User's Guide

Spreadsheet Tool for the Estimation of Pollutant Load (STEPL)

Version 4.4

Developed for U.S. Environmental Protection Agency

By Tetra Tech, Inc. 10306 Eaton Place, Suite 340 Fairfax, VA 22003

March 2018

(This page intentionally left blank.)

Contents

Quick Guide	
Updates to STEPL Version 4.4	3
1. Introduction	12
2. Program Flow and Spreadsheet Tool Structure	12
3. Installation	
3.1 System Requirements	13
3.2 Installing STEPL	13
3.3 System and Data Files	
3.4 Directory Structure on Your Hard Drive	
3.5 Creating a Customized STEPL Model	
4. Using the STEPL Model	
4.1 STEPL Menu	
4.2 Input Worksheet	18
4.3 BMPs Worksheet	
4.3.1 Partial Area BMP Application	
4.3.2 Urban BMP Tool	
4.3.3 Gully and Streambank Erosion	24
4.4 Total Load Worksheet	
4.5 Graphs Worksheet	26
4.6 BMPList Worksheet	27
5. References	29
Appendix A: BMP Calculator User Guide and Formulas	30
A.1. Step-by-Step Instructions for Using the BMP Calculator	
A.2. Advanced Examples	
A.3. BMP Calculator Formulas	40
Appendix B: Description of the Intermediate STEPL Worksheets	41
B.1 General Input Data Worksheet	
B.2 Land&Rain Worksheet	42
B.3 Animal Worksheet	43
B.4 Urban worksheet	44
B.5 Gully&Streambank Worksheet	45
B.6 Feedlots Worksheet	45
B.7 Septic Worksheet	46
B.8 Sediment worksheet	
B.9 Reference and CountyData worksheets	48
Appendix C: STEPL Worksheets Summary	50
Appendix D: Guide for Using STEPL On-line Data Access System	58
D.1. Steps for using the STEPL on-line data access system	59
D.2. Rules/Assumptions made for STEPL on-line data access system	
D.3. The URLs for the Web services used in this application	
Appendix E: STEPL Underlying Formulas Documentation	63
Appendix F: Release Notes	82

(This page intentionally left blank.)

Quick Guide

Note: You may access the STEPL Web site (<u>http://it.tetratech-ffx.com/steplweb</u>) for the latest information and an online STEPL input data server (Appendix D). Optionally, you may obtain the initial model input from the STEPL input data server. However, it is the **user's responsibility** to check and refine the initial data for study areas.

Step 1. After the installation, run the STEPL program by selecting its menu shortcut from the Start >Programs menu bar or double-clicking the STEPL.exe file in the STEPL folder.

Step 2. Once the STEPL Excel sheet is created, named, and saved, begin to enter the necessary parameter values (displayed in red) in the STEPL input sheet.

The *STEPL input sheet* is composed of ten input tables. The first four tables require that you change the initial values. The next six tables contain default values that you may choose to change.

Step 3.

- Check the first checkbox (in row 10, column F) if you want to treat all subwatersheds as parts of a single watershed (the sediment delivery ratio will be calculated using the total watershed area).
- Check the second checkbox (in row 10, column J) if you want to include groundwater load calculation.
- Select the state and county where your watersheds are located. Select a nearby weather station. This will automatically specify values for rainfall parameters in Table 1 and USLE parameters in Table 4.

Step 4

- Enter land use areas in acres in Table 1.
- Enter total number of agricultural animals by type and number of months per year that manure is applied to croplands and pastureland in Table 2.
- Enter values for septic system parameters in Table 3.
- If desired, modify USLE parameters associated with the selected county in Table 4.

Step 5. You may stop here and proceed to Step 7. If you have more detailed information on your watersheds, proceed with optional input tables.

Step 6. Specify optional parameter values for tables 5, 6, 6a, 7, 7a, 8, 9, and 10:

- Specify the representative Soil Hydrologic Group (SHG) and soil nutrient concentrations in Table 5.
- Modify the curve number table in Table 6 and Table 6a.
- Modify the nutrient concentrations (mg/L) in surface runoff in Table 7.
- Modify the nutrient concentrations (mg/L) in shallow groundwater in Table 7a.
- Specify the detailed land use distribution in the urban area in Table 8.
- Specify cropland irrigation information in Table 9.
- Modify the nutrient concentrations (mg/L) in surface runoff for pastureland with and without manure application in Table 10.

Step 7. Navigate to the BMP sheet by clicking on the BMP tab at the bottom of the spreadsheet. From the pull-down list, select the best management practices (BMPs) for different *non-urban* land uses in each subwatershed. For *urban* land uses, click the *Urban BMP Tool* button on the top-right corner of the worksheet to specify urban BMPs. For gully and stream bank erosion, click the *Gully and Streambank Erosion* button to specify the dimensions for each gully formation and impaired streambank.

Step 8. View the estimates of loads and load reductions in the Total Load and Graphs sheets.

Updates to STEPL Version 4.4

Input Worksheet.

Weather Station Updates:

Spatial and temporal coverage of precipitation stations has been updated to increase the number of weather stations in STEPL from 493 to 4,998. Data from US EPA's BASINS system's meteorological database were used to make the updates. The BASINS 4.0 meteorological database provides a national database that is quality controlled and corrected for missing and accumulated data. Specifically, the database contains data from NOAA – NCDC's three data sources which are – Summary of the Day (SOD), Hourly Precipitation Data (HPD), and Integrated Surface Hourly (ISH). For inclusion into STEPL, the BASINS data were filtered to limit the number of weather stations to those with at least 30 years of data, to provide a long-period to calculate the average annual precipitation and average annual number of rain days at each of the stations.

Figure U1 and Figure U2 show the spatial locations of the weather stations included in STEPL model for the contiguous U.S. and for Alaska, Puerto Rico, and Hawaii respectively.

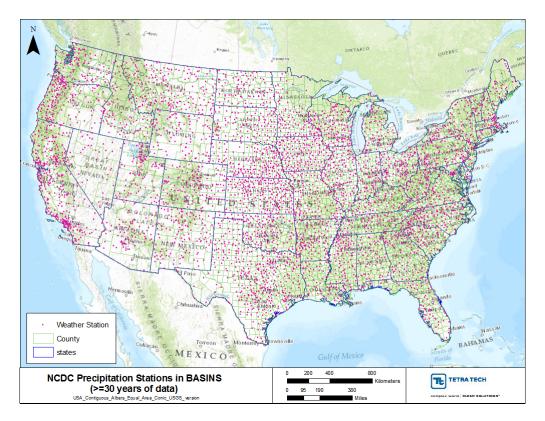


Figure U1. NCDC Precipitation Stations included in STEPL – Contiguous United States.

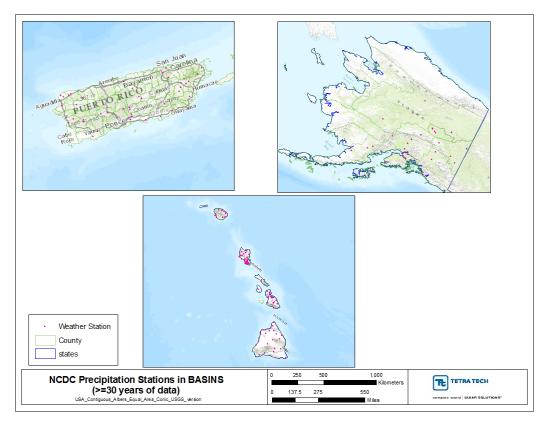


Figure U2. NCDC Precipitation Stations included in STEPL – Alaska, Puerto Rico, and Hawaii.

Manure Application on Pastureland:

In previous versions of STEPL, manure application was only available for cropland. In version 4.4, manure application can now be included on pastureland. This function is available in Table 2 in the Input worksheet. The updated Table 2 is shown in Figure U3.

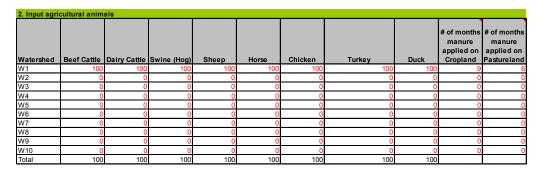


Figure U3. Updated Table 2 in the Input worksheet where the user can include manure application on pastureland.

Average Number of Months for Manure Application:

A new worksheet ManureApplication has been added to calculate the average number of months for manure application per year with varying application frequency across the

watershed. This worksheet (hidden by default) is accessed via the Manure Application button above Table 1 in the Input worksheet, adjacent to the weather station inputs, as shown in Figure U4, below.

State	County	Weather Station			
Wiseessin -	A đalasis 💌	_wWAdans_Mean -	Calculate Manure Application Months:	Manure Application	

Figure U4. Manure Application button on the Input worksheet to access the ManureApplication worksheet.

The *ManureApplication* worksheet allows the user to specify treatment subareas within a watershed, each with a specific number of months where manure is applied. The worksheet will automatically calculate the area-weighted number of months when manure is applied across the watershed, as shown in Figure U5. This value is then entered into Table 2 in the Input worksheet. The results from the *ManureApplication* worksheet are manually entered by the user to allow the worksheet to be reused for multiple watersheds. The worksheet can be used for both cropland and pastureland calculations of months of manure application.

er total land use area	100.00	acres				
ter the subarea and its	corresponding numbe	r of months of manu	are application below	v (upto 20 varying	frequency of treatment a	llowed)
Treatment	Area (ac)	# of Months Manure Applied				
		in a Year				
1	50.00	9				
2	20.00	7				
3	30.00	0				
4						
5						
6						
7						
8						
9						
10						
11						
12						
13						
14						
15						
16						
17						
18						
19						
20						
Total Land Use Area	100.00	6	< Enter the calc	ulated value in Ta	ble 2. located in "Input"	
					d and landuse (cropland	
Total Area check:	ОК		or past	ureland under col	umns K or L)	

Figure U5. ManureApplication worksheet where the user can calculate area-weighted frequency of manure application across a watershed.

A new table, Table 10 on the *Input* worksheet, shown in Figure U6, provides EMCs for pastureland based on six groups of livestock density:

- Low Live Stock Density with manure
- Low Live Stock Density without manure
- Medium Live Stock Density with manure

- Medium Live Stock Density without manure
- High Live Stock Density with manure
- High Live Stock Density without manure

10. Pasturela	i (MPN/100ml				
Land use	Ν	Р	BOD	E. coli	
1. L-Pasture	4	0.3	13	0	
1a. w/ manure	4	0.3	13	0	
2. M-Pasture	4	0.3	13	0	
2a. w/ manure	4	0.3	13	0	
3. H-Pasture	4	0.3	13	0	
3a. w/ manure	4	0.3	13	0	

Figure U6. Default values for pastureland nutrient concentrations (mg/L).

The default values in Table 10 are the average EMC taken from the previous version 4.3 of STEPL model. The EMC values for all six categories need to be updated based on the published literature and after review/approval of EPA.

Export input/output data:

An Export Data button has been added to the *Input* worksheet to allow the user to export input and output data and associated summary tables and plots into a Word document. The button, shown in Figure U7, is located at the top of the *Input* worksheet, just below the instructions.

Figure U7. The export data button on the Input worksheet to allow the user to export data, summary tables and plots into a Word document.

The Export Data provides the following four options to generate a summary report.

- 1. Output summary tables only
- 2. Output summary tables with graphs
- 3. Input and Output summary tables only
- 4. Input and Output summary tables with graphs

BMPs Worksheet.

New Agricultural BMPs and Updated Pollutant Efficiencies for Nutrients:

New BMPs for cropland and pastureland have been added to STEPL version 4.4. The cropland BMP list has been expanded from 6 BMPs to 17, and 17 pastureland BMPs were added, see Table U1. Previous version of STEPL did not have pastureland BMPs. In addition, the pollutant efficiency numbers for some existing cropland BMPs have been updated. The efficiencies are summarized in the *BMPList* worksheet in STEPL.

Land Use	BMP
Cropland	Bioreactor
Cropland	Buffer - Forest (100ft wide)
Cropland	Buffer - Grass (35ft wide)
Cropland	Combined BMPs-Calculated
Cropland	Conservation Tillage 1 (30-59% Residue)
Cropland	Conservation Tillage 2 (equal or more than 60% Residue)
Cropland	Contour Farming
Cropland	Controlled Drainage
Cropland	Cover Crop 1 (Group A Commodity) (High Till only for Sediment)
Cropland	Cover Crop 2 (Group A Traditional Normal Planting Time) (High Till only for TP and Sediment)
Cropland	Cover Crop 3 (Group A Traditional Early Planting Time) (High Till only for TP and Sediment)
Cropland	Land Retirement
Cropland	Nutrient Management 1 (Determined Rate)
Cropland	Nutrient Management 2 (Determined Rate Plus Additional Considerations)
Cropland	Streambank Stabilization and Fencing
Cropland	Terrace
Cropland	Two-Stage Ditch
Pastureland	30m Buffer with Optimal Grazing
Pastureland	Alternative Water Supply
Pastureland	Combined BMPs-Calculated
Pastureland	Critical Area Planting
Pastureland	Forest Buffer (minimum 35 feet wide)
Pastureland	Grass Buffer (minimum 35 feet wide)
Pastureland	Grazing Land Management (rotational grazing with fenced areas)
Pastureland	Heavy Use Area Protection
Pastureland	Litter Storage and Management
Pastureland	Livestock Exclusion Fencing
Pastureland	Multiple Practices
Pastureland	Pasture and Hayland Planting (also called Forage Planting)
Pastureland	Prescribed Grazing
Pastureland	Streambank Protection w/o Fencing
Pastureland	Streambank Stabilization and Fencing
Pastureland	Use Exclusion
Pastureland	Winter Feeding Facility

Table U1. BMPs available in STEPL version 4.4 for cropland and pastureland.

Flow Volume Reductions for Urban LID and Infiltration Practices:

STEPL can now estimate flow volume reductions for urban LID and infiltration BMP practices. This is represented as gallons/year by urban land use type in each watershed. These results are shown in Table 5 in the *Urban* worksheet, as seen in Figure U8 below. The *BMPList* worksheet contains pre-populated design storage depths for each of the available infiltration BMPs. The user enters the design runoff captured depth and percent imperviousness of the BMP drainage areas. The urban practices in STEPL that provide the flow volume reduction are listed in Table U2.

5. Capture	. Captured Flow Volume (gallon/year)										
Landuse	Commerci	Industrial	Institution	Transporta	Multi-Fami	Single-Far	Urban-Cul	Vacant (de	Open Space		
W1	1435371.9	0	0	0	0	49855.14	0	0	0		
W2	0	0	0	0	0	0	0	0	0		
W3	0	0	0	0	0	0	0	0	0		
W4	0	0	0	0	0	0	0	0	0		
W5	0	0	0	0	0	0	0	0	0		
W6	0	0	0	0	0	0	0	0	0		
W7	0	0	0	0	0	0	0	0	0		
W8	0	0	0	0	0	0	0	0	0		
W9	0	0	0	0	0	0	0	0	0		
W10	0	0	0	0	0	0	0	0	0		

Figure U8. Table 5 in Urban worksheet showing volume reductions from urban infiltration BMPs.

Land Use	BMP
Urban	Infiltration Basin
Urban	Infiltration Devices
Urban	Infiltration Trench
Urban	LID*/Cistern
Urban	LID*/Cistern+Rain Barrel
Urban	LID*/Rain Barrel
Urban	LID/Bioretention
Urban	LID/Dry Well
Urban	LID/Filter/Buffer Strip
Urban	LID/Infiltration Swale
Urban	LID/Infiltration Trench
Urban	LID/Vegetated Swale
Urban	LID/Wet Swale
Urban	Oil/Grit Separator
Urban	Porous Pavement
Urban	Sand Filter/Infiltration Basin

 Table U2. Urban LID and infiltration practices in STEPL version 4.4 with flow volume reductions.

Combined BMP Efficiency Worksheet:

The combined BMP efficiency functionality has been updated. The *CombinedBMPEfficiency* worksheet (hidden by default) can be accessed from the *BMPs* worksheet by clicking on the Calculate Combined BMP Efficiency button, see Figure U9.

This tool calculates a combined BMP efficiency from multiple types of parallel management practices on the same landuse category across the watershed.

Calculate Combined BMP Efficiency

Figure U9. The Calculated Combined BMP Efficiency button on the BMPs worksheet, used to access the CombinedBMPEfficiency worksheet.

In the BMP pull-down list boxes, there are items called "Combined BMPs-Calculated". Select "Combined BMPs-Calculated" if there are multiple BMPs on the same land use type in a given subwatershed. If "Combined BMPs-Calculated" is selected, the *CombinedBMPEfficiency* worksheet (Figure U10) can be used to obtain the watershedwide combined BMP efficiencies for calculating pollutant reductions. Note that for nested BMPs that route to each other, BMP calculator can be used to estimate the combined BMP efficiency.

