Data Evaluation Record of the Analytical Method for Residues of Broflanilide in Soil

Data Requirement:	EPA Guideline: 850.6100
EPA PC Code:	283200
Test material:	Broflanilide
DP barcode:	450103

This study was reviewed as part of a joint review with the Health Canada Pest Management Regulatory Agency (PMRA). This preface is a supplement to the attached PMRA review of the study for EFED.

Primary Reviewer:	Charles Lee	Date: June 20, 2018
	Evaluation Officer, EAD, PMRA	
Secondary Reviewer:	Mike Brown	Date: July 26, 2018
	Evaluation Officer, EAD, PMRA	
Final EPA Reviewer:	Faruque Khan	Signature:
	Senior Fate Scientist, EFED, OCSPP	Date: November 21, 2019

Executive Summary

This analytical method, No. D1603/01 is designed for the quantitative determination of residues of broflanilide (BAS 450 I) and its metabolites DM-8007, DC-DM-8007, DC-8007 and S(PFP-OH)-8007 in soil LC-MS/MS. The recovery data were acceptable (between 70-120%) and the validated LOQ for residues of broflanilide in soil is 0.001 mg/kg. The LOQ is several orders of magnitude less than the lowest toxicological level of concern in soil. No modifications were made by the independent laboratory. The soil method can be extended for use as a post-registration monitoring method for broflanilide and the transformation products in sediments. This study is classified as **acceptable**.

Table 1. Analytical Method Summary

Analyte(s) by Pesticide	MR Environmental Chemistry Method	D Independent Laboratory Validation	Matrix ¹	Method Date (dd/mm/yyyy)	Registrant	Analysis	Limit of Quantitation (LOQ)
Broflanilide and it's Degradates ²	50211340 50211645	50211646	Soil	08/22/2018	BASF	LC/MS/MS	0.001 mg/kg

¹ For more details on the soil collection, handling, and characterization can be found in the terrestrial field dissipation study (MRID 50211431)

² Chemical name, code and chemical structure for active and all major transformation products / metabolites provided in **Appendix A-1**.

Analytical Methodology (parent compound and transformation products)

Reports:

MRID 50211340 (ECM)

Title: Validation of method D1603/01: Method for the determination of residues of BAS 450 I (Reg. No. 5672774) and its metabolites DM-8007 (Reg. No. 5856361), DC-DM-8007 (Reg. No. 5936906), DC-8007 (Reg. No. 5936907) and S(PFP-OH)-8007 (Reg. No. 5959598) in soil by LC-MS/MS (at LOQ of 1ppb.

MRID 50211645 (ECM)

Title: Evaluation of the limit of detection (LOD) for method D1603/01, method for the determination of residue of BAS 450 I (Reg. No. 5672774) and its metabolites DM-8007 (Reg. No.5856361), DC-DM-8007 (Reg. No. 5936906), DC-8007 (Reg. No. 5936907) and S(PFP-OH)-8007 (Reg. No. 5959598) in soil by LC-MS/MS (at LOQ of 1ppb) (Data #1).

MRID 50211646 (ILV)

Title: Independent laboratory validation of the following method entitled: BASF analytical method D1603/01: Method for the determination of residues of BAS 450 I (Reg. No. 5672774) and its metabolites DM-8007 (Reg. No. 5856361), DC-DM-8007 (Reg. No. 5936906), DC-8007 (Reg. No. 5936907) and S(PFP-OH)-8007 (Reg. No. 5959598) in soil by LC-MS/MS (at LOQ of 1ppb).

Items	Details
Details of sample used	Clay (18-24 inch soil depth) and sandy (0-2 inch soil depth) soil samples (USDA Textural Class) were used for the study. The samples were characterized with the percentages of sand, silt and clay, bulk density, cation/anion exchange capacity, moisture, organic carbon/matter, salinity and base saturation
Sample preparation	Weigh 5 g of soil into a 50 mL plastic centrifuge tube, add exactly 10 mL of methanol, vortex to mix, shake for 30 minutes at 300 rpm on a mechanical shaker and then centrifuge at 3000 for 5 minutes. Decant supernatant into a 50 mL plastic centrifuge tube. Add exactly 10 mL of methanol:water (70:30, v/v) to soil marc, vortex to mix, shake for 30 minutes at 300 rpm on a mechanical shaker and then centrifuge at 3000 for 5 minutes. Combine both supernatants into the same 50 mL plastic centrifuge tube. Mix well. An aliquot of the solution is diluted with methanol:water (50:50, v/v) – further dilution may be needed for high fortification and high residue samples to fit in the calibration curve. Filter the sample through a 0.45 µm PTFE syringe filter directly into a HPLC injection vial.

Table 2. Principle of the method

Items	Details	Details			
Method for quantitative analysis of parent compound and transformation products	External standard The test/reference standards were synthesized by Mitsui Chemical Agro, Inc. (MCAG, Tokyo, Japan). Japan Analytical Chemistry Consultants Co., Ltd., on behalf of MCAG, determined characterization and purity prior to use. MCI-8007, 99.67%; DC- DM-8007, 98.58%; DC-8007, 99.07%; DM-8007, 98.84%; S(PFP- OH)-8007, 99.06%				
Method for identification of parent compound/transformation products	UC-MS/MS methodColumn: BEH C18 column (100 x 2.1 mm, 2.5 μ m)Detector: Triple Quad Mass SpectrometerMobile phase: gradient of water:methanol, each acidified with formic acid, 70:30 to 5:95, v/v, over ~6 minutes, rate 600 uL/minuteIonization: Electrospray ionization with positive modeAnalyteRetention time (min)Quantitation $[m/z]$ Confirmation $[m/z]$ Broflanilide5.64663 \rightarrow 643665 \rightarrow 645DC-DM- 80075.15545 \rightarrow 525547 \rightarrow 527DC-80075.46559 \rightarrow 539561 \rightarrow 541DM-80075.65649 \rightarrow 242651 \rightarrow 242S(PFP-OH)- 80075.30661 \rightarrow 641661 \rightarrow 621				
Chromatograms of spiked sample, control sample, blank and standard solution	Acceptable chromatograms of the solvent blank, reference standards and fortified sample were provided.				
Quantitation	Linear regression (1/x weighting). Direct comparison of the sample peak responses to those of external standards.				

