SF₆ Free Alternative Medium and High Voltage Circuit Breakers: Vacuum Technology

We will be starting in just a few minutes....

Tell us: What topics are you interested in for future webinars?

Please send your responses to the webinar organizers via the chat box or email us at $SF_6Partnership@epa.gov$

If you are having computer audio issues you can use this call-in number: +1 571-348-5774

SF₆ Free Alternative Medium and High Voltage Circuit Breakers: Vacuum Technology

Volha Roshchanka Program Manager, USEPA September 14, 2020

www.epa.gov/f-gas-partnership-programs/electric-power-systems-partnership

Webinar Housekeeping Items

• This webinar is being recorded.

- A recording will be available on EPA's partnership website: <u>https://www.epa.gov/f-gas-partnership-programs/electric-power-systems-partnership</u>
- All lines will be muted during the presentation. Please turn your video off to prevent lagging.
- There will be a Q&A at end of webinar.
 - You may submit questions at any time during the presentation using the chat feature.
 - You can minimize and maximize the chat window at any time during the presentation.
- Email partnership at: <u>SF6Partnership@epa.gov</u>

Electric Power Systems Voluntary Partnership for SF₆

Mission: To reduce emission of sulfur hexafluoride (SF₆), a potent greenhouse gas, through voluntary, costeffective technical and management solutions.

Sulfur Hexafluoride

- SF_6 is a human-made gas emitted from:
 - electrical transmission and distribution
 equipment
 - manufacture of electronics / semiconductors
 - production of magnesium
- SF_6 lasts ~3,200 years in the atmosphere
- SF₆ has a high global warming potential (GWP) compared to CO₂ over 100-year time scale:
 - 1 pound of $SF_6 = 11.4$ tons of CO_2 GWP
 - $SF_6 GWP = 22,800^{\circ} \text{ times } CO_2$

About the Partnership

- Established in 1999 together with 45 Charter Partners
- Currently 90 Partner utilities representing approximately 50% of total U.S. grid transmission miles
- Total 2018 SF_6 nameplate capacity of partners: over 11 million lbs.
- Creates opportunities for collaboration between utilities to discuss best practices to reduce SF₆ emissions

Partnership Accomplishments

12,000,000 14% 12% 10.000.000 10% 8,000,000 SF₆ Lbs Emissi 8% 6,000,000 SF₆ 6% 4,000,000 4% 2,000,000 2% 0% 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 1999 2000 2001 2002 Total Emissions (lbs) Total Nameplate Capacity (lbs) Emission Rate (%)

SF₆ Partnership Accomplishments 1999-2018

- Between 1999 and 2018:
 - 78% decrease in SF₆ emissions of Partners
 - 88% decrease in emissions rate (emissions/nameplate capacity)
- Cumulative reductions of nearly 8 million lbs. of SF₆ (compared to 1999 levels)

Partnership Publications

Report: Overview of SF₆ Emissions Sources and Reduction Options in Electric Power Systems

Overview Poster: Reducing SF₆ Emissions in Electric Power Systems

All publication available online:

<u>https://www.epa.gov/f-gas-</u> partnership-programs/electricpower-systems-partnership

Partnership Publications

Moving Toward SF₆-Free High Voltage Circuit Breakers:

Considerations for Adopting Vacuum Breaker and Fluorinated Gas Alternative Technologies

Thank you Partner utilities and technology manufacturers for providing information for this report!

Moving Toward SF₆-Free High Voltage Circuit Breakers:

Considerations for Adopting Vacuum Breaker and Fluorinated Gas Alternative Technologies

For additional resources, please visit: https://www.epa.gov/f-gas-partnership-programs/electric-power-systems-partnership.