4	А	в	С	D	E	F	G	н
1	Estimate an area-weighted cor	bined efficier	ncy of multiple BMPs (in parallel) across a watershed					
2	Enter total land use area (acre)	200.00	Cropland	Update	BMP List	Сору	to Log	
3	Enter the subarea treated by ea	ach selected Bl	MP type (upto 20 varying frequency of treatment allowed)					
4	Treatment	Area (ac)	Select a BMP Type	N	P	BOD	Sediment	E. coli
5	1	50.00	Conservation Tillage 1 (30-59% Residue)	0.150	0.356	0.000	0.403	0.000
6	2	20.00	Conservation Tillage 1 (30-59% Residue)	0.150	0.356	0.000	0.403	0.000
7	3	30.00	Nutrient Management 1 (Determined Rate)	0.154	0.450	0.000	0.000	0.000
8	4	100.00	Two-Stage Ditch	0.120	0.280	0.000	0.000	0.000
9	5		0 No BMP	0.000	0.000	0.000	0.000	0.000
10	6		0 No BMP	0.000	0.000	0.000	0.000	0.000
11	7		0 No BMP	0.000	0.000	0.000	0.000	0.000
12	8		0 No BMP	0.000	0.000	0.000	0.000	0.000
13	9		0 No BMP	0.000	0.000	0.000	0.000	0.000
14	10		0 No BMP	0.000	0.000	0.000	0.000	0.000
15	11		0 No BMP	0.000	0.000	0.000	0.000	0.000
16	12		0 No BMP	0.000	0.000	0.000	0.000	0.000
17	13		0 No BMP	0.000	0.000	0.000	0.000	0.000
18	14		0 No BMP	0.000	0.000	0.000	0.000	0.000
19	15		0 No BMP	0.000	0.000	0.000	0.000	0.000
20	16		0 No BMP	0.000	0.000	0.000	0.000	0.000
21	17		0 No BMP	0.000	0.000	0.000	0.000	0.000
22	18		0 No BMP	0.000	0.000	0.000	0.000	0.000
23	19		0 No BMP	0.000	0.000	0.000	0.000	0.000
24	20		0 No BMP	0.000	0.000	0.000	0.000	0.000
25	Total Land Use Area	200.00	Enter the calculated value in Table 7. located in "BMPs" tab, under the appropriate watershed>	0.136	0.332	0.000	0.141	0.000
26								
27	Total Area check:	OK						
28								

Figure U10. The CombinedBMPEfficiency worksheet where area-weighted combined efficiency of multiple parallel BMPs can be calculated.

Combined BMP efficiencies can be calculated individually for cropland and pastureland in each watershed. The user should select the total treated area by land use and then selected BMP types and acreage of treatment for each area in the watershed. The practices are assumed to be functioning in parallel. BMP efficiencies are automatically populated based on the BMP selected. When all BMP treatment areas have been added, the resulting area-weighted values in blue color should be added to Table 7 in the *BMPs* worksheet. This process can be repeated for agricultural land use in each watershed.

The Copy to Log button allows the user to keep a record of various combinations of combined BMP efficiencies by creating a Word document in the same location where the STEPL workbook is saved. The same Word document is updated/appended every time the user clicks on the Copy To Log button. The date/time are included in the document, so the user can keep track of the various iterations.

E. coli place holder for next release:

An E. coli place holder has been added to STEPL in preparation for the next release of the tool. Currently, E. coli is not calculated by STEPL. Place holders for E. coli appear in Tables 5, 7, 7a, and 10 on the *Input* worksheet, in Tables 1-7 on the *BMPs* worksheet, in Tables 1 and 4 on the *Urban* worksheet, and Tables 1 and 2 on the *Total Load* worksheet. None of these tables are populated with loading or reduction data in STEPL version 4.4. Similarly, the E. coli graphs and figures in the *Graphs* worksheet are blank.

New STEPL Customized Versions (Microsoft Excel 2016).

Customized spreadsheet model:

In addition to the executable file that creates a STEPL model workbook, a customized spreadsheet model with 10 watersheds (STEPL10ws) was added. This model allows the user to start working in STEPL without using the executable file, and provides the user the ability to populate the model with up to 10 watersheds. Up to 100 gullies and banks also come with the customized STEPL spreadsheet.

Optimization algorithm:

A simple optimization algorithm (Run Solver) is now available in the customized spreadsheet model (STEPL10ws), which allows the user to identify the extent of treatment areas to meet a load reduction target from the user selected BMP types. The optimization is not available in the original STEPL executable version.

The optimization algorithm only solves for non-urban BMPs, and the user must enter a selection of BMPs for the optimizer to use in the solution. The optimizer is intended to maximize the load reduction and minimize the treated land use area based on the suite of BMPs provided by the user.

The user inputs required to run the optimization tool are:

- Pollutant select a pollutant of concern that will define the load reduction target (Figure U11).
- Target define the numeric load reduction target for the selected pollutant. The target should be for all land uses and watersheds in the spreadsheet (Figure U11).
- BMPs suitable BMP types for each land use and watershed combination (Figure U12).
- Constraints define the minimum and maximum percent treated area for each land use by watershed for the selected BMPs (Figure U12).

Figure U11. Run Solver button to run optimization scenario and the inputs for target load reduction and pollutant of concern.

Prior to running an optimization scenario, the user should set the maximum area constraint as high as possible, taking into consideration any land in the watershed that may not be available/suitable for the BMP to determine the maximum load reduction possible with the selected BMPs. The target load reduction should be lower than the total load reduction determined at the maximum area constraint settings, since a larger reduction target will not be possible with the BMPs and constraints as defined. The minimum area constraint can be set as zero or as pre-identified treatment area for the selected BMP type in any given watershed.

Natershed	Cropland									CONSTRAI	NT
	N P	BOD)	Sediment	E. coli	В	MPs		% Area BMP Applied	Min Area (%) Max	Area (%)
V1	0.24	0.23 ND		0.29	ND	0	Buffer - Forest (100ft wide)	÷	50.00	0	50
V2	0.03	0.08 ND		0.09	ND	0	Conservation Tillage 1 (30-59% Residue)	-	22.25	0	5
V3	0.00	0.00 ND		0.00	ND	0	Contour Farming		0.00	0	5
V4	0.00	0.00	0.00	0.00			0 No BMP	-	0.00	0	(
V5	0.00	0.00	0.00		(0.00 💽	0 No BMP	-	0.00	0	
V6	0.00	0.00	0.00	0.00	(0.00 💽	0 No BMP	÷	0.00	0	(
N7	0.00	0.00	0.00	0.00	(0.00 🚺	0 No BMP	-	0.00	0	(
N8	0.00	0.00	0.00				0 No BMP	-	0.00	0	
N9	0.00	0.00	0.00	0.00	(0 00	0 No BMP	÷.	0.00	0	(
v9	0.00										
W10	0.00	0.00	0.00	0.00	(0.00	0 No BMP	• • •	0.00	0	
W10 2. BMPs an	0.00 d efficiencies fo	0.00	0.00	0.00	(0.00	0 No BMP		0.00	0 CONSTRAI	
W10 2. BMPs an	0.00	0.00	0.00	0.00	(0.00	0 No BMP			CONSTRAI	NT
N10 2. BMPs an Natershed	0.00 d efficiencies fo Pastureland	0.00 r different po	0.00	0.00	RELAND, E. coli	0.00 0	o No BMP o Data MPs	T	0.00 % Area BMP Applied 100.00	CONSTRAI	NT Area (%)
W10 2. BMPs an Watershed	0.00 d efficiencies fo Pastureland N P	0.00 r different po	0.00	0.00 on PASTUR	RELAND, E. coli ND	0.00	0 No BMP o Data		% Area BMP Applied	CONSTRAI	NT : Area (%) 10
W10 2. BMPs an Watershed W1 W2	0.00 d efficiencies fo Pastureland N P 0.20	0.00 r different po BOE 0.30 ND	0.00	0.00 s on PASTUR Sediment 0.62	E. coli ND	0.00 C	0 No BMP o Data MPS Livestock Exclusion Fencing		% Area BMP Applied 100.00	CONSTRAI	NT Area (%) 100
W10 2. BMPs an	0.00 d efficiencies fo Pastureland N P 0.20 0.00	0.00 r different po 0.30 ND 0.00 ND	0.00	0.00 s on PASTUR Sediment 0.62 0.00 0.00	E. coli ND ND ND	0.00 0	0 No BMP o Data MPS Livestock Exclusion Fencing Alternative Water Supply		% Area BMP Applied 100.00 0.00	CONSTRAI	NT Area (%) 100 100 100
W10 2. BMPs an Watershed W1 W2 W3 W4	0.00 d efficiencies fo Pastureland N P 0.20 0.00 0.00 0.00	0.00 r different po 0.30 ND 0.00 ND 0.00 ND	0.00 bliutants	0.00 on PASTUR Sediment 0.62 0.00 0.00 0.00	E. coli ND ND	0.00 0 ND=N B 0.00 0	0 No BMP o Data MPS Livestock Exclusion Fencing Alternative Water Supply Critical Area Planting		% Area BMP Applied 100.00 0.00 0.00	CONSTRAI	NT (Area (%) 100 100 ((
W10 2. BMPs an Watershed W1 W2 W3 W4 W5	0.00 d efficiencies fo P a stureland N P 0.20 0.00 0.00 0.00	0.00 r different po 0.30 ND 0.00 ND 0.00 ND 0.00	0.00 011utants 0	0.00 s on PASTUR Sediment 0.62 0.00 0.00 0.00 0.00 0.00	E. coli ND ND ND	0.00 0 ND=N B 0.00 0 0.00 0	0 No BMP o Data MPS Livestock Exclusion Fencing Altemative Water Supply Critical Area Planting 0 No BMP		% Area BMP Applied 100.00 0.00 0.00 0.00	CONSTRAI	NT (Area (%) 100 100 (((
V10 2. BMPs an Vatershed V1 V2 V3 V4 V5 V6	0.00 d efficiencies fo Pastureland N P 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.	0.00 r different po 0.30 ND 0.00 ND 0.00 ND 0.00 0.00	0.00 011utants 0 0.00 0.00 0.00	0.00 s on PASTUF 0.62 0.00 0.00 0.00 0.00 0.00 0.00	E. coli ND ND ND	0.00 0	0 No BMP o Data MPS Livestock Exclusion Fencing Atternative Water Supply Critical Area Planting 0 No BMP 0 No BMP		% Area BMP Applied 100.00 0.00 0.00 0.00 0.00	CONSTRAI	NT Area (%) 100 100 ((((
V10 2. BMPs an Vatershed V1 V2 V3 V4 V5 V6 V7	0.00 Pastureland N P.0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.	0.00 r different po 0.30 ND 0.00 ND 0.00 ND 0.00 0.00 0.00	0.00 bilutants 0.00 0.00 0.00 0.00	0.00 s on PASTUR Sediment 0.62 0.00 0.00 0.00 0.00 0.00 0.00 0.00	E. coli ND ND ND	0.00 C	0 No BMP o Data MPS Livestock Exclusion Fencing Atternative Water Supply Critical Area Planting 0 No BMP 0 No BMP 0 No BMP		% Area BMP Applied 100.00 0.00 0.00 0.00 0.00 0.00	CONSTRAI	NT : Area (%) 100 100 ((((((((((((((((
W10 2. BMPs an Watershed W1 W2 W3	0.00 d efficiencies fo Pastureland N P 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 r different po 0.30 ND 0.00 ND 0.00 ND 0.00 0.00 0.00 0.00	0.00 0 lutants 0 0.00 0.00 0.00 0.00 0.00	0.00 s on PASTUF Sediment 0.62 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	E. coli ND ND ND ((0.00 C	0 No BMP o Data MPS Livestock Exclusion Fencing Attemative Water Supply Critical Area Planting 0 No BMP 0 No BMP 0 No BMP 0 No BMP		% Area BMP Applied 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0	CONSTRAI	NT Area (%) 100 100 (0 (0 (0 (0 (0 (0 (0 (0 (0

Figure U12. Example land uses with BMPs selected and constraints set.

User's Guide: Spreadsheet Tool for the Estimation of Pollutant Load (STEPL)¹

1. Introduction

This document is a concise user's guide to the Spreadsheet Tool for the Estimation of Pollutant Load (STEPL, Version 4.4). STEPL provides a user-friendly Visual Basic (VB) interface to create a customized spreadsheet-based model in Microsoft (MS) Excel. It employs simple algorithms to calculate nutrient and sediment loads from different land uses and the load reductions that would result from the implementation of various best management practices (BMPs), including Low Impact Development practices (LIDs) for urban areas. It computes surface runoff; nutrient loads, including nitrogen, phosphorus, and 5-day biological oxygen demand (BOD_5); and sediment delivery based on various land uses and management practices. The land uses considered are urban land, cropland, pastureland, feedlot, forest, and a user-defined type. The pollutant sources include major nonpoint sources such as cropland, pastureland, farm animals, feedlots, urban runoff, and failing septic systems. The types of animals considered in the calculation are beef cattle. dairy cattle, swine, horses, sheep, chickens, turkeys, and ducks. For each watershed, the annual nutrient loading is calculated based on the runoff volume and the pollutant concentrations in the runoff water as influenced by factors such as the land use distribution and management practices. The annual sediment load (from sheet and rill erosion only) is calculated based on the Universal Soil Loss Equation (USLE) and the sediment delivery ratio. The sediment and pollutant load reductions that result from the implementation of BMPs are computed using the known BMP efficiencies.

2. Program Flow and Spreadsheet Tool Structure

STEPL uses a VB interface to generate the spreadsheet model in MS Excel (Figure 1). The VB interface allows users to customize the generated spreadsheet in terms of the number of watersheds to include in the analysis. Depending on users' choices, the generated spreadsheet can have the zero initial input values (e.g. zero land use areas and animal counts), or the non-zero sample input values for testing or learning purposes. Users are encouraged to collect their local land use, animal, population, and soil data to obtain good estimates of watershed loads and load reductions for their specific watersheds. The spreadsheet presents the results in both tabular and graphic formats.

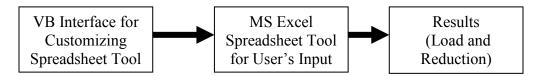


Figure 1. Program flow.

¹ STEPL is designed for the Grants Reporting and Tracking System of the U.S. Environmental Protection Agency (EPA). EPA Work Assignment Manager: Don Waye. Tetra Tech Manager: Khalid Alvi. Tetra Tech Developers: Khalid Alvi and Mustafa Faizullabhoy.

Figure 2 shows the overall spreadsheet structure of STEPL. It is composed of worksheets for input and output interaction with the user, as well as hidden worksheets to handle intermediate calculations. The input data include state name, county name, weather station, land use areas, agricultural animal numbers, manure application months, population using septic tanks, septic tank failure rate, direct wastewater discharges, irrigation amount/frequency, and BMPs for simulated watersheds. When local data are available, users may choose to modify the default values for USLE parameters, soil hydrologic group, nutrient concentrations in soil and runoff, runoff curve numbers, and detailed urban land use distribution. Pollutant loads and load reductions are automatically calculated for total nitrogen, total phosphorus, BOD₅, and sediment.

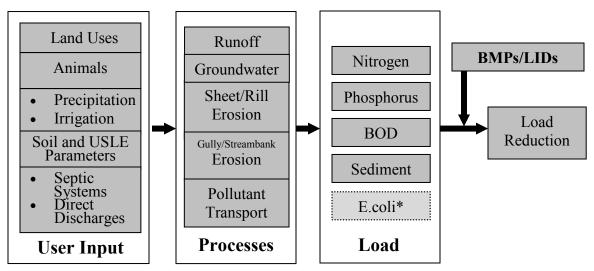


Figure 2. Spreadsheet structure (*place holder for next release).

3. Installation

3.1 System Requirements

- Windows 7 or 10.
- MS Excel 2013 or 2016.
- 40 MB hard disk space.

3.2 Installing STEPL

- STEPL can be downloaded as a zipped file (<u>http://it.tetratech-ffx.com/steplweb</u>). If you downloaded the STEPL*xxx*.zip (*xxx* stands for version number) file, unzip it to a temporary directory and then run the *STEPLSetup.exe* program. It is recommended that you install STEPL in the default STEPL folder on the target drive.
- Reboot your computer (not required but recommended).

