between the air and specific sinks.


5.7. Relationship between Prevalence in Media and Physical-Chemical Properties

The physical-chemical properties of HBCD can be found in Section 1.1 of the main risk evaluation document.

The physical-chemical properties of chemical substances inform the exposure media a chemical is likely to be found in and, therefore, affect indoor exposures. SVOC chemicals generally have higher molecular weights, lower vapor pressures, higher boiling points, and higher log KOAs than VOCs. Therefore, SVOCs are more likely to be found sorbed to indoor particles or sinks than in the gas-phase compared to VOCs. HBCD has a relatively low vapor pressure as an SVOC. In addition, the log KOA for HBCD is relatively high compared to other SVOCs, indicating its strong affinity to bind to particles in the indoor environment Weschler and Nazaroff (2010). Measurements of physical-chemical properties can vary for a given chemical and estimates can be uncertain Salthammer and Schripp (2015). However, measurement of physical-chemical properties is important to accurately assess the fate, transport, and potential exposures to chemicals in indoor environments.

5.8. Estimating Exposure and Relevant Exposure Pathways for SVOCs

Gas-phase SVOCs and SVOCs sorbed to suspended particles can be inhaled via indoor air. Physiology, including age, gender, and body mass index, and activity level impact breathing rates and directly impact exposure. Gas-phase SVOCs can result in higher exposures because they are more readily absorbed by the body. SVOCs sorbed to particles, as HBCD is expected to be, can have a longer residence time in the lung particularly for small particles that penetrate deep into the lung. SVOCs sorbed to larger particles can be trapped in the upper airway and subsequently coughed out or swallowed, resulting in ingestion exposures. Figure 5-4 demonstrates the percentage of inhaled particles that are trapped in the upper or lower airway

depending on particle size (U.S. Bureau of Mines (1987).

Figure 5-4. Percentage of Inhaled Particles that are Trapped in either the Lung or Nose by Particle Diameter

5.9. Ingestion of Suspended Particles, Settled Dust, and Mouthing

In addition to the ingestion of previously inhaled particles, as discussed in the previous section, settled particles can also be ingested either due to hand-to-mouth or object-to-mouth transfer of dust. This exposure is driven by the frequency and duration of hand-to-mouth and object-to-

mouth events, which is likely to be higher in young children. Small children also spend more time in closer proximity to the floor which may explain their higher exposure through this pathway. Reported dust ingestion rates are highly variable and expected to vary by person due to the age and behaviors of the individual, such as handwashing, and the environmental conditions, such as the dusty level of the environment.

Because SVOCs like HBCD may be found in consumer articles in which children come into contact, mouthing, or directly licking or sucking, the HBCD-containing article can also contribute to exposures. As with dust ingestion, mouthing exposure increases with the duration and frequency of mouthing behavior, and is expected to be more relevant to children than adults. Mouthing exposure is also highly dependent on the transfer of the SVOC, like HBCD, from the source to the saliva, termed the migration rate. This is expected to be dependent on both the additive (HBCD) and the polymer. Although migration rates can be determined experimentally through in-vitro and/or in-vivo approaches, data have been scarce in the literature. Mouthing is discussed in detail in Section 2.4.4.4 of the main risk evaluation document.

Regardless of the pathway of ingestion, ingestion exposure depends on the ability of the chemical to be absorbed into the gastrointestinal tract after ingestion.

5.10. Dermal Contact with Source, Airborne SVOCs, and Sinks

Chemicals can contact the skin by direct contact with sources, contact with dust on surfaces of floors or objects, air deposition to the skin, or direct contact with secondary sources (sinks) with or without adhered dust. Hand wipe samples and other methods that measure chemical loadings on skin surface show that chemicals can remain on the skin. Additionally, it has been shown that low vapor pressure compounds such as HBCD are more likely to be absorbed by the skin than higher vapor pressure chemicals <u>Weschler and Nazaroff (2014</u>). Therefore, in addition to ingestion exposure resulting from hand-to-mouth contact, dermal absorption should be considered.

The amount of chemical that is absorbed into the skin depends on the competing processes of a chemical flux to and through the skin and chemical flux away from the skin, either by volatilization or washing. Clothing, bedding, and other physical barriers may prevent or reduce chemical contact with the skin or serve as vectors that increase exposure <u>Nazaroff and Goldstein</u> (2015).

Generally, dermal absorption rates tend to be lower than inhalation and ingestion rates and an individual may need to spend more time in a microenvironment (on the order of hours) for dermal exposure whereas inhalation and ingestion exposures occur more quickly. However, this pathway may contribute to overall exposure even though it is not as well characterized.

A summary of the various routes of exposure to SVOCs is presented in Figure 5-6.

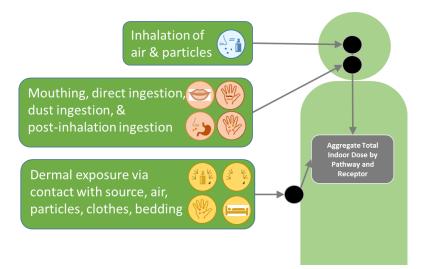


Figure 5-5. Summary of the Various Routes of Exposure to SVOCs

6. References

- Abb, M; Stahl, B; Lorenz, W. (2011). Analysis of brominated flame retardants in house dust. Chemosphere 85: 1657-1663. <u>http://dx.doi.org/10.1016/j.chemosphere.2011.06.022</u>.
- <u>Abdallah, MA; Harrad, S.</u> (2009). Personal exposure to HBCDs and its degradation products via ingestion of indoor dust. Environ Int 35: 870-876. <u>http://dx.doi.org/10.1016/j.envint.2009.03.002</u>.
- <u>Abdallah, MA; Harrad, S.</u> (2011). Tetrabromobisphenol-A, hexabromocyclododecane and its degradation products in UK human milk: Relationship to external exposure. Environ Int 37: 443-448. http://dx.doi.org/10.1016/j.envint.2010.11.008.
- <u>Abdallah, MA; Harrad, S.</u> (2018). Dermal contact with furniture fabrics is a significant pathway of human exposure to brominated flame retardants. Environ Int 118: 26-33. http://dx.doi.org/10.1016/j.envint.2018.05.027.
- <u>Abdallah, MA; Harrad, S; Covaci, A.</u> (2008a). Hexabromocyclododecanes and tetrabromobisphenol-A in indoor air and dust in Birmingham, U.K: Implications for human exposure. Environ Sci Technol 42: 6855-6861. <u>http://dx.doi.org/10.1021/es801110a</u>.
- <u>Abdallah, MA; Ibarra, C; Neels, H; Harrad, S; Covaci, A.</u> (2008b). Comparative evaluation of liquid chromatography-mass spectrometry versus gas chromatography-mass spectrometry for the determination of hexabromocyclododecanes and their degradation products in indoor dust. J Chromatogr A 1190: 333-341. <u>http://dx.doi.org/10.1016/j.chroma.2008.03.006</u>.
- <u>Abdallah, MA; Pawar, G; Harrad, S.</u> (2015a). Evaluation of 3D-human skin equivalents for assessment of human dermal absorption of some brominated flame retardants. Environ Int 84: 64-70. http://dx.doi.org/10.1016/j.envint.2015.07.015.
- <u>Abdallah, MA; Sharkey, M; Berresheim, H; Harrad, S.</u> (2018). Hexabromocyclododecane in polystyrene packaging: A downside of recycling? Chemosphere 199: 612-616. http://dx.doi.org/10.1016/j.chemosphere.2018.02.084.
- <u>Abdallah, MAE; Harrad, S.</u> (2010). Modification and calibration of a passive air sampler for monitoring vapor and particulate phase brominated flame retardants in indoor air: Application to car interiors. Environ Sci Technol 44: 3059-3065. <u>http://dx.doi.org/10.1021/es100146r</u>.
- <u>Abdallah, MAE; Harrad, S; Ibarra, C; Diamond, M; Melymuk, L; Robson, M; Covaci, A.</u> (2008c). Hexabromocyclododecanes in indoor dust from Canada, the United Kingdom, and the United States. Environ Sci Technol 42: 459-464. <u>http://dx.doi.org/10.1021/es702378t</u>.

- <u>Abdallah, MAE; Pawar, G; Harrad, S.</u> (2015b). Evaluation of in vitro vs. in vivo methods for assessment of dermal absorption of organic flame retardants: A review [Review]. Environ Int 74: 13-22. <u>http://dx.doi.org/10.1016/j.envint.2014.09.012</u>.
- <u>Al-Odaini, NA; Shim, WJ; Han, GM; Jang, M; Hong, SH.</u> (2015). Enrichment of hexabromocyclododecanes in coastal sediments near aquaculture areas and a wastewater treatment plant in a semi-enclosed bay in South Korea. Sci Total Environ 505: 290-298. http://dx.doi.org/10.1016/j.scitotenv.2014.10.019</u>.
- <u>Al Bitar, F.</u> (2004). Hazardous chemicals in Belgian house dust: Report on chemical content in house dust samples collected in Belgian homes and offices. Brussels, Belgium: Greenpeace Belgium. <u>http://www.greenpeace.org/eu-unit/Global/eu-unit/reports-briefings/2007/hazardous-chemicals-in-belgian-2.pdf</u>.
- Ali, N; Dirtu, AC; van den Eede, N; Goosey, E; Harrad, S; Neels, H; T Mannetje, A; Coakley, J; Douwes, J; Covaci, A. (2012). Occurrence of alternative flame retardants in indoor dust from New Zealand: Indoor sources and human exposure assessment. Chemosphere 88: 1276-1282. http://dx.doi.org/10.1016/j.chemosphere.2012.03.100.
- <u>Allchin, CR; Morris, S.</u> (2003). Hexabromocyclododecane (HBCD) diastereoisomers and brominated diphenyl ether congener (BDE) residues in edible fish from the rivers Skerne and Tees, U.K. Organohalogen Compd 61: 41-44.
- <u>Allen, JG; McClean, MD; Stapleton, HM; Webster, TF.</u> (2008). Critical factors in assessing exposure to PBDEs via house dust. Environ Int 34: 1085-1091. http://dx.doi.org/10.1016/j.envint.2008.03.006.
- Allen, JG; Stapleton, HM; Vallarino, J; McNeely, E; McClean, MD; Harrad, SJ; Rauert, CB; Spengler, JD. (2013). Exposure to flame retardant chemicals on commercial airplanes. Environ Health 12: 17. http://dx.doi.org/10.1186/1476-069X-12-17.
- Allgood, JM; Jimah, T; McClaskey, CM; La Guardia, MJ; Hammel, SC; Zeineddine, MM; Tang, IW; <u>Runnerstrom, MG; Ogunseitan, OA.</u> (2016). Potential human exposure to halogenated flameretardants in elevated surface dust and floor dust in an academic environment. Environ Res 153: 55-62. <u>http://dx.doi.org/10.1016/j.envres.2016.11.010</u>.
- Andersen, MS; Fuglei, E; König, M; Lipasti, I; Pedersen, ÅØ; Polder, A; Yoccoz, NG; Routti, H. (2015). Levels and temporal trends of persistent organic pollutants (POPs) in arctic foxes (Vulpes lagopus) from Svalbard in relation to dietary habits and food availability. Sci Total Environ 511: 112-122. <u>http://dx.doi.org/10.1016/j.scitotenv.2014.12.039</u>.
- Anim, AK; Drage, DS; Goonetilleke, A; Mueller, JF; Ayoko, GA. (2017). Distribution of PBDEs, HBCDs and PCBs in the Brisbane River estuary sediment. Mar Pollut Bull 120: 165-173. http://dx.doi.org/10.1016/j.marpolbul.2017.05.002.
- Antignac, JP; Cariou, R; Maume, D; Marchand, P; Monteau, F; Zalko, D; Berrebi, A; Cravedi, JP; Andre, F; Le Bizec, B. (2008). Exposure assessment of fetus and newborn to brominated flame retardants in France: Preliminary data. Mol Nutr Food Res 52: 258-265. http://dx.doi.org/10.1002/mnfr.200700077.
- Antignac, JP; Main, KM; Virtanen, HE; Boquien, CY; Marchand, P; Venisseau, A; Guiffard, I; Bichon,
 <u>E; Wohlfahrt-Veje, C; Legrand, A; Boscher, C; Skakkebæk, NE; Toppari, J; Le Bizec, B.</u> (2016).
 Country-specific chemical signatures of persistent organic pollutants (POPs) in breast milk of
 French, Danish and Finnish women. Environ Pollut 218: 728-738.
 <u>http://dx.doi.org/10.1016/j.envpol.2016.07.069</u>.
- Arinaitwe, K; Muir, DC; Kiremire, BT; Fellin, P; Li, H; Teixeira, C. (2014). Polybrominated diphenyl ethers and alternative flame retardants in air and precipitation samples from the northern Lake Victoria region, East Africa. Environ Sci Technol 48: 1458-1466. http://dx.doi.org/10.1021/es403600a.
- Asante, KA; Adu-Kumi, S; Nakahiro, K; Takahashi, S; Isobe, T; Sudaryanto, A; Devanathan, G; Clarke, <u>E; Ansa-Asare, OD; Dapaah-Siakwan, S; Tanabe, S.</u> (2011). Human exposure to PCBs, PBDEs and HBCDs in Ghana: Temporal variation, sources of exposure and estimation of daily intakes by infants. Environ Int 37: 921-928. <u>http://dx.doi.org/10.1016/j.envint.2011.03.011</u>.

- Asante, KA; Takahashi, S; Itai, T; Isobe, T; Devanathan, G; Muto, M; Agyakwah, SK; Adu-Kumi, S; <u>Subramanian, A; Tanabe, S.</u> (2013). Occurrence of halogenated contaminants in inland and coastal fish from Ghana: levels, dietary exposure assessment and human health implications. Ecotoxicol Environ Saf 94: 123-130. <u>http://dx.doi.org/10.1016/j.ecoenv.2013.05.008</u>.
- Aznar-Alemany, Ò; Trabalón, L; Jacobs, S; Barbosa, VL; Tejedor, MF; Granby, K; Kwadijk, C; Cunha, SC; Ferrari, F; Vandermeersch, G; Sioen, I; Verbeke, W; Vilavert, L; Domingo, JL; Eljarrat, E; Barceló, D. (2016). Occurrence of halogenated flame retardants in commercial seafood species available in European markets. Food Chem Toxicol 104: 35-47. http://dx.doi.org/10.1016/j.fct.2016.12.034.
- Bachman, MJ; Keller, JM; West, KL; Jensen, BA. (2014). Persistent organic pollutant concentrations in blubber of 16 species of cetaceans stranded in the Pacific Islands from 1997 through 2011. Sci Total Environ 488-489: 115-123. http://dx.doi.org/10.1016/j.scitotenv.2014.04.073.
- Barghi, M; Shin, ES; Son, MH; Choi, SD; Pyo, H; Chang, YS. (2016). Hexabromocyclododecane (HBCD) in the Korean food basket and estimation of dietary exposure. Environ Pollut 213: 268-277. http://dx.doi.org/10.1016/j.envpol.2016.02.026.
- Baron, E; Bosch, C; Manez, M; Andreu, A; Sergio, F; Hiraldo, F; Eljarrat, E; Barcelo, D. (2015). Temporal trends in classical and alternative flame retardants in bird eggs from Donana Natural Space and surrounding areas (south-western Spain) between 1999 and 2013. Chemosphere 138: 316-323. http://dx.doi.org/10.1016/j.chemosphere.2015.06.013.
- Batterman, S; Godwin, C; Chernyak, S; Jia, C; Charles, S. (2010). Brominated flame retardants in offices in Michigan, USA. Environ Int 36: 548-556. <u>http://dx.doi.org/10.1016/j.envint.2010.04.008</u>.
- Bi, C; Liang, Y; Xu, Y. (2015). Fate and transport of phthalates in indoor environments and the influence of temperature: a case study in a test house. Environ Sci Technol 49: 9674-9681. http://dx.doi.org/10.1021/acs.est.5b02787.
- Bjermo, H; Aune, M; Cantillana, T; Glynn, A; Lind, PM; Ridefelt, P; Darnerud, PO. (2017). Serum levels of brominated flame retardants (BFRs: PBDE, HBCD) and influence of dietary factors in a population-based study on Swedish adults. Chemosphere 167: 485-491. http://dx.doi.org/10.1016/j.chemosphere.2016.10.008.
- Björklund, JA; Sellström, U; de Wit, CA; Aune, M; Lignell, S; Darnerud, PO. (2012). Comparisons of polybrominated diphenyl ether and hexabromocyclododecane concentrations in dust collected with two sampling methods and matched breast milk samples. Indoor Air 22: 279-288. http://dx.doi.org/10.1111/j.1600-0668.2011.00765.x.
- Bogdal, C; Schmid, P; Kohler, M; Müller, CE; Iozza, S; Bucheli, TD; Scheringer, M; Hungerbühler, K. (2008). Sediment record and atmospheric deposition of brominated flame retardants and organochlorine compounds in Lake Thun, Switzerland: lessons from the past and evaluation of the present. Environ Sci Technol 42: 6817-6822. <u>http://dx.doi.org/10.1021/es800964z</u>.
- Boyles, E; Tan, H; Wu, Y; Nielsen, CK; Shen, L; Reiner, EJ; Chen, D. (2017). Halogenated flame retardants in bobcats from the midwestern United States. Environ Pollut 221: 191-198. http://dx.doi.org/10.1016/j.envpol.2016.11.063.
- Brandli, RC; Kupper, T; Bucheli, TD; Zennegg, M; Huber, S; Ortelli, D; Muller, J; Schaffner, C; Iozza, S; Schmid, P; Berger, U; Edder, P; Oehme, M; Stadelmann, FX; Tarradellas, J. (2007). Organic pollutants in compost and digestate. Part 2. Polychlorinated dibenzo-p-dioxins, and -furans, dioxin-like polychlorinated biphenyls, brominated flame retardants, perfluorinated alkyl substances, pesticides, and other compounds. J Environ Monit 9: 465-472. <u>http://dx.doi.org/10.1039/b617103f</u>.
- Brandsma, SH; de Boer, J; van Velzen, MJ; Leonards, PE. (2014a). Organophosphorus flame retardants (PFRs) and plasticizers in house and car dust and the influence of electronic equipment. Chemosphere 116: 3-9. <u>http://dx.doi.org/10.1016/j.chemosphere.2014.02.036</u>.
- Brandsma, SH; Leonards, PE; Leslie, HA; de Boer, J. (2014b). Tracing organophosphorus and brominated flame retardants and plasticizers in an estuarine food web. Sci Total Environ 505C: 22-31. http://dx.doi.org/10.1016/j.scitotenv.2014.08.072.