Over the last two decades, the SF₆ Emission Reduction Partnership for Electric Power Systems has offered ublities a platform to work together to reduce emissions of sulfur hexafluoride (SF₆), a very potent greenhouse gas. These efforts included adoption and dissemination of best management practices and, more recently, exploration of alternatives to SF₆. Although the industry has had success with non-SF₆ alternatives in low and medium voltage (up to 72.5 kV) equipment, alternatives for high voltage equipment have proven to be more challenging.¹

New high voltage non-SF₆ gas insulated alternatives have recently become more promising, with early adoption both in the United States and abroad. Utilities may consider new options as they strive to meet their own voluntary commitments, respond to state or local requirements² or manage their longer-term plans for decommissioning first generation SF₆ breakers or older oil-filled breakers. This document summarizes information about key alternatives for high voltage equipment, including recent developments and potential considerations for adopting -SF₆-free insulated equipment. This work represents EPA's joint efforts with the industry to identify options for effective SF₆ emission reductions.

Objective

€EPA

Introduction

The focus of this overview is on two promising options to replace high voltage SF₆ equipment: 1) alternative vacuum circuit breaker technologies, and 2) alternative fluorinated gas mixtures. This document does not cover all alternatives or manufacturers offering alternatives to SF₆ high voltage equipment, nor does it serve as an exhaustive list of current and future industry developments due to the dynamic nature of this topic. Mention of specific companies or products does not constitute endorsement by EPA.

In the United States, electric power systems are nationally classified according to the following voltage classes, per ANSI C64.3-2016:

- Low Voltage: 1,000 wolts or less
 Medium Voltage: greater than 1,000 wolts and less than 100 kW
- High Voltage: greater than 300 kV and equal to or less than 230 kV
- Extra-High Voltage: greater than 250 kV but less than 1,000 kV
- Ultra-High Voltage: equal to or greater than 1,000 kV (Some states have different approaches to classifying electric power systems.)

¹ Processpie, the California Ar and Resources Board and Messachuretis Department of Environmential Protection have such mediatory emission rate machineme, reporting procedures, *Brg gas* mocesser and negoting requirements, and, most researchy, programs in the states of California to phase out *STa*. At the local level, follow such as Section have reporting requirements of thet may incompilate sufflats to reduce *ST*, construction, *Brg*.

1

Publication: Moving Toward SF₆-Free High Voltage Circuit Breakers

Cutaway of an Interrupter Utilized in Vacuum Circuit Breaker Technology (Provided by Hitachi)

Schematic Diagram of Fluorinated Alternative Gas Circuit Breaker Technology (Provided by GE Grid Solutions)

What is covered:

- Technologies in focus:
 - 1. Vacuum circuit breakers
 - 2. Fluorinated gas alternative technologies
- Properties of alternative mediums used in SF₆-free technologies
- Considerations for technology adoption
 - o Capital costs
 - Operational and
 - maintenance (O&M) costs
 - o Footprint
 - Standards for alternatives
 - On the grid piloting

• Example installations of medium & high voltage alternative equipment

Looking Ahead (2020-2021)

- Continue to focus on updating technical information and sharing best practices
- Update Partnership website with additional resources
- Looking forward to new ideas and collaborations
- Please get in touch at <u>SF6Partnership@epa.gov</u>

www.epa.gov/f-gas-partnership-programs/electric-power-systems-partnership

Today's Agenda

SF₆ Free Alternative Medium & High-Voltage Circuit Breakers

- Alternative Technologies for Substation Gas Insulated Equipment: It Can Be Done!
 - Linus Farias and Brian Farmer (Pacific Gas & Electric)
- 2. Building the Future of Energy
 - Julia Green and Neil Hutchins (Southern Company)
- 3. Circuit Breakers: Vacuum Technology
 - Joseph Lookup and Kyle Supinski (PPL Electric Utilities)

AGENDA: SF₆ Free Alternative Medium and High Voltage Circuit Breakers

Pacific Gas and Electric

Alternative Technologies for Substation Gas Insulated Equipment: It Can Be Done!

Linus Farias

Brian Farmer

Alternative Technologies for Substation Gas Insulated Equipment: *It Can Be Done!*

Linus Farias Brian Farmer

September 14, 2020

We are focused on providing safe, reliable, clean and affordable natural gas and electricity to our customers.