Items	Details
Criteria for setting LOD and LOQ	The limit of detection (LOD) is the lowest level of fortification tested of an analyte in the matrix with an acceptable signal to noise ratio (S/N > 3:1). The limit of quantitation (LOQ) is the lowest fortification level that can be reliably quantitated.
Stability of parent and transformation products at various stages of analysis	Not stated
Special problems encountered and/or precautions to be taken during analysis/handling/storage of samples	Not stated
Total time for completion	Not stated

The method validation data for the parent compound and the metabolites are summarized in **Table 3a** and **Table 3b**.

Table 3a.	Method validation:	Parent com	bound and	converted	products

Parameter	Parent compound	DC-DM-8007	DC-8007	DM-8007	S(PFP-OH)-8007
% Recovery at 0.001 ppm	103-121	86-111	99-110	95-108	101-121
% Recovery at 0.01 ppm	97-119	92-110	100-111	97-109	98-112
Mean % recovery	106	100	106	103	107
RSD %	5	4	4	5	6
Method linearity (ng/mL)	0.01-0.2	0.01-0.2	0.01-0.2	0.01-0.2	0.01-0.2
Correlation coefficient (r) ¹	0.9988 / 0.9972	0.9980 / 0.9975	0.9993 /0.9995	0.9991 / 0.9987	0.9958 / 0.9969
LOD (ppb)	0.2	0.2	0.2	0.2	0.2
LOQ (ppb)	1	1	1	1	1

¹ Obtained from the quantitation ion / from the confirmation ion

Parameter	Parent compound	DC-DM-8007	DC-8007	DM-8007	S(PFP-OH)-8007
% Recovery at 0.001 ppm	81.6-104	90.0-104	88.6-95.8	81.6-105	82.2-110
% Recovery at 0.01 ppm	84.4-97.0	81.6-94.6	81.0-99.0	81.4-95.0	87.4-103
Mean % recovery	91.0	91.9	90.8	89.3	96.5
RSD %	5.08	4.36	4.32	6.53	7.14
Method linearity (ng/mL)	0.01-0.2	0.01-0.2	0.01-0.2	0.01-0.2	0.01-0.2
Correlation coefficient (r) ¹	0.9935 / 0.9969	0.9980 / 0.9975	0.9979 / 0.9979	0.9970 / 0.9972	0.9962 / 0.9978
LOD (ppb)	0.2	0.2	0.2	0.2	0.2
LOQ (ppb)	1	1	1	1	1

Table 3b. Independent Laboratory validation: Parent compound and converted products

¹ Obtained from the quantitation ion / from the confirmation ion

Comments/Deficiency

The submitted studies have provided analytical methods for the determination of broflanilide and metabolites in soil. No deficiencies have been identified but please note that any transformation products/metabolites present at levels greater than 10% of the initial concentration of the pesticide at any time during the study, as well as those products that have not attained 10% (e.g., 8-9%) but show a continuous increase in concentration up until the termination of the study, are considered to be major. (Also, transformation products/metabolites that are of toxicological concern are considered to be major, even if their maximum concentrations are less than 10% of the initial parent concentration).

Conclusion

An LC-MS/MS method was developed for the determination of broflanilide and its metabolites in soil and was validated in two soils. The recovery data were acceptable (between 70-120%), and the LOQ was determined to be $1 \mu g/Kg$. This method is **acceptable** for use as a post-registration monitoring method.

Appendix A. Chemical structures:

Table A-1.	Chemical name, code and chemical structure for active and all major transformation
products /	metabolites

Chemical name	Code	Chemical structure
N -[2-bromo-4- (perfluoropropan-2-yl)-6- (trifluoromethyl)phenyl]-2- fluoro-3-(N - methylbenzamido)benzamide	MLP-8607, BAS 450 I, MCI-8007, Reg. No. 5672774 [broflanilide]	F = O = F + F + F + F + F + F + F + F + F + F
3-benzamido-N-[2-bromo-4- (perfluoropropan-2-yl)-6- (trifluoromethyl)phenyl]-2- fluorobenzamide	DM-8007, MLP-8473, Reg. No. 5856361	F = O $F = O$ $F = O$ $F = F$ $F = F$ $F = F$ $F = F$
3-amino-N-[2-bromo-4- (perfluoropropan-2-yl)-6- (trifluoromethyl)phenyl]-2- fluorobenzamide	DC-DM-8007, MLQ- 2111, Reg. No. 5936906	H ₂ N H ₂ N H ₂ N H ₂ N H H F F
N-[2-bromo-4- (perfluoropropan-2-yl)-6- (trifluoromethyl)phenyl]-2- fluoro-3- (methylamino)benzamide	DC-8007	F Br H H H F F F F F F F F F F F F F F F F
N-[2-bromo-4-(1,1,1,3,3,3- hexafluoro-2-hydroxypropan-2- yl)-6-(trifluoromethyl)phenyl]-2- fluoro-3-(N- methylbenzamido)benzamide	S(PFP-OH)+8007, MLQ- 2172, Reg. No. 5959598	Br H F F F F F F F