- Braune, BM; Letcher, RJ; Gaston, AJ; Mallory, ML. (2015). Trends of polybrominated diphenyl ethers and hexabromocyclododecane in eggs of Canadian Arctic seabirds reflect changing use patterns. Environ Res 142: 651-661. <u>http://dx.doi.org/10.1016/j.envres.2015.08.010</u>.
- Braune, BM; Mallory, ML; Grant Gilchrist, H; Letcher, RJ; Drouillard, KG. (2007). Levels and trends of organochlorines and brominated flame retardants in ivory gull eggs from the Canadian Arctic, 1976 to 2004. Sci Total Environ 378: 403-417. <u>http://dx.doi.org/10.1016/j.scitotenv.2007.03.003</u>.
- Bustnes, JO; Borgå, K; Dempster, T; Lie, E; Nygård, T; Uglem, I. (2012). Latitudinal distribution of persistent organic pollutants in pelagic and demersal marine fish on the Norwegian coast. Environ Sci Technol 46: 7836-7843. <u>http://dx.doi.org/10.1021/es301191t</u>.
- Bustnes, JO; Lie, E; Herzke, D; Dempster, T; Bjørn, PA; Nygård, T; Uglem, I. (2010). Salmon farms as a source of organohalogenated contaminants in wild fish. Environ Sci Technol 44: 8736-8743. http://dx.doi.org/10.1021/es102195d.
- Bustnes, JO; Yoccoz, NG; Bangjord, G; Polder, A; Skaare, JU. (2007). Temporal trends (1986-2004) of organochlorines and brominated flame retardants in tawny owl eggs from northern Europe. Environ Sci Technol 41: 8491-8497. http://dx.doi.org/10.1021/es071581w.
- Butt, CM; Miranda, ML; Stapleton, HM. (2016). Development of an analytical method to quantify PBDEs, OH-BDEs, HBCDs, 2,4,6-TBP, EH-TBB, and BEH-TEBP in human serum. Anal Bioanal Chem 408: 2449-2459. http://dx.doi.org/10.1007/s00216-016-9340-3.
- <u>Cao, Z; Xu, F; Covaci, A; Wu, M; Wang, H; Yu, G; Wang, B; Deng, S; Huang, J; Wang, X.</u> (2014). Distribution patterns of brominated, chlorinated, and phosphorus flame retardants with particle size in indoor and outdoor dust and implications for human exposure. Environ Sci Technol 48: 8839-8846. <u>http://dx.doi.org/10.1021/es501224b</u>.
- Cao, Z; Xu, F; Li, W; Sun, J; Shen, M; Su, X; Feng, J; Yu, G; Covaci, A. (2015). Seasonal and particle size-dependent variations of hexabromocyclododecanes in settled dust: Implications for sampling. Environ Sci Technol 49: 11151-11157. <u>http://dx.doi.org/10.1021/acs.est.5b01717</u>.
- Cao, Z; Yu, G; Chen, Y; Liu, C; Liu, K; Zhang, T; Wang, B; Deng, S; Huang, J. (2013). Mechanisms influencing the BFR distribution patterns in office dust and implications for estimating human exposure. J Hazard Mater 252-253: 11-18. <u>http://dx.doi.org/10.1016/j.jhazmat.2013.02.043</u>.
- Cao, ZG; Yu, G; Chen, YS; Cao, QM; Fiedler, H; Deng, SB; Huang, J; Wang, B. (2012). Particle size: A missing factor in risk assessment of human exposure to toxic chemicals in settled indoor dust. Environ Int 49: 24-30. <u>http://dx.doi.org/10.1016/j.envint.2012.08.010</u>.
- Carignan, CC; Abdallah, MA; Wu, N; Heiger-Bernays, W; McClean, MD; Harrad, S; Webster, TF. (2012). Predictors of tetrabromobisphenol-A (TBBP-A) and hexabromocyclododecanes (HBCD) in milk from Boston mothers. Environ Sci Technol 46: 12146-12153. http://dx.doi.org/10.1021/es302638d.
- Carlsson, H; Nilsson, U; Ostman, C. (2000). Video display units: an emission source of the contact allergenic flame retardant triphenyl phosphate in the indoor environment. Environ Sci Technol 34: 3885-3889.
- <u>Cheaib, Z; Grandjean, D; Kupper, T; de Alencastro, LF.</u> (2009). Brominated flame retardants in fish of Lake Geneva (Switzerland). Bull Environ Contam Toxicol 82: 522-527. <u>http://dx.doi.org/10.1007/s00128-008-9628-x</u>.
- <u>Chen, D; La Guardia, MJ; Luellen, DR; Harvey, E; Mainor, TM; Hale, RC.</u> (2011). Do temporal and geographical patterns of HBCD and PBDE flame retardants in U.S. fish reflect evolving industrial usage? Environ Sci Technol 45: 8254-8261. <u>http://dx.doi.org/10.1021/es201444w</u>.
- <u>Chen, D; Letcher, RJ; Burgess, NM; Champoux, L; Elliott, JE; Hebert, CE; Martin, P; Wayland, M; Chip</u> <u>Weseloh, DV; Wilson, L.</u> (2012). Flame retardants in eggs of four gull species (Laridae) from breeding sites spanning Atlantic to Pacific Canada [Review]. Environ Pollut 168: 1-9. <u>http://dx.doi.org/10.1016/j.envpol.2012.03.040</u>.
- Chokwe, TB; Okonkwo, JO; Sibali, LL; Ncube, EJ. (2015). Alkylphenol ethoxylates and brominated flame retardants in water, fish (carp) and sediment samples from the Vaal River, South Africa. Environ Sci Pollut Res Int 22: 11922-11929. <u>http://dx.doi.org/10.1007/s11356-015-4430-x</u>.

- Chokwe, TB; Okonkwo, OJ; Sibali, LL; Mporetji, SM. (2016). Occurrence and distribution pattern of alkylphenol ethoxylates and brominated flame retardants in sediment samples from Vaal River, South Africa. Bull Environ Contam Toxicol 97: 353-358. <u>http://dx.doi.org/10.1007/s00128-016-1886-4</u>.
- Clausen, PA; Hansen, V; Gunnarsen, L; Afshari, A; Wolkoff, P. (2004). Emission of di-2-ethylhexyl phthalate from PVC flooring into air and uptake in dust: Emission and sorption experiments in FLEC and CLIMPAQ. Environ Sci Technol 38: 2531-2537. <u>http://dx.doi.org/10.1021/es0347944</u>.
- <u>Climate: Pollution, A.</u> (2010). New organic pollutants in air, 2007. Brominated flame retardants and polyfluorinated substances. (SPFO-report 1077/2010, TA-2689/2010). Norway. http://www.miljodirektoratet.no/old/klif/publikasjoner/2689/ta2689.pdf.
- Coelho, SD; Sousa, AC; Isobe, T; Kim, JW; Kunisue, T; Nogueira, AJ; Tanabe, S. (2016a). Brominated, chlorinated and phosphate organic contaminants in house dust from Portugal. Sci Total Environ 569-570: 442-449. <u>http://dx.doi.org/10.1016/j.scitotenv.2016.06.137</u>.
- Coelho, SD; Sousa, AC; Isobe, T; Kunisue, T; Nogueira, AJ; Tanabe, S. (2016b). Brominated flame retardants and organochlorine compounds in duplicate diet samples from a Portuguese academic community. Chemosphere 160: 89-94. <u>http://dx.doi.org/10.1016/j.chemosphere.2016.06.038</u>.
- <u>Colles, A; Koppen, G; Hanot, V; Nelen, V; Dewolf, MC; Noël, E; Malisch, R; Kotz, A; Kypke, K; Biot, P; Vinkx, C; Schoeters, G.</u> (2008). Fourth WHO-coordinated survey of human milk for persistent organic pollutants (POPs): Belgian results. Chemosphere 73: 907-914. <u>http://dx.doi.org/10.1016/j.chemosphere.2008.07.002</u>.
- Covaci, A; Roosens, L; Dirtu, AC; Waegeneers, N; Van Overmeire, I; Neels, H; Goeyens, L. (2009). Brominated flame retardants in Belgian home-produced eggs: Levels and contamination sources. Sci Total Environ 407: 4387-4396. <u>http://dx.doi.org/10.1016/j.scitotenv.2008.09.057</u>.
- D'Hollander, W; Roosens, L; Covaci, A; Cornelis, C; Reynders, H; van Campenhout, K; de Voogt, P; <u>Bervoets, L.</u> (2010). Brominated flame retardants and perfluorinated compounds in indoor dust from homes and offices in Flanders, Belgium. Chemosphere 81: 478-487. <u>http://dx.doi.org/10.1016/j.chemosphere.2010.07.043</u>.
- Darnerud, P; Lignell, S; Aune, M; Isaksson, M; Cantillana, T; Redeby, J; Glynn, A. (2015). Time trends of polybrominated diphenylether (PBDE) congeners in serum of Swedish mothers and comparisons to breast milk data. Environ Res 138: 352-360. http://dx.doi.org/10.1016/j.envres.2015.02.031.
- Darnerud, PO; Aune, M; Larsson, L; Lignell, S; Mutshatshi, T; Okonkwo, J; Botha, B; Agyei, N. (2011). Levels of brominated flame retardants and other pesistent organic pollutants in breast milk samples from Limpopo Province, South Africa. Sci Total Environ 409: 4048-4053. http://dx.doi.org/10.1016/j.scitotenv.2011.05.054.
- <u>de Boer, J; Leslie, HA; Leonards, PE; Bersuder, P; Morris, S; Allchin, CR.</u> (2004). Screening and time trend study of decabromodiphenylether and hexabromocyclododecane in birds (pp. 4). de Boer, J; Leslie, HA; Leonards, PE; Bersuder, P; Morris, S; Allchin, CR. <u>http://dtsc.ca.gov/bfr2013/abstract_download/2004/upload/Individual%20Papers/BFR2004%20A</u> <u>bstract%20025%20deBoer.pdf</u>.
- de Wit, CA; Björklund, JA; Thuresson, K. (2012). Tri-decabrominated diphenyl ethers and hexabromocyclododecane in indoor air and dust from Stockholm microenvironments 2: indoor sources and human exposure. Environ Int 39: 141-147. http://dx.doi.org/10.1016/j.envint.2011.11.001.
- de Wit, CA; Nylund, K; Eriksson, U; Haglund, M; Kierkegaard, A; Asplund, L. (2007). Brominated flame retardants in slude from 50 Swedish sewage treatment plants: Evidence of anaerobic degradation of HBCD and TBBPA. Organohalogen Compd 69.
- Destaillats, H; Maddalena, RL; Singer, BC; Hodgson, AT; McKone, TE. (2008). Indoor pollutants emitted by office equipment: A review of reported data and information needs. Atmos Environ 42: 1371-1388. <u>http://dx.doi.org/10.1016/j.atmosenv.2007.10.080</u>.
- Devanathan, G; Subramanian, A; Sudaryanto, A; Takahashi, S; Isobe, T; Tanabe, S. (2012). Brominated flame retardants and polychlorinated biphenyls in human breast milk from several locations in Page **136** of **160**

India: Potential contaminant sources in a municipal dumping site. Environ Int 39: 87-95. http://dx.doi.org/10.1016/j.envint.2011.10.005.

- <u>Di Napoli-Davis, G; Owens, JE.</u> (2013). Quantitation of tetrabromobisphenol-A from dust sampled on consumer electronics by dispersed liquid-liquid microextraction. Environ Pollut 180: 274-280. http://dx.doi.org/10.1016/j.envpol.2013.05.038.
- Dirtu, AC; Ali, N; van den Eede, N; Neels, H; Covaci, A. (2012). Country specific comparison for profile of chlorinated, brominated and phosphate organic contaminants in indoor dust. Case study for Eastern Romania, 2010. Environ Int 49: 1-8. <u>http://dx.doi.org/10.1016/j.envint.2012.08.002</u>.
- <u>Dirtu, AC; Covaci, A.</u> (2010). Estimation of daily intake of organohalogenated contaminants from food consumption and indoor dust ingestion in Romania. Environ Sci Technol 44: 6297-6304. <u>http://dx.doi.org/10.1021/es101233z</u>.
- Dodson, RE; Perovich, LJ; Covaci, A; Van den Eede, N; Ionas, AC; Dirtu, AC; Brody, JG; Rudel, RA. (2012). After the PBDE phase-out: A broad suite of flame retardants in repeat house dust samples from California. Environ Sci Technol 46: 13056-13066. <u>http://dx.doi.org/10.1021/es303879n</u>.
- Drage, D; Mueller, JF; Birch, G; Eaglesham, G; Hearn, LK; Harrad, S. (2015). Historical trends of PBDEs and HBCDs in sediment cores from Sydney estuary, Australia. Sci Total Environ 512-513: 177-184. <u>http://dx.doi.org/10.1016/j.scitotenv.2015.01.034</u>.
- Drage, DS; Mueller, JF; Hobson, P; Harden, FA; Toms, LL. (2017). Demographic and temporal trends of hexabromocyclododecanes (HBCDD) in an Australian population. Environ Res 152: 192-198. http://dx.doi.org/10.1016/j.envres.2016.10.015.
- Drage, DS; Newton, S; de Wit, CA; Harrad, S. (2016). Concentrations of legacy and emerging flame retardants in air and soil on a transect in the UK West Midlands. Chemosphere 148: 195-203. http://dx.doi.org/10.1016/j.chemosphere.2016.01.034.
- Driffield, M; Harmer, N; Bradley, E; Fernandes, AR; Rose, M; Mortimer, D; Dicks, P. (2008). Determination of brominated flame retardants in food by LC-MS/MS: Diastereoisomer-specific hexabromocyclododecane and tetrabromobisphenol A. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 25: 895-903. <u>http://dx.doi.org/10.1080/026520307018829999</u>.
- Duan, H; Yu, D; Zuo, J; Yang, B; Zhang, Y; Niu, Y. (2016). Characterization of brominated flame retardants in construction and demolition waste components: HBCD and PBDEs. Sci Total Environ 572: 77-85. <u>http://dx.doi.org/10.1016/j.scitotenv.2016.07.165</u>.
- ECHA. (2017). Chemical safety report: Hexabromocyclododecane and all major diastereoisomers identified, Part 2. Helsinki, Finland. <u>https://echa.europa.eu/documents/10162/ab191f7e-a290-4d75-b253-da14ce3dd076</u>.
- Eggesbø, M; Thomsen, C; Jørgensen, JV; Becher, G; Odland, JØ; Longnecker, MP. (2011). Associations between brominated flame retardants in human milk and thyroid-stimulating hormone (TSH) in neonates. Environ Res 111: 737-743. <u>http://dx.doi.org/10.1016/j.envres.2011.05.004</u>.
- Eguchi, A; Isobe, T; Ramu, K; Tue, NM; Sudaryanto, A; Devanathan, G; Viet, PH; Tana, RS; Takahashi, S; Subramanian, A; Tanabe, S. (2013). Soil contamination by brominated flame retardants in open waste dumping sites in Asian developing countries. Chemosphere 90: 2365-2371. http://dx.doi.org/10.1016/j.chemosphere.2012.10.027.
- <u>Eljarrat, E; de la Cal, A; Raldua, D; Duran, C; Barcelo, D.</u> (2005). Brominated flame retardants in Alburnus alburnus from Cinca River Basin (Spain). Environ Pollut 133: 501-508. <u>http://dx.doi.org/10.1016/j.envpol.2004.06.017</u>.
- Eljarrat, E; de la Cal, A; Raldua, D; Duran, C; Barceló, D. (2004). Occurrence and bioavailability of polybrominated diphenyl ethers and hexabromocyclododecane in sediment and fish from the Cinca River, a tributary of the Ebro River (Spain). Environ Sci Technol 38: 2603-2608. http://dx.doi.org/10.1021/es0301424.
- Eljarrat, E; Gorga, M; Gasser, M; Díaz-Ferrero, J; Barceló, D. (2014). Dietary exposure assessment of Spanish citizens to hexabromocyclododecane through the diet. J Agric Food Chem 62: 2462-2468. <u>http://dx.doi.org/10.1021/jf405007x</u>.

- Eljarrat, E; Guerra, P; Martínez, E; Farré, M; Alvarez, JG; López-Teijón, M; Barceló, D. (2009). Hexabromocyclododecane in human breast milk: Levels and enantiomeric patterns. Environ Sci Technol 43: 1940-1946. <u>http://dx.doi.org/10.1021/es802919e</u>.
- Environment Canada and Health Canada. (2011). Screening assessment report on hexabromocyclododecane. Ottawa, Canada. <u>http://www.ec.gc.ca/ese-ees/default.asp?lang=En&n=7882C148-1#a4</u>.
- Esslinger, S; Becker, R; Jung, C; Schröter-Kermani, C; Bremser, W; Nehls, I. (2011). Temporal trend (1988-2008) of hexabromocyclododecane enantiomers in herring gull eggs from the German coastal region. Chemosphere 83: 161-167. <u>http://dx.doi.org/10.1016/j.chemosphere.2010.12.047</u>.
- <u>Eulaers, I; Jaspers, VL; Pinxten, R; Covaci, A; Eens, M.</u> (2014). Legacy and current-use brominated flame retardants in the Barn Owl. Sci Total Environ 472: 454-462. <u>http://dx.doi.org/10.1016/j.scitotenv.2013.11.054</u>.
- Evenset, A; Christensen, GN; Carroll, J; Zaborska, A; Berger, U; Herzke, D; Gregor, D. (2007). Historical trends in persistent organic pollutants and metals recorded in sediment from Lake Ellasjoen, Bjornoya, Norwegian Arctic. Environ Pollut 146: 196-205. http://dx.doi.org/10.1016/j.envpol.2006.04.038.
- <u>Fängström, B; Athanassiadis, I; Odsjö, T; Norén, K; Bergman, A.</u> (2008). Temporal trends of polybrominated diphenyl ethers and hexabromocyclododecane in milk from Stockholm mothers, 1980-2004. Mol Nutr Food Res 52: 187-193. <u>http://dx.doi.org/10.1002/mnfr.200700182</u>.
- Feng, AH; Chen, SJ; Chen, MY; He, MJ; Luo, XJ; Mai, BX. (2012). Hexabromocyclododecane (HBCD) and tetrabromobisphenol A (TBBPA) in riverine and estuarine sediments of the Pearl River Delta in southern China, with emphasis on spatial variability in diastereoisomer- and enantiomer-specific distribution of HBCD. Mar Pollut Bull 64: 919-925. http://dx.doi.org/10.1016/j.marpolbul.2012.03.008.
- Fernandes, A; Dicks, P; Mortimer, D; Gem, M; Smith, F; Driffield, M; White, S; Rose, M. (2008). Brominated and chlorinated dioxins, PCBs and brominated flame retardants in Scottish shellfish: Methodology, occurrence and human dietary exposure. Mol Nutr Food Res 52: 238-249. <u>http://dx.doi.org/10.1002/mnfr.200700135</u>.
- Fernandes, AR; Mortimer, D; Rose, M; Smith, F; Panton, S; Garcia-Lopez, M. (2016). Bromine content and brominated flame retardants in food and animal feed from the UK. Chemosphere 150: 472-478. <u>http://dx.doi.org/10.1016/j.chemosphere.2015.12.042</u>.
- <u>Frederiksen, M; Vorkamp, K; Bossi, R; Riget, F; Dam, M; Svensmark, Bo.</u> (2007). Method development for simultaneous analysis of HBCD, TBBPA, and dimethyl-TBBPA in marine biota from Greenland and the Faroe Islands. Int J Environ Anal Chem 87: 1095-1109. <u>http://dx.doi.org/10.1080/03067310701451178</u>.
- Fromme, H; Hilger, B; Albrecht, M; Gries, W; Leng, G; Völkel, W. (2016). Occurrence of chlorinated and brominated dioxins/furans, PCBs, and brominated flame retardants in blood of German adults. Int J Hyg Environ Health 219: 380-388. <u>http://dx.doi.org/10.1016/j.ijheh.2016.03.003</u>.
- Fromme, H; Hilger, B; Kopp, E; Miserok, M; Völkel, W. (2014). Polybrominated diphenyl ethers (PBDEs), hexabromocyclododecane (HBCD) and "novel" brominated flame retardants in house dust in Germany. Environ Int 64: 61-68. <u>http://dx.doi.org/10.1016/j.envint.2013.11.017</u>.
- <u>Fsa.</u> (2006). Brominated chemicals: UK dietary estimates. <u>https://web.archive.org/web/20120403220652/https://www.food.gov.uk/multimedia/pdfs/fsis1006</u> <u>.pdf</u>.
- Gallen, C; Banks, A; Brandsma, S; Baduel, C; Thai, P; Eaglesham, G; Heffernan, Am; Leonards, Pi; Bainton, P; Mueller, JF. (2014). Towards development of a rapid and effective non-destructive testing strategy to identify brominated flame retardants in the plastics of consumer products. Sci Total Environ 491: 255-265. <u>http://dx.doi.org/10.1016/j.scitotenv.2014.01.074</u>.
- Gallen, C; Drage, D; Kaserzon, S; Baduel, C; Gallen, M; Banks, A; Broomhall, S; Mueller, JF. (2016). Occurrence and distribution of brominated flame retardants and perfluoroalkyl substances in Australian landfill leachate and biosolids. J Hazard Mater 312: 55-64. http://dx.doi.org/10.1016/j.jhazmat.2016.03.031.