3.3 System and Data Files

Installation of STEPL will copy the following system files and data files into the target drive:

STEPL.exe	Main program used to generate a customized STEPL model in MS Excel.
BMPCalculator.exe	Calculator for computing combined BMP efficiencies if multiple BMPs have been implemented in a watershed. (See Appendix A.)
BMPCalculator_Help.	pdf
	Help document and examples for using the BMP calculator.
NutrTplt.xlsm	Excel template that stores macros for STEPL's customized Excel menus and internal data manipulation.
allBMPstepl.csv	File that contains BMP and efficiency data that will be loaded into STEPL. You can edit the file through STEPL's STEPL > View/Edit BMP List menu. The installation also puts a backup copy of the same file named as allBMPstepl_original.csv on your hard drive.
allBMPcalculator.csv	File that contains BMP and efficiency data that are same as the allBMPstepl.csv data except the feedlot BMPs. This file is used by the BMP calculator only. The installation also puts a backup copy of the same file named as allBMPcalculator_original.csv on your hard drive.
BMPDefinition.doc	Reference file that contains BMP descriptions.
PrecRunoff.csv	File that provides a summary of precipitation, number of days with measurable precipitation, and USGS observed runoff for all the US counties except those in Alaska and Hawaii.
USLEbyLU.csv	File that provides a summary of USLE parameters based on the1992 National Resources Inventory (NRI) database. USLE parameter values are estimated by county and land use.
STEPLGuide.pdf	User's guide in Adobe Acrobat PDF format that is installed along with STEPL (this document).
STEPL.xlsm	Sample STEPL spreadsheet created using STEPL.exe and Excel 2013.
Release.txt	File that contains release notes, last-minute changes, tips, and other miscellaneous information.

3.4 Directory Structure on Your Hard Drive

If you have installed STEPL on C: drive, you will have the following directory structure:

C:\STEPL STEPL.exe STEPLGuide.pdf STEPL.xlsm BMPCalculator.exe BMPCalculator help.pdf BMPDefinition.pdf Release.txt \SUPPORT folder allBMPcalculator.csv allBMPcalculator original.csv allBMPstepl.csv allBMPstepl original.csv NutrTplt.xlsm PrecRunoff.csv USLEbyLU.csv

3.5 Creating a Customized STEPL Model

Follow these key steps to create a user-customized spreadsheet tool:

- Run the STEPL program by selecting its menu shortcut from the Start-> Programs menu bar or double-clicking the STEPL.exe file in the STEPL folder.
- Click Start in the main interface window (Figure 3).

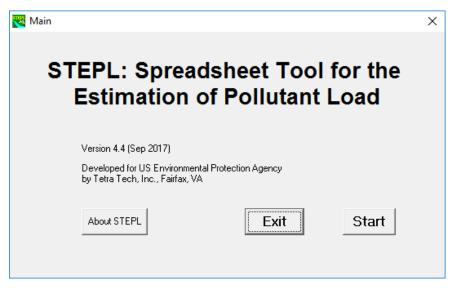


Figure 3. Main program.

- Select the number of watersheds and number of special sediment sources (i.e., gully formations and impaired streambanks) in the study area (Figure 4).
- Select an option to create the STEPL model with zero initial input or non-zero sample input for land use areas and animal counts.

Note: Five types of pollutants — total nitrogen, total phosphorus, BOD₅, sediment, and E.coli (place holder); five types of land uses — cropland, pastureland, forest, feedlots, urban, and a user-defined type; and eight types of animals — beef cattle, dairy cattle, swine, sheep, horse, chicken, turkey, and duck, are simulated in STEPL.

- Click OK to begin creating the STEPL model. A progress bar indicates the progress for the creation of the spreadsheet tool.
- A message box will ask you to save the file and set your Excel security level to enable macros once the system completes the spreadsheet tool (Figure 5).

🔀 Input		×
Number of Subwatersheds Select the number of subwatersheds: 1	* *	
Number of Special Sediment Sources in th	e Subwatersheds	1
Gully formations:	ed streambanks: 0 🔹	
Option for Initialization		1
• Set initial land use areas and animal numbers to zeros	st STEPL model with n-zero initial numbers	
Spreadsheet tool creation progress:		-
	OK Cancel	
0 50 100 Click OK to create the spreadsheet tool in M	IS Excel	

Figure 4. Interface for initial user input to customize the spreadsheet tool.

STEPL	×
STEPL model was created successfully. Please save it and set level to enable macros. To set the security level in EXCEL: Click on File menu > Excel Center > Trust Center Settings > Macro Settings.	
	ОК

Figure 5. Message box shown after creation of the spreadsheet tool. Follow the instruction to save the newly created STEPL model and to set proper security level for EXCEL application.

4. Using the STEPL Model

STEPL is primarily composed of four worksheets—*Input, BMPs, Total Load,* and *Graphs*—all designed for user interaction. STEPL also includes several other worksheets that are hidden by default. To display all worksheets, click the STEPL > Hide/Unhide Other STEPL Sheets menu. Data entries in the worksheets are in different colors. The hidden worksheets contain detailed data and intermediate calculations.

- Red entries designate values or controls that should be specified (e.g., cropland area in acres) by the user.
- Blue entries provide useful information and assumptions to help users understand the spreadsheet tool.
- Black entries are information calculated by the spreadsheet and should not be changed.

The four worksheets and a *BMPList* worksheet primarily intended for input and output interaction with the user are described below. The intermediate (hidden) worksheets are described in Appendix B. A complete summary of all the STEPL worksheets is documented in Appendix C.

4.1 STEPL Menu

The spreadsheet tool provides customized MS Excel menu commands under "ADD-INS" on the menu bar to assist you in evaluating and obtaining appropriate parameter values. Under the STEPL menu are the following menu items (Figure 6):

Hide/Unhide Other STEPL Sheets
Export Model Input/Output Data
Precipitation/Runoff Data
USLE Parameters by Land Use
View/Edit BMP List
BMP <u>C</u> alculator
About

Figure 6. Customized EXCEL menu—the STEPL menu in Excel 2013.

Hide/Unhide Other STEPL Sheets – Click this menu to display or hide the STEPL intermediate worksheets.

Export Model Input/Output Data – Click this menu to create a word document with model input and output summary tables. The user has a choice to output either tables or both tables and plots.

Precipitation/Runoff Data – Click this menu to open PrecRunoff.xls, which contains summary information on precipitation, rain days, and observed runoff for each state. (See section 3.3.)

USLE Parameters by Land Use – Click this menu to open USLEbyLU.xls, which contains USLE parameter values by land use and county. (See section 3.3.)

View/Edit BMP List – Click this menu to view the *BMPList* worksheet and edit (change, add, or delete) the BMP database, which contains the BMP name and efficiency data. (See sections 3.3, 4.3, and 4.6.)

BMP Calculator – Click this menu to open the BMP calculator to calculate combined BMP efficiencies for a watershed. (See Appendix A.)

About – Click this menu to view contact and developer information for STEPL.

4.2 Input Worksheet

This worksheet contains your input to the model. It is composed of twelve input tables. The first four tables require you to change initial input values (Figure 7). The next eight tables (initially hidden) contain default values that you may choose to change (Figure 8). You can obtain pollutant loads and reductions by following these steps:

Step 1: Check the first checkbox (in row 10, column F) if all the subwatersheds are considered as parts of a single watershed (the sediment delivery ratio will be calculated using the total watershed area). Check the second checkbox (in row 10, column J) if groundwater load calculation is desired. Select the state and county where your watersheds of interest are located. Select a nearby weather station. This will automatically specify values for rainfall parameters in Table 1 and USLE parameters in Table 4 (Figure 7).

Step 2: (a) Enter land use areas in acres in Table 1; (b) enter total number of agricultural animals by type and number of months per year that manure is applied to croplands in Table 2; (c) enter values for septic system parameters, population counts that discharge wastewater directly, and reduction percentages on direct wastewater discharge in Table 3; and (d) optionally modify USLE parameters associated with the selected county in Table 4.

Step 3: You may stop here and proceed to the BMP worksheet. If you have more detailed information on your watersheds, proceed to optional input tables.

Step 4: (a) Specify the representative Soil Hydrologic Group (SHG)² and soil nutrient concentrations in Table 5; (b) modify curve number table by land use and SHG in Table 6 and Table 6a; (c) modify the default nutrient concentrations (mg/L) in runoff and shallow groundwater in Table 7³ and Table 7a; (d) specify detailed land use distribution in the urban area in Table 8; (e) enter irrigation information (acreage/amount/frequency) in Table 9; and (f) modify the default nutrient concentrations (mg/L) in runoff for pastureland in Table 10.

Step 5: Once you have entered and modified the tables in the *Input* worksheet, proceed to the BMP worksheet (section 4.3) to select appropriate BMPs for your watersheds. Pollutant loads and reductions will be calculated and shown on the *Total Load* and *Graphs* sheets. (See sections 4.4 and 4.5.)

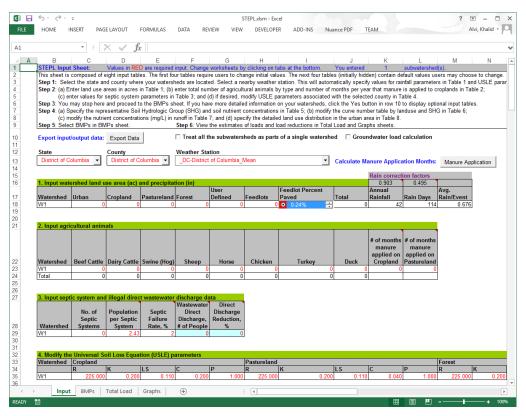


Figure 7. Input worksheet, which contains user's input to the model.

 $^{^{2}}$ SHG A: Low runoff potential and high infiltration rates even when thoroughly wetted. Chiefly deep, well to excessively drained sands or gravels. High rate of water transmission (< 75 cm/hr).

SHG B: Moderate infiltration rates when thoroughly wetted. Chiefly moderately deep to deep, moderately well to well-drained soils with moderately fine to moderately coarse textures. Moderate rate of water transmission (0.4 to 0.75 cm/hr).

SHG C: Low infiltration rates when thoroughly wetted. Chiefly soils with a layer that impedes downward movement of water, or soils with moderately fine to fine texture. Low rate of water transmission (0.15 to 0.40 cm/hr).

SHG D: High runoff potential. Very low infiltration rates when thoroughly wetted. Chiefly clay soils with a high swelling potential, soils with a permanent high water table, soils with a clay pan or clay layer at or near the surface, or shallow soils over nearly impervious material. Very low rate of water transmission (0 to 0.15 cm/hr).

³ See footnote on next page.

STEPL 4.4 User's Guide

All the table values are directly linked to other worksheets (including hidden worksheets) in STEPL for calculating pollutant loads. Table 1 is linked to the *Land&Rain* and *Feedlots* sheets, which calculate surface runoff. Table 2 is linked to the *Animal* and *Feedlots* sheets, which calculate pollutant loads from agricultural animals. Table 3 is linked to the *Septic* worksheet, which calculates nutrient load from human populations that use septic systems or discharge wastewater directly. Table 4 is linked to the *Sediment* worksheet, which calculates soil erosion and sediment delivery from watersheds. Table 5 is linked to the *Land&Rain* and *Sediment* sheets for determining runoff curve numbers and sediment nutrient concentrations. Table 6 and Table 6a provide reference curve numbers for the *Land&Rain* worksheet. Table 7⁴ and Table 7a provide nutrient concentrations in runoff and shallow groundwater for calculating pollutant loads in the *Total Load* worksheet. Table 8 provides detailed urban land use distribution for the *Urban* worksheet. Table 9 provides irrigation management information for the *Land&Rain* worksheet. Table 10 provides nutrient concentrations (mg/L) in runoff for pastureland.

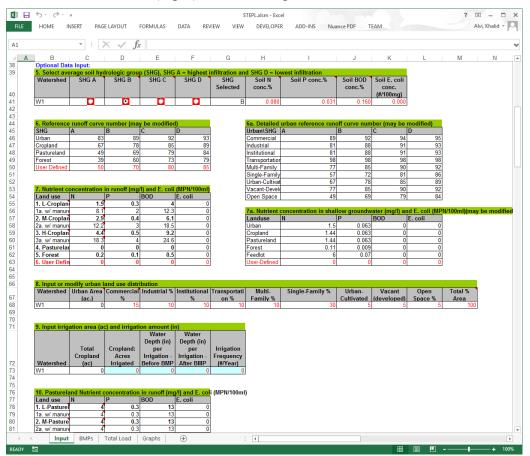


Figure 8. Tables 5, 6, 6a, 7, 7a, 8, 9, and 10 located in the Input worksheet, contain default values that users may choose to change.

⁴ Note: Table 7 contains pollutants concentrations in runoff for croplands and other land uses. Based on the density of agricultural animals in the study area (STEPL calculates animal density automatically), croplands are divided into three categories, *i.e.* cropland in a low animal density area, cropland in a medium animal density area, and cropland in a high animal density area. There are six rows of data for croplands in Table 7. The first two rows contain the concentrations during the non-manure application months and the manure application months, respectively, for croplands in the low animal density areas. The third and fourth rows contain the data for croplands the medium animal density area. And the fifth and sixth rows contain the data for croplands in the high animal density area.

4.3 BMPs Worksheet

The *BMPs* worksheet contains BMP tables for cropland, pastureland, forest, user-defined land use type, and feedlot, respectively, as well as two tool buttons for specifying BMPs or LIDs for urban land uses and parameters for the gully formation and the impaired streambank (Figure 9).

For each non-urban land use, you need to click to select a BMP from a list for each watershed. If no BMP is used, select "0 No BMP" from the lists. Once you have selected a BMP for a watershed, the pollutant removal efficiencies will be displayed. The efficiencies in the BMP tables are linked to other worksheets for the calculation of pollutant load reductions.

You can add, delete, or edit BMPs in the *BMPList* worksheet, which can be shown by clicking the STEPL > View/Edit BMP List menu. (See section 4.6.)

You can also add, delete, or edit BMPs by changing the comma-delimited text file called AllBMPstepl.csv in the \Support directory. For example, if you want to add new BMP data for the cropland, you might append line "Cropland, NewBMP, 0.500, ND, 0.300, 0.800, ND" in the cropland section as illustrated below (in *italic*):

```
Landuse, BMP & Efficiency, N, P, BOD, Sediment, E. coli
Cropland, ,,,,,
Cropland, 0 No BMP, 0, 0, 0, 0, 0
Cropland, Contour Farming, 0.485, 0.550, ND, 0.405, ND
Cropland, Diversion, 0.100, 0.300, ND, 0.350, ND
Cropland, Filter strip, 0.700, 0.750, 0.394, 0.650, ND
Cropland, Reduced Tillage Systems, 0.550, 0.450, ND, 0.750, ND
Cropland, Streambank stabilization and fencing, 0.750, 0.750, ND, 0.750, ND
Cropland, Terrace, 0.200, 0.700, ND, 0.850, ND
Cropland, NewBMP, 0.500, ND, 0.300, 0.800, ND
```

Use "ND" for no data and numbers for pollutant removal efficiencies for nitrogen, phosphorus, BOD, sediment, and E.coli. The removal efficiency **must be less than one**!

In the BMP pull-down list boxes, there are items called "Combined BMPs-Calculated". Select "Combined BMPs-Calculated" if you have detailed information on multiple BMPs and their interactions in the subwatersheds. If you have selected "Combined BMPs-Calculated", you need to use the BMP calculator to obtain the watershed-wide combined BMP efficiencies for calculating pollutant reductions. The combined BMP efficiencies can be calculated if you know the locations, removal efficiencies, and spatial relationships of BMPs that have been or will be implemented in your watersheds. You can find detailed instructions for using the BMP calculator in Appendix A of this manual. The BMP calculator can be accessed by clicking the "BMP calculator" menu under the STEPL menu (Figure 6). Once you have obtained combined BMP efficiencies for your watersheds, enter them in Table 7 of the worksheet (Figure 9). The combined BMP efficiencies will **not** be used in Table 5 (the feedlot BMP table) because STEPL treats feedlots as special high-loading point sources for which feedlot-specific BMPs must be individually selected.

Tip: If you *do not* have detailed information on the locations and spatial relationships of BMPs implemented in a watershed, you need only select an appropriate BMP from the pull-down list box for each non-urban land use in each subwatershed.