About us

Service area population

Mission & Vision

MISSION: To safely and reliably deliver affordable and clean energy to our customers and communities every single day, while building the energy network of tomorrow.

VISION: With a sustainable energy future as our North Star, we will meet the challenge of climate change while providing affordable energy for all customers.

Actions

- Million Ton Challenge
 - 1MMT CO₂e operational emissions reduction by 2022
- CARB 2021 Regulation: SF₆ Phase-out mandates
 - Support California 2045 Carbon Neutrality Goal

Million Ton Challenge: 2020 SF₆ Actions

Repair or replace 20 circuit breakers with the highest SF₆ leak rates

Reduce SF₆ cylinder inventory by 33%:

- Maintenance: 150
- Construction: 250

Test 72kV and 115kV SF₆-free circuit breakers and 115kV Gas Insulated Switchgear

Amend PG&E's **Qualified Supplier List** to remove all 72kV equipment that contains SF₆

Develop Charter and Roadmap to eliminate SF₆ use in equipment

History of California's SF₆ Regulations

PG<mark>&</mark>E

CARB Regulations: Phasing out SF₆ Use

2010 Regulation

- 1% maximum annual emissions <u>rate</u> starting in 2020
- Extensive Recordkeeping & Reporting
- Strict Enforcement provisions
 - 8 enforcement actions \$10k - \$254
 - Emissions exceedances
 - Administrative errors

2020 Proposed Regulation

- Phase-out of SF₆ GIE : 2025 – 2032
- 1% maximum annual leak *limit*
 - Ratchet down to 0.95% in 2035+
- Early Action Credit for SF₆ alternative GIE (installed prior to Phase-out dates)
- Case-by-case CARB exemption for SF₆ GIE that cannot be phased out

PG8E

SF₆ Alternatives: Where are we Heading?

SF₆ Phase-out Starting in 2025

Voltage (kV)	Short-circuit Current (kA)	Phase-out Date
29 < W < 14E	< 63	January 1, 2025
56 < KV ≤ 145	<u>></u> 63	January 1, 2028
145 < kV ≤ 245	< 63	January 1, 2027
	<u>></u> 63	January 1, 2031
> 245	ALL	January 1, 2033

CARB proposed Regulation; July 21, 2020

Similar Schedule for Distribution GIE

PG<mark>&</mark>E

SF₆ Alternatives: How to turn the Ship?

Convincing Leaders & Stakeholders

- Recognize the Risks & Opportunity
 - SF6: Highest known global warming potential (23,500)
 - SF6: Environmental persistence (3,200 years)
 - SF6: No available commercial waste gas management
 - Dry-Air/Vacuum: Safe and reliable alternative

Communicate the Value

- Initiate pilot projects and share findings with peer utilities
- Encourage other utilities & stakeholders to pursue alternatives, create market need
- Support Supplier communication with Regulators
- Drive the Change
 - Phase-out Charter and Roadmap
 - Collaborate with GIE Suppliers
 - Educate stakeholders: Leaders, Engineers, Project Managers
 - Support CARB Regulation
 - Support incentives: Fund pilot projects, Early Action Credit

Assess Substation Fleet*

- SF₆ (80%; 4,000 units)
- Oil (20%/1,000 units)
- VCB (0.1%; 15)

Define Pathway to Introduce Alternatives

- SF₆ Phase-out Charter and Roadmap
- Define Roles & Responsibilities

Engage Strategic Sourcing

- Request for Information \rightarrow Request for Proposal \rightarrow Vendor Selection

Fund Pilot Projects without identified Capital projects

Dead Tank Circuit Breakers and Gas Insulated Switchgear

SF₆ Alternatives: Work with OEMs, Regulators & Utilities

- Frequent Communication & Exchange
 - Education & Advocacy
 - Facilitate meetings with regulators
 - Encourage other utilities to pilot alternatives