Page 138 of 160

- Gao, S; Wang, J; Yu, Z; Guo, Q; Sheng, G; Fu, J. (2011). Hexabromocyclododecanes in surface soils from E-waste recycling areas and industrial areas in South China: Concentrations, diastereoisomer- and enantiomer-specific profiles, and inventory. Environ Sci Technol 45: 2093-2099. <u>http://dx.doi.org/10.1021/es1033712</u>.
- <u>García-Valcárcel, AI; Tadeo, JL.</u> (2009). Determination of hexabromocyclododecane isomers in sewage sludge by LC-MS/MS. J Sep Sci 32: 3890-3897. <u>http://dx.doi.org/10.1002/jssc.200900424</u>.
- Gauthier, LT; Hebert, CE; Weseloh, DV; Letcher, RJ. (2007). Current-use flame retardants in the eggs of herring gulls (Larus argentatus) from the Laurentian Great Lakes. Environ Sci Technol 41: 4561-4567. <u>http://dx.doi.org/10.1021/es0630487</u>.
- <u>Gebbink, WA; Sonne, C; Dietz, R; Kirkegaard, M; Born, EW; Muir, DC; Letcher, RJ.</u> (2008). Target tissue selectivity and burdens of diverse classes of brominated and chlorinated contaminants in polar bears (Ursus maritimus) from East Greenland. Environ Sci Technol 42: 752-759. http://dx.doi.org/10.1021/es071941f.
- <u>Gentes, ML; Letcher, RJ; Caron-Beaudoin, E; Verreault, J.</u> (2012). Novel flame retardants in urbanfeeding ring-billed gulls from the St. Lawrence River, Canada. Environ Sci Technol 46: 9735-9744. <u>http://dx.doi.org/10.1021/es302099f</u>.
- <u>Gerecke, AC; Schmid, P; Bogdal, C; Kohler, M; Zennegg, M; Heeb, NV.</u> (2008). Brominated flame retardants - Endocrine-disrupting chemicals in the Swiss environment. Chimia 62: 352-357. <u>http://dx.doi.org/10.2533/chimia.2008.352</u>.
- <u>Gilchrist, TT; Letcher, RJ; Thomas, P; Fernie, KJ.</u> (2014). Polybrominated diphenyl ethers and multiple stressors influence the reproduction of free-ranging tree swallows (Tachycineta bicolor) nesting at wastewater treatment plants. Sci Total Environ 472: 63-71. http://dx.doi.org/10.1016/j.scitotenv.2013.10.090.
- <u>Glynn, A; Lignell, S; Darnerud, PO; Aune, M; Halldin Ankarberg, E; Bergdahl, IA; Barregård, L;</u> <u>Bensryd, I.</u> (2011). Regional differences in levels of chlorinated and brominated pollutants in mother's milk from primiparous women in Sweden. Environ Int 37: 71-79. <u>http://dx.doi.org/10.1016/j.envint.2010.07.003</u>.
- Gorga, M; Martínez, E; Ginebreda, A; Eljarrat, E; Barceló, D. (2013). Determination of PBDEs, HBB, PBEB, DBDPE, HBCD, TBBPA and related compounds in sewage sludge from Catalonia (Spain). Sci Total Environ 444: 51-59. <u>http://dx.doi.org/10.1016/j.scitotenv.2012.11.066</u>.
- <u>Goscinny, S; Vandevijvere, S; Maleki, M; van Overmeire, I; Windal, I; Hanot, V; Blaude, MN;</u> <u>Vleminckx, C; van Loco, J.</u> (2011). Dietary intake of hexabromocyclododecane diastereoisomers (α-, β-, and γ-HBCD) in the Belgian adult population. Chemosphere 84: 279-288. <u>http://dx.doi.org/10.1016/j.chemosphere.2011.04.048</u>.
- <u>Granby, K; Cederberg, TL.</u> (2007). LC-MS/MS analysis of hexabromocyclododecane (HBCD) isomers and tetrabromobisphenol a (TBBPA) and levels in Danish fish for food consumption. Soborg, Denmark.
- <u>Guerra, P; Alaee, M; Jiménez, B; Pacepavicius, G; Marvin, C; Macinnis, G; Eljarrat, E; Barceló, D;</u> <u>Champoux, L; Fernie, K.</u> (2012). Emerging and historical brominated flame retardants in peregrine falcon (Falco peregrinus) eggs from Canada and Spain. Environ Int 40: 179-186. <u>http://dx.doi.org/10.1016/j.envint.2011.07.014</u>.
- <u>Guerra, P; de la Cal, A; Marsh, G; Raldúa, D; Barata, C; Eljarrat, E; Barceló, D.</u> (2009). Transfer of hexabromocyclododecane from industrial effluents to sediments and biota: Case study in Cinca river (Spain). J Hydrol 369: 360-367. <u>http://dx.doi.org/10.1016/j.jhydrol.2009.02.024</u>.
- <u>Guerra, P; Eljarrat, E; Barceló, D.</u> (2010). Simultaneous determination of hexabromocyclododecane, tetrabromobisphenol A, and related compounds in sewage sludge and sediment samples from Ebro River basin (Spain). Anal Bioanal Chem 397: 2817-2824. <u>http://dx.doi.org/10.1007/s00216-010-3670-3</u>.
- <u>Guo, Z.</u> (2013). A framework for modelling non-steady-state concentrations of semivolatile organic compounds indoors I: Emissions from diffusional sources and sorption by interior surfaces. Indoor Built Environ 22: 685-700. <u>http://dx.doi.org/10.1177/1420326X13488123</u>.

- <u>Guo, Z.</u> (2014). A framework for modelling non-steady-state concentrations of semivolatile organic compounds indoors II. Interactions with particulate matter. Indoor Built Environ 23: 26-43. http://dx.doi.org/10.1177/1420326X13496802.
- Hajslova, J; Pulkrabova, J; Poustka, Ja; Cajka, T; Randak, T. (2007). Brominated flame retardants and related chlorinated persistent organic pollutants in fish from river Elbe and its main tributary Vltava. Chemosphere 69: 1195-1203. http://dx.doi.org/10.1016/j.chemosphere.2007.06.030.
- <u>Harrad, S; Abdallah, MA.</u> (2011). Brominated flame retardants in dust from UK cars--within-vehicle spatial variability, evidence for degradation and exposure implications. Chemosphere 82: 1240-1245. <u>http://dx.doi.org/10.1016/j.chemosphere.2010.12.038</u>.
- Harrad, S; Abdallah, MA. (2015). Concentrations of polybrominated diphenyl ethers, hexabromocyclododecanes and tetrabromobisphenol-A in breast milk from United Kingdom women do not decrease over twelve months of lactation. Environ Sci Technol 49: 13899-13903. http://dx.doi.org/10.1021/acs.est.5b00539.
- Harrad, S; Abdallah, MA; Rose, NL; Turner, SD; Davidson, TA. (2009). Current-use brominated flame retardants in water, sediment, and fish from English lakes. Environ Sci Technol 43: 9077-9083. http://dx.doi.org/10.1021/es902185u.
- <u>Harrad, S; Drage, D; Abdallah, M; Sharkey, M; Berresheim, H.</u> (2019). Evaluation of hand-held XRF for screening waste articles for exceedances of limit values for brominated flame retardants. (272). Wexford, Ireland: Environmental Protection Agency, Ireland.
 <u>http://www.epa.ie/researchandeducation/research/researchpublications/researchreports/research27</u> 2.html.
- Harrad, S; Goosey, E; Desborough, J; Abdallah, MA; Roosens, L; Covaci, A. (2010). Dust from U.K. primary school classrooms and daycare centers: The significance of dust as a pathway of exposure of young U.K. children to brominated flame retardants and polychlorinated biphenyls. Environ Sci Technol 44: 4198-4202. http://dx.doi.org/10.1021/es100750s.
- Hashikawa, R; Isobe, T; Yano, Si; Kunisue, T; Nakayama, K; Sudo, A; Takahashi, S; Tanabe, S. (2011). Contamination by brominated flame retardants (BFRs) in common cormorants from Lake Biwa. In K Omori; X Guo; N Yoshie; N Fujii; IC Handoh; A Isobe; S Tanabe (Eds.), (pp. 229-238). Tokyo, Japan: Terrapub. <u>https://www.terrapub.co.jp/onlineproceedings/ec/05/pdf/PR_05229.pdf</u>.
- <u>Hassan, Y: Shoeib, T.</u> (2014). Levels of polybrominated diphenyl ethers and novel flame retardants in microenvironment dust from Egypt: An assessment of human exposure. Sci Total Environ 505C: 47-55. <u>http://dx.doi.org/10.1016/j.scitotenv.2014.09.080</u>.
- Haukås, M; Hylland, K; Berge, JA; Nygård, T; Mariussen, E. (2009). Spatial diastereomer patterns of hexabromocyclododecane (HBCD) in a Norwegian fjord. Sci Total Environ 407: 5907-5913. http://dx.doi.org/10.1016/j.scitotenv.2009.08.024.
- Haukås, M; Hylland, K; Nygård, T; Berge, JA; Mariussen, E. (2010a). Diastereomer-specific bioaccumulation of hexabromocyclododecane (HBCD) in a coastal food web, Western Norway. Sci Total Environ 408: 5910-5916. <u>http://dx.doi.org/10.1016/j.scitotenv.2010.08.026</u>.
- Haukås, M; Ruus, A; Hylland, K; Berge, JA; Mariussen, E. (2010b). Bioavailability of hexabromocyclododecane to the polychaete Hediste diversicolor: Exposure through sediment and food from a contaminated fjord. Environ Toxicol Chem 29: 1709-1715. http://dx.doi.org/10.1002/etc.201.

 <u>He, MJ; Luo, XJ; Yu, LH; Liu, J; Zhang, XL; Chen, SJ; Chen, D; Mai, BX.</u> (2010).
 Tetrabromobisphenol-A and hexabromocyclododecane in birds from an e-waste region in South China: Influence of diet on diastereoisomer- and enantiomer-specific distribution and trophodynamics. Environ Sci Technol 44: 5748-5754. <u>http://dx.doi.org/10.1021/es101503r</u>.

- <u>He, MJ; Luo, XJ; Yu, LH; Wu, JP; Chen, SJ; Mai, BX.</u> (2013). Diasteroisomer and enantiomer-specific profiles of hexabromocyclododecane and tetrabromobisphenol A in an aquatic environment in a highly industrialized area, South China: Vertical profile, phase partition, and bioaccumulation. Environ Pollut 179: 105-110. <u>http://dx.doi.org/10.1016/j.envpol.2013.04.016</u>.
- Helgason, LB; Polder, A; Føreid, S; Baek, K; Lie, E; Gabrielsen, GW; Barrett, RT; Skaare, JU. (2009). Levels and temporal trends (1983-2003) of polybrominated diphenyl ethers and

hexabromocyclododecanes in seabird eggs from north Norway. Environ Toxicol Chem 28: 1096-1103. <u>http://dx.doi.org/10.1897/08-404.1</u>.

- Henny, CJ; Kaiser, JL; Grove, RA; Johnson, BL; Letcher, RJ. (2009). Polybrominated diphenyl ether flame retardants in eggs may reduce reproductive success of ospreys in Oregon and Washington, USA. Ecotoxicology 18: 802-813. <u>http://dx.doi.org/10.1007/s10646-009-0323-4</u>.
- <u>Hiebl, J; Vetter, W.</u> (2007). Detection of hexabromocyclododecane and its metabolite pentabromocyclododecene in chicken egg and fish from the official food control. J Agric Food Chem 55: 3319-3324. <u>http://dx.doi.org/10.1021/jf063428b</u>.
- <u>Hloušková, V; Lanková, D; Kalachová, K; Hrádková, P; Poustka, J; Hajšlová, J; Pulkrabová, J.</u> (2013). Occurrence of brominated flame retardants and perfluoroalkyl substances in fish from the Czech aquatic ecosystem. Sci Total Environ 461-462: 88-98. <u>http://dx.doi.org/10.1016/j.scitotenv.2013.04.081</u>.
- Hloušková, V; Lanková, D; Kalachová, K; Hrádková, P; Poustka, J; Hajšlová, J; Pulkrabová, J. (2014). Brominated flame retardants and perfluoroalkyl substances in sediments from the Czech aquatic ecosystem. Sci Total Environ 470-471: 407-416. http://dx.doi.org/10.1016/j.scitotenv.2013.09.074.
- Hoh, E; Hites, RA. (2005). Brominated flame retardants in the atmosphere of the East-Central United States. Environ Sci Technol 39: 7794-7802. <u>http://dx.doi.org/10.1021/es050718k</u>.
- Hong, J; Gao, S; Chen, L; Han, Q; Yu, Z; Peng, P; Fu, J. (2016). Hexabromocyclododecanes in the indoor environment of two cities in South China: Their occurrence and implications of human inhalation exposure. Indoor Built Environ 25: 41-49. <u>http://dx.doi.org/10.1177/1420326X13499170</u>.
- Hong, SH; Shim, WJ; Han, GM; Ha, SY; Jang, M; Rani, M; Hong, S; Yeo, GY. (2014). Levels and profiles of persistent organic pollutants in resident and migratory birds from an urbanized coastal region of South Korea. Sci Total Environ 470-471: 1463-1470. <u>http://dx.doi.org/10.1016/j.scitotenv.2013.07.089</u>.
- Houde, M; Wang, X; Ferguson, SH; Gagnon, P; Brown, TM; Tanabe, S; Kunito, T; Kwan, M; Muir, DC.
 (2017). Spatial and temporal trends of alternative flame retardants and polybrominated diphenyl ethers in ringed seals (Phoca hispida) across the Canadian Arctic. Environ Pollut 223: 266-276. http://dx.doi.org/10.1016/j.envpol.2017.01.023.
- Hrádková, P; Pulkrabová, J; Kalachová, K; Hloušková, V; Tomaniová, M; Poustka, J; Hajšlová, J. (2012).
 Occurrence of halogenated contaminants in fish from selected river localities and ponds in the Czech Republic. Arch Environ Contam Toxicol 62: 85-96. <u>http://dx.doi.org/10.1007/s00244-011-9681-z</u>.
- Hu, J; Jin, J; Wang, Y; Ma, Z; Zheng, W. (2011a). Levels of polybrominated diphenyl ethers and hexabromocyclododecane in the atmosphere and tree bark from Beijing, China. Chemosphere 84: 355-360. <u>http://dx.doi.org/10.1016/j.chemosphere.2011.04.002</u>.
- <u>Hu, X; Hu, D; Song, Q; Li, J; Wang, P.</u> (2011b). Determinations of hexabromocyclododecane (HBCD) isomers in channel catfish, crayfish, hen eggs and fish feeds from China by isotopic dilution LC-MS/MS. Chemosphere 82: 698-707. <u>http://dx.doi.org/10.1016/j.chemosphere.2010.10.096</u>.
- <u>Hwang, IK; Kang, HH; Lee, IS; Oh, JE.</u> (2012). Assessment of characteristic distribution of PCDD/Fs and BFRs in sludge generated at municipal and industrial wastewater treatment plants. Chemosphere 88: 888-894. <u>http://dx.doi.org/10.1016/j.chemosphere.2012.03.098</u>.
- Ichihara, M; Yamamoto, A; Takakura, K; Kakutani, N; Sudo, M. (2014). Distribution and pollutant load of hexabromocyclododecane (HBCD) in sewage treatment plants and water from Japanese Rivers. Chemosphere 110: 78-84. <u>http://dx.doi.org/10.1016/j.chemosphere.2014.03.074</u>.
- Ilyas, M; Sudaryanto, A; Setiawan, IE; Riyadi, AS; Isobe, T; Ogawa, S; Takahashi, S; Tanabe, S. (2011a). Characterization of polychlorinated biphenyls and brominated flame retardants in surface soils from Surabaya, Indonesia. Chemosphere 83: 783-791. http://dx.doi.org/10.1016/j.chemosphere.2011.02.067.
- <u>Ilyas, M; Sudaryanto, A; Setiawan, IE; Riyadi, AS; Isobe, T; Takahashi, S; Tanabe, S.</u> (2011b). Characterization of polychlorinated biphenyls and brominated flame retardants in sediments from

riverine and coastal waters of Surabaya, Indonesia. Mar Pollut Bull 62: 89-98. http://dx.doi.org/10.1016/j.marpolbul.2010.09.006.