	÷ ، چ. ÷		STEPL.xlsm - Excel	? 🗷 –	×□
FILE	HOME INSERT PAGE LAYOUT	FORMULAS DATA REVIEW	VIEW DEVELOPER ADD-INS Nuance PDF TEA	AM Alvi, Khal	id + O
A1	▼ : × ✓	fx			~
A	B C D	E F G	Н	I J K	^
1	Best Management Practice using the pull-down list-box if interact		Combined BMPs-Calculated" for each subwatershed in each la d. Select "Combined BMPs-Calculated" if multiple BMPs and t		
3			enu) to obtain the combined BMP efficiencies and enter them i		
4	Urban BMP Tool	Gully and Streambank Erosion	Calculate Combined BMP Efficiency		
5		ent pollutants on CROPLAND, ND=N	lo Data		
6	Watershed Cropland	BOD Sediment E. coli	BMPs	% Area BMP Applied	
8			0 0 No BMP		
9 10	2. BMPs and efficiencies for differ	ent pollutants on PASTURELAND, N	D=No Data		
11	Watershed Pastureland	•			
12 13	N P W1 0	BOD Sediment E. coli 0 0 0	BMPs 0 • 0 No BMP	Area BMP Applied	
14				3	
15 16	3. BMPs and efficiencies for differ Watershed Forest	ent pollutants on FOREST, ND=No E	Jata		
17	N P	BOD Sediment E. coli	BMPs	% Area BMP Applied	
18 19	W1 0	0 0 0	0 0 No BMP	U	
20 21		ent pollutants on USER DEFINED la	nd use, ND=No Data		
21	Watershed User Defined N P	BOD Sediment E. coli	BMPs	% Area BMP Applied	
23 24	W1 0	0 0 0	0 0 No BMP	0	
25	5. BMPs and efficiencies for differ	ent pollutants on FEEDLOTS, ND=N	o Data		
26 27	Watershed Feedlots N P	BOD Sediment E. coli	BMPs	%Area BMP Applied	
28					
29 30	6. BMPs and efficiencies for differ	ent collutente en UDRAN	-		
31		d uses, click the 'Urban BMP Tool' but	ton on the top-left of this sheet.		
32				-	
33 34	7. Combined watershed BMP effic	ciencies from the BMP calculator			
35	Watershed Watershed Combined		BMPs		
36 37	N P W1-Crop 0	BOD Sediment E. coli 0 0 0	0 Combined BMPs	-	
38	W1-Pasture 0	0 0 0	0 Combined BMPs		
39 40	W1-Forest 0 W1-User 0		0 Combined BMPs 0 Combined BMPs	4	
40					-
	Input BMPs Total Loa	ad Graphs 🕂	:		•
READY	H				- 100%

Figure 9. The BMPs worksheet, which lets you select BMPs for different land uses. Note that for this example, no BMPs are specified for user-defined land uses. You need to use the BMP calculator to calculate combined BMP efficiencies and enter them in Table 7 if you select "Combined BMPs-Calculated" from any of the BMP pull-down list boxes. For example, "Combined BMPs-Calculated" was selected for pastureland in watershed W1 in this figure. You can also specify a partial area BMP application as shown in Table 1.

4.3.1 Partial Area BMP Application

By default, after the user selects a BMP in *BMPs* worksheet for a land type in a watershed, STEPL assumes that the BMP applies to 0% of the area of the specific land type.

For a partial area BMP application, the user can specify percent of land area that a BMP is applied in the last columns ("% Area BMP Applied") of tables 1 to 5. For example, if only 50% of the cropland is applied with the reduced tillage practice, you can enter 50 in the cell of column "% Area BMP Applied" of Table1 (Figure 9). The overall BMP pollutant removal efficiencies are adjusted (reduced) accordingly; and for this example, the total nitrogen removal efficiency is changed from 0.55 to 0.275 for the entire area of cropland.

4.3.2 Urban BMP Tool

On the top-left corner of *BMPs* worksheet, there is a tool button—*Urban BMP Tool* (Figure 9). The *Urban BMP Tool* is used for select LIDs or BMPs for different urban land uses. Click *Urban BMP Tool* will bring forward a form "Set Urban LID/BMP" on the *Urban* worksheet (Figure 10). You can select or change a LID or BMP for a particular urban land use following the following three steps:

- 1. Select a watershed; e.g. the watershed number 1 (Figure 10).
- 2. Select a type of urban land use; e.g. commercial use.
- 3. Select a LID or BMP by clicking the pull-down list box; e.g. dry detention pond.
- 4. Specify the area that the selected practice applies; e.g. 1,000 acres from a total of 16,875 acres available area are controlled by the selected practice.
- 5. Click *Apply LID/BMP* button to set the selected management practice for the selected urban land use; e.g. apply the dry detention pond for the 1,000 acres of commercial land in the watershed number 1.

Set Urban LID/BMP					×
Select a Water	rshed: 1	•			
– Select an Urbar	n Land Use				
Commercial	${\mathbb C}$ Industrial	C Institutional C	Transportation	C Multi Family	,
C Single Family	C Urban-Cultivated	C Vacant-Developed C	Open Space		
Select LID/BMP Available LID/BM		BMP Drainage Area (a	ac): T	otal Available	Area (ac):
Bioretention	facility 💌	5.00		15.00	
	Reset All		Apply	LID/BMP	Exit

Figure 10. The form for selecting and applying LIDs/BMPs for urban land uses.

On the "Set Urban LID/BMP" form (Figure 10), in addition to *Apply LID/BMP* button, there are three other controls:

- *Reset All* button: Resets all the urban LIDs or BMPs to 'No BMP' and BMP application areas equal to the total available areas.
- *Exit* button: Closes the form.
- *Simple form* check box: Uncheck the box will expand the form showing pollutant load information for the selected urban land use and an additional button—*Next Land Use*, which is for navigating land use from the current selection to the next land use type.

In the available LID/BMP drop-down box, if you select "Combined BMPs-Calculated" or any item with an asterisk (*) following 'LID' in its name (e.g. "LID*/Cistern") and click *Apply LID/BMP* button, the system will display special forms (Figure 11 and Figure 12) for you to enter required parameter values before it can determine the pollutant load reduction efficiencies.

Combined BMPs-Calculated Efficiencies										
Enter the calculated BMP efficiencies:										
N Removal efficiency (0-1):	0.00									
P Removal efficiency (0-1):	0.00									
BOD Removal efficiency (0-1):	0.00									
TSS Removal efficiency (0-1):	0.00									
E. Coli Removal efficiency (0-1):	0.00									
ок]									

Figure 11. If the "Combined BMP-Calculated" is selected for an urban area, you must specify the BMP efficiencies calculated using the BMP calculator in the form shown above.

LID*/Cistern	×
Input the runoff volume (ac-ft/yr) reduced by the practice (Baseline Runoff = 23.52 ac-ft/yr) :	OK Cancel
17.381	

Figure 12. If the "LID*/Cistern", "LID*/Rain Barrel", or "LID*/Cistern/Rain Barrel" is selected for an urban area, you must specify the annual rainfall volume being trapped by the rainfall capture devices.

4.3.3 Gully and Streambank Erosion

The *Gully and Streambank Erosion* tool, next to the *Urban BMP Tool* as shown in Figure 9 is used for defining the dimensions for the user-specified gully formations and impaired streambanks. Click *Gully and Streambank Erosion* will open another worksheet *Gully&Streambank* (Figure 13). This sheet contains two input tables: the first table will show the gully formations and the second table will show the impaired streambanks. The numbers of the gully formations and impaired streambanks are defined

by the user when the spreadsheet is generated (Figure 4). The required information can be defined in following steps:

- 1. Specify the gully dimensions and assign each gully to a watershed.
- 2. Specify the time (number of years) that the gully has taken to form the current size.
- 3. Specify the gully stabilization (BMP) efficiency (0-1) and the gully soil textural class.
- 4. Specify the streambank dimensions and assign each bank to a watershed.
- 5. Specify the lateral recession rate (ft/yr) of the eroding streambank.
- 6. Specify the streambank stabilization (BMP) efficiency (0-1) and the streambank soil textural class.

			505.			TEPL2.xlsm		100.015		2				▼ – I
HOME INSEE	CI PAGE	LAYOUT	FORM	IULAS DATA F	REVIEW V	/IEW [DEVELOPER	ADD-INS	Nuance PDF	ſE	AM		А	Alvi, Khalid
	- : >	$\langle \checkmark$	fx											
В	с	D	E	F	G	Н	1		J		К	L	М	N
Gully and Streamba														
This sheet contains to								or inputing the	e eroding strear	nbank	dimensio	ons.		
Gully:				ensions and assign e										
				mber of years) that th										
				bilization (BMP) effici				al class.						
Streambank:				ank dimensions and										
				cession rate (ft/yr) of					"Streambank L	ateral	Recessio	on Rate" table		
	Step 3. S	pecity the	e streamba	ank stabilization (BMI	P) efficiency	(U-1) and	the streamb	ank soil texti	ural class.					
Close this sheet	1													
1. Gully dimensions	in the diff	oront wa	storehode											
					1	1.00								<u> </u>
Watershed	Gully	Тор	Bottom	Depth (ft)	Length	Years	BMP	Soil T	extural Class		Soil Dry		Annual	
		Top Width	Bottom Width	Depth (ft)	Length (ft)		Efficiency	Soil T	extural Class		Weight	Correction	Load	Reduct
Watershed	Gully	Top Width (ft)	Bottom		(ft)		Efficiency (0-1)		extural Class		Weight (ton/ft3)	Correction Factor	Load (ton)	Reduct (ton)
Watershed	Gully Gully1	Top Width (ft) 5	Bottom Width (ft) 5		(ft) 5 6	to Form	Efficiency (0-1)	Clay	extural Class		Weight (ton/ft3) 0.035	Correction Factor	Load (ton) 4.3750	Reduct (ton) 0 4.1
Watershed	Gully Gully1 Gully2	Top Width (ft) 5	Bottom Width (ft) 5		(ft) 5 6 5 6	to Form	Efficiency (0-1) 0.95	ClayClay	extural Class	÷	Weight (ton/ft3) 0.035 0.035	Correction Factor 5 1.15 5 1.15	Load (ton) 4.3750 4.3750	Reduct (ton) 0 4.1 0 4.1
Watershed	Gully Gully1	Top Width (ft) 5	Bottom Width (ft) 5		(ft) 5 6	to Form	Efficiency (0-1)	 Clay Clay 	extural Class		Weight (ton/ft3) 0.035	Correction Factor 5 1.15 5 1.15	Load (ton) 4.3750 4.3750	Reduct (ton) 0 4.1 0 4.1
Watershed	Gully Gully1 Gully2	Top Width (ft) 5	Bottom Width (ft) 5		(ft) 5 6 5 6	to Form	Efficiency (0-1) 0.95	ClayClay	extural Class	•	Weight (ton/ft3) 0.035 0.035	Correction Factor 5 1.15 5 1.15	Load (ton) 4.3750 4.3750	Reduct (ton) 0 4.1 0 4.1
Watershed • W1 • W1 • W1 • W1	Gully Gully1 Gully2 Gully3	Top Width (ft) 5 5	Bottom Width (ft) 5 5 5		(ft) 5 6 5 6	to Form	Efficiency (0-1) 0.95	ClayClay	extural Class	•	Weight (ton/ft3) 0.035 0.035	Correction Factor 5 1.15 5 1.15	Load (ton) 4.3750 4.3750	Reduct (ton) 0 4.1 0 4.1
Watershed	Gully Gully1 Gully2 Gully3	Top Width (ft) 5 5	Bottom Width (ft) 5 5 5 5	rent watersheds	(ft) 5 5 5 5 6	to Form	Efficiency (0-1) 0.95 0.95 0.95	 Clay Clay Clay Clay 		•	Weight (ton/ft3) 0.035 0.035	Correction Factor 5 1.15 5 1.15 5 1.15	Load (ton) 4.3750 4.3750 4.3750	Reduct (ton) 0 4.1 0 4.1 0 4.1
Watershed • W1 • W1 • W1 • W1	Gully Gully1 Gully2 Gully3 Dank dimen Strm	Top Width (ft) 5 5 5 5	Bottom Width (ft) 5 5 5 the diffe Height		(ft) 5 6 5 5 5 8 7	to Form	Efficiency (0-1) 0.95 0.95 0.95	 Clay Clay Clay Clay 	extural Class	•	Weight (ton/ft3) 0.035 0.035 0.035 Soil Dry	Correction Factor 5 1.15 5 1.15 5 1.15 7 .15	Load (ton) 4.3750 4.3750 4.3750	Reduct (ton) 0 4.1 0 4.1 0 4.1 0 4.1
Watershed	Gully Gully1 Gully2 Gully3	Top Width (ft) 5 5	Bottom Width (ft) 5 5 5 5	rent watersheds	(ft) 5 6 5 5 5 8 Rate Range	to Form	Efficiency (0-1) 0.95 0.95 0.95 0.95	 Clay Clay Clay Clay 		•	Weight (ton/ft3) 0.035 0.035 0.035 Soil Dry Weight	Correction Factor 1.15 1.15 1.15 1.15 Nutrient Correction	Load (ton) 4.3750 4.3750 4.3750 Annual Load	Reduct (ton) 0 4.1 0 4.1 0 4.1 0 4.1 0 4.1 0 4.1 0 4.1 0 4.1 0 4.1 0 4.1 0 4.1 0 4.1 0 4.1
Watershed W1 W1 W1 W1 W1 W1 U U U U U U U U U U U	Gully Gully1 Gully2 Gully3 Dank dimen Strm Bank	Top Width (ft) 5 5 5 1 sions in Length (ft)	Bottom Width (ft) 5 5 5 the diffe Height (ft)	rent watersheds Lateral Recession	(ft) 5 5 5 5 5 5 7 8 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9	to Form	Efficiency (0-1) 0.95 0.95 0.95 0.95 BMP Efficiency (0-1)	Clay Clay Clay Clay Clay Soil T			Weight (ton/ft3) 0.035 0.035 0.035 0.035 Soil Dry Weight (ton/ft3)	Correction Factor 5 1.15 5 1.15 5 1.15 5 1.15 Nutrient Correction Factor	Load (ton) 4.3750 4.3750 4.3750 Annual Load (ton)	Reduct (ton) 0 4.1 0 4.1 0 4.1 0 4.1
Watershed W1 W1 W1 W1 W1 W1 W1 W1 Watershed Watershed W1 W1	Gully Gully1 Gully2 Gully3 Dank dimer Strm Bank Bank1	Top Width (ft) 5 5 5 5	Bottom Width (ft) 5 5 5 the diffe Height (ft) 100	rent watersheds Lateral Recession	(ft) 5 5 5 5 5 7 8 8 8 8 8 8 8 9 9 9 0.01 - 0.05	to Form	Efficiency (0-1) 0.95 0.95 0.95 0.95 BMP Efficiency (0-1) 0.95	Clay Clay Clay Clay Soil T Clay			Weight (ton/ft3) 0.035 0.035 0.035 Soil Dry Weight (ton/ft3) 0.035	Correction Factor 5 1.15 5 1.15 5 1.15 Nutrient Correction Factor 5 1.15	Load (ton) 4.3750 4.3750 4.3750 4.3750 Annual Load (ton) 0.5250	Reduct (ton) 0 4.1 0 4.1 0 4.1 0 4.1 0 4.1 0 4.1 0 4.1 0 4.1 0 0.4.1
Watershed W1 W1 W1 W1 W1 W1 U U U U U U U U U U U	Gully Gully1 Gully2 Gully3 Dank dimer Strm Bank Bank1	Top Width (ft) 5 5 5 1 sions in Length (ft)	Bottom Width (ft) 5 5 5 the diffe Height (ft) 100	rent watersheds Lateral Recession	(ft) 5 5 5 5 5 7 8 8 8 8 8 8 8 9 9 9 0.01 - 0.05	to Form	Efficiency (0-1) 0.95 0.95 0.95 0.95 BMP Efficiency (0-1) 0.95	Clay Clay Clay Clay Soil T Clay			Weight (ton/ft3) 0.035 0.035 0.035 0.035 Soil Dry Weight (ton/ft3)	Correction Factor 5 1.15 5 1.15 5 1.15 Nutrient Correction Factor 5 1.15	Load (ton) 4.3750 4.3750 4.3750 4.3750 Annual Load (ton) 0.5250	Reduct (ton) 0 4.1 0 4.1 0 4.1 0 4.1 0 4.1 0 4.1 0 4.1 0 4.1 0 0.4.1
Watershed W1 W1 W1 W1 W1 Watershed	Gully1 Gully2 Gully2 Gully3 bank dimen Strm Bank Bank1 Bank2	Top Width (ft) 5 5 5 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Bottom Width (ft) 5 5 5 the diffe Height (ft) 100	ent watersheds Lateral Recession I. Slight I.	(ft) 5 5 5 5 6 8 6 6 7 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 8 7 8 8 7 8 8 7 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8	to Form	Efficiency (0-1) 0.95 0.95 0.95 0.95 BMP Efficiency (0-1) 0.95	Clay Clay Clay Clay Soil T Clay			Weight (ton/ft3) 0.035 0.035 0.035 Soil Dry Weight (ton/ft3) 0.035	Correction Factor 5 1.15 5 1.15 5 1.15 Nutrient Correction Factor 5 1.15	Load (ton) 4.3750 4.3750 4.3750 4.3750 Annual Load (ton) 0.5250	Reduction 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4. 0 4.

Figure 13. The Gully&Streambank worksheet, which lets you define the dimensions, BMP efficiency, and soil textural class for the gully formation and impaired streambank with in the selected watershed. Note that for this example, there are user-defined three gully formations and two impaired streambanks.

4.4 Total Load Worksheet

The *Total Load* worksheet shows the final results of the calculations in terms of watershed pollutant loads and load reduction (Figure 14). This worksheet has two visible tables. Table 1 shows the total nutrient and sediment loads (before and after BMPs), load reduction, and reduction percentages resulting from the BMPs that you selected on the *BMPs* worksheet. Table 2 summarizes the load from the various sources (urban, cropland, pastureland, forest, feedlots, septic, gully, streambank, and groundwater). This worksheet is *protected* for editing initially, but you may unprotect it if you want to change it. Load summaries in this worksheet are used in the *Graphs* worksheet for plotting.