Drivers and Challenges to Creating Change

- Utilities (Demand)
 - Company policy
 - Identify capital projects to cover costs
 - Competing Priorities: Introducing significant change during Wildfire and Bankruptcy crises
- OEMs/Suppliers (Product)
 - Corporate inertia
 - Market demand: Securing multiple orders
 - Competitive advantage concerns
 - High level of customer engagement: Adapting to new concept of Partnering with the Utility
 - Change Driver example: PG&E & Siemens share corporate Carbon goals
- Regulators (CARB)
 - Establish a working relationship: CA Joint Utilities Group advocated changes:
 - Staff turnover
 - Agency priorities with other regulations

SF₆ Alternatives: Phase-out Roadmap

Dead Tank Circuit Breakers

Substation	DTCB Order Date	DTCB Delivery Date	Comment
VARIOUS 50 Dry-Air ordered (Hitachi); 72.5 kV, up to 40kA; 15 installed to date		2017-2020	72.5 kV SF6 Breakers removed from supplier list No technological problems with installations over past 3 years
Henrietta	December 1, 2019	Dec 1, 2020	Dry-air (MEPPI) 72.5 kV, 31.5kA, 3 units
Livermore	March 1, 2020	Jan 1, 2021	Dry-air (MEPPI) 72.5 kV, 31.5kA, 1 unit
Palo Alto	July 1, 2018	June 1, 2021	Dry-air (Siemens); 145 kV, 40kA, 6 units
Santa Rosa	February 1, 2020	June 1, 2021 [*]	Dry-air (Hitachi) 145 kV, 40kA, 3 units
To Be Identified	November 1, 2020	December 31, 2022	145kV; 63kA, 3 units RFP: September 2020

* Potential delay due to COVID19 & commerce disruptions

SF₆ Alternatives: Phase-out Roadmap

Gas Insulated Switchgear

Substation and Project ID	GIS Order Date	GIS Delivery Date	Comment
Livermore	2019	October 2022	Dry-Air (Siemens) 8VN1 115 kV, 50 kA
Hunters Point	March 1, 2020	2022	Dry-Air (Siemens) 115kV, 50kA GIS BAAH
Silicon Valley Switching Station	2022	2023	Dry-Air (TBD) 115 kV, 50 kA
Larkin	2024	2025	Dry-Air (TBD) 115 kV, 50 kA

SF₆ Alternatives: Adopting a New Technology

Economic, Planning/Logistics, Technical & Operational

- Economic
 - Capital vs Lifecycle Costs: 15-20% higher capital cost; anticipate 20% lifecycle cost benefit
 - Competing with off-the shelf (mature) products
 - Competing Enterprise Priorities; Wildfire mitigation, Safety, System resilience
- Planning & Logistics
 - Obtain firm commitments to utilize new technology
 - Removed 72.5 kV SF6 GIE from the QSL in 2019
 - Option to defer projects to accommodate new technology
 - Unanticipated OEM manufacturing schedule changes: COVID19, Tariffs

Economic, Planning/Logistics, Technical & Operational

- Technical
 - Developing technical skills for maintenance technicians and system engineers
 - Technical limitations of Vacuum breakers (shunt capacitors & shunt reactors)
 - Design Standards: Dry-air vacuum are larger (10%) & heavier (15%)
- Operational Adaptation
 - OEM Training with pilot project installation
 - Field Bulletin on commissioning non-SF6 GIE

Key to Adopting a New Technology

Motivation & Drivers for Change

- Corporate Commitment
- Public Expectations
 - Clean, Sustainable & Carbon Neutral
- Regulation

Driving Change

- Planning: Charter & Roadmap
- <u>Communication</u>: Engage stakeholders early and often
 - Internal, Utility, Regulators, Suppliers
- <u>Change Management</u>:
 - Select projects with long lead times
 - Consider life-cycle project cost
 - Training for Operators
 - Monitor Progress