- Ilyas, M; Sudaryanto, A; Setiawan, IE; Riyadi, AS; Isobe, T; Tanabe, S. (2013). Characterization of polychlorinated biphenyls and brominated flame retardants in sludge, sediment and fish from municipal dumpsite at Surabaya, Indonesia. Chemosphere 93: 1500-1510. http://dx.doi.org/10.1016/j.chemosphere.2013.07.048.
- Ilyina, T; Hunziker, RW. (2010). Scenarios of temporal and spatial evolution of hexabromocyclododecane in the North Sea. Environ Sci Technol 44: 4622-4628. http://dx.doi.org/10.1021/es9034599.
- Ismail, N; Gewurtz, SB; Pleskach, K; Whittle, DM; Helm, PA; Marvin, CH; Tomy, GT. (2009). Brominated and chlorinated flame retardants in Lake Ontario, Canada, lake trout (Salvelinus namaycush) between 1979 and 2004 and possible influences of food-web changes. Environ Toxicol Chem 28: 910-920. http://dx.doi.org/10.1897/08-162.1.
- Isobe, T; Ochi, Y; Ramu, K; Yamamoto, T; Tajima, Y; Yamada, TK; Amano, M; Miyazaki, N; <u>Takahashi, S; Tanabe, S.</u> (2009a). Organohalogen contaminants in striped dolphins (Stenella coeruleoalba) from Japan: present contamination status, body distribution and temporal trends (1978-2003). Mar Pollut Bull 58: 396-401. <u>http://dx.doi.org/10.1016/j.marpolbul.2008.10.008</u>.
- Isobe, T; Oda, H; Takayanagi, N; Kunisue, T; Komori, H; Arita, N; Ueda, N; Nose, M; Yamada, T; <u>Takahashi, S; Tanabe, S.</u> (2009b). Hexabromocyclododecanes in human adipose tissue from Japan. Environ Chem 6: 328-333. <u>http://dx.doi.org/10.1071/EN09024</u>.
- Isobe, T; Ogawa, SP; Ramu, K; Sudaryanto, A; Tanabe, S. (2012). Geographical distribution of non-PBDE-brominated flame retardants in mussels from Asian coastal waters. Environ Sci Pollut Res Int 19: 3107-3117. <u>http://dx.doi.org/10.1007/s11356-012-0945-6</u>.
- Isobe, T; Oshihoi, T; Hamada, H; Nakayama, K; Yamada, TK; Tajima, Y; Amano, M; Tanabe, S. (2011). Contamination status of POPs and BFRs and relationship with parasitic infection in finless porpoises (Neophocaena phocaenoides) from Seto Inland Sea and Omura Bay, Japan. Mar Pollut Bull 63: 564-571. <u>http://dx.doi.org/10.1016/j.marpolbul.2011.01.014</u>.
- Isobe, T; Ramu, K; Kajiwara, N; Takahashi, S; Lam, PK; Jefferson, TA; Zhou, K; Tanabe, S. (2007). Isomer specific determination of hexabromocyclododecanes (HBCDs) in small cetaceans from the South China Sea--Levels and temporal variation. Mar Pollut Bull 54: 1139-1145. <u>http://dx.doi.org/10.1016/j.marpolbul.2007.04.017</u>.
- Janák, K; Covaci, A; Voorspoels, S; Becher, G. (2005). Hexabromocyclododecane in marine species from the Western Scheldt Estuary: diastereoisomer- and enantiomer-specific accumulation. Environ Sci Technol 39: 1987-1994. <u>http://dx.doi.org/10.1021/es0484909</u>.
- Jang, M; Shim, WJ; Han, GM; Rani, M; Song, YK; Hong, SH. (2016). Styrofoam Debris as a Source of Hazardous Additives for Marine Organisms. Environ Sci Technol 50: 4951-4960. http://dx.doi.org/10.1021/acs.est.5b05485.https://hero.epa.gov/hero/index.cfm?action=search.vie w&reference_id=4296220Jaspers, V; Covaci, A; Maervoet, J; Dauwe, T; Schepens, P; Eens, M. (2004). Brominated flame retardants in Belgian little owl (Athene noctua) eggs. Organohalogen Compd 66: 3809-3813.
- Jaspers, V; Covaci, A; Maervoet, J; Dauwe, T; Voorspoels, S; Schepens, P; Eens, M. (2005). Brominated flame retardants and organochlorine pollutants in eggs of little owls (Athene noctua) from Belgium. Environ Pollut 136: 81-88. <u>http://dx.doi.org/10.1016/j.envpol.2004.12.003</u>.
- Jeannerat, D; Pupier, M; Schweizer, S; Mitrev, YN; Favreau, P; Kohler, M. (2016). Discrimination of hexabromocyclododecane from new polymeric brominated flame retardant in polystyrene foam by nuclear magnetic resonance. Chemosphere 144: 1391-1397. http://dx.doi.org/10.1016/j.chemosphere.2015.10.021.
- Jenssen, BM; Sørmo, EG; Baek, K; Bytingsvik, J; Gaustad, H; Ruus, A; Skaare, JU. (2007). Brominated flame retardants in North-East Atlantic marine ecosystems. Environ Health Perspect 115 Suppl 1: 35-41. <u>http://dx.doi.org/10.1289/ehp.9355</u>.

- Jeong, GH; Hwang, NR; Hwang, EH; Lee, BC; Yoon, J. (2014). Hexabromocyclododecanes in crucian carp and sediment from the major rivers in Korea. Sci Total Environ 470-471: 1471-1478. http://dx.doi.org/10.1016/j.scitotenv.2013.10.038.
- Johansson, AK; Sellström, U; Lindberg, P; Bignert, A; de Wit, CA. (2011). Temporal trends of polybrominated diphenyl ethers and hexabromocyclododecane in Swedish Peregrine Falcon (Falco peregrinus peregrinus) eggs. Environ Int 37: 678-686. http://dx.doi.org/10.1016/j.envint.2011.010.
- Johansson, AK; Sellström, U; Lindberg, P; Bignert, A; De Witt, CA. (2009). Polybrominated diphenyl ether congener patterns, hexabromocyclododecane, and brominated biphenyl 153 in eggs of peregrine falcons (Falco peregrinus) breeding in Sweden. Environ Toxicol Chem 28: 9-17. http://dx.doi.org/10.1897/08-142.1.
- Johnson-Restrepo, B; Adams, DH; Kannan, K. (2008). Tetrabromobisphenol A (TBBPA) and hexabromocyclododecanes (HBCDs) in tissues of humans, dolphins, and sharks from the United States. Chemosphere 70: 1935-1944. <u>http://dx.doi.org/10.1016/j.chemosphere.2007.10.002</u>.
- Johnson, A; Friese, M. PBTs Analyzed in Bottom Fish from Four Washington Rivers and Lakes: Hexabromocyclododecane, Tetrabromobisphenol A, Chlorinated Paraffins, Polybrominated Diphenylethers, Polychlorinated Naphthalenes, Perfluorinated Organic Compounds, Lead, and Cadmium. (12-03-042). Johnson, A; Friese, M. https://fortress.wa.gov/ecy/publications/summarypages/1203042.html.
- Johnson, PI; Stapleton, HM; Mukherjee, B; Hauser, R; Meeker, JD. (2013). Associations between brominated flame retardants in house dust and hormone levels in men. Sci Total Environ 445-446: 177-184. <u>http://dx.doi.org/10.1016/j.scitotenv.2012.12.017</u>.
- Jörundsdóttir, H; Löfstrand, K; Svavarsson, J; Bignert, A; Bergman, Å. (2013). Polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecane (HBCD) in seven different marine bird species from Iceland. Chemosphere 93: 1526-1532.
 - http://dx.doi.org/10.1016/j.chemosphere.2013.07.061.
- Kajiwara, N; Desborough, J; Harrad, S; Takigami, H. (2013). Photolysis of brominated flame retardants in textiles exposed to natural sunlight. Environ Sci Process Impacts 15: 653-660. http://dx.doi.org/10.1039/c3em30887a.
- Kajiwara, N; Hirata, O; Takigami, H; Noma, Y; Tachifuji, A; Matsufuji, Y. (2014). Leaching of brominated flame retardants from mixed wastes in lysimeters under conditions simulating landfills in developing countries. Chemosphere 116: 46-53. http://dx.doi.org/10.1016/j.chemosphere.2014.01.025.
- Kakimoto, K; Akutsu, K; Konishi, Y; Tanaka, Y. (2008). Time trend of hexabromocyclododecane in the breast milk of Japanese women. Chemosphere 71: 1110-1114. http://dx.doi.org/10.1016/j.chemosphere.2007.10.035.
- Kakimoto, K; Nagayoshi, H; Yoshida, J; Akutsu, K; Konishi, Y; Toriba, A; Hayakawa, K. (2012). Detection of Dechlorane Plus and brominated flame retardants in marketed fish in Japan. Chemosphere 89: 416-419. <u>http://dx.doi.org/10.1016/j.chemosphere.2012.05.072</u>.
- Kalachova, K; Hradkova, P; Lankova, D; Hajslova, J; Pulkrabova, J. (2012). Occurrence of brominated flame retardants in household and car dust from the Czech Republic. Sci Total Environ 441: 182-193. <u>http://dx.doi.org/10.1016/j.scitotenv.2012.09.061</u>.
- Kalantzi, OI; Geens, T; Covaci, A; Siskos, PA. (2011). Distribution of polybrominated diphenyl ethers (PBDEs) and other persistent organic pollutants in human serum from Greece. Environ Int 37: 349-353. <u>http://dx.doi.org/10.1016/j.envint.2010.10.005</u>.
- Katsumata, H; Murakami, S; Kato, S; Hoshino, K; Ataka, Y. (2008). Measurement of semi-volatile organic compounds emitted from various types of indoor materials by thermal desorption test chamber method. Build Environ 43: 378-383. <u>http://dx.doi.org/10.1016/j.buildenv.2006.03.027</u>.
- Keller, AS; Raju, NP; Webster, TF; Stapleton, HM. (2014). Flame Retardant Applications in Camping Tents and Potential Exposure. Environ Sci Technol Lett 1: 152-155. http://dx.doi.org/10.1021/ez400185y.

- KemI. (2008). Risk assessment: Hexabromocyclododecane. Ispra, Italy: European Chemicals Bureau. https://echa.europa.eu/documents/10162/661bff17-dc0a-4475-9758-40bdd6198f82.
- Kemmlein, S; Hahn, O; Jann, O. (2003). Emissions of organophosphate and brominated flame retardants from selected consumer products and building materials. Atmos Environ 37: 5485-5493. http://dx.doi.org/10.1016/j.atmosenv.2003.09.025.
- <u>Kiciński, M; Viaene, MK; Den Hond, E; Schoeters, G; Covaci, A; Dirtu, AC; Nelen, V; Bruckers, L;</u>
 <u>Croes, K; Sioen, I; Baeyens, W; Van Larebeke, N; Nawrot, TS.</u> (2012). Neurobehavioral function and low-level exposure to brominated flame retardants in adolescents: A cross-sectional study. Environ Health 11: 86. <u>http://dx.doi.org/10.1186/1476-069X-11-86</u>.
- Kim, UJ; Lee, IS; Oh, JE. (2016). Occurrence, removal and release characteristics of dissolved brominated flame retardants and their potential metabolites in various kinds of wastewater. Environ Pollut 218: 551-557. <u>http://dx.doi.org/10.1016/j.envpol.2016.07.037</u>.
- Klamer, HJ; Leonards, PE; Lamoree, MH; Villerius, LA; Kerman, JE; Bakker, JF. (2005). A chemical and toxicological profile of Dutch North Sea surface sediments. Chemosphere 58: 1579-1587. http://dx.doi.org/10.1016/j.chemosphere.2004.11.027.
- Klosterhaus, SL; Stapleton, HM; La Guardia, MJ; Greig, DJ. (2012). Brominated and chlorinated flame retardants in San Francisco Bay sediments and wildlife. Environ Int 47: 56-65. http://dx.doi.org/10.1016/j.envint.2012.06.005.
- Knutsen, HK; Kvalem, HE; Thomsen, C; Frøshaug, M; Haugen, M; Becher, G; Alexander, J; Meltzer,
 HM. (2008). Dietary exposure to brominated flame retardants correlates with male blood levels in a selected group of Norwegians with a wide range of seafood consumption. Mol Nutr Food Res 52: 217-227. http://dx.doi.org/10.1002/mnfr.200700096.
- Kohler, M; Zennegg, M; Bogdal, C; Gerecke, AC; Schmid, P; Heeb, NV; Sturm, M; Vonmont, H;
 Kohler, HP; Giger, W. (2008). Temporal trends, congener patterns, and sources of octa-, nona-, and decabromodiphenyl ethers (PBDE) and hexabromocyclododecanes (HBCD) in Swiss lake sediments. Environ Sci Technol 42: 6378-6384. <u>http://dx.doi.org/10.1021/es702586r</u>.
- Kopp, EK; Fromme, H; Voelkel, W. (2012). Analysis of common and emerging brominated flame retardants in house dust using ultrasonic assisted solvent extraction and on-line sample preparation via column switching with liquid chromatography-mass spectrometry. J Chromatogr A 1241: 28-36. <u>http://dx.doi.org/10.1016/j.chroma.2012.04.022</u>.
- Köppen, R; Becker, R; Esslinger, S; Nehls, I. (2010). Enantiomer-specific analysis of hexabromocyclododecane in fish from Etnefjorden (Norway). Chemosphere 80: 1241-1245. http://dx.doi.org/10.1016/j.chemosphere.2010.06.019.
- Kowalski, B; Mazur, M. (2014). The simultaneous determination of six flame retardants in water samples using SPE pre-concentration and UHPLC-UV method. Water Air Soil Pollut 225: 1866. http://dx.doi.org/10.1007/s11270-014-1866-4.
- Kuang, J; Ma, Y; Harrad, S. (2016). Concentrations of "legacy" and novel brominated flame retardants in matched samples of UK kitchen and living room/bedroom dust. Chemosphere 149: 224-230. http://dx.doi.org/10.1016/j.chemosphere.2016.01.092.
- Kunisue, T; Takayanagi, N; Isobe, T; Takahashi, S; Nakatsu, S; Tsubota, T; Okumoto, K; Bushisue, S;
 Shindo, K; Tanabe, S. (2008). Regional trend and tissue distribution of brominated flame retardants and persistent organochlorines in raccoon dogs (Nyctereutes procyonoides) from Japan. Environ Sci Technol 42: 685-691. http://dx.doi.org/10.1021/es071565z.
- Kupper, T; de Alencastro, LF; Gatsigazi, R; Furrer, R; Grandjean, D; Tarradellas, J. (2008). Concentrations and specific loads of brominated flame retardants in sewage sludge. Chemosphere 71: 1173-1180. <u>http://dx.doi.org/10.1016/j.chemosphere.2007.10.019</u>.
- La Guardia, MJ; Hale, RC; Harvey, E; Chen, D. (2010). Flame-retardants and other organohalogens detected in sewage sludge by electron capture negative ion mass spectrometry. Environ Sci Technol 44: 4658-4664. <u>http://dx.doi.org/10.1021/es9039264</u>.
- La Guardia, MJ; Hale, RC; Harvey, E; Mainor, TM; Ciparis, S. (2012). In situ accumulation of HBCD, PBDEs, and several alternative flame-retardants in the bivalve (Corbicula fluminea) and

gastropod (Elimia proxima). Environ Sci Technol 46: 5798-5805. http://dx.doi.org/10.1021/es3004238.

- La Guardia, MJ; Hale, RC; Newman, B. (2013). Brominated flame-retardants in sub-Saharan Africa: Burdens in inland and coastal sediments of the eThekwini metropolitan municipality, South Africa. Environ Sci Technol 47: 9643-9650. http://dx.doi.org/10.1021/es4020212.
- Lam, JC; Lau, RK; Murphy, MB; Lam, PK. (2009). Temporal trends of hexabromocyclododecanes (HBCDs) and polybrominated diphenyl ethers (PBDEs) and detection of two novel flame retardants in marine mammals from Hong Kong, South China. Environ Sci Technol 43: 6944-6949. <u>http://dx.doi.org/10.1021/es901408t</u>.
- Law, K; Halldorson, T; Danell, R; Stern, G; Gewurtz, S; Alaee, M; Marvin, C; Whittle, M; Tomy, G. (2006a). Bioaccumulation and trophic transfer of some brominated flame retardants in a Lake Winnipeg (Canada) food web. Environ Toxicol Chem 25: 2177-2186. <u>http://dx.doi.org/10.1897/05-500R.1</u>.
- Law, RJ; Allchin, CR; de Boer, J; Covaci, A; Herzke, D; Lepom, P; Morri, S; Tronczynski, J; de Wit, CA. (2006b). Levels and trends of brominated flame retardants in the European environment. Chemosphere 64. <u>http://dx.doi.org/10.1016/j.chemosphere.2005.12.007</u>.
- Law, RJ; Bersuder, P; Allchin, CR; Barry, J. (2006c). Levels of the flame retardants hexabromocyclododecane and tetrabromobisphenol A in the blubber of harbor porpoises (Phocoena phocoena) stranded or bycaught in the U.K., with evidence for an increase in HBCD concentrations in recent years. Environ Sci Technol 40: 2177-2183. <u>http://dx.doi.org/10.1021/es052416o</u>.
- Law, RJ; Bersuder, P; Barry, J; Wilford, BH; Allchin, CR; Jepson, PD. (2008). A significant downturn in levels of hexabromocyclododecane in the blubber of harbor porpoises (Phocoena phocoena) stranded or bycaught in the UK: an update to 2006. Environ Sci Technol 42: 9104-9109. http://dx.doi.org/10.1021/es8014309.
- Lee, IS; Kang, HH; Kim, UJ; Oh, JE. (2015). Brominated flame retardants in Korean river sediments, including changes in polybrominated diphenyl ether concentrations between 2006 and 2009. Chemosphere 126: 18-24. <u>http://dx.doi.org/10.1016/j.chemosphere.2015.01.004</u>.
- Lee, SC; Sverko, E; Harner, T; Pozo, K; Barresi, E; Schachtschneider, J; Zaruk, D; Dejong, M; Narayan, J. (2016). Retrospective analysis of "new" flame retardants in the global atmosphere under the GAPS Network. Environ Pollut 217: 62-69. http://dx.doi.org/10.1016/j.envpol.2016.01.080.
- Leonards, PEG; Santillo, D; Brigden, K; Veen, I; Van Hesselingen, J; De Boer, J; Johnston, P. (2001). Brominated flame retardants in office dust samples. Proceedings of the Second International Workshop on Brominated Flame Retardants, 14–16 May 2001 (pp. 1-4). Stockholm, Sweden: Leonards, PEG; Santillo, D; Brigden, K; Veen, I; Van Hesselingen, J; De Boer, J; Johnston, P. <u>http://edepot.wur.nl/347535</u>.
- Leslie, HA; Leonards, PE; Shore, RF; Walker, LA; Bersuder, PR; Morris, S; Allchin, CR; Boer, Jd. (2011). Decabromodiphenylether and hexabromocyclododecane in wild birds from the United Kingdom, Sweden and The Netherlands: Screening and time trends. Chemosphere 82: 88-95. http://dx.doi.org/10.1016/j.chemosphere.2010.09.073.
- Letcher, RJ; Gebbink, WA; Sonne, C; Born, EW; McKinney, MA; Dietz, R. (2009). Bioaccumulation and biotransformation of brominated and chlorinated contaminants and their metabolites in ringed seals (Pusa hispida) and polar bears (Ursus maritimus) from East Greenland. Environ Int 35: 1118-1124. http://dx.doi.org/10.1016/j.envint.2009.07.006.
- Letcher, RJ; Lu, Z; Chu, S; Haffner, GD; Drouillard, K; Marvin, CH; Ciborowski, JJ. (2015). Hexabromocyclododecane flame retardant isomers in sediments from Detroit River and Lake Erie of the Laurentian Great Lakes of North America. Bull Environ Contam Toxicol 95: 31-36. http://dx.doi.org/10.1007/s00128-015-1491-y.
- Li, F; Jin, J; Tan, D; Wang, L; Geng, N; Cao, R; Gao, Y; Chen, J. (2016a). Hexabromocyclododecane and tetrabromobisphenol A in sediments and paddy soils from Liaohe River Basin, China: Levels,

distribution and mass inventory. J Environ Sci 48: 209-217. http://dx.doi.org/10.1016/j.jes.2016.03.018.