	-	: ×	\sim	fr											
в	С		E	F	G	н		i	к	1	м	N	0	P	G
Total Load							ubwatershed.	This sheet is i	nitially protect	ed.					
1. Total loa Watershe			BOD Load	Sediment	E. coli	N	Р	BOD	Sediment	E. coli	NLoad	PLoad	BOD (with	Sediment	E. o
d	(no BMP)		(no BMP)				Reductio		Reductio		(with	(with	BMP)	Load	Loa
				BMP)	BMP)	n	n	n	n	n	BMP)	BMP)		(with	(vit
	lb/year				Billion MPN/y		lb/year	lb/year		Billion MPN/y		lb/year	lb/year	tryear	Billion N
W1	17113.8	2517.1	25127.8		0.0							2356.			
Total Z. Total loa Sources	NLoad	PLoad	BOD Load		E. coli	671.4	160.4	499.1	11.0	0.0	16442.4	2356.1	7 24628.7	71.1	L
2. Total loa	ıd by land u	ses (with Bl	MP)	Sediment Load	E. coli Load	671.4	160.4	493.1	<u>ı n.u</u>	0.0	10442.4	2336.1	<u> 24628.7</u>	<u> 71.1</u>	1
2. Total loa	<mark>id by land u</mark> N Load	<mark>ses (with Bl</mark> P Load	<mark>MP)</mark> BOD Load	Sediment Load (t/yr)	E. coli Load (Billion	671.4	160.4	499.1	<u>, no</u>	0.0	10442.4	2336.1	r <u> 24628.7</u>	<u> 71.1</u>	<u> </u>
2. Total loa Sources	nd by land u N Load (Ibłyr) 598.08 2525.76	<mark>ses (with Bl</mark> P Load (Ibłyr) 97.14 514.46	<mark>MP)</mark> BOD Load (Ibłyr)	Sediment Load (t/yr) 14.13 21.98	E. coli Load (Billion 0.00		160.4	499.1	<u>ų 11.0</u>	<u> 0.0</u>	16442.4	2336.1	r <u> 24628.7</u>	1 71.1	<u> </u>
2. Total loa Sources Urban Cropland Pastureland	nd by land u N Load (Ibłyr) 598.08 2525.76 514.73	<mark>ses (with Bl</mark> P Load (Ibłyr) 97.14 514.46 42.79	MP) BOD Load (Ib/yr) 2224.26 4276.37 1803.64	Sediment Load (t/yr) 14.13 21.98 4.74	E. coli Load (Billion 0.00 0.00		160.4	l <u> 439</u> .1	<u>, no</u>	0.0	15442.4	2356.1	<u>(24628.7</u>	71.1	<u> </u>
2. Total loa Sources Urban Cropland Pastureland Forest	nd by land u N Load (Ibłyr) 598.08 2525.76 514.73 20.89	ses (with B P Load (Ib/yr) 97.14 514.46 42.79 10.28	HP) BOD Load (Ib/yr) 2224.26 4276.37 1809.64 51.51	Sediment Load (t/yr) 14.13 21.98 4.74 0.45	E. coli Load (Billion 0.00 0.00 0.00 0.00		160.4	4 <u>99</u> .1	<u>ı n.u</u>	0.0	15442.4	2356.1	<u> </u> 24628.7	711	I
2. Total loa Sources Urban Cropland Pastureland Forest Feedlots	d by land u N Load (Ib/yr) 598.08 2525.76 514.73 20.89 12625.51	ses (vith Bl P Load (lb/yr) 97.14 514.46 42.79 10.28 1631.03	MP) BOD Load (Ib/yr) 2224.26 4276.37 1803.64 51.51 15822.61	Sediment Load (t/yr) 14.13 21.98 4.74 0.45 0.00	E. coli Load (Billion 0.00 0.00 0.00 0.00		160.4	4 <u>39</u> .1	<u>ı n.u</u>	1 0.0	15442.4	2356.1	<u>1 24628.7</u>	711	I
2. Total loc Sources Urban Cropland Pastureland Forest Feedlots User Defined	d by land u N Load (lb/yr) 598.08 2525.76 514.73 20.89 12625.51 95.21	ses (with B P Load (Ib/yr) 97.14 514.46 42.79 10.28 1631.03 36.65	MP) BOD Load (Ib/yr) 2224.26 4276.37 1803.64 51.51 15822.61 190.41	Sediment Load (t/yr) 14.13 21.98 4.74 0.45 0.00 29.75	E. coli Load (Billion 0.00 0.00 0.00 0.00 0.00 0.00		160.4	4 <u>39.</u> 1	<u>, n.u</u>	0.0	15442.4	2356.1	<u>1 24628.7</u>	711	I
2. Total loa Sources Urban Cropland Pastureland Forest Feedlots User Defined Septio	nd by land u N Load (lb/yr) 598.08 2525.76 514.73 20.89 12625.51 95.21 62.18	ses (with B P Load (Ib/yr) 97.14 514.46 42.79 10.28 1631.03 36.65 24.35	MP) BOD Load (Ib/yr) 2224.26 4276.37 1809.64 51.51 15822.61 190.41 253.89	Sediment Load (t/yr) 14.13 21.98 4.74 0.45 0.00 29.75 0.00	E. coli Load (Billion 0.00 0.00 0.00 0.00 0.00 0.00 0.00		160.4	4 <u>39.</u> 1	<u>ı 1.0</u>	0.0	10442.4	2356.1	<u>1</u> 24628.7	<u> 71</u>	I
2. Total loa Sources Urban Cropland Pastureland Forest Feedlots User Defined Septio Gully	ed by land u N Load (Ib/yr) 598.08 2525.76 514.73 20.89 12625.51 95.21 62.18 0.00	ses (with Bl P Load (Ib/yr) 97.14 514.46 42.79 10.28 1631.03 36.65 24.35 0.00	MP) BOD Load (Ib/yr) 2224.26 4276.37 1809.64 51.51 15822.61 190.41 90.41 253.89 0.00	Sediment Load (t/yr) 14.13 21.98 4.74 0.45 0.00 29.75 0.00 0.00	E. coli Load (Billion 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.		160.4	4 <u>39.</u> 1	<u>II 1.0</u>	0.0	16442.4	2356.1	<u>1</u> 24628.7	<u> 71</u>	I
2. Total loa Sources Urban Cropland Pastureland Forest Feedlots User Defined Septio	nd by land u N Load (lb/yr) 598.08 2525.76 514.73 20.89 12625.51 95.21 62.18	ses (with B P Load (Ib/yr) 97.14 514.46 42.79 10.28 1631.03 36.65 24.35	MP) BOD Load (Ib/yr) 2224.26 4276.37 1809.64 51.51 15822.61 190.41 253.89	Sediment Load (t/yr) 14.13 21.98 4.74 0.00 29.75 0.00 0.00 0.00	E. coli Load (Billion 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.		160.4	i <u> 439.</u> 1	<u>II T.U</u>	1 0.0	10442.4	2356.1	<u>24628.7</u>	<u> 71</u>	I

Figure 14. *Total Load* worksheet, which summarizes nutrient and sediment loads from all the sources considered in the model.

4.5 Graphs Worksheet

The *Graphs* worksheet (Figure 15 and 16) shows the pollutant loads and reductions by watersheds and pollutant loads by sources in graphical format. It contains the following graphs:

- Comparison of nutrient loads among the watersheds
- Comparison of sediment loads among the watersheds
- Comparison of E.coli loads among the watersheds
- Comparison of nutrient reductions among the watersheds
- Comparison of sediment reductions among the watersheds
- Comparison of E.coli reductions among the watersheds
- Total nitrogen load (lb/yr) by sources
- Total phosphorus load (lb/yr) by sources
- Total BOD load (lb/yr) by sources
- Total sediment load (t/yr) by sources
- Total E.coli load (Billion MPN/yr) by sources

This worksheet is *protected* initially, but you may unprotect this worksheet and modify the graphs.

KII 5 × c ² · ∞ FILE HOME HOME INSERT PAGE LAYOUT FORMULAS	STEPL.xlsm - Excel DATA REVIEW VIEW DEVELOPER ADD-INS	?
Q14 Image: Second system A B C D E F N, P, and BOD Load by Watersheds	G H I J K	M N P P A
3 with BMP (lb/yr) 4 500.000 7 300.000 8 2000.000 9 2000.000 9 2000.000 10 1500.000 11 1000.000 12 500.000 13 0.000 13 0.000 14 M2	BMP (t/yr) 30.000 25.000 15.000 5.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.	(Billion MPN/yr) 1.000 0.800 0.600 0.400 0.400 0.200 0.00 0.00 0.00 0.00
¹⁵ N, P, and BOD Load Reduction by Watersheds (Ib/yr)	Sediment Load Reduction by Watersheds (t/yr)	E. coli Load Reduction by Watersheds (Billion MPN/yr)
16 200.000 17 150.000 19 150.000 19 10.000 20 100.000 21 50.000 23 50.000 24 0.000 W1 W2 W1 W4	30.000 25.000 20.000 10.000 5.000 0.000 W1 W2 W3 W4 W5	1.000 0.500 0.400 0.200 W1 W2 W3 W4 W5 W1 W2 W3 W4 W5
↓ Input BMPs Total Load Graphs READY m	÷ : •	► ■ ■ • + 75%

Figure 15. *Graphs* worksheet, which shows the pollutant loads and load reductions by watersheds in graphic format.

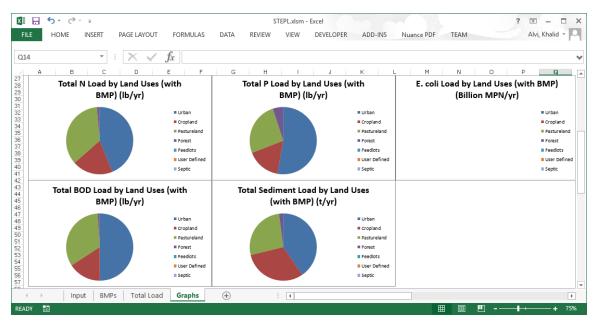


Figure 16. Graphs worksheet, which shows the pollutant loads by sources in graphic format.

4.6 BMPList Worksheet

The *BMPList* worksheet (Figure 17) becomes visible when the STEPL > View/Edit BMP List menu is clicked. The worksheet contains a list of BMP names and efficiencies for different land uses and pollutant types. The *BMPList* worksheet allows you to update BMP data in the *BMPs* worksheet and the two external text files (AllBMPstepl.csv and AllBMPs.csv; see section 3.3).

You can add new BMP records for the six predefined land use categories (Cropland, Pastureland, Forest, User-defined, Feedlots, and Urban). If you insert a row for a new BMP record, you must specify the land use, BMP name, and pollutant removal efficiencies. Pollutant removal efficiencies should be always be less than or equal to 1.0, and you must type "ND" for no data.

Each BMP record in the BMP list can be changed and deleted, but **do not** change or delete the greyed (shaded) rows.

The *BMPList* worksheet has two command buttons: *Update BMP Data* and *Save Updates*. The *Update BMP Data* button is used to update the lists in selection boxes in the *BMPs* worksheet. The *Save Updates* button is used to save the BMP list to external text files (AllBMPstepl.csv and AllBMPs.csv) in the STEPL/Support folder.

E HOME	INSERT PAGE LAYOUT FORMULAS DATA	REVIEW	VIEW	DEVELOR	PER ADD	I-INS Nu	ance PDF	TEAM					Alvi, Khalio
.05	\cdot : $\times \checkmark f_x$												
A	В	С	D	Е	F	G	н	1	J	К	L	Μ	N
	BMP & Efficiency	N	Р	BOD	Sediment	E. coli							
Cropland									<don't delete<="" td=""><td>Update I</td><td>BMP Data</td><td>Save</td><td>Updates</td></don't>	Update I	BMP Data	Save	Updates
	0 No BMP	0	0	0	0	0			<don't delete<="" td=""><td>-</td><td></td><td></td><td></td></don't>	-			
	Bioreactor	0.453	ND	ND	ND	ND				Inches	uction:		_
	Buffer - Forest (100ft wide)	0.478	0.465	ND	0.586	ND					o not delete th	e groved re	MAR
	Buffer - Grass (35ft wide)	0.338	0.435	ND	0.533	ND				2 BI	MP efficiencie:	e should he	x=1
	Combined BMPs-Calculated	0	0	0	0	0				3. If y	you add a row	for a new l	SMP. you
	Conservation Tillage 1 (30-59% Residue)	0.15	0.356	ND	0.403	ND					specify landu		
	Conservation Tillage 2 (equal or more than 60% Residue	0.25	0.687	ND	0.77	ND					tant removal e		
	Contour Farming	0.279	0.398	ND ND	0.341 ND	ND					pe "ND" for no		
	Controlled Drainage	0.388	0.35			ND					ick "Update B		
	Cover Crop 1 (Group A Commodity) (High Till only for Se	0.008	ND	ND ND	ND	ND					ction boxes or		
	Cover Crop 2 (Group A Traditional Normal Planting Time)	0.196	0.07		0.1	ND					ick "Save Upd		
	Cover Crop 3 (Group A Traditional Early Planting Time) (Land Retirement	0.204	0.15	ND ND	0.2	ND ND					list to extern		in the
	Land Retirement Nutrient Management 1 (Determined Rate)	0.898	0.808	ND	0.95 ND	ND				SIE	PL/Support fol	der.	
	Nutrient Management 1 (Determined Rate) Nutrient Management 2 (Determined Rate Plus Additiona	0.154	0.45	ND	ND	ND							
	Streambank Stabilization and Fencing	0.247	0.56	ND	0.75	ND							
	Terrace	0.75	0.308	ND	0.75	ND							
	Two-Stage Ditch	0.253	0.308	ND	0.4 ND	ND							
1 Pastureland	Two-Stage Ditch	0.12	0.20	IND	ND	ND			<don't delete<="" td=""><td></td><td></td><td></td><td></td></don't>				
	0 No BMP	0	0	0	0	0			<don't delete<="" td=""><td></td><td></td><td></td><td></td></don't>				
	30m Buffer with Optimal Grazing	0.364	0.653	ND	ND	ND			NDOITE Delete				
	Alternative Water Supply	0.133	0.055	ND	0.187	ND							
	Combined BMPs-Calculated	0.155	0.113	0	0.107	0							
	Critical Area Planting	0.175	0.2	ND	0.42	ND							
	Forest Buffer (minimum 35 feet wide)	0.452	0.2	ND	0.533	ND							
	Grass Buffer (minimum 35 feet wide)	0.868	0.766	ND	0.648	ND							
	Grazing Land Management (rotational grazing with fence	0.43	0.263	ND	ND	ND							
	Heavy Use Area Protection	0.183	0.193	ND	0.333	ND							
	Litter Storage and Management	0.14	0.14	ND	0	ND							
	Livestock Exclusion Fencing	0.203	0.304	ND	0.62	ND							
	Multiple Practices	0.246	0.205	ND	0.221	ND							
	Pasture and Hayland Planting (also called Forage Planti	0.181	0.15	ND	ND	ND							
	Prescribed Grazing	0.408	0.227	ND	0.333	ND							
	Streambank Protection w/o Fencing	0.15	0.22	ND	0.575	ND							
7 Pastureland	Streambank Stabilization and Fencing	0.75	0.75	ND	0.75	ND							
8 Pastureland	Use Exclusion	0.39	0.04	ND	0.589	ND							
	Winter Feeding Facility	0.35	0.4	ND	0.4	ND							

Figure 17. *BMPList* worksheet. BMP records can be viewed, changed, added, or deleted. The changes can be saved to the *BMPs* worksheet or to external text files.

5. References

(References include those cited in appendices.)

ASAE (American Society of Agricultural Engineers). 1998. *ASAE standards: Standards, engineering practice, and data*. 45th ed. American Society of Agricultural Engineers, St. Joseph, Michigan.

Evans, B.M., S. A. Sheeder, K. J. Corradini, and W. S. Brown. 2001. *AVGWLF version* 3.2, users guide. Environmental Resources Research Institute, Pennsylvania State University, University Park, Pennsylvania.

Haith, D.A., R. Mandal, and R.S. Wu. 1992. *GWLF: General watershed loading functions, user's manual, version 2.0.* Cornell University, Ithaca, New York.

MDEQ (Michigan Department of Environmental Quality). 1999. Pollutants controlled: Calculation and documentation for section 319 watersheds training manual. Michigan Department of Environmental Quality, Lansing, Michigan.

USDA-NRCS (U.S. Department of Agriculture, Natural Resources Conservation Service). 1983. Sediment sources, yields, and delivery ratios. In *National Engineering Handbook*, Chapter 6, Section 3, Sedimentation.

In the *Reference* sheet of STEPL model, there are additional 28 references listed for the default parameter values used in the model.