Thank You

Linus Farias Linus.farias@pge.com

Brian Farmer Brian.farmer@pge.com

AGENDA: SF₆ Free Alternative Medium and High Voltage Circuit Breakers

Southern Company

Building the Future of Energy

Julia Green

Neil Hutchins

Southern Company Building the Future of Energy

Julia Green Neil Hutchins

September 14, 2020

We Provide Clean, Safe, Reliable, Affordable Energy, Customized Solutions

Gas pipelines

- 💻 Southern Natural Gas
- Southern Company Gas

Wind facility

Pipeline projects

Capabilities in **50 States**

9 Million Customers

Approximately 29,000 Employees

Approximately **44,000 MW** of Generating Capacity

Electric Generating Facilities

Journey To A Net Zero Carbon Future

Southern Company has established an intermediate goal of a 50% reduction in carbon emissions from 2007 levels by 2030, along with, a long-term goal of net zero operations by 2050.

- Replace older and problematic SF₆ Equipment
- Integrate Vacuum Technology at 72.5 kV and Below
- Investigate Polymer/Composite Bushings for SF₆ Equipment

Non-SF6 Gas

- Improve Nameplate Capacity of SF₆ Accuracy
- Improve Seal & Gasket Designs
- Set Expectations of Leak Free/Low Leak Rates from Approved Manufacturers
- Have a Plan for Integrating Non-SF₆
 Equipment

Sharing Best Practices Across the Company & Industry

Increase Evaluation & Adoption of Newer Non-SF₆ Technology

Be Aware of HP Issues

- Non-SF₆ Technology Equipment Looks Similar to SF₆ Equipment
- Training on New Technologies & Processing Requirements
- Mixing SF₆ & Non-SF₆ Equipment in Same Facility
- Fully Understand the Performance of Non-SF₆ Equipment
- Safety
- Failure Modes of Non-SF₆ Equipment
- Testing & Investigation of Non-SF₆ Equipment

AGENDA: SF₆ Free Alternative Medium and High Voltage Circuit Breakers

PPL

SF₆ Sustainability & Alternatives PPL Electric Utilities Transmission & Substation

Joseph Lookup

Kyle Supinski

A century of people **powering life.**

SF₆ Alternatives & Sustainability PPL Electric Utilities Transmission & Substation

PPL Electric Utilities by the numbers

- **1.4 million** customers in **29** Pennsylvania counties
- Over 50,000 miles of power lines
- 10,000-square-mile service territory

We **deliver electricity** to all homes and businesses in our service area.

- We don't produce power at power plants.
- We maintain and operate the delivery network poles, wires, transformers, etc.

PPL ELECTRIC UTILITIES SERVICE TERRITORY

Our Parent Company

- We're a subsidiary of PPL Corporation
- FORTUNE 500® utility company
- Headquarters: Allentown, Pa.
- Global employees: over 12,000
- Annual revenue: **\$7.8 billion**
- More than 10 million utility customer in US and U.K.
- PPL Corporation operates award-winning utility companies in Kentucky, Pennsylvania and the U.K.
- PPL Corporation no longer owns Pennsylvania power plants after spinning off those operations into a new company. We own regulated Generation in Kentucky.

Motivations Away from SF₆

Environmental Concerns:

• SF_6 gas has 23,900 times the impact of CO_2 in the atmosphere

Environmental Benefits of Vacuum (Dry Air):

- GWP (Global Warming Potential) = 0
- ODP (Ozone Depletion Potential) = 0
- Non-Toxic
- Non-Flammable
- No Gas exchange needed
- Eliminate reporting/recycling

	GAS CHEMICAL COMPOSITION	E S E	
	GAS NAME	Sulfur- hexaflouride	Dry-Air
es	Chemical formula	SF ₆	N ₂ (80%)/O ₂ (20%)
Gas	CO ₂ - equivalent (GWP)	23,900	0
Ire (Boiling Point (Celsius)	-64	< -183
Pr	Dielectric Strength	1*	0.43
Ire	Carrier gas	None, N ₂ or CF ₄	N ₂ (80%)/O ₂ (20%)
lixtu	CO2 - equivalent (GWP)	23,900	0
S M	Boiling Point (Celsius)	- 64 (variable)	< -183
Ga	Dielectric Strength	1*	0.43
Impact Arc	Decomposition products	Hydrofluoric acid, sulfur dioxide, sulfur compounds	Only if failure: ozone and nitrogen oxides