- Li, H; Mo, L; Yu, Z; Sheng, G; Fu, J. (2012a). Levels, isomer profiles and chiral signatures of particlebound hexabromocyclododecanes in ambient air around Shanghai, China. Environ Pollut 165: 140-146. <u>http://dx.doi.org/10.1016/j.envpol.2012.02.015</u>.
- Li, H; Shang, H; Wang, P; Wang, Y; Zhang, H; Zhang, Q; Jiang, G. (2013). Occurrence and distribution of hexabromocyclododecane in sediments from seven major river drainage basins in China. J Environ Sci 25: 69-76. http://dx.doi.org/10.1016/S1001-0742(12)60010-2.
- Li, H; Zhang, Q; Wang, P; Li, Y; Lv, J; Chen, W; Geng, D; Wang, Y; Wang, T; Jiang, G. (2012b). Levels and distribution of hexabromocyclododecane (HBCD) in environmental samples near manufacturing facilities in Laizhou Bay area, East China. J Environ Monit 14: 2591-2597. http://dx.doi.org/10.1039/c2em30231d.
- Li, W; Liu, L; Zhang, Zi; Song, W; Huo, C; Qiao, L; Ma, W; Li, Y. (2016b). Brominated flame retardants in the surrounding soil of two manufacturing plants in China: Occurrence, composition profiles and spatial distribution. Environ Pollut 213: 1-7. <u>http://dx.doi.org/10.1016/j.envpol.2016.01.092</u>.
- Li, WL; Huo, CY; Liu, LY; Song, WW; Zhang, ZF; Ma, WL; Qiao, LN; Li, YF. (2016c). Multi-year air monitoring of legacy and current-use brominated flame retardants in an urban center in northeastern China. Sci Total Environ 571: 633-642. http://dx.doi.org/10.1016/j.scitotenv.2016.07.031.
- Liagkouridis, I; Cousins, AP; Cousins, IT. (2015). Physical-chemical properties and evaluative fate modelling of 'emerging' and 'novel' brominated and organophosphorus flame retardants in the indoor and outdoor environment. Sci Total Environ 524-525: 416-426. http://dx.doi.org/10.1016/j.scitotenv.2015.02.106.
- Liagkouridis, I; Cousins, IT; Cousins, AP. (2014). Emissions and fate of brominated flame retardants in the indoor environment: a critical review of modelling approaches [Review]. Sci Total Environ 491-492: 87-99. http://dx.doi.org/10.1016/j.scitotenv.2014.02.005.
- Liang, Y; Xu, Y. (2014). Emission of phthalates and phthalate alternatives from vinyl flooring and crib mattress covers: the influence of temperature. Environ Sci Technol 48: 14228-14237. http://dx.doi.org/10.1021/es504801x.
- Lignell, S; Darnerud, PO; Aune, M; Tömkvist, A. (2003). Report to the Swedish Environmental Protection Agency: Persistent organic pollutants (POP) in breastmilk from primiparae women in Uppsala County, Sweden, 2002–2003. (Contract no. 215 0210). Swedish National Food Agency, Health-Related Environmental Monitoring Program. <u>https://www.divaportal.org/smash/get/diva2:657868/FULLTEXT01.pdf</u>.
- Lindberg, P; Sellström, U; Häggberg, L; de Wit, CA. (2004). Higher brominated diphenyl ethers and hexabromocyclododecane found in eggs of peregrine falcons (Falco peregrinus) breeding in Sweden. Environ Sci Technol 38: 93-96. http://dx.doi.org/10.1021/es034614q.
- Liu, C; Liu, Z; Little, JC; Zhang, Y. (2013). Convenient, rapid and accurate measurement of SVOC emission characteristics in experimental chambers. PLoS ONE 8: e72445. http://dx.doi.org/10.1371/journal.pone.0072445.
- Liu, HH; Hu, YJ; Luo, P; Bao, LJ; Qiu, JW; Leung, KMY; Zeng, EY. (2014). Occurrence of halogenated flame retardants in sediment off an urbanized coastal zone: Association with urbanization and industrialization. Environ Sci Technol 48: 8465-8473. <u>http://dx.doi.org/10.1021/es500660z</u>.
- Liu, X; Guo, Z; Krebs, KA; Stinson, RA; Nardin, JA; Pope, RH; Roache, NF. (2015). Chamber study of PCB emissions from caulking materials and light ballasts. Chemosphere 137: 115-121. http://dx.doi.org/10.1016/j.chemosphere.2015.05.102.
- López, D; Athanasiadou, M; Athanassiadis, I; Estrada, LY; Díaz-Barriga, F; Bergman, Å. (2004). A preliminary study on PBDEs and HBCDD in blood and milk from Mexican women (pp. 483-487). López, D; Athanasiadou, M; Athanassiadis, I; Estrada, LY; Díaz-Barriga, F; Bergman, Å.
- Luigi, V; Giuseppe, M; Claudio, R. (2015). Emerging and priority contaminants with endocrine active potentials in sediments and fish from the River Po (Italy). Environ Sci Pollut Res Int 22: 14050-14066. <u>http://dx.doi.org/10.1007/s11356-015-4388-8</u>.

- Lundstedt-Enkel, K; Asplund, L; Nylund, K; Bignert, A; Tysklind, M; Olsson, M; Orberg, J. (2006). Multivariate data analysis of organochlorines and brominated flame retardants in Baltic Sea guillemot (Uria aalge) egg and muscle. Chemosphere 65: 1591-1599. http://dx.doi.org/10.1016/j.chemosphere.2006.03.051.
- Lundstedt-Enkel, K; Johansson, AK; Tysklind, M; Asplund, L; Nylund, K; Olsson, M; Orberg, J. (2005). Multivariate data analyses of chlorinated and brominated contaminants and biological characteristics in adult guillemot (Uria aalge) from the Baltic Sea. Environ Sci Technol 39: 8630-8637. <u>http://dx.doi.org/10.1021/es0511180</u>.
- Lyng, NL; Gunnarsen, L; Andersen, HV. (2015). The effect of ventilation on the indoor air concentration of PCB: An intervention study. Build Environ 94: 305-312. http://dx.doi.org/10.1016/j.buildeny.2015.08.019.
- Lyons, BP; Barber, JL; Rumney, HS; Bolam, TP; Bersuder, P; Law, RJ; Mason, C; Smith, AJ; Morris, S; Devlin, MJ; Al-Enezi, M; Massoud, MS; Al-Zaidan, AS; Al-Sarawi, HA. (2015). Baseline survey of marine sediments collected from the State of Kuwait: PAHs, PCBs, brominated flame retardants and metal contamination. Mar Pollut Bull 100: 629-636. http://dx.doi.org/10.1016/j.marpolbul.2015.08.014.
- Mäkinen, MSE; Mäkinen, MRA; Koistinen, JTB; Pasanen, AL; Pasanen, PO; Kalliokoski, PJ; Korpi, AM. (2009). Respiratory and dermal exposure to organophosphorus flame retardants and tetrabromobisphenol A at five work environments. Environ Sci Technol 43: 941-947. http://dx.doi.org/10.1021/es802593t.
- Malarvannan, G; Isobe, T; Covaci, A; Prudente, M; Tanabe, S. (2013). Accumulation of brominated flame retardants and polychlorinated biphenyls in human breast milk and scalp hair from the Philippines: Levels, distribution and profiles. Sci Total Environ 442: 366-379. http://dx.doi.org/10.1016/j.scitotenv.2012.10.005.
- Malarvannan, G; Kunisue, T; Isobe, T; Sudaryanto, A; Takahashi, S; Prudente, M; Subramanian, A;
 <u>Tanabe, S.</u> (2009). Organohalogen compounds in human breast milk from mothers living in
 Payatas and Malate, the Philippines: Levels, accumulation kinetics and infant health risk. Environ
 Pollut 157: 1924-1932. <u>http://dx.doi.org/10.1016/j.envpol.2009.01.010</u>.
- Marsh, G; Athanasiadou, M; Athanassiadis, I; Bergman, A; Endo, T; Haraguchi, K. (2005). Identification, quantification, and synthesis of a novel dimethoxylated polybrominated biphenyl in marine mammals caught off the coast of Japan. Environ Sci Technol 39: 8684-8690. http://dx.doi.org/10.1021/es051153v.
- Marvin, CH; Tomy, GT; Alaee, M; Macinnis, G. (2006). Distribution of hexabromocyclododecane in Detroit River suspended sediments. Chemosphere 64: 268-275. http://dx.doi.org/10.1016/j.chemosphere.2005.12.011.
- McHugh, B; Poole, R; Corcoran, J; Anninou, P; Boyle, B; Joyce, E; Barry Foley, M; McGovern, E. (2010). The occurrence of persistent chlorinated and brominated organic contaminants in the European eel (Anguilla anguilla) in Irish waters. Chemosphere 79: 305-313. http://dx.doi.org/10.1016/j.chemosphere.2010.01.029.
- McKinney, MA; Cesh, LS; Elliott, JE; Williams, TD; Garcelon, DK; Letcher, RJ. (2006). Brominated flame retardants and halogenated phenolic compounds in North American west coast bald eaglet (Haliaeetus leucocephalus) plasma. Environ Sci Technol 40: 6275-6281. http://dx.doi.org/10.1021/es0610611.
- McKinney, MA; Letcher, RJ; Aars, J; Born, EW; Branigan, M; Dietz, R; Evans, TJ; Gabrielsen, GW; <u>Peacock, E; Sonne, C.</u> (2011). Flame retardants and legacy contaminants in polar bears from Alaska, Canada, East Greenland and Svalbard, 2005-2008. Environ Int 37: 365-374. <u>http://dx.doi.org/10.1016/j.envint.2010.10.008</u>.
- McKinney, MA; Stirling, I; Lunn, NJ; Peacock, E; Letcher, RJ. (2010). The role of diet on long-term concentration and pattern trends of brominated and chlorinated contaminants in western Hudson Bay polar bears, 1991-2007. Sci Total Environ 408: 6210-6222. http://dx.doi.org/10.1016/j.scitotenv.2010.08.033.

- Meijer, L; Weiss, J; van Velzen, M; Brouwer, A; Bergman, A; Sauer, PJ. (2008). Serum concentrations of neutral and phenolic organohalogens in pregnant women and some of their infants in The Netherlands. Environ Sci Technol 42: 3428-3433. <u>http://dx.doi.org/10.1021/es702446p</u>.
- Meng, XZ; Duan, YP; Yang, C; Pan, ZY; Wen, ZH; Chen, L. (2011). Occurrence, sources, and inventory of hexabromocyclododecanes (HBCDs) in soils from Chongming Island, the Yangtze River Delta (YRD). Chemosphere 82: 725-731. <u>http://dx.doi.org/10.1016/j.chemosphere.2010.10.091</u>.
- Meng, XZ; Xiang, N; Duan, YP; Chen, L; Zeng, EY. (2012). Hexabromocyclododecane in consumer fish from South China: Implications for human exposure via dietary intake. Environ Toxicol Chem 31: 1424-1430. <u>http://dx.doi.org/10.1002/etc.1826</u>.
- <u>Miège, C; Peretti, A; Labadie, P; Budzinski, H; Le Bizec, B; Vorkamp, K; Tronczyński, J; Persat, H;</u>
 <u>Coquery, M; Babut, M.</u> (2012). Occurrence of priority and emerging organic compounds in fishes from the Rhone River (France). Anal Bioanal Chem 404: 2721-2735.
 <u>http://dx.doi.org/10.1007/s00216-012-6187-0</u>.
- Miljeteig, C; Strøm, H; Gavrilo, MV; Volkov, A; Jenssen, BM; Gabrielsen, GW. (2009). High levels of contaminants in ivory gull Pagophila eburnea eggs from the Russian and Norwegian Arctic. Environ Sci Technol 43: 5521-5528. <u>http://dx.doi.org/10.1021/es900490n</u>.
- Miller, A; Elliott, JE; Elliott, KH; Guigueno, MF; Wilson, LK; Lee, S; Idrissi, A. (2014a). Brominated flame retardant trends in aquatic birds from the Salish Sea region of the west coast of North America, including a mini-review of recent trends in marine and estuarine birds. Sci Total Environ 502C: 60-69. <u>http://dx.doi.org/10.1016/j.scitotenv.2014.09.006</u>.
- Miller, A; Elliott, JE; Elliott, KH; Guigueno, MF; Wilson, LK; Lee, S; Idrissi, A. (2014b). Spatial and temporal trends in brominated flame retardants in seabirds from the Pacific coast of Canada. Environ Pollut 195C: 48-55. http://dx.doi.org/10.1016/j.envpol.2014.08.009.
- Minh, NH; Isobe, T; Ueno, D; Matsumoto, K; Mine, M; Kajiwara, N; Takahashi, S; Tanabe, S. (2007). Spatial distribution and vertical profile of polybrominated diphenyl ethers and hexabromocyclododecanes in sediment core from Tokyo Bay, Japan. Environ Pollut 148: 409-417. http://dx.doi.org/10.1016/j.envpol.2006.12.011.
- Mizouchi, S; Ichiba, M; Takigami, H; Kajiwara, N; Takamuku, T; Miyajima, T; Kodama, H; Someya, T; <u>Ueno, D.</u> (2015). Exposure assessment of organophosphorus and organobromine flame retardants via indoor dust from elementary schools and domestic houses. Chemosphere 123: 17-25. <u>http://dx.doi.org/10.1016/j.chemosphere.2014.11.028</u>.
- Montie, EW; Letcher, RJ; Reddy, CM; Moore, MJ; Rubinstein, B; Hahn, ME. (2010). Brominated flame retardants and organochlorine contaminants in winter flounder, harp and hooded seals, and North Atlantic right whales from the Northwest Atlantic Ocean. Mar Pollut Bull 60: 1160-1169. http://dx.doi.org/10.1016/j.marpolbul.2010.04.002.
- Morales-Caselles, C; Desforges, JW; Dangerfield, N; Ross, PS. (2017). A risk-based characterization of sediment contamination by legacy and emergent contaminants of concern in coastal British Columbia, Canada. Arch Environ Contam Toxicol 73: 270-284. http://dx.doi.org/10.1007/s00244-017-0403-z.
- Morris, S; Allchin, CR; Zegers, BN; Haftka, JJ; Boon, JP; Belpaire, C; Leonards, PE; Van Leeuwen, SP; De Boer, J. (2004). Distribution and fate of HBCD and TBBPA brominated flame retardants in North Sea estuaries and aquatic food webs. Environ Sci Technol 38: 5497-5504. http://dx.doi.org/10.1021/es049640i.
- Morrison, G; Li, H; Mishra, S; Buechlein, M. (2015). Airborne phthalate partitioning to cotton clothing. Atmos Environ 115: 149-152. <u>http://dx.doi.org/10.1016/j.atmosenv.2015.05.051</u>.
- Müller, MH; Polder, A; Brynildsrud, OB; Lie, E; Løken, KB; Manyilizu, WB; Mdegela, RH; Mokiti, F; Murtadha, M; Nonga, HE; Skaare, JU; Lyche, JL. (2016). Brominated flame retardants (BFRs) in breast milk and associated health risks to nursing infants in Northern Tanzania. Environ Int 89-90: 38-47. <u>http://dx.doi.org/10.1016/j.envint.2015.12.032</u>.
- Munschy, C; Marchand, P; Venisseau, A; Veyrand, B; Zendong, Z. (2013). Levels and trends of the emerging contaminants HBCDs (hexabromocyclododecanes) and PFCs (perfluorinated

compounds) in marine shellfish along French coasts. Chemosphere 91: 233-240. http://dx.doi.org/10.1016/j.chemosphere.2012.12.063.

- Murvoll, KM; Skaare, JU; Anderssen, E; Jenssen, BM. (2006a). Exposure and effects of persistent organic pollutants in European shag (Phalacrocorax aristotelis) hatchlings from the coast of Norway. Environ Toxicol Chem 25: 190-198.
- Murvoll, KM; Skaare, JU; Jensen, H; Jenssen, BM. (2007). Associations between persistent organic pollutants and vitamin status in Brünnich's guillemot and common eider hatchlings. Sci Total Environ 381: 134-145. <u>http://dx.doi.org/10.1016/j.scitotenv.2007.03.037</u>.
- Murvoll, KM; Skaare, JU; Moe, B; Anderssen, E; Jenssen, BM. (2006b). Spatial trends and associated biological responses of organochlorines and brominated flame retardants in hatchlings of North Atlantic kittiwakes (Rissa tridactyla). Environ Toxicol Chem 25: 1648-1656.

Nakagawa, R; Murata, S; Ashizuka, Y; Shintani, Y; Hori, T; Tsutsumi, T. (2010).

Hexabromocyclododecane determination in seafood samples collected from Japanese coastal areas. Chemosphere 81: 445-452. <u>http://dx.doi.org/10.1016/j.chemosphere.2010.08.015</u>.

- Nazaroff, WW; Goldstein, AH. (2015). Indoor chemistry: research opportunities and challenges [Editorial]. Indoor Air 25: 357-361. <u>http://dx.doi.org/10.1111/ina.12219</u>.
- <u>Newton, S; Sellstrom, U; De Wit, CA.</u> (2015). Emerging flame retardants, PBDEs, and HBCDDs in indoor and outdoor media in Stockholm, Sweden. Environ Sci Technol 49: 2912-2920. <u>http://dx.doi.org/10.1021/es505946e</u>.
- <u>Ni, HG; Zeng, H.</u> (2013). HBCD and TBBPA in particulate phase of indoor air in Shenzhen, China. Sci Total Environ 458-460: 15-19. <u>http://dx.doi.org/10.1016/j.scitotenv.2013.04.003</u>.
- NICNAS. (2012). Hexabromocyclododecane: Priority existing chemical assessment report no. 34. Australia.

http://www.nicnas.gov.au/Publications/CAR/PEC/PEC34/HBCD_Report_June_2012_PDF.pdf.

- Nordlöf, U; Helander, B; Bignert, A; Asplund, L. (2010). Levels of brominated flame retardants and methoxylated polybrominated diphenyl ethers in eggs of white-tailed sea eagles breeding in different regions of Sweden. Sci Total Environ 409: 238-246. <u>http://dx.doi.org/10.1016/j.scitotenv.2010.09.042</u>.
- <u>Oh, JK; Kotani, K; Managaki, S; Masunaga, S.</u> (2014). Levels and distribution of hexabromocyclododecane and its lower brominated derivative in Japanese riverine environment. Chemosphere 109: 157-163. <u>http://dx.doi.org/10.1016/j.chemosphere.2014.01.074</u>.
- Okonski, K; Degrendele, C; Melymuk, L; Landlová, L; Kukučka, P; Vojta, S; Kohoutek, J; Cupr, P; <u>Klánová, J.</u> (2014). Particle size distribution of halogenated flame retardants and implications for atmospheric deposition and transport. Environ Sci Technol 48: 14426-14434. http://dx.doi.org/10.1021/es5044547.
- <u>Olukunle, OI; Okonkwo, OJ.</u> (2015). Concentration of novel brominated flame retardants and HBCD in leachates and sediments from selected municipal solid waste landfill sites in Gauteng Province, South Africa. Waste Manag 43: 300-306. <u>http://dx.doi.org/10.1016/j.wasman.2015.07.009</u>.
- Ortiz, X; Guerra, P; Díaz-Ferrero, J; Eljarrat, E; Barceló, D. (2011). Diastereoisomer- and enantiomerspecific determination of hexabromocyclododecane in fish oil for food and feed. Chemosphere 82: 739-744. <u>http://dx.doi.org/10.1016/j.chemosphere.2010.10.088</u>.
- Palmquist, H; Hanaeus, J. (2005). Hazardous substances in separately collected grey- and blackwater from ordinary Swedish households. Sci Total Environ 348: 151-163. http://dx.doi.org/10.1016/j.scitotenv.2004.12.052.
- Peck, AM; Pugh, RS; Moors, A; Ellisor, MB; Porter, BJ; Becker, PR; Kucklick, JR. (2008). Hexabromocyclododecane in white-sided dolphins: temporal trend and stereoisomer distribution in tissues. Environ Sci Technol 42: 2650-2655. <u>http://dx.doi.org/10.1021/es072052v</u>.
- Peters, R. (2003). Hazardous chemicals in precipitation. (TNO report R2003/198). The Hague, Netherlands: Netherlands Organisation for Applied Scientific Research.
- Peters, RJB. (2004). Man-made chemicals in Human Blood (pp. 1-48). Peters, RJB. http://www.greenpeace.org/international/PageFiles/24502/man-made-chemicals-in-human-bl.pdf.