Appendix A: BMP Calculator User Guide and Formulas

If BMP locations, implementation areas, and efficiencies in a watershed are known, the combined pollutant removal efficiencies can be calculated using the BMP Calculator that is included in STEPL. The combined efficiencies can be entered in Table 7 of the *BMPs* worksheet (see section 4.3).

The following sections describe Step-by-Step procedures and examples to use the BMP Calculator as well as the mathematic formulas that BMP Calculator is based on.

A.1. Step-by-Step Instructions for Using the BMP Calculator

- 1. Click the "BMP calculator" menu on the STEPL menu bar or double-click the BMPcalculator.exe file in the STEPL directory to start the calculator.
- 2. Click the button to add a new BMP (represented by a box with a default area and BMP efficiencies) to the program window. You may add as many boxes as you wish by clicking the button. Initially, all the default values in the BMP boxes are set to zero. To assign values to the parameters in the BMP boxes, see step 4.

Arrange the BMP boxes to approximate BMP locations in your watershed. To move a BMP box, click and drag it using the left mouse button. Three configuration examples are shown in Figures A1, A2, and A3.

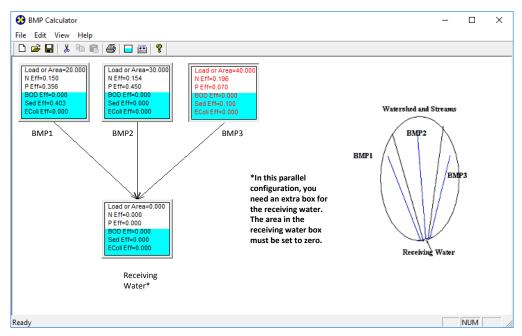


Figure A1. Comparison of parallel BMP configuration in the calculator window with BMP locations in a watershed. The diagram at the right shows three parallel BMP implementations in a watershed. In the calculator window at the left, three BMP boxes are connected to a fourth box, which represents the receiving stream. The area of the receiving stream box must be set to zero.

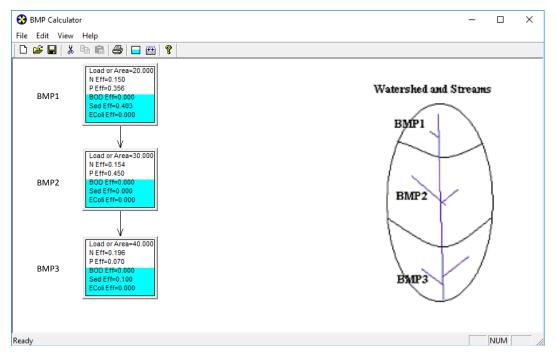


Figure A2. Comparison of serial BMP configuration in the calculator window with BMP locations in a watershed. The diagram at the right shows three serial BMP implementations in the watershed. In the calculator window at the left, three BMP boxes are connected one after another.

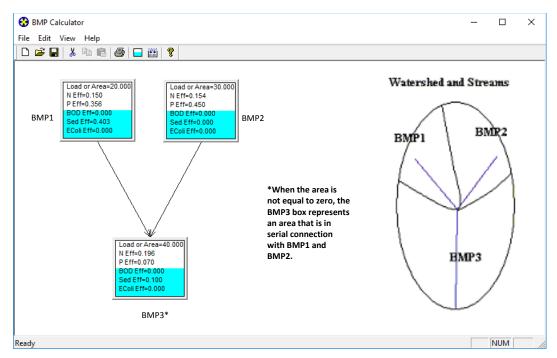


Figure A3. Comparison of mixed BMP configuration in the calculator window with BMP locations in a watershed. The diagram at the right shows two parallel BMPs in series with a third BMP in the watershed. In the calculator window at the left, two BMP boxes are connected to a third BMP box.

3. Drag your mouse from one box to another to add links (lines with arrowheads) between BMP boxes. Caution: When you drag your mouse between two boxes, you must touch both boxes to make the line. Only one link can originate from a BMP box; however, a BMP box can receive many incoming links.

Tip: To delete a BMP box, click it and press the DEL key. (If the BMP box is selected, the text in the box is displayed in red.) To delete a link between two BMPs, click the connection to select it and press the DEL key.

4. Once you finish adding BMP boxes and links as shown in Figures A1, A2, and A3, you can double-click each box to set the parameter values. The dialog box that appears lets you select a type of BMP from a list (Figure A4). After you select a BMP from the list, pollutant removal efficiencies will appear automatically in the appropriate text boxes in the dialog box. You need to specify the BMP area or total pre-BMP load (in any units, as long as you are consistent throughout the calculation) for each BMP selected. You may also choose to modify the BMP efficiencies in the dialog box.

Set BMP Parameter Values		Х
Cropland - Conservation Tillage 1 (30-59% Residue)	•	
Total Pollutant Load or Area: 20		
N Removal Efficiency: 0.15		
P Removal Efficiency: 0.356		
BOD Removal Efficiency: 0		
Sediments Removal Efficiency: 0.403		
E. Coli. Removal Efficiency: 0		
OK Cancel		

Figure A4. Editing BMP parameter values.

Note: The combined BMP efficiencies are calculated using the pollutant load (before BMP implementation) or the area of a subwatershed as the weighting factor. If the subwatersheds or subareas associated with different BMPs have the same or similar land use types, you can use the area as the weighting factor. However, if the combined BMP efficiencies are to be calculated for subwatersheds or areas that have different land use types, the pre-BMP pollutant load of each land use type should be used as the weighting factor.

5. On the tool bar, click the button to calculate the combined BMP efficiencies (Figures A5, A6, and A7.)

Tip: You may use the "Save as" and "Open" submenus under the File menu to save and open your BMP configurations.

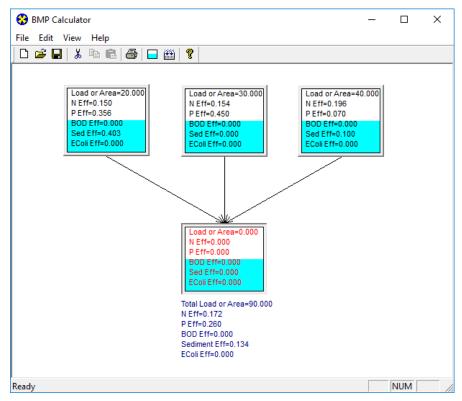


Figure A5. Calculated combined BMP efficiencies for three parallel BMP implementations in a watershed.

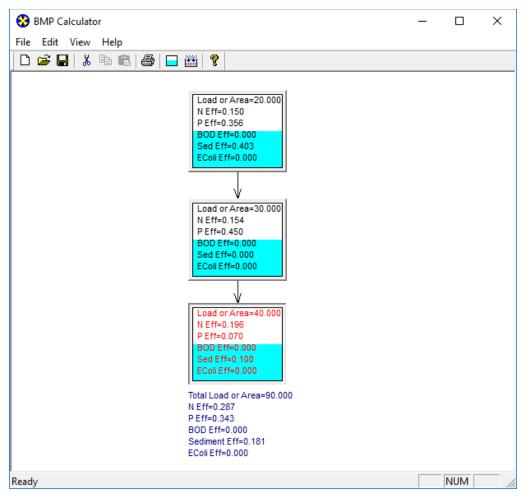


Figure A6. Calculated combined BMP efficiencies for three serial BMP implementations in a watershed.

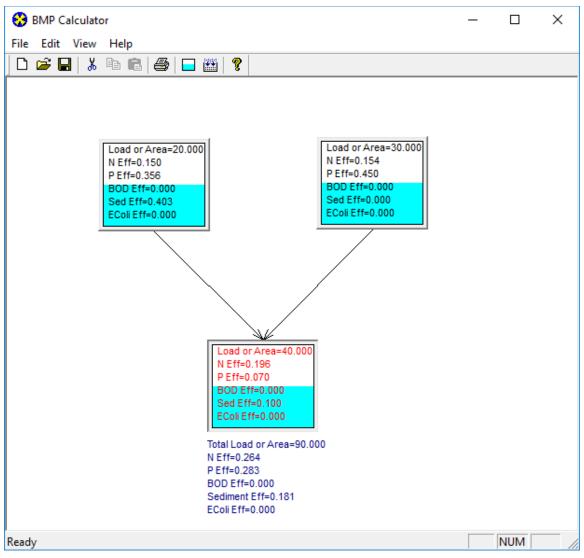


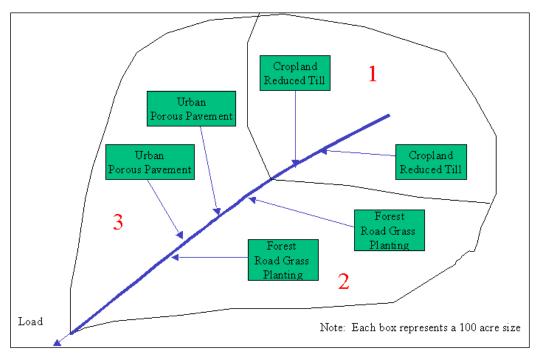
Figure A7. Calculated combined BMP efficiencies for two parallel BMPs in series with a third BMP in a watershed.

6. Enter the combined efficiencies in Table 7 of the *BMPs* worksheet (see section 4.3). You can right-click your mouse button on the result text in BMP Calculator window and you will see a small pop-up window with a copy command. Select the copy command to copy the calculated combined BMP efficiency and paste the copied value to the STEPL worksheet.

STEPL 4.4 User's Guide

	*	\pm \times	$\checkmark f_x$	W1						
А	B C	D	E	F	G		Н		1	
	Best Management					Combined BMPs-Calculate				
						d. Select "Combined BMP enu) to obtain the combine				
		1			1					
	Urban BMP Too	bl 🛛		Gully and mbank Erosion		Calculate Com	bined BMP Ef	ficiency		
	1. BMPs and efficient Watershed Cropla		fferent pollu	itants on CROPI	_AND, ND=N	o Data				
	N	P	BOD	Sediment	E. coli	BMPs		%	Area BMP App	plied
			0.435 ND		3 ND	Combined BMPs-C	Calculated			100
	W2	0	0			0 0 No BMP				0
	W3	0	0	0		0 💿 0 No BMP		-		0
	W4	0	0			0 💿 0 No BMP		÷		0
										0
	W5	0	0	0	0	0 O No BMP		<u> </u>		
		-	-1			_		<u>.</u>		
Y		//Ps Total	Load Gra	0	: •	_	ADD-INS Nu	ance PDF TEAM	+ ? 🗈 – Alvi, Khali	• 1
Y H) Input BN ∰ 5 • (ੇ • ∓	-	OUT FOR	aphs 🕀	: 💽	dsm - Excel	-		A State of the second s	- 1
Υ E	> Input BN ∰ • c> - ÷ HOME INSERT	PAGE LAY	OUT FOR	MULAS DATA	∶ ◀ Stepl., Review	dsm - Excel	ADD-INS Nu		A State of the second s	• 1
Y H) Input BN ∰ 5 • (ੇ • ∓	PAGE LAY	OUT FOR	MULAS DATA	: 💽	dsm - Excel	-		A State of the second s	- 1
Y E	→ Input BN → C→ C→ C→ HOME INSERT → B C 7. Combined wate	PAGE LAY	ULOAd Gra	MULAS DATA W1 F from the BMP cr	STEPL3 REVIEW	dsm - Excel	ADD-INS Nu		A State of the second s	• 1
Y E	Input BN ♥ ♥ ♥ ♥ ♥ ♥ HOME INSERT ♥ ● B C 7. Combined water Watershed Watershed	APS Total PAGE LAY PAGE	OUT FORI	MULAS DATA W1 F rom the BMP ca iciencies	EVIEW	dsm - Excel VIEW DEVELOPER	ADD-INS Nu		A State of the second s	- 1
Y E	HOME INSERT B C 7. Combined water Watershed Watershed	PAGE LAY PAGE LAY PAGE LAY PAGE LAY PAGE LAY PAGE LAY PAGE D P	OUT FORI	MULAS DATA W1 F from the BMP cc. [Sediment	E. coli	dsm - Excel VIEW DEVELOPER	ADD-INS Nu		A State of the second s	- 1
Y E	Input BN Image: Second secon	PAGE LAY PAGE LAY rshed BMP (shed Combin P 0.338	OUT FORI	MULAS DATA W1 From the BMP cr iclencies Sediment 0.53	E. coli	dsm - Excel VIEW DEVELOPER BMPs Combined BMPs	ADD-INS Nu		A State of the second s	- 1
Y E	Input BN BN BN C C C C C C C C C C Combined water N W1-Crop W2-Crop	PAGE LAY PAGE LAY PAGE LAY PAGE BMP (shed Combin P 0.338 0	OUT FORI	MULAS DATA W1 F iciencies Sediment 0.53 0	E. coli	dsm - Excel VIEW DEVELOPER BMPs Combined BMPs 0 Combined BMPs	ADD-INS Nu		A State of the second s	- 1
Y E	Input BN Imput BN Imput BN Imput Imput Imput BN Imput Imput Imput	PAGE LAY PAGE LAY AGE LAY State of the state	OUT FORI	MULAS DATA W1 F Trom the BMP c: iciencies Sediment 0.53 0 0	E. coli	dsm - Excel VIEW DEVELOPER BMPs Combined BMPs 0 Combined BMPs 0 Combined BMPs	ADD-INS Nu		A State of the second s	- 1
Y E	Input BN Image: Second s	PAGE LAY PAGE LAY Find BMP of Shed Combin 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	OUT FORI	MULAS DATA W1 From the BMP cr iclencies Sediment 0 0 0 0	E Coli STEPLJ REVIEW G G StepLJ REVIEW G STEPLJ REVIEW G STEPLJ REVIEW G STEPLJ REVIEW G STEPLJ STE	dsm - Excel VIEW DEVELOPER BMPs Combined BMPs 0 Combined BMPs 0 Combined BMPs	ADD-INS Nu		A State of the second s	- 1
Y E	Input BN Imput BN Imput Imput Imput I	PAGE LAY : > : : : :	OUT FORI out fo	MULAS DATA W1 F irom the BMP ct iciencies Sediment 0 0 0 0 0	: STEPLJ REVIEW G alculator E. coli 3 ND 0 0 0 0 0 0 0 0 0	dsm - Excel VIEW DEVELOPER BMPs Combined BMPs 0 Combined BMPs 0 Combined BMPs 0 Combined BMPs 0 Combined BMPs	ADD-INS Nu		A State of the second s	• 1
Y E	Input BN Imput BN Imput Imput Imput I	IPs Total PAGE LAY : :	OUT FORI	Apples Image: Control of the system MULAS DATA W1 F iciencies Sediment 0 0 0 0 0 0 0 0 0 0	: STEPLJ REVIEW G alculator E. coli 3 ND 0 0 0 0 0 0 0 0 0	dsm - Excel VIEW DEVELOPER BMPs Combined BMPs 0 Combined BMPs 0 Combined BMPs 0 Combined BMPs 0 Combined BMPs 0 Combined BMPs	ADD-INS Nu		A State of the second s	• 1
Y E	Input BN Imput BN Imput BN Imput Imput Imput BN Imput Imput Imput <	PAGE LAY PAGE LAY PAGE LAY State PAGE LAY P State D St	OUT FORI	Aphs ↔ MULAS DATA W1 F Trom the BMP cr Iclencies 0 0 0 0 0 0 0 0 0 0 0 0 0	E Coli STEPLJ REVIEW G C C C C C C C C C C C C C	dsm - Excel VIEW DEVELOPER BMPs Combined BMPs 0 Combined BMPs 0 Combined BMPs 0 Combined BMPs 0 Combined BMPs 0 Combined BMPs 0 Combined BMPs	ADD-INS Nu		A State of the second s	• 1
Υ E	Input BN Imput Imput Imput <t< td=""><td>PAGE LAY : > : : : : : : : : : : : : : : : : : : :</td><td>OUT FORI OUT FORI fx [fx [efficiencies 1 BOD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>aphs € MULAS DATA W1 F from the BMP cr. Iciencies Sediment 0.53 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>: STEPLJ REVIEW G alculator E. coli 3 ND 0 0 0 0 0 0 0 0 0</td><td>dsm - Excel VIEW DEVELOPER BMPs Combined BMPs 0 Combined BMPs</td><td>ADD-INS Nu</td><td></td><td>A State of the second s</td><td>• 1</td></t<>	PAGE LAY : > : : : : : : : : : : : : : : : : : : :	OUT FORI OUT FORI fx [fx [efficiencies 1 BOD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	aphs € MULAS DATA W1 F from the BMP cr. Iciencies Sediment 0.53 0 0 0 0 0 0 0 0 0 0 0 0 0 0	: STEPLJ REVIEW G alculator E. coli 3 ND 0 0 0 0 0 0 0 0 0	dsm - Excel VIEW DEVELOPER BMPs Combined BMPs 0 Combined BMPs	ADD-INS Nu		A State of the second s	• 1
Υ E	Input BN Imput BN Imput BN Imput Imput Imput BN Imput Imput Imput <	PAGE LAY PAGE LAY PAGE LAY State PAGE LAY P State D St	OUT FORI	Apple ⊕ MULAS DATA W1 F iciencies Sediment 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	: STEPLJ REVIEW G alculator E. coli 3 ND 0 0 0 0 0 0 0 0 0	dsm - Excel VIEW DEVELOPER BMPs Combined BMPs 0 Combined BMPs 0 Combined BMPs 0 Combined BMPs 0 Combined BMPs 0 Combined BMPs 0 Combined BMPs	ADD-INS Nu		A State of the second s	• 1

Figure A8. The *BMP* worksheet of the STEPL model, which lets you select BMPs for different land uses. If you select "Combined BMPs-Calculated" from any of the BMP pull-down list boxes, you need to use the BMP Calculator to calculate combined BMP efficiencies and then enter them in Table 7.