Reliability

Endurance - Arc energy

- Excellent interrupting performance
- Increased durability for maximum operations
- High reliability industry wide
 - Elimination of decomposition products
- Low temperature limits
- No maintenance

	Unit	GAS (SF ₆)	VACUUM
Rated Maximum Voltage	kV	72.5	72.5
Symmetrical Short Circuit Capability	КА	40	40
Continuous Current Rating	А	Up to 3000	Up to 3000
BIL	kV	350	350
Rated Interrupting Time	Cycles	5	3
Permissible number of operations at full fault current	Operations	10	40
Permissible number of open close operations at continuous current	Operations	6000	10000

Proven Technology

- Existing Fleet of Oil, Gas, Vacuum
- Previous Experience at Medium Voltage (Distribution Class)
- One OEM has had technology available at 72.5kV DTCB since 2007

PPL EU Circuit Breaker Allocation by Type

Voltage Class	Oil	Gas (SF ₆)	Vacuum
12kV	13.5%	1.24%	<mark>85.27%</mark>

Motivation Away from SF₆

	SF ₆	Vacuum
Engineering	Same	Same

Pilots / Strategy

Partnering with 3-vendors will have available Vacuum Circuit Breaker Development

2020 Pilots and Beyond

- 1st Vacuum CB on PPL EU Transmission System in June 2020
- 1st at 72.5kV Vacuum in PA!
- 2 installed to date , 1- more planned for Sep
- 25 VCB's planned for 2021 at 72.5kV

Collaboration with OEM

- Reliability Record
- The OEM 69 kV VCB has been on the market since 2007
- Through July 2020, 860 units were installed or under contract in North America
- Zero major failures have been recorded to date
- One operational failure due to a loss of vacuum

MTBF (Mean Time Between Failure)		
SF ₆	VCB	
500 years/CB	6,289 years/CB	

* from CIGRE and HTDS data

Availability of VCB's

- Proven Technology Medium Voltage Availability
- Penetrating with multiple vendors at 72.5kV DTCB (2020/2021)
- LTCB Vacuum availability ahead up to 145kV available for IEC markets
- GIS Utilizing alternatives and Dry Air
- Alternative to SF₆
- Availability for VCB DTCB's:
 - 72.5kV: Available today
 - 115/145kV: 2021 to 2022
 - 245kV: Tentative 2024 to 2025

Energy and Environmental Partnership

Advance a cleaner energy future

Encourage responsible stewardship in partnership with our customers and stakeholders to have a sustainable environmental impact

Build tomorrow's energy infrastructure

Invest in tomorrow's energy infrastructure by developing a reliable, resilient and efficient grid that fosters continued progress and a cleaner energy future

Accountability & Program Management

SF6 Sustainability Program Principles

A century of people powering life.

Driving Results Through Continuous Improvement

Benchmarking & Driving Results

- Utility Best Practices Sharing & Peer Engagement
- **Key Performance Metrics** \succ
 - Pounds of SF6 System Lost
 - Leaks/Fills per Device
 - % SF6 Loss Rate
- Commitment to Goals

A century of people powering life.

SF₆ Free Alternative Medium and High Voltage Circuit Breakers: Vacuum Technology

Questions?

Thank you!

SF₆ Emission Reduction Partnership for Electric Power Systems

https://www.epa.gov/f-gas-partnership-programs/electric-powersystems-partnership

SF6Partnership@epa.gov

Get involved – contact for opportunities to collaborate!

Volha Roshchanka roshchanka.volha@epa.gov 202-343-9160