- Peters, RJB; Beeltje, H; van Delft, RJ. (2008). Xeno-estrogenic compounds in precipitation. J Environ Monit 10: 760-769. <u>http://dx.doi.org/10.1039/b805983g</u>.
- Polder, A; Gabrielsen, GW; Odland, JØ; Savinova, TN; Tkachev, A; Løken, KB; Skaare, JU. (2008a). Spatial and temporal changes of chlorinated pesticides, PCBs, dioxins (PCDDs/PCDFs) and brominated flame retardants in human breast milk from Northern Russia. Sci Total Environ 391: 41-54. http://dx.doi.org/10.1016/j.scitotenv.2007.10.045.
- Polder, A; Muller, MB; Brynildsrud, OB; de Boer, J; Hamers, T; Kamstra, JH; Lie, E; Mdegela, RH;
 Moberg, H; Nonga, HE; Sandvik, M; Skaare, JU; Lyche, JL. (2016). Dioxins, PCBs, chlorinated pesticides and brominated flame retardants in free-range chicken eggs from peri-urban areas in Arusha, Tanzania: Levels and implications for human health. Sci Total Environ 551: 656-667. http://dx.doi.org/10.1016/j.scitotenv.2016.02.021.
- Polder, A; Müller, MB; Lyche, JL; Mdegela, RH; Nonga, HE; Mabiki, FP; Mbise, TJ; Skaare, JU;
 Sandvik, M; Skjerve, E; Lie, E. (2014). Levels and patterns of persistent organic pollutants (POPs) in tilapia (Oreochromis sp.) from four different lakes in Tanzania: Geographical differences and implications for human health. Sci Total Environ 488-489: 252-260. http://dx.doi.org/10.1016/j.scitotenv.2014.04.085.
- Polder, A; Thomsen, C; Lindström, G; Løken, KB; Skaare, JU. (2008b). Levels and temporal trends of chlorinated pesticides, polychlorinated biphenyls and brominated flame retardants in individual human breast milk samples from Northern and Southern Norway. Chemosphere 73: 14-23. http://dx.doi.org/10.1016/j.chemosphere.2008.06.002.
- Polder, A; Venter, B; Skaare, JU; Bouwman, H. (2008c). Polybrominated diphenyl ethers and HBCD in bird eggs of South Africa. Chemosphere 73: 148-154. http://dx.doi.org/10.1016/j.chemosphere.2008.03.021.
- Poma, G; Binelli, A; Volta, P; Roscioli, C; Guzzella, L. (2014a). Evaluation of spatial distribution and accumulation of novel brominated flame retardants, HBCD and PBDEs in an Italian subalpine lake using zebra mussel (Dreissena polymorpha). Environ Sci Pollut Res Int 21: 9655-9664. http://dx.doi.org/10.1007/s11356-014-2826-7.
- Poma, G; Roscioli, C; Guzzella, L. (2014b). PBDE, HBCD, and novel brominated flame retardant contamination in sediments from Lake Maggiore (Northern Italy). Environ Monit Assess 186: 7683-7692. <u>http://dx.doi.org/10.1007/s10661-014-3959-3</u>.
- Poma, G; Volta, P; Roscioli, C; Bettinetti, R; Guzzella, L. (2014c). Concentrations and trophic interactions of novel brominated flame retardants, HBCD, and PBDEs in zooplankton and fish from Lake Maggiore (Northern Italy). Sci Total Environ 481: 401-408. <u>http://dx.doi.org/10.1016/j.scitotenv.2014.02.063</u>.
- Pulkrabová, J; Hajslová, J; Poustka, J; Kazda, R. (2007). Fish as biomonitors of polybrominated diphenyl ethers and hexabromocyclododecane in Czech aquatic ecosystems: Pollution of the Elbe River basin. Environ Health Perspect 115 Suppl 1: 28-34. <u>http://dx.doi.org/10.1289/ehp.9354</u>.
- Pulkrabová, J; Hrádková, P; Hajslová, J; Poustka, J; Nápravníková, M; Polácek, V. (2009). Brominated flame retardants and other organochlorine pollutants in human adipose tissue samples from the Czech Republic. Environ Int 35: 63-68. <u>http://dx.doi.org/10.1016/j.envint.2008.08.001</u>.
- <u>Qi, H; Li, WL; Liu, LY; Song, WW; Ma, WL; Li, YF.</u> (2014a). Brominated flame retardants in the urban atmosphere of Northeast China: Concentrations, temperature dependence and gas-particle partitioning. Sci Total Environ 491-492: 60-66. <u>http://dx.doi.org/10.1016/j.scitotenv.2014.03.002</u>.
- <u>Qi, H; Li, WL; Liu, LY; Zhang, ZF; Zhu, NZ; Song, WW; Ma, WL; Li, YF.</u> (2014b). Levels, distribution and human exposure of new non-BDE brominated flame retardants in the indoor dust of China. Environ Pollut 195C: 1-8. <u>http://dx.doi.org/10.1016/j.envpol.2014.08.008</u>.
- <u>Oiu, Y; Strid, A; Bignert, A; Zhu, Z; Zhao, J; Athanasiadou, M; Athanassiadis, I; Bergman, Å.</u> (2012). Chlorinated and brominated organic contaminants in fish from Shanghai markets: a case study of human exposure. Chemosphere 89: 458-466. http://dx.doi.org/10.1016/j.chemosphere.2012.05.099</u>.

- Ramu, K; Isobe, T; Takahashi, S; Kim, EY; Min, BY; We, SU; Tanabe, S. (2010). Spatial distribution of polybrominated diphenyl ethers and hexabromocyclododecanes in sediments from coastal waters of Korea. Chemosphere 79: 713-719. <u>http://dx.doi.org/10.1016/j.chemosphere.2010.02.048</u>.
- Ramu, K; Kajiwara, N; Isobe, T; Takahashi, S; Kim, EY; Min, BY; We, SU; Tanabe, S. (2007). Spatial distribution and accumulation of brominated flame retardants, polychlorinated biphenyls and organochlorine pesticides in blue mussels (Mytilus edulis) from coastal waters of Korea. Environ Pollut 148: 562-569. http://dx.doi.org/10.1016/j.envpol.2006.11.034.
- Rani, M; Shim, WJ; Han, GM; Jang, M; Song, YK; Hong, SH. (2014). Hexabromocyclododecane in polystyrene based consumer products: An evidence of unregulated use. Chemosphere 110: 111-119. <u>http://dx.doi.org/10.1016/j.chemosphere.2014.02.022</u>.
- Rauert, C; Harrad, S; Suzuki, G; Takigami, H; Uchida, N; Takata, K. (2014). Test chamber and forensic microscopy investigation of the transfer of brominated flame retardants into indoor dust via abrasion of source materials. Sci Total Environ 493: 639-648. http://dx.doi.org/10.1016/j.scitotenv.2014.06.029.
- Rauert, C; Kuribara, I; Kataoka, T; Wada, T; Kajiwara, N; Suzuki, Go; Takigami, H; Harrad, S. (2016). Direct contact between dust and HBCD-treated fabrics is an important pathway of source-to-dust transfer. Sci Total Environ 545: 77-83. <u>http://dx.doi.org/10.1016/j.scitotenv.2015.12.054</u>.
- Rawn, DF; Gaertner, DW; Weber, D; Curran, IH; Cooke, GM; Goodyer, CG. (2014a). Hexabromocyclododecane concentrations in Canadian human fetal liver and placental tissues. Sci Total Environ 468-469: 622-629. <u>http://dx.doi.org/10.1016/j.scitotenv.2013.08.014</u>.
- Rawn, DF; Ryan, JJ; Sadler, AR; Sun, WF; Weber, D; Laffey, P; Haines, D; Macey, K; Van Oostdam, J. (2014b). Brominated flame retardant concentrations in sera from the Canadian Health Measures Survey (CHMS) from 2007 to 2009. Environ Int 63: 26-34. http://dx.doi.org/10.1016/j.envint.2013.10.012.
- Rawn, DF; Sadler, A; Quade, SC; Sun, WF; Lau, BP; Kosarac, I; Hayward, S; Ryan, JJ. (2011). Brominated flame retardants in Canadian chicken egg yolks. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 28: 807-815. <u>http://dx.doi.org/10.1080/19440049.2010.545443</u>.
- Reindl, AR; Falkowska, L. (2014). Flame retardants at the top of a simulated baltic marine food web- A case study concerning african penguins from the Gdansk zoo. Arch Environ Contam Toxicol 68: 259-264. http://dx.doi.org/10.1007/s00244-014-0081-z.
- <u>Reiner, JL; Becker, PR; Gribble, MO; Lynch, JM; Moors, AJ; Ness, J; Peterson, D; Pugh, RS; Ragland, T; Rimmer, C; Rhoderick, J; Schantz, MM; Trevillian, J; Kucklick, JR.</u> (2015). Organohalogen Contaminants and Vitamins in Northern Fur Seals (Callorhinus ursinus) Collected During Subsistence Hunts in Alaska. Arch Environ Contam Toxicol 70: 96-105. http://dx.doi.org/10.1007/s00244-015-0179-y.
- Remberger, M; Sternbeck, J; Palm, A; Kaj, L; Strömberg, K; Brorström-Lundén, E. (2004). The environmental occurrence of hexabromocyclododecane in Sweden. Chemosphere 54: 9-21. http://dx.doi.org/10.1016/S0045-6535(03)00758-6.
- Rivière, G; Sirot, V; Tard, A; Jean, J; Marchand, P; Veyrand, B; Le Bizec, B; Leblanc, JC. (2014). Food risk assessment for perfluoroalkyl acids and brominated flame retardants in the French population: Results from the second French total diet study. Sci Total Environ 491-492: 176-183. http://dx.doi.org/10.1016/j.scitotenv.2014.01.104.
- Robson, M; Melymuk, L; Bradley, L; Treen, B; Backus, S. (2013). Wet deposition of brominated flame retardants to the Great Lakes basin Status and trends. Environ Pollut 182: 299-306. http://dx.doi.org/10.1016/j.envpol.2013.07.018.
- Roosens, L; Abdallah, MA; Harrad, S; Neels, H; Covaci, A. (2009). Exposure to hexabromocyclododecanes (HBCDs) via dust ingestion, but not diet, correlates with concentrations in human serum: Preliminary results. Environ Health Perspect 117: 1707-1712. http://dx.doi.org/10.1289/ehp.0900869.
- Roosens, L; Cornelis, C; D'Hollander, W; Bervoets, L; Reynders, H; Van Campenhout, K; Van Den Heuvel, R; Neels, H; Covaci, A. (2010a). Exposure of the Flemish population to brominated

flame retardants: Model and risk assessment. Environ Int 36: 368-376. http://dx.doi.org/10.1016/j.envint.2010.02.005.

- Roosens, L; D'Hollander, W; Bervoets, L; Reynders, H; Van Campenhout, K; Cornelis, C; Van Den Heuvel, R; Koppen, G; Covaci, A. (2010b). Brominated flame retardants and perfluorinated chemicals, two groups of persistent contaminants in Belgian human blood and milk. Environ Pollut 158: 2546-2552. http://dx.doi.org/10.1016/j.envpol.2010.05.022.
- Roosens, L; Dirtu, AC; Goemans, G; Belpaire, C; Gheorghe, A; Neels, H; Blust, R; Covaci, A. (2008). Brominated flame retardants and polychlorinated biphenyls in fish from the river Scheldt, Belgium. Environ Int 34: 976-983. <u>http://dx.doi.org/10.1016/j.envint.2008.02.009</u>.
- Roosens, L; Geeraerts, C; Belpaire, C; Van Pelt, I; Neels, H; Covaci, A. (2010c). Spatial variations in the levels and isomeric patterns of PBDEs and HBCDs in the European eel in Flanders. Environ Int 36: 415-423. <u>http://dx.doi.org/10.1016/j.envint.2010.03.001</u>.
- <u>Rüdel, H; Müller, J; Quack, M; Klein, R.</u> (2012). Monitoring of hexabromocyclododecane diastereomers in fish from European freshwaters and estuaries. Environ Sci Pollut Res Int 19: 772-783. <u>http://dx.doi.org/10.1007/s11356-011-0604-3</u>.
- Ryan, JJ; Rawn, DF. (2014). The brominated flame retardants, PBDEs and HBCD, in Canadian human milk samples collected from 1992 to 2005; concentrations and trends. Environ Int 70: 1-8. http://dx.doi.org/10.1016/j.envint.2014.04.020.
- Ryan, JJ; Wainman, BC; Schecter, A; Moisey, SA; Kosarac, I; Sun, WF. (2006). Trends of the brominated flame retardants, PBDES and HBCD, in human milks from North America. Organohalogen Compd 68: 778-781.
- Sagerup, K; Helgason, LB; Polder, A; Strøm, H; Josefsen, TD; Skåre, JU; Gabrielsen, GW. (2009). Persistent organic pollutants and mercury in dead and dying glaucous gulls (Larus hyperboreus) at Bjørnøya (Svalbard). Sci Total Environ 407: 6009-6016. <u>http://dx.doi.org/10.1016/j.scitotenv.2009.08.020</u>.
- Sahlström, L; Sellström, U; de Wit, CA. (2012). Clean-up method for determination of established and emerging brominated flame retardants in dust. Anal Bioanal Chem 404: 459-466. http://dx.doi.org/10.1007/s00216-012-6160-y.
- Sahlström, LM; Sellström, U; de Wit, CA; Lignell, S; Darnerud, PO. (2015a). Estimated intakes of brominated flame retardants via diet and dust compared to internal concentrations in a Swedish mother-toddler cohort. Int J Hyg Environ Health 218: 422-432. http://dx.doi.org/10.1016/j.ijheh.2015.03.011.
- Sahlström, LMO; Sellström, U; de Wit, CA; Lignell, S; Darnerud, PO. (2015b). Feasibility study of feces for noninvasive biomonitoring of brominated flame retardants in toddlers. Environ Sci Technol 49: 606-615. <u>http://dx.doi.org/10.1021/es504708c</u>.
- Saito, I; Onuki, A; Seto, H. (2007). Indoor organophosphate and polybrominated flame retardants in Tokyo. Indoor Air 17: 28-36. <u>http://dx.doi.org/10.1111/j.1600-0668.2006.00442.x</u>.
- Salamova, A; Hites, RA. (2013). Brominated and chlorinated flame retardants in tree bark from around the globe. Environ Sci Technol 47: 349-354. <u>http://dx.doi.org/10.1021/es303393z</u>.
- Salthammer, T; Bahadir, M. (2009). Occurrence, Dynamics and Reactions of Organic Pollutants in the Indoor Environment. CLEAN - Soil, Air, Water 37: 417-435. http://dx.doi.org/10.1002/clen.200900015.
- Salthammer, T; Schripp, T. (2015). Application of the Junge- and Pankow-equation for estimating indoor gas/particle distribution and exposure to SVOCs. Atmos Environ 106: 467-476. http://dx.doi.org/10.1016/j.atmosenv.2014.09.050.
- Santillo, D; Johnston, P; Brigden, K. (2001). The presence of brominated flame retardants and organotin compounds in dusts collected from Parliament buildings from eight countries. Santillo, D; Johnston, P; Brigden, K. <u>http://archive.greenpeace.org/toxics/reports/eudust.pdf</u>.

Santillo, D; Labunska, I; Davidson, H; Johnston, P; Strutt, M; Knowles, O. (2003). Consuming chemicals: Hazardous chemicals in house dust as an indicator of chemical exposure in the home. London, UK: Greenpeace Environmental Trust. http://www.greenpeace.org/international/en/publications/reports/consuming-chemicals-hazardou/.

- Schecter, A; Haffner, D; Colacino, J; Patel, K; Päpke, O; Opel, M; Birnbaum, L. (2010). Polybrominated diphenyl ethers (PBDEs) and hexabromocyclodecane (HBCD) in composite U.S. food samples. Environ Health Perspect 118: 357-362. <u>http://dx.doi.org/10.1289/ehp.0901345</u>.
- <u>Schecter, A; Szabo, DT; Miller, J; Gent, TL; Malik-Bass, N; Petersen, M; Paepke, O; Colacino, JA;</u> <u>Hynan, LS; Harris, TR; Malla, S; Birnbaum, LS.</u> (2012). Hexabromocyclododecane (HBCD) stereoisomers in U.S. food from Dallas, Texas. Environ Health Perspect 120: 1260-1264. <u>http://dx.doi.org/10.1289/ehp.1204993</u>.
- Schreder, ED: La Guardia, MJ. (2014). Flame retardant transfers from U.S. households (dust and laundry wastewater) to the aquatic environment. Environ Sci Technol 48: 11575-11583. http://dx.doi.org/10.1021/es502227h.
- Schwarz, S; Rackstraw, A; Behnisch, PA; Brouwer, A; Koehler, HR; Kotz, A; Kuballa, T; Malisch, R; Neugebauer, F; Schilling, F; Schmidt, D; von Der Trenck, KT. (2016). Peregrine falcon egg pollutants Mirror Stockholm POPs list including methylmercury. Toxicol Environ Chem 98: 886-923. <u>http://dx.doi.org/10.1080/02772248.2015.1126717</u>.
- Sellström, U; Bignert, A; Kierkegaard, A; Häggberg, L; de Wit, CA; Olsson, M; Jansson, B. (2003). Temporal trend studies on tetra- and pentabrominated diphenyl ethers and hexabromocyclododecane in guillemot egg from the Baltic Sea. Environ Sci Technol 37: 5496-5501. <u>http://dx.doi.org/10.1021/es0300766</u>.
- Sellstrom, U; Kierkkegaard, A; De Wit, C; Jansson, B. (1998). Polybrominated diphenyl ethers and hexabromocyclododecane in sediment and fish from a Swedish river. Environ Toxicol Chem 17: 1065-1072. http://dx.doi.org/10.1897/1551-5028(1998)017<1065:PDEAHI>2.3.CO;2.
- Shaw, SD; Berger, ML; Brenner, D; Kannan, K; Lohmann, N; Päpke, O. (2009). Bioaccumulation of polybrominated diphenyl ethers and hexabromocyclododecane in the northwest Atlantic marine food web. Sci Total Environ 407: 3323-3329. <u>http://dx.doi.org/10.1016/j.scitotenv.2009.02.018</u>.
- Shaw, SD; Berger, ML; Weijs, L; Covaci, A. (2012). Tissue-specific accumulation of polybrominated diphenyl ethers (PBDEs) including Deca-BDE and hexabromocyclododecanes (HBCDs) in harbor seals from the northwest Atlantic. Environ Int 44: 1-6. http://dx.doi.org/10.1016/j.envint.2012.01.001.
- Shi, Z; Jiao, Y; Hu, Y; Sun, Z; Zhou, X; Feng, J; Li, J; Wu, Y. (2013). Levels of tetrabromobisphenol A, hexabromocyclododecanes and polybrominated diphenyl ethers in human milk from the general population in Beijing, China. Sci Total Environ 452-453: 10-18. http://dx.doi.org/10.1016/j.scitoteny.2013.02.038.
- Shi, Z; Zhang, L; Zhao, Y; Sun, Z; Zhou, X; Li, J; Wu, Y. (2017a). Dietary exposure assessment of Chinese population to tetrabromobisphenol-A, hexabromocyclododecane and decabrominated diphenyl ether: Results of the 5th Chinese total diet study. Environ Pollut 229: 539-547. <u>http://dx.doi.org/10.1016/j.envpol.2017.06.093</u>.
- Shi, Z; Zhang, L; Zhao, Y; Sun, Z; Zhou, X; Li, J; Wu, Y. (2017b). A national survey of tetrabromobisphenol-A, hexabromocyclododecane and decabrominated diphenyl ether in human milk from China: Occurrence and exposure assessment. Sci Total Environ 599-600: 237-245. http://dx.doi.org/10.1016/j.scitotenv.2017.04.237.
- Shi, ZX; Wu, YN; Li, JG; Zhao, YF; Feng, JF. (2009). Dietary exposure assessment of Chinese adults and nursing infants to tetrabromobisphenol-A and hexabromocyclododecanes: Occurrence measurements in foods and human milk. Environ Sci Technol 43: 4314-4319. http://dx.doi.org/10.1021/es8035626.
- Shoeib, M; Ahrens, L; Jantunen, L; Harner, T. (2014). Concentrations in air of organobromine, organochlorine and organophosphate flame retardants in Toronto, Canada. Atmos Environ 99: 140-147. <u>http://dx.doi.org/10.1016/j.atmosenv.2014.09.040</u>.
- Shoeib, M; Harner, T; Webster, GM; Sverko, E; Cheng, Y. (2012). Legacy and current-use flame retardants in house dust from Vancouver, Canada. Environ Pollut 169: 175-182. <u>http://dx.doi.org/10.1016/j.envpol.2012.01.043</u>.