A.2. Advanced Examples

Consider the following information before you attempt advanced calculations.

- Combined BMP efficiencies are calculated by using area as the weighting factor when all the BMPs are located in the same land use type. Combined BMP efficiencies can also be calculated using the original or pre-BMP load as the weighting factor when the BMPs are located in different land use types with varying pollutant loading rates. Refer to the BMP calculator formulas for details. This document shows only examples using area to calculate the combined BMP efficiencies.
- The area weighting factor in the BMP Calculator refers more specifically to a source area treated by an on-site BMP or a source area treated by an off-site BMP. In many cases, an off-site BMP (e.g., filter strips to intercept pollutants from an upslope cropland) can be separated from its source and represented in the BMP Calculator as

an individual box. The source area for the individual off-site BMP should be zero because the BMP itself is not the source area.

• Beyond the original design objectives of the BMP Calculator for two or three BMPs, the BMP Calculator can be used to calculate the combined efficiencies of very complicated BMP arrangements (three or more BMPs arranged in mixed configurations in a watershed), providing that you fully understand the calculator's mathematical formulas and the properties of the BMPs being implemented.

Four example cases are shown in Figures A9 through A12.

Figure A9. A case that does not need the BMP Calculator. You do not need to calculate the combined BMP efficiency because each land use type uses the same BMP practice (e.g., reduced till for all croplands) regardless of BMP locations in the subwatersheds.

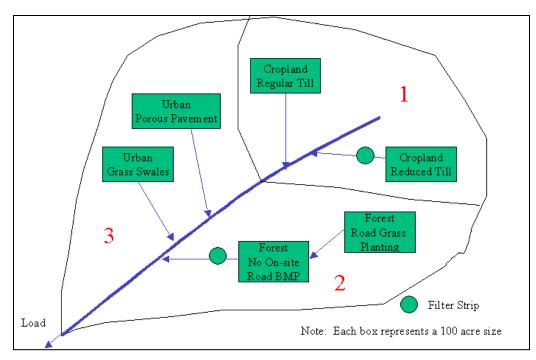


Figure A10. Case that needs the BMP Calculator. You need to calculate the combined BMP efficiency because each land use type uses more than one practice (e.g., regular till and reduced till combined with filter strips for cropland). In this example, you need to calculate a combined efficiency for each land use type or subwatershed.

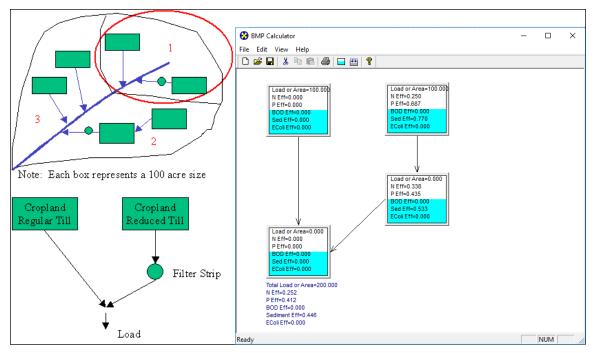


Figure A11. Calculation of combined BMP efficiency for sample cropland. For Area 1 in the watershed, one-half of the cropland uses no BMPs and the other half uses reduced tillage practice and a filter strip in a serial configuration. The two halves of the cropland are arranged in a parallel configuration. Because the filter strip is represented in the BMP Calculator as a box that is separated from the filter strip's treatment area, the source area for the filter strip itself equals zero.

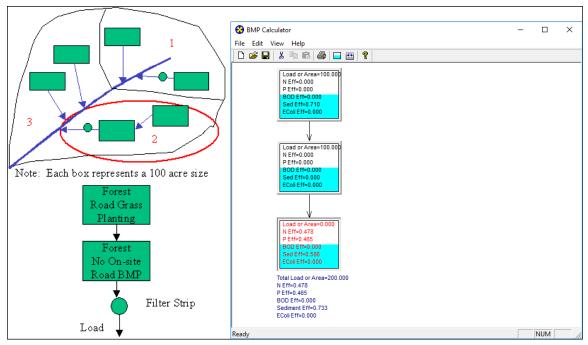


Figure A12. Calculation of combined BMP efficiency for sample forestland. For Area 2 in the watershed, one-half of the forest uses road grass planting and the other half uses no BMPs but has a filter strip between it and the receiving stream. The two halves of the forest are arranged in a serial configuration. Because the filter strip is represented in the BMP Calculator as a box that is separated from the filter strip's treatment area, the source area for the filter strip itself equals zero.

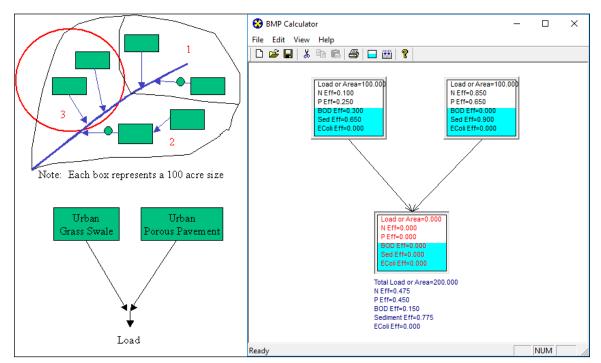


Figure A13. Calculation of combined BMP efficiency for sample urban land. For Area 3 in the watershed, one-half of the urban land is treated with grass swales and the other half is treated with porous pavement. The two halves of the urban land are arranged in a parallel configuration. The configuration is connected through a common box in the BMP Calculator, representing a receiving stream.

A.3. BMP Calculator Formulas

Define $e_1, e_2, ..., and e_n$ as BMP pollutant removal efficiencies for area A_1 , area $A_2, ...,$ and area A_n , which have corresponding pollutant loads of T_1, T_2 , and T_n . (1- e_1), (1- e_2), ..., and (1- e_n) represent pollutant-retaining efficiencies.

For a parallel BMP configuration, the combined efficiency is equal to

$$1 - \frac{T_1 * (1 - e_1) + T_2 * (1 - e_2)}{T_1 + T_2} \text{ or } 1 - \frac{\sum_{i=1}^n T_i * (1 - e_i)}{\sum_{i=1}^n T_i}.$$

For a serial BMP configuration, the combined efficiency is equal to

$$1 - \frac{T_1 * (1 - e_1) * (1 - e_2) + T_2 * (1 - e_2)}{T_1 + T_2} \text{ or } 1 - \frac{\sum_{i=1}^n T_i * (1 - e_i) * (1 - e_{i+1}) * \dots (1 - e_n)}{\sum_{i=1}^n T_i}.$$

For a single area,

 $T_2 = 0$ and $e_2 = 0$, and both of the above formulas are reduced to $1 - (1 - e_1) = e_1$.

If all the subareas have similar pollutant loading rates (t = T/A), the *T* in the above two formulas can be replaced by *A* for approximation.

Appendix B: Description of the Intermediate STEPL Worksheets

B.1 General Input Data Worksheet

This worksheet is hidden from users by default. To display the worksheet, click the STEPL > Hide/Unhide Other STEPL Sheets menu.

This worksheet summarizes your initial input for the creation of the customized spreadsheet tool (Figure B1).

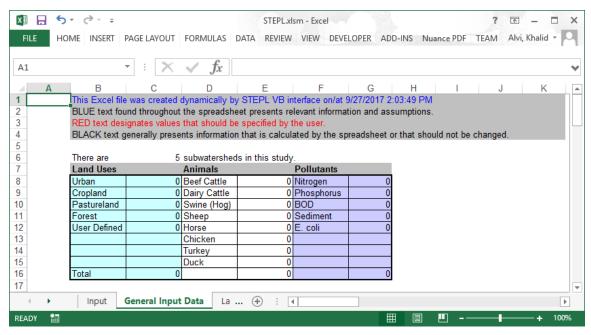


Figure B1. The General Input Data worksheet, which displays a summary of your initial input.

B.2 Land&Rain Worksheet

This worksheet is hidden from users by default. When displayed, there are seven visible tables in this worksheet (Figure B2). The values in Tables 1, 2, 3, and 5 are linked to tables in the *Input* worksheets.

Η	5 · ? ·	Ŧ				STEPL.xlsm - E	Excel				? 🖪	
E	HOME	NSERT F	PAGE LAYOUT	FORMULAS	DATA	REVIEW VIE	W DEVELOPE	R ADD-IN	S Nuance	PDF TEAM	1 Alvi,	Khalid 👻
		-	\times \checkmark .	fx								
Α	В	C D	E F	G H	I J	K L	MN	0 P	Q R	S T	UV	AI
	Land Use a											
	You entered			tersheds in thi								
			acres, and ave	rage annual pre	cipitation is	in inches.						
	SHG: Soil Hy	/drologic Gr	oup									
									Go to "STEP	L" menu for	correction fa	ctors.
	1. Input wat	ershed lan	d use area (ac) and precipit	ation (in)				0.854328	0.4353224	0	
	Watershed	Urban	Cropland	Pasturelan	Forest	User	Feedlots	Total	Annual	Rain Days	Avg.	Perviou
				d		Defined			Rainfall		Rain/event	Area
	W1		0 0	0	(· ·	0	0	32			
	W2		0 0	0	(· ·	0	0	32	106		
	W3		0 0	0	(0	0	32	106		
	W4		0 0	0	(-	0	0	32	106		
	W5		0 0	0	(0 0	0	0	32	106	0.585	
								Sum= 0				
	2. Select av Watershed	SHG A	hydrologic gro	UP SHG C	SHG D	Calastad	3. Reference SHG	e runoff curv		ay be modifi	ed) D	1
	vvatersned	SHG A	SHG B	SHGC	SHG D	Selected	SHG	Α	В	L	U	
	W1					в	Urban	83	89	92	93	1
	W2					В	Cropland	67	78			1
	W3					В	Pastureland	49	69			1
	W4					В	Forest	39	60	73		1
	W5					В	User Defined	50	70	80	85	1
			1	1		-	Lett. Domitor					1
•	Land	&Rain /	Animal BMP	s Urban	Fee 付	€ : ◄						[

Figure B2. The *Land&Rain* worksheet, which calculates average annual runoff based on precipitation, soil hydrologic group, and soil curve number.

Table 1 contains model input on land use area in acres, annual precipitation in inches, number of days with measurable precipitation, and correction factors for each watershed. There are three correction factors in row 6: (1) Rainfall correction factor, (2) number of rain day correction factor, and (3) rainfall initial abstraction factor. Rainfall initial abstraction factor determines initial rainfall retention on the land surface, ranges from 0 to 0.2. The default is set to zero. Table 2 contains the soil hydrological group (SHG) information for each watershed. Table 3 shows the default curve numbers by SHG for each land use type.

Once STEPL has the land use area, precipitation data, and soil hydrological group for each watershed, the worksheet calculates the runoff for each type of land use automatically. The results are shown in Table 4, "Annual runoff by land uses (ac-ft)."

Table 5 shows default nutrient concentrations in runoff (mg/L) for pastureland, forest, and the user-defined type. The concentration values are used in the *Total Load* worksheet to calculate the nutrient load from runoff. (Nutrient concentrations from cropland are determined based on the default nutrient concentrations and animal density and manure application in the study area in *Input* and *Animal* worksheet.)

The *Land&Rain* worksheet calculates the groundwater volume by using the infiltration rates for different soil hydrologic group (Table GW1). Based on the infiltration rate, the annual infiltration volume is calculated for the different land uses (Table GW2-hidden, GW3-hidden, and GW4). The annual infiltration volume is assumed to be equivalent to the annual groundwater output in the local hydrological cycle. Groundwater output is used to calculate the pollutant loads for *Total Load* worksheet.

The *Land&Rain* worksheet also calculates the runoff and runoff reduction due to the irrigation practice (hidden Table 2.3) as well as runoff for the detailed urban land uses (hidden tables in Excel Column X to Column AH). Runoff for urban land uses is used to calculate the pollutant loads for *Urban* worksheet.

B.3 Animal Worksheet

This worksheet is hidden from users by default. Table 1 in the *Animal* worksheet (Figure B3) links to the *Input* worksheet for the number of farm animals and number of months that manure is applied on cropland in each watershed. The worksheet calculates each animal equivalent unit (AEU, i.e., 1000 lb animal weight per acre) based on number of animals and standard animal weight. The nutrient concentrations in cropland runoff are adjusted with the AEU. The higher the AUE, the higher the nutrient concentrations in the cropland runoff. A step function is used to represent the relationship between the nutrient concentrations and AEU, and nutrient concentrations reach the maximum when the AEU is equal to or greater than 2.5 (Evans et al. 2001).

XII 🔒	5 • @• :	Ŧ					STEPL.x	lsm - Excel				? 📧 🗕	
FILE	HOME IN	ISERT PAGE	LAYOUT	FORMULAS	DATA	REVIEW	VIEW DEV	ELOPER A	DD-INS	Nuance PDF	TEAM	Alvi, Kha	lid + C
1		- : >	(v f	x									
Α	В	С	D	Е	F	G	н	1	J	К	L	Μ	
	Nutrient contri Manure is ass Wildlife densit	umed to be col	lected and a	pplied to cro) estimates f	or all land use	s except for u	rban.				
-													
	1. Agricultura	al animals											
_	1. Agricultura Watershed	al animals Beef Cattle	Dairy Cattle	Swine (Hog)	Sheep	Horse	Chicken	Turkey	Duck	AEU	# of months manure applied on Cropland	# of months manure applied on Pastureland	ı
	Watershed W1					Horse	Chicken 0	Turkey 0	Duck	0 0	applied on Cropland		0
	Watershed W1 W2	Beef Cattle	Cattle 0	(Hog)		0	0	Turkey 0 0	Duck (0 0	applied on Cropland		0
	Watershed W1 W2 W3	Beef Cattle 0 0	Cattle 0 0	(Hog)		000000000000000000000000000000000000000	0 0	Turkey 0 0 0	Duck (0 0 0 0 0 0	applied on Cropland		0 0 0
) 2 3	Watershed W1 W2 W3 W4	Beef Cattle	Cattle 0 0 0 0	(Hog)	000000000000000000000000000000000000000	0 0 0 0	0 0 0 0 0 0 0 0	Turkey 0 0 0 0	(0 0 0 0 0 0 0 0 0 0	applied on Cropland		0 0 0 0
0 0 1 2 3 4	Watershed W1 W2 W3 W4 W5	Beef Cattle	Cattle 0 0 0 0	(Hog) 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0	(((((0 0 0 0 0 0 0 0 0 0 0 0	applied on Cropland		0 0 0 0 0
)	Watershed W1 W2 W3 W4	Beef Cattle	Cattle 0 0 0 0	(Hog)	0 0 0 0 0	0 0 0 0	0 0 0 0 0 0 0 0 0 0	Turkey 0 0 0 0 0 0 0	(0 0 0 0 0 0 0 0 0 0 0 0 0 0	applied on Cropland		0 0 0 0
0 0 1 1 2 3 4 5 6	Watershed W1 W2 W3 W4 W5	Beef Cattle	Cattle 0 0 0 0	(Hog) 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0	(((((0 0 0 0 0 0 0 0 0 0 0 0	applied on Cropland		0 0 0 0
) 1 2 3 3 4 5 5 5	Watershed W1 W2 W3 W4 W5	Beef Cattle	Cattle 0 0 0 0	(Hog) 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0	(((((0 0 0 0 0 0 0 0 0 0 0 0	applied on Cropland		0 0 0 0
) 1 2 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Watershed W1 W2 W3 W4 W5	Beef Cattle 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Cattle 0 0 0 0 0	(Hog) 0 0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	(((((0 0 0 0 0 0 0 0 0 0 0 0	applied on Cropland		0 0 0 0 0

Figure B3. The *Animal* worksheet, which contains information on agricultural animal numbers and number of months that manure is applied to cropland.