- Singer, BC; Revzan, KL; Hotchi, T; Hodgson, AT; Brown, NJ. (2004). Sorption of organic gases in a furnished room. Atmos Environ 38: 2483-2494. http://dx.doi.org/10.1016/j.atmosenv.2004.02.003.
- Son, MH; Kim, J; Shin, ES; Seo, SH; Chang, YS. (2015). Diastereoisomer- and species-specific distribution of hexabromocyclododecane (HBCD) in fish and marine invertebrates. J Hazard Mater 300: 114-120. http://dx.doi.org/10.1016/j.jhazmat.2015.06.023.
- <u>Sørmo, EG; Jenssen, BM; Lie, E; Skaare, JU.</u> (2009). Brominated flame retardants in aquatic organisms from the North Sea in comparison with biota from the high Arctic marine environment. Environ Toxicol Chem 28: 2082-2090. <u>http://dx.doi.org/10.1897/08-452.1</u>.
- Sørmo, EG; Lie, E; Ruus, A; Gaustad, H; Skaare, JU; Jenssen, BM. (2011). Trophic level determines levels of brominated flame-retardants in coastal herring gulls. Ecotoxicol Environ Saf 74: 2091-2098. <u>http://dx.doi.org/10.1016/j.ecoenv.2011.06.012</u>.
- Sørmo, EG; Salmer, MP; Jenssen, BM; Hop, H; Baek, K; Kovacs, KM; Lydersen, C; Falk-Petersen, S;
 <u>Gabrielsen, GW; Lie, E; Skaare, JU.</u> (2006). Biomagnification of polybrominated diphenyl ether and hexabromocyclododecane flame retardants in the polar bear food chain in Svalbard, Norway. Environ Toxicol Chem 25: 2502-2511. <u>http://dx.doi.org/10.1897/05-591R.1</u>.
- Stapleton, H; Allen, J; Kelly, S; Konstantinov, A; Klosterhaus, S; Watkins, D; McClean, M; Webster, T. (2008). Alternate and new brominated flame retardants detected in U.S. house dust. Environ Sci Technol 42: 6910-6916. <u>http://dx.doi.org/10.1021/es801070p</u>.
- Stapleton, HM; Dodder, NG; Kucklick, JR; Reddy, CM; Schantz, MM; Becker, PR; Gulland, F; Porter, BJ; Wise, SA. (2006). Determination of HBCD, PBDEs and MeO-BDEs in California sea lions (Zalophus californianus) stranded between 1993 and 2003. Mar Pollut Bull 52: 522-531. http://dx.doi.org/10.1016/j.marpolbul.2005.09.045.
- <u>Stapleton, HM; Dodder, NG; Offenberg, JH; Schantz, MM; Wise, SA.</u> (2004). Polybrominated Diphenyl Ethers in House Dust and Clothes Dryer Lint. Environ Sci Technol 39: 925-931. <u>http://dx.doi.org/10.1021/es0486824</u>.
- Stapleton, HM; Misenheimer, J; Hoffman, K; Webster, TF. (2014). Flame retardant associations between children's handwipes and house dust. Chemosphere 116: 54-60. http://dx.doi.org/10.1016/j.chemosphere.2013.12.100.
- Stiborova, H; Kolar, M; Vrkoslavova, J; Pulkrabova, J; Hajslova, J; Demnerova, K; Uhlik, O. (2017). Linking toxicity profiles to pollutants in sludge and sediments. J Hazard Mater 321: 672-680. http://dx.doi.org/10.1016/j.jhazmat.2016.09.051.
- Stiborova, H; Vrkoslavova, J; Pulkrabova, J; Poustka, J; Hajslova, J; Demnerova, K. (2015). Dynamics of brominated flame retardants removal in contaminated wastewater sewage sludge under anaerobic conditions. Sci Total Environ 533: 439-445. <u>http://dx.doi.org/10.1016/j.scitotenv.2015.06.131</u>.
- Su, G; Letcher, RJ; Moore, JN; Williams, LL; Martin, PA; de Solla, SR; Bowerman, WW. (2015a). Spatial and temporal comparisons of legacy and emerging flame retardants in herring gull eggs from colonies spanning the Laurentian Great Lakes of Canada and United States. Environ Res 142: 720-730. <u>http://dx.doi.org/10.1016/j.envres.2015.08.018</u>.
- Su, G; Saunders, D; Yu, Y; Yu, H; Zhang, X; Liu, H; Giesy, JP. (2014). Occurrence of additive brominated flame retardants in aquatic organisms from Tai Lake and Yangtze River in Eastern China, 2009-2012. Chemosphere 114: 340-346. <u>http://dx.doi.org/10.1016/j.chemosphere.2014.05.046</u>.
- Su, J; Lu, Y; Liu, Z; Gao, S; Zeng, X; Yu, Z; Sheng, G; Fu, JM. (2015b). Distribution of polybrominated diphenyl ethers and HBCD in sediments of the Hunhe River in Northeast China. Environ Sci Pollut Res Int 22: 16781-16790. http://dx.doi.org/10.1007/s11356-015-4779-x.
- Sudaryanto, A; Isobe, T; Agusa, T; Takahashi, S; Iwata, H; Nakamura, S; Takizawa, S; Tanabe, S. (2007). Levels and distribution of organochlorine compounds and brominated flame retardants in fish from Laos. Organohalogen Compd 69: 55-58.
- Sun, YX; Luo, XJ; Mo, L; He, MJ; Zhang, Q; Chen, SJ; Zou, FS; Mai, BX. (2012).
 - Hexabromocyclododecane in terrestrial passerine birds from e-waste, urban and rural locations in the Pearl River Delta, South China: Levels, biomagnification, diastereoisomer- and enantiomer-Page **154** of **160**

specific accumulation. Environ Pollut 171: 191-198. http://dx.doi.org/10.1016/j.envpol.2012.07.026.

- Suzuki, G; Kida, A; Sakai, S; Takigami, H. (2009). Existence state of bromine as an indicator of the source of brominated flame retardants in indoor dust. Environ Sci Technol 43: 1437-1442. http://dx.doi.org/10.1021/es802599d.
- Takahashi, S; Oshihoi, T; Ramu, K; Isobe, T; Ohmori, K; Kubodera, T; Tanabe, S. (2010). Organohalogen compounds in deep-sea fishes from the western North Pacific, off-Tohoku, Japan: Contamination status and bioaccumulation profiles. Mar Pollut Bull 60: 187-196. http://dx.doi.org/10.1016/j.marpolbul.2009.09.027.
- Takigami, H; Suzuki, G; Hirai, Y; Ishikawa, Y; Sunami, M; Sakai, S. (2009a). Flame retardants in indoor dust and air of a hotel in Japan. Environ Int 35: 688-693. http://dx.doi.org/10.1016/j.envint.2008.12.007.
- Takigami, H; Suzuki, G; Hirai, Y; Sakai, S. (2007). Comparison of brominated flame retardants in indoor air and dust samples from two homes in Japan. Organohalogen Compd 69: 2785-2788.
- Takigami, H; Suzuki, G; Hirai, Y; Sakai, S. (2008). Transfer of brominated flame retardants from components into dust inside television cabinets. Chemosphere 73: 161-169. http://dx.doi.org/10.1016/j.chemosphere.2008.06.032.
- Takigami, H; Suzuki, G; Hirai, Y; Sakai, S. (2009b). Brominated flame retardants and other polyhalogenated compounds in indoor air and dust from two houses in Japan. Chemosphere 76: 270-277. http://dx.doi.org/10.1016/j.chemosphere.2009.03.006.
- Tanabe, S; Ramu, K; Isobe, T; Kajiwara, N; Takahashi, S; Jefferson, TA; Yamada, TK. (2007). Levels and temporal trends of brominated flame retardants (PBDEs and HBCDs) in Asian waters using archived samples from ES-Bank, Ehime University, Japan. Organohalogen Compd 69: 500-503.
- Tang, J; Feng, J; Li, X; Li, G. (2014). Levels of flame retardants HBCD, TBBPA and TBC in surface soils from an industrialized region of East China. Environ Sci Process Impacts 16: 1015-1021. http://dx.doi.org/10.1039/c3em00656e.
- Tang, L; Shao, HY; Zhu, JY; Xu, G; Han, T; Peng, BQ; Wu, MH. (2015). Hexabromocyclododecane diastereoisomers in surface sediments from river drainage basins of Shanghai, China: Occurrence, distribution, and mass inventory. Environ Sci Pollut Res Int 22: 11993-12000. http://dx.doi.org/10.1007/s11356-015-4336-7.
- Tao, F; Abou-Elwafa Abdallah, M; Ashworth, DC; Douglas, P; Toledano, MB; Harrad, S. (2017). Emerging and legacy flame retardants in UK human milk and food suggest slow response to restrictions on use of PBDEs and HBCDD. Environ Int 105: 95-104. http://dx.doi.org/10.1016/j.envint.2017.05.010.
- Tao, F; Matsukami, H; Suzuki, G; Tue, NM; Viet, PH; Takigami, H; Harrad, S. (2016). Emerging halogenated flame retardants and hexabromocyclododecanes in food samples from an e-waste processing area in Vietnam. Environ Sci Process Impacts 18: 361-370. http://dx.doi.org/10.1039/c5em00593k.
- Tay, JH; Sellström, U; Papadopoulou, E; Padilla-Sánchez, JA; Haug, LS; de Wit, CA. (2018). Assessment of dermal exposure to halogenated flame retardants: Comparison using direct measurements from hand wipes with an indirect estimation from settled dust concentrations. Environ Int 115: 285-294. http://dx.doi.org/10.1016/j.envint.2018.03.038.
- Thomsen, C; Knutsen, HK; Liane, VH; Frøshaug, M; Kvalem, HE; Haugen, M; Meltzer, HM; Alexander, J; Becher, G. (2008). Consumption of fish from a contaminated lake strongly affects the concentrations of polybrominated diphenyl ethers and hexabromocyclododecane in serum. Mol Nutr Food Res 52: 228-237. http://dx.doi.org/10.1002/mnfr.200700123.
- Toms, LM; Guerra, P; Eljarrat, E; Barceló, D; Harden, FA; Hobson, P; Sjodin, A; Ryan, E; Mueller, JF. (2012). Brominated flame retardants in the Australian population: 1993-2009. Chemosphere 89: 398-403. http://dx.doi.org/10.1016/j.chemosphere.2012.05.053.
- Tomy, GT; Budakowski, W; Halldorson, T; Whittle, DM; Keir, MJ; Marvin, C; Macinnis, G; Alaee, M. (2004). Biomagnification of alpha- and gamma-hexabromocyclododecane isomers in a Lake Ontario food web. Environ Sci Technol 38: 2298-2303. http://dx.doi.org/10.1021/es034968h.

- Tomy, GT; Pleskach, K; Ferguson, SH; Hare, J; Stern, G; MacInnis, G; Marvin, CH; Loseto, L. (2009). Trophodynamics of some PFCs and BFRs in a western Canadian Arctic marine food web. Environ Sci Technol 43: 4076-4081. <u>http://dx.doi.org/10.1021/es900162n</u>.
- Tomy, GT; Pleskach, K; Oswald, T; Halldorson, T; Helm, PA; Macinnis, G; Marvin, CH. (2008). Enantioselective bioaccumulation of hexabromocyclododecane and congener-specific accumulation of brominated diphenyl ethers in an eastern Canadian Arctic marine food web. Environ Sci Technol 42: 3634-3639. http://dx.doi.org/10.1021/es703083z.
- Törnkvist, A; Glynn, A; Aune, M; Darnerud, PO; Ankarberg, EH. (2011). PCDD/F, PCB, PBDE, HBCD and chlorinated pesticides in a Swedish market basket from 2005- Levels and dietary intake estimations. Chemosphere 83: 193-199. <u>http://dx.doi.org/10.1016/j.chemosphere.2010.12.042</u>.
- Tue, NM; Sudaryanto, A; Minh, TB; Isobe, T; Takahashi, S; Viet, PH; Tanabe, S. (2010). Accumulation of polychlorinated biphenyls and brominated flame retardants in breast milk from women living in Vietnamese e-waste recycling sites. Sci Total Environ 408: 2155-2162. http://dx.doi.org/10.1016/j.scitoteny.2010.01.012.
- Tue, NM; Takahashi, S; Suzuki, G; Isobe, T; Viet, PH; Kobara, Y; Seike, N; Zhang, G; Sudaryanto, A;
 Tanabe, S. (2013). Contamination of indoor dust and air by polychlorinated biphenyls and brominated flame retardants and relevance of non-dietary exposure in Vietnamese informal e-waste recycling sites. Environ Int 51: 160-167. http://dx.doi.org/10.1016/j.envint.2012.11.006.
- U.S. Bureau of Mines. (1987). Dust control handbook for minerals processing. Chapter 1: Dust and its control. Baltimore, MD: U.S. Department of the Interior, Bureau of Mines. <u>https://www.osha.gov/dsg/topics/silicacrystalline/dust/dust_control_handbook.html.https://hero.e pa.gov/hero/index.cfm?action=search.view&reference_id=2991013U.S. EPA.</u> (2011). Exposure Factors Handbook: 2011 Edition. (EPA/600/R-09/052F). Washington, DC. <u>http://www.epa.gov/ncea/efh</u>.
- U.S. EPA. (2017). Strategy for conducting literature searches for cyclic aliphatic bromine cluster (HBCD): Supplemental document to the TSCA Scope Document. CASRN: 25637-99-4; 3194-55-6; 3194-57-8 [EPA Report]. <u>https://www.epa.gov/sites/production/files/2017-06/documents/hbcd_lit_search_strategy_053017.pdf</u>.
- U.S. EPA. (2018). Application of systematic review in TSCA risk evaluations. (740-P1-8001). Washington, DC: U.S. Environmental Protection Agency, Office of Chemical Safety and Pollution Prevention. <u>https://www.epa.gov/sites/production/files/2018-</u>06/documents/final_application_of_sr_in_tsca_05-31-18.pdf.
- <u>Ueno, D; Alaee, M; Marvin, C; Muir, DC; Macinnis, G; Reiner, E; Crozier, P; Furdui, VI; Subramanian, A; Fillmann, G; Lam, PK; Zheng, GJ; Muchtar, M; Razak, H; Prudente, M; Chung, KH; Tanabe, S. (2006). Distribution and transportability of hexabromocyclododecane (HBCD) in the Asia-Pacific region using skipjack tuna as a bioindicator. Environ Pollut 144: 238-247. http://dx.doi.org/10.1016/j.envpol.2005.12.024</u>.
- Ueno, D; Isobe, T; Ramu, K; Tanabe, S; Alaee, M; Marvin, C; Inoue, K; Someya, T; Miyajima, T; Kodama, H; Nakata, H. (2010). Spatial distribution of hexabromocyclododecanes (HBCDs), polybrominated diphenyl ethers (PBDEs) and organochlorines in bivalves from Japanese coastal waters. Chemosphere 78: 1213-1219. <u>http://dx.doi.org/10.1016/j.chemosphere.2009.12.058</u>.
- van Leeuwen, SP; de Boer, J. (2008). Brominated flame retardants in fish and shellfish Levels and contribution of fish consumption to dietary exposure of Dutch citizens to HBCD. Mol Nutr Food Res 52: 194-203. <u>http://dx.doi.org/10.1002/mnfr.200700207</u>.
- van Leeuwen, SP; van Velzen, MJ; Swart, CP; van der Veen, I; Traag, WA; de Boer, J. (2009). Halogenated contaminants in farmed salmon, trout, tilapia, pangasius, and shrimp. Environ Sci Technol 43: 4009-4015. <u>http://dx.doi.org/10.1021/es803558r</u>.
- Venier, M; Dove, A; Romanak, K; Backus, S; Hites, R. (2014). Flame retardants and legacy chemicals in Great Lakes' water. Environ Sci Technol 48: 9563-9572. <u>http://dx.doi.org/10.1021/es501509r</u>.
- Venier, M; Hites, RA. (2011). Flame retardants in the serum of pet dogs and in their food. Environ Sci Technol 45: 4602-4608. <u>http://dx.doi.org/10.1021/es1043529</u>.

- Venier, M; Wierda, M; Bowerman, WW; Hites, RA. (2010). Flame retardants and organochlorine pollutants in bald eagle plasma from the Great Lakes region. Chemosphere 80: 1234-1240. http://dx.doi.org/10.1016/j.chemosphere.2010.05.043.
- Venkatesan, AK; Halden, RU. (2014). Brominated flame retardants in U.S. biosolids from the EPA national sewage sludge survey and chemical persistence in outdoor soil mesocosms. Water Res 55: 133-142. <u>http://dx.doi.org/10.1016/j.watres.2014.02.021</u>.
- <u>Verboven, N; Verreault, J; Letcher, RJ; Gabrielsen, GW; Evans, NP.</u> (2009). Differential investment in eggs by arctic-breeding glaucous gulls (Larus hyperboreus) exposed to persistent organic pollutants. Auk 126: 123-133. <u>http://dx.doi.org/10.1525/auk.2009.08039</u>.
- Verreault, J; Gabrielsen, GW; Chu, S; Muir, DC; Andersen, M; Hamaed, A; Letcher, RJ. (2005). Flame retardants and methoxylated and hydroxylated polybrominated diphenyl ethers in two Norwegian Arctic top predators: Glaucous gulls and polar bears. Environ Sci Technol 39: 6021-6028. http://dx.doi.org/10.1021/es050738m.
- Verreault, J; Gabrielsen, GW; Letcher, RJ; Muir, DDC; Chu, S. (2004). New and established organohalogen contaminants and their metabolites in plasma and eggs of glaucous gulls from Bear Island. SPFO-report (pp. 26). (914/2004). Tromsø, Norway: Norwegian Pollution Control Authority.
- <u>Verreault, J; Gebbink, WA; Gauthier, LT; Gabrielsen, GW; Letcher, RJ.</u> (2007a). Brominated flame retardants in glaucous gulls from the Norwegian Arctic: More than just an issue of polybrominated diphenyl ethers. Environ Sci Technol 41: 4925-4931. <u>http://dx.doi.org/10.1021/es070522f</u>.
- Verreault, J; Shahmiri, S; Gabrielsen, GW; Letcher, RJ. (2007b). Organohalogen and metabolicallyderived contaminants and associations with whole body constituents in Norwegian Arctic glaucous gulls. Environ Int 33: 823-830. <u>http://dx.doi.org/10.1016/j.envint.2007.03.013</u>.
- Villanger, GD; Lydersen, C; Kovacs, KM; Lie, E; Skaare, JU; Jenssen, BM. (2011). Disruptive effects of persistent organohalogen contaminants on thyroid function in white whales (Delphinapterus leucas) from Svalbard. Sci Total Environ 409: 2511-2524. http://dx.doi.org/10.1016/j.scitotenv.2011.03.014.
- Vojta, Š; Bečanová, J; Melymuk, L; Komprdová, K; Kohoutek, J; Kukučka, P; Klánová, J. (2017). Screening for halogenated flame retardants in European consumer products, building materials and wastes. Chemosphere 168: 457-466. http://dx.doi.org/10.1016/j.chemosphere.2016.11.032.
- Vorkamp, K; Bester, K; Rigét, FF. (2012). Species-specific time trends and enantiomer fractions of hexabromocyclododecane (HBCD) in biota from East Greenland. Environ Sci Technol 46: 10549-10555. http://dx.doi.org/10.1021/es301564z.
- Vorkamp, K; Bossi, R; Bester, K; Bollmann, UE; Boutrup, S. (2014). New priority substances of the European Water Framework Directive: Biocides, pesticides and brominated flame retardants in the aquatic environment of Denmark. Sci Total Environ 470-471: 459-468. http://dx.doi.org/10.1016/j.scitotenv.2013.09.096.
- Vorkamp, K; Bossi, R; Riget, FF; Skov, H; Sonne, C; Dietz, R. (2015). Novel brominated flame retardants and dechlorane plus in Greenland air and biota. Environ Pollut 196: 284-291. http://dx.doi.org/10.1016/j.envpol.2014.10.007.
- Vorkamp, K; Rigét, FF; Bossi, R; Dietz, R. (2011). Temporal trends of hexabromocyclododecane, polybrominated diphenyl ethers and polychlorinated biphenyls in ringed seals from East greenland. Environ Sci Technol 45: 1243-1249. <u>http://dx.doi.org/10.1021/es102755x</u>.
- Vorkamp, K; Thomsen, M; Falk, K; Leslie, H; Møller, S; Sørensen, PB. (2005). Temporal development of brominated flame retardants in peregrine Falcon (Falco peregrinus) eggs from South Greenland (1986-2003). Environ Sci Technol 39: 8199-8206. <u>http://dx.doi.org/10.1021/es0508830</u>.
- Wang, J; Jia, X; Gao, S; Zeng, X; Li, H; Zhou, Z; Sheng, G; Yu, Z. (2016). Levels and distributions of polybrominated diphenyl ethers, hexabromocyclododecane, and tetrabromobisphenol A in sediments from Taihu Lake, China. Environ Sci Pollut Res Int 23: 10361-10370. http://dx.doi.org/10.1007/s11356-015-5511-6.

- Wang, L; Zhang, M; Lou, Y; Ke, R; Zheng, M. (2017). Levels and distribution of tris-(2,3dibromopropyl) isocyanurate and hexabromocyclododecanes in surface sediments from the Yellow River Delta wetland of China. Mar Pollut Bull 114: 577-582. <u>http://dx.doi.org/10.1016/j.marpolbul.2016.09.019</u>.
- Wang, T; Han, S; Ruan, T; Wang, Y; Feng, J; Jiang, G. (2013). Spatial distribution and inter-year variation of hexabromocyclododecane (HBCD) and tris-(2,3-dibromopropyl) isocyanurate (TBC) in farm soils at a peri-urban region. Chemosphere 90: 182-187. http://dx.doi.org/10.1016/j.chemosphere.2012.06.027.
- Wang, X; Ren, N; Qi, H; Ma, W; Li, Y. (2009). Levels and distribution of brominated flame retardants in the soil of Harbin in China. J Environ Sci 21: 1541-1546. <u>http://dx.doi.org/10.1016/S1001-0742(08)62452-3</u>.
- Weiss, J; Wallin, E; Axmon, A; Jönsson, BA; Akesson, H; Janák, K; Hagmar, L; Bergman, A. (2006). Hydroxy-PCBs, PBDEs, and HBCDDs in serum from an elderly population of Swedish fishermen's wives and associations with bone density. Environ Sci Technol 40: 6282-6289. http://dx.doi.org/10.1021/es0610941.
- Weiss, Ja; Meijer, Li; Sauer, Pi; Linderholm, Li; Athanassiadis, Io; Bergman, Ak. (2017). PBDE and HBCDD levels in blood from Dutch mothers and infants. Organohalogen Compd 66.
- Weschler, CJ; Nazaroff, WW. (2010). SVOC partitioning between the gas phase and settled dust indoors. Atmos Environ 44: 3609-3620. <u>http://dx.doi.org/10.1016/j.atmosenv.2010.06.029</u>.
- Weschler, CJ; Nazaroff, WW. (2012). SVOC exposure indoors: Fresh look at dermal pathways [Review]. Indoor Air 22: 356-377. http://dx.doi.org/10.1111/j.1600-0668.2012.00772.x.
- Weschler, CJ; Nazaroff, WW. (2014). Dermal uptake of organic vapors commonly found in indoor air. Environ Sci Technol 48: 1230-1237. <u>http://dx.doi.org/10.1021/es405490a</u>.
- Wsde. (2016). Brominated flame retardants, alkylphenolic compounds, and hexabromocyclododecane in freshwater fish of Washington state rivers and lakes. Olympia, WA. http://www.ecy.wa.gov/programs/eap/toxics/pbt.html.
- Wu, JP; Guan, YT; Zhang, Y; Luo, XJ; Zhi, H; Chen, SJ; Mai, BX. (2010). Trophodynamics of hexabromocyclododecanes and several other non-PBDE brominated flame retardants in a freshwater food web. Environ Sci Technol 44: 5490-5495. <u>http://dx.doi.org/10.1021/es101300t</u>.
- Wu, MH; Han, T; Xu, G; Zang, C; Li, YJ; Sun, R; Xu, BT; Sun, Y; Chen, FF; Tang, L. (2016). Occurrence of Hexabromocyclododecane in soil and road dust from mixed-land-use areas of Shanghai, China, and its implications for human exposure. Sci Total Environ 559: 282-290. http://dx.doi.org/10.1016/j.scitotenv.2016.03.166.
- <u>Wwf.</u> (2004). Chemical Check Up: An analysis of chemicals in the blood of members of the European parliament. <u>http://www.panda.org/downloads/europe/checkupmain.pdf</u>.
- Xia, C; Lam, JC; Wu, X; Sun, L; Xie, Z; Lam, PK. (2011). Hexabromocyclododecanes (HBCDs) in marine fishes along the Chinese coastline. Chemosphere 82: 1662-1668. http://dx.doi.org/10.1016/j.chemosphere.2010.11.012.
- Xian, Q; Ramu, K; Isobe, T; Sudaryanto, A; Liu, X; Gao, Z; Takahashi, S; Yu, H; Tanabe, S. (2008). Levels and body distribution of polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecanes (HBCDs) in freshwater fishes from the Yangtze River, China. Chemosphere 71: 268-276. <u>http://dx.doi.org/10.1016/j.chemosphere.2007.09.032</u>.
- Xu, J; Zhang, Y; Guo, C; He, Y; Li, L; Meng, W. (2013). Levels and distribution of tetrabromobisphenol A and hexabromocyclododecane in Taihu Lake, China. Environ Toxicol Chem 32: 2249-2255. http://dx.doi.org/10.1002/etc.2318.
- Xu, Y; Hubal, EA; Clausen, PA; Little, JC. (2009). Predicting residential exposure to phthalate plasticizer emitted from vinyl flooring: a mechanistic analysis. Environ Sci Technol 43: 2374-2380. [Environmental science & technology].
- Xu, Y: Little, JC. (2006). Predicting emissions of SVOCs from polymeric materials and their interaction with airborne particles. Environ Sci Technol 40: 456-461. <u>http://dx.doi.org/10.1021/es051517j</u>.

- Xu, Y; Liu, Z; Park, J; Clausen, PA; Benning, JL; Little, JC. (2012). Measuring and predicting the emission rate of phthalate plasticizer from vinyl flooring in a specially-designed chamber. Environ Sci Technol 46: 12534-12541. <u>http://dx.doi.org/10.1021/es302319m</u>.
- Yang, C; Rose, NL; Turner, SD; Yang, H; Goldsmith, B; Losada, S; Barber, JL; Harrad, S. (2016). Hexabromocyclododecanes, polybrominated diphenyl ethers, and polychlorinated biphenyls in radiometrically dated sediment cores from English lakes, ~1950-present. Sci Total Environ 541: 721-728. <u>http://dx.doi.org/10.1016/j.scitotenv.2015.09.102</u>.
- Yang, R; Wei, H; Guo, J; Li, A. (2012). Emerging brominated flame retardants in the sediment of the Great Lakes. Environ Sci Technol 46: 3119-3126. <u>http://dx.doi.org/10.1021/es204141p</u>.
- Yin, G; Asplund, L; Qiu, Y; Zhou, Y; Wang, H; Yao, Z; Jiang, J; Bergman, A. (2014). Chlorinated and brominated organic pollutants in shellfish from the Yellow Sea and East China Sea. Environ Sci Pollut Res Int 22: 1713-1722. <u>http://dx.doi.org/10.1007/s11356-014-3198-8</u>.
- Yu, L; Luo, X; Zheng, X; Zeng, Y; Chen, D; Wu, J; Mai, B. (2013). Occurrence and biomagnification of organohalogen pollutants in two terrestrial predatory food chains. Chemosphere 93: 506-511. http://dx.doi.org/10.1016/j.chemosphere.2013.06.023.
- Yu, LH; Luo, XJ; Liu, HY; Zeng, YH; Zheng, XB; Wu, JP; Yu, YJ; Mai, BX. (2014). Organohalogen contamination in passerine birds from three metropolises in China: Geographical variation and its implication for anthropogenic effects on urban environments. Environ Pollut 188: 118-123. http://dx.doi.org/10.1016/j.envpol.2014.01.023.
- Yu, Z; Chen, L; Mai, B; Wu, M; Sheng, G; Fu, J; Peng, P. (2008a). Diastereoisomer- and enantiomerspecific profiles of hexabromocyclododecane in the atmosphere of an urban city in South China. Environ Sci Technol 42: 3996-4001. http://dx.doi.org/10.1021/es7027857.
- Yu, Z; Peng, P; Sheng, G; Fu, J. (2008b). Determination of hexabromocyclododecane diastereoisomers in air and soil by liquid chromatography-electrospray tandem mass spectrometry. J Chromatogr A 1190: 74-79. <u>http://dx.doi.org/10.1016/j.chroma.2008.02.082</u>.
- Zacs, D; Rjabova, J; Bartkevics, V. (2014a). New perspectives on diastereoselective determination of hexabromocyclododecane traces in fish by ultra high performance liquid chromatography-high resolution orbitrap mass spectrometry. J Chromatogr A 1330: 30-39. http://dx.doi.org/10.1016/j.chroma.2014.01.023.
- Zacs, D: Rjabova, J: Pugajeva, I: Nakurte, I: Viksna, A: Bartkevics, V. (2014b). Ultra high performance liquid chromatography-time-of-flight high resolution mass spectrometry in the analysis of hexabromocyclododecane diastereomers: Method development and comparative evaluation versus ultra high performance liquid chromatography coupled to Orbitrap high resolution mass spectrometry and triple quadrupole tandem mass spectrometry. J Chromatogr A 1366: 73-83. http://dx.doi.org/10.1016/j.chroma.2014.09.021.
- Zegers, BN; Mets, A; van Bommel, R; Minkenberg, C; Hamers, T; Kamstra, JH; Pierce, GJ; Boon, JP. (2005). Levels of hexabromocyclododecane in harbor porpoises and common dolphins from western European seas, with evidence for stereoisomer-specific biotransformation by cytochrome P450. Environ Sci Technol 39: 2095-2100. <u>http://dx.doi.org/10.1021/es049209t</u>.
- Zeng, L; Yang, R; Zhang, Q; Zhang, H; Xiao, K; Zhang, H; Wang, Y; Lam, PK; Jiang, G. (2014a). Current levels and composition profiles of emerging halogenated flame retardants and dehalogenated products in sewage sludge from municipal wastewater treatment plants in china. Environ Sci Technol 48: 12586-12594. <u>http://dx.doi.org/10.1021/es503510q</u>.
- Zeng, YH; Luo, XJ; Zheng, XB; Tang, B; Wu, JP; Mai, BX. (2014b). Species-specific bioaccumulation of halogenated organic pollutants and their metabolites in fish serum from an e-waste site, South China. Arch Environ Contam Toxicol 67: 348-357. <u>http://dx.doi.org/10.1007/s00244-014-0040-8</u>.
- Zeng, YH; Tang, B; Luo, XJ; Zheng, XB; Peng, PA; Mai, BX. (2016). Organohalogen pollutants in surface particulates from workshop floors of four major e-waste recycling sites in China and implications for emission lists. Sci Total Environ 569-570: 982-989. http://dx.doi.org/10.1016/j.scitotenv.2016.06.053.

- Zhang, H; Bayen, S; Kelly, BC. (2015). Co-extraction and simultaneous determination of multi-class hydrophobic organic contaminants in marine sediments and biota using GC-EI-MS/MS and LC-ESI-MS/MS. Talanta 143: 7-18. <u>http://dx.doi.org/10.1016/j.talanta.2015.04.084</u>.
- Zhang, L; Na, GS; He, CX; Li, RJ; Gao, H; Ge, LK; Wang, YJ; Yao, Y. (2016a). A novel method through solid phase extraction combined with gradient elution for concentration and separation of 66 (ultra) trace persistent toxic pollutants in Antarctic waters. Chin Chem Lett 27: 405-411. http://dx.doi.org/10.1016/j.cclet.2015.12.001.
- Zhang, X; Yang, F; Luo, C; Wen, S; Zhang, X; Xu, Y. (2009). Bioaccumulative characteristics of hexabromocyclododecanes in freshwater species from an electronic waste recycling area in China. Chemosphere 76: 1572-1578. <u>http://dx.doi.org/10.1016/j.chemosphere.2009.05.031</u>.
- Zhang, Y; Li, Q; Lu, Y; Jones, K; Sweetman, AJ. (2016b). Hexabromocyclododecanes (HBCDDs) in surface soils from coastal cities in North China: Correlation between diastereoisomer profiles and industrial activities. Chemosphere 148: 504-510. http://dx.doi.org/10.1016/j.chemosphere.2016.01.051.
- Zhang, Y; Sun, H; Liu, F; Dai, Y; Qin, X; Ruan, Y; Zhao, L; Gan, Z. (2013). Hexabromocyclododecanes in limnic and marine organisms and terrestrial plants from Tianjin, China: Diastereomer- and enantiomer-specific profiles, biomagnification, and human exposure. Chemosphere 93: 1561-1568. <u>http://dx.doi.org/10.1016/j.chemosphere.2013.08.004</u>.
- Zhao, DY; Little, JC; Cox, SS. (2004). Characterizing polyurethane foam as a sink for or source of volatile organic compounds in indoor air. J Environ Eng 130: 983-989. <u>http://dx.doi.org/10.1061/(ASCE)0733-9372(2004)130:9(983)</u>.
- Zheng, XB; Wu, JP; Luo, XJ; Zeng, YH; She, YZ; Mai, BX. (2012). Halogenated flame retardants in home-produced eggs from an electronic waste recycling region in South China: Levels, composition profiles, and human dietary exposure assessment. Environ Int 45: 122-128. http://dx.doi.org/10.1016/j.envint.2012.04.006.
- Zhu, C; Wang, P; Li, Y; Chen, Z; Li, H; Ssebugere, P; Zhang, Q; Jiang, G. (2017a). Trophic transfer of hexabromocyclododecane in the terrestrial and aquatic food webs from an e-waste dismantling region in East China. Environ Sci Process Impacts 19: 154-160. http://dx.doi.org/10.1039/c6em00617e.
- Zhu, H; Zhang, K; Sun, H; Wang, F; Yao, Y. (2017b). Spatial and temporal distributions of hexabromocyclododecanes in the vicinity of an expanded polystyrene material manufacturing plant in Tianjin, China. Environ Pollut 222: 338-347. http://dx.doi.org/10.1016/j.envpol.2016.12.029.
- Zhu, N; Fu, J; Gao, Y; Ssebugere, P; Wang, Y; Jiang, G. (2013). Hexabromocyclododecane in alpine fish from the Tibetan Plateau, China. Environ Pollut 181: 7-13. http://dx.doi.org/10.1016/j.envpol.2013.05.050.
- Zhu, N; Li, A; Wang, T; Wang, P; Qu, G; Ruan, T; Fu, J; Yuan, B; Zeng, L; Wang, Y; Jiang, G. (2012). Tris(2,3-dibromopropyl) isocyanurate, hexabromocyclododecanes, and polybrominated diphenyl ethers in mollusks from Chinese Bohai Sea. Environ Sci Technol 46: 7174-7181. http://dx.doi.org/10.1021/es300776f.
- Zhu, N; Schramm, KW; Wang, T; Henkelmann, B; Zheng, X; Fu, J; Gao, Y; Wang, Y; Jiang, G. (2014a). Environmental fate and behavior of persistent organic pollutants in Shergyla Mountain, southeast of the Tibetan Plateau of China. Environ Pollut 191: 166-174. http://dx.doi.org/10.1016/j.envpol.2014.04.031.
- Zhu, ZC; Chen, SJ; Zheng, J; Tian, M; Feng, AH; Luo, XJ; Mai, BX. (2014b). Occurrence of brominated flame retardants (BFRs), organochlorine pesticides (OCPs), and polychlorinated biphenyls (PCBs) in agricultural soils in a BFR-manufacturing region of North China. Sci Total Environ 481: 47-54. <u>http://dx.doi.org/10.1016/j.scitotenv.2014.02.023</u>.