B.4 Urban worksheet

The *Urban* worksheet is created for calculating urban pollutant load and load reduction due to the application of management practices. This worksheet is hidden from users by default. It will be displayed if the user clicks the *Urban BMP Tool* button on the *BMPs* worksheet. When displayed, two tool buttons and six tables are visible in this worksheet (Figure B4). The *Urban BMP Tool* will allow you to set/select/change a LID/BMP for each urban land use (see detailed description in section 4.3.2). Click the *Close* button will hide the *Urban* worksheet. Table 1 contains pollutant concentrations (mg/L) for each urban land use category including: Commercial, Industrial, Institutional, Transportation, Multi-family, Single-family, Urban-cultivated, Vacant (developed), and Open Space. Table 2 contains urban land use distribution by area. Table 2a has the LID/BMP application area (or effective area). Table 3 displays LID or BMP selected for each urban land use. In addition, the percentages of the LID/BMP effective area (100 x effective area) are calculated in Table 3a.

Once the system has the urban area distribution data (*Input* worksheet) and the LID or BMP application areas, the estimated urban pollutant loads are displayed in Table 4 (Figure B4). The load reductions are calculated by multiplying the total loads by the efficiencies of selected LIDs/BMPs shown in Table 3.

		*	\times	fx							
Α	В	С	D	E	F	G	Н	I	J	К	L
	Urban R	unoff BMP a	nd Pollutar	nt Load Red	luction						
						11.	ban BMP T	aal	Clo		
						Ur		001	CIC	bse	
	1. Urban Landuse	pollutant co						Urban Cult	Vacant (de	Open Spac	•
	TN	2	2.5	1.8	3	2.2	2.2	1.9	vacani jue 1.5	0pen 5pac 15	e
	TP	0.2	0.4	0.3	0.5	0.4	0.4	0.3	0.15	0.15	
	BOD	9.3	9	7.8	9.3	10	10	4	4	4	
	TSS	75	120	67	150	100	100	150	70	70	
	E. coli	0	0	0	0	0	0	0	0	0	
		landuse dis			_						
	Landuse									Open Spac	е
	W1 W2	15	10 0	10 0	10	10	30	5	5	5	
	W3	0	0	0	0	-	0	0	0	0	
	W4	0	0	0	0	0	0	0	0	0	
	W5	0	0	0	0	0	0	0	0	0	
		-									
		ted urban Bl									
		Commerci									е
	W1			0 No BMP							
	W2			0 No BMP							
	W3			0 No BMP							
	W4	0 No BMP	0 No BMP	0 No BMP	0 No BMP	10 No BMP	0 No BMP	0 No BMP	0 No BMP	0 No BMP	

Figure B4. The Urban worksheet, which calculates pollutant loads from urbanized areas.

B.5 Gully&Streambank Worksheet

The *Gully&Streambank* worksheet is created for calculating the pollutant loads from the gully formations and impaired streambanks. This worksheet is hidden from users by default. It will be displayed if the user clicks the *Gully and Streambank Erosion* button on the *BMPs* worksheet. When displayed, two tables are visible in this worksheet (Figure B5). The *Gully and Streambank Erosion* will allow you to define the dimensions, BMP efficiency, and soil textural class for selected watershed (see description in section 4.3.3). Click the *Close* button will hide the *Gully&Streambank* worksheet. Table 1 and Table 2 contain gully and impaired streambank dimensions, BMP efficiency, soil textural class, annual load, and load reduction for the selected watershed. The load reduction is calculated by multiplying the total load by the BMP efficiency defined in the same table.

HOME INSE	KI PAG	E LAYOUT	FORM	IULAS DATA RE	EVIEW VI	EW D	EVELOPER	ADD-INS	Nuance PDF	TEAM		P	Alvi, Khalic
	• : :	X 🗸	fx										
В	С	D	E	F	G	Н	I		J	K	L	М	N
Gully and Streamb													
				is for inputing the gully				r inputing th	e eroding streamba	ank dimensio	ins.		
Gully:				nensions and assign ea mber of vears) that the									
				bilization (BMP) efficie									
Streambank:				ank dimensions and a				li cidas.					
Sueambank.				cession rate (ft/yr) of t				Click to see	"Streambank Late	ral Recessio	n Rate" table		
				ank stabilization (BMP						Tal Incocosito	in reace table		
	10100 01 0				/	(= .) =						1	
Close this sheet													
1. Gully dimension	s in the dif	ferent wa		i									
Watershed	Gully	Тор	Bottom	Depth (ft)	Length	Years	BMP	Soil T	extural Class	Soil Dry		Annual	Loa
		Width	Width		(ft)	to Form	Efficiency			Weight		Load	Reduct
		(ft)	(ft)				(0-1)	_		(ton/ft3)	Factor	(ton)	(ton
• W1		0	• •	0	-	1		Clay		0.035			
• W1 😑		0	0	0		1		Clay		0.035			
• W1		0	0	0		1		Clay		0.035			
• W1		0	0	0	-			 Clay Clav 		0.035			
• W1		0	-	0	•	1		 Clay Clay 		0.035			
• W1		0	0	0	•	1		 Clay 		0.035			
		0	0	0	0	1		 Clay 		0.035			0.0
	Gully9	0	0	0	0	1	0.95	Clay		0.035	1.15	0.0000	0.0
• W1	Gully10	0	0	0	0	1	0.95	Clay		0.035	1.15	0.0000	0.0
• W1 •	Guily 10												
• W1 •													
• W1 • • • • • • • • • • • • • • • • • •													
W1 W1 W1 W1 W1 C W1 W1 C W1 C W1 C Unpaired stream	bank dime							0.11.7					
• W1 • • • • • • • • • • • • • • • • • •	bank dime	Length	Height	rent watersheds Lateral Recession	Rate	Rate	BMP	Soil T	extural Class	Soil Dry		Annual	Loa
W1 W1 W1 W1 W1 C W1 W1 C W1 C W1 C Unpaired stream	bank dime				Range	Rate (ft/yr)	Efficiency	Soil T	extural Class	Weight	Correction	Load	Reduct
W1 W1	bank dime	Length	Height (ft)	Lateral Recession			Efficiency (0-1)	Soil T			Correction Factor	Load (ton)	Reduct (ton

Figure B5. The Gully&Streambank worksheet, which calculates pollutant loads from the gully formations and impaired streambanks.

B.6 *Feedlots* Worksheet

The *Feedlots* worksheet is modified from a model developed by EPA Region 5 (MDEQ 1999). The worksheet is hidden from users by default. When displayed, three tables are visible in this worksheet (Figure B6). Table 1 contains information on size, percentage of imperviousness (paved area), average rainfall, and BMP efficiencies for the feedlots in each watershed. In Table 2, you may enter detailed information on young beef, young dairy stock, and feeder pigs in addition to the animal numbers in the *Animal* worksheet.

The nutrient loads from feedlots are calculated based on animal numbers, feedlot runoff, and default nutrient concentrations in the runoff. They are shown in Table 3 (Figure B6).

	5 • ∂ • ∓			S	TEPL.xlsm - Excel				? 🗷 – 🗖
.E	HOME INSERT	PAGE LAYOUT	FORMULAS DA	TA REVIEW V	IEW DEVELOPER	ADD-INS Nua	ance PDF TEAM		Alvi, Khalid 🝷
	•	∃ X ✓ 3	fx						
Α	В	С	D	Е	F	G	н		J
A	Feedlot Pollution		U		F	6	П	1	J
		lot refers to an open li	ot or combination of	open lots intended fo	r confined feeding b	reeding, raising or ho	olding animals		1
		signed as a confinem						cannot be maintaine	d.
		se calculations is to r							
	This method has tw	vo assumptions: 1) th	ne feedlot is adjacen	t to a receiving hydro	logical system with	out any buffering area	s; and 2) installing	the	
		will reduce pollutants							
	Feedlots that cannot	ot show impact to the	hydrologic system	being protected shou	Id not be evaluated v	with this computation	1.		
	1. Select a range	of paved percentag	e for feedlots						
							Feedlot BMP	Feedlot BMP	
		Contributing area		Average event	Feedlot BMP	Feedlot BMP	efficiency on	efficiency on E.	Feedlot pervious
	Watershed	(ac.)	Percent paved	rainfall (inch)	efficiency on N	efficiency on P	BOD	coli	area (ac.)
	W1		0-24%	0.585	0	0	0		
	W2		0-24%	0.585	0	0	0		•
	W3 W4		0-24%	0.585	0	0	0		
	W5		0-24%	0.585	0	0	0		
	VV5	U	0-24%	0.565	U	U	U	U	U
	2. Agricultural an	imals							
	2. Agriculturur un	Beef Cattle			Young Dairy				
	Animal	(Slaughter Steer)	Young Beef	Dairy Cattle	Stock	Swine	Feeder Pig	Sheep	Horse
	Design Weight	, <u> </u>							
	(lbs)	1000	500	1400	500	200	50	100	1000
	W1	100	0	100	0	100	0	100	100
	W2	0	0	0	0	0	0	0	0
	W3	0	0	0	0	0	0	0	0
	W4	0	0	0	0	0	0	-	-
	W5	0	0	0	0	0	0	0	0
	Feedlots	Septic Sedimen	t Gully&Stream	bank 🛄 🕂					
		Septic Sedimen	Guilyddstream						
ργ '	H								

Figure B6. The *Feedlots* worksheet, which calculates pollutant loads from animal feedlots.

B.7 Septic Worksheet

The *Septic* worksheet is hidden from users by default. When displayed, there are two visible tables on this worksheet (Figure B7). Table 1 contains information on the number of septic systems (tanks), the failure rates (percentage), the ratio of persons per septic system, and calculated direct wastewater discharge flow for each watershed. The default ratio of persons per septic system is based on the number of people per U.S. home in 1990. Table 2 shows the calculated septic load together with the direct discharge load in pounds per year.

(*Tip: You can reveal the section between the two tables using Excel's unhide function to change the default per capita septic flow rate and nutrient concentrations.*)

∃ 5 • ∂•						PL.xlsm - Excel						Ā –
HOME IN	VSERT PAGE L	AYOUT FOR	MULAS DATA	REVIEW	VIEW DE	VELOPER AD	D-INS Nuar	nce PDF TEA	M			Alvi, Khalic
	- : X	√ .fx										
в	C	D	E	F	G	н		J	к		м	N
Septic Nutrie		U	L		G			5	N	L	IVI	
		ents to a stream	n is mainly from f	ailing septic sy	stems.					1		
			oad are number o			g rate (lb/hr) and	flow (cfs).					
			uted evenly acro									
										1		
1. Nutrient lo	ad from septic	systems										
	No. of Septic		Septic	Failing	Population	Direct	Failing	Direct	Failing	Direct	N Load,	P Loa
	Systems	per Septic	Failure Rate.	Septic	on Failing	Discharge	Septic Flow,	Wastewater	Septic Flow,	Wastewater	lb/hr	lb/h
		System	%	Systems	Septic	Population	gal/day	Flow	l/hr	Flow, I/hr,		
		-,					J					
W1	100	2.43	2	2	4.86	0	340.200	0.000	53.658	0.000	0.007	(
W2	0	2.43	2	0	0	0	0.000	0.000	0.000	0.000	0.000	
W3	0	2.43	2	0	0	0	0.000	0.000	0.000	0.000	0.000	
W4	0			0	0	0	0.000	0.000	0.000	0.000	0.000	(
W5	0	2.43	2	0	0	0	0.000	0.000	0.000	0.000	0.000	
	rient load in lb				Wastewater F				Load after Re			
Watershed	N Load, Ib/yr					P Load, Ib/yr				P Load, Ib/yr		E. coli, N
W1	62.18			0.00	0.00						253.89	
W2	0.00			0.00	0.00						0.00	
W3	0.00			0.00	0.00						0.00	
W4	0.00			0.00	0.00						0.00	
W5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	ots Septic	Sediment	Gullv&Streamba	nk Total I	(+) ; [4						
Feedle												

Figure B7. The *Septic* worksheet, which estimates pollutant loads from failed septic systems and direct wastewater discharge.

B.8 Sediment worksheet

The Sediment worksheet is hidden from users by default. When displayed, there are four visible tables (Figure B8) in the worksheet. Table 1 links to the *Input* worksheet for the USLE parameter values (R, the rainfall erosivity index; K, the soil erodibility factor; LS, the topographic factor; C, the cropping factor; and P, the conservation practice factor) for different types of rural land uses. STEPL does not account for gully erosion and stream bank erosion because USLE calculates sheet and rill erosion only. You can obtain soil erosion parameter values from your local Natural Resources Conservation Service office or from the National Resources Inventory (NRI) database (https://www.nrcs.usda.gov/ wps/portal/nrcs/main/national/technical/nra/nri/). Click STEPL's USLE Parameters by Land Use menu to open a summary NRI table for major land uses in each U.S. county. The worksheet calculates annual erosion in tons per acre for all the watersheds (Table 2). The sediment delivery ratio (SDR) is calculated based on watershed area (USDA-NRCS 1983). Based on whether the first checkbox is checked or not on the Input sheet (Figure 7), the SDR is calculated either using the total watershed area or using the individual subwatershed (or project) areas. The larger the area is, the smaller the SDR. The sediment output is calculated by multiplying soil erosion by the sediment delivery ratio.

Nutrient concentrations in the soil and a default enrichment ratio of 2 are used to estimate the nutrient load carried by sediment (Table 3).

Using the BMPs selected on the *BMPs* worksheet, the nutrient reduction carried by sediment is calculated in Table 4.

	B C D E F G H J K L M N O P Q R S T U V W X Y Z AA AF ment Load scalculated based on USLE equation and delivery ratio User need to modify the default USLE parameters. Terment delivery ratio (DR) is calculated using: DR=0.42*A-0.125 if A<200 acres, and DR=0.417652A+0.134958 - 0.127097 if A>=200 acres. Terment delivery ratio (DR) is calculated using: DR=0.42*A-0.125 if A<200 acres, and DR=0.417652A+0.134958 - 0.127097 if A>=200 acres. e A is the watershed area (m*). STEPL calcultes sheet and nill erosion only (using USLE) and does not account for guly erosion and stream bank erosion. Sub streshed D P R K LS C P R K SC P R			-		~		£																				
Sediment Load Sediment Load is calculated based on USLE equation and delivery ratio. Users need to modify the default USLE parameters. Sediment Load is calculated using: DR=0.42%A0 125 ff A<200 acres, and DR=0.417652A-0.134568 - 0.127037 if A>=200 acres. Where A is the watershed area (mF) STEPL calcultes sheet and rill erosion only (using USLE) and does not account for guly erosion and stream bank erosion. Input USLE parameters Watershed Cropland Pasureland Forest User Defined Individual Sub Watershed Cropland Pasureland Forest User Defined Individual Sub W1 14010 167 0.234 0.21 1401 0 167 0.234 0.04 1 1401 10 167 0.234 0.03 1 1401 0 167 0.234 0.04 1 1401 0 167 0.234 0.03 1 1401 0 167 0.234 0.04 1401 0 167 0.234 0.077 1 0 0 Watershed Cropland Pasurelane Forest User Defined Individual Sub Watershed Cropland Pasurelane Forest User Defined Sub Watershed Cropland <th>R LS C P K LS C P K LS C P R K S C P R K S C P R K S C P R K S C P R K S C P R K S C P R K S C P R K S C P R K S C P R K LS C</th> <th></th> <th></th> <th>*</th> <th>] : [</th> <th></th> <th>× ,</th> <th>Jx</th> <th></th>	R LS C P K LS C P K LS C P R K S C P R K S C P R K S C P R K S C P R K S C P R K S C P R K S C P R K S C P R K S C P R K LS C			*] : [× ,	Jx																				
Sediment load is calculated based on USLE equation and delivery ratio. Users need to modify the default USLE parameters. Sediment delivery ratio (DR) is calculated using: DR=0.42*A-0.125 if A-200 acres, and DR=0.417652A+0.134958 - 0.127097 if A>=200 acres. Where A is the watershed area (m ²). STEPL calcules shet and rill erosion only (using USLE) and does not account for gully erosion and stream bank erosion. Imput USLE parameters Watershed Cropland Pastureland Forest User Defined Individual Sub Watershed Colspan="2">Colspan="2">Individual Sub Watershed Colspan="2">Colspan="2">Individual Sub Watershed Colspan="2">Individual Sub Viti 10.10 for 0.234 (0.02 1 1400 1 0.167 0.234 (0.04 1 1400 1 0.167 0.234 (0.03 1 1400 1 0.167 0.234 0.177 1 0 0 Watershed Corpland Porest Values As a fore the top of the top of t	Rent load is calculated based on USE equation and delivery ratio. Users need to modify the default USE parameters. ment delivery ratio (DR) is calculated using: DR=0.42*A-0.125 if A<200 acres, and DR=0.417662A-0.134968 - 0.127097 if A=200 acres.	1			D	E	F	G	Н	1	J	K	L	M	0 1	P	Q	R	S	Т	U	VI	N X		Y Z	AA	AE	
Sediment delivery ratio (DR) is calculated using: DR=0.42%-0.125 if A-200 acres, and DR=0.417662A-0.134562 - 0.127097 if A>=200 acres Where A is the watershed area (mP) SEPL calculates sheet and rill erosion only (using USLE) and does not account for gully erosion and stream bank erosion. Input USLE parameters Watershed Copland Pastureland Forest User Defined Sub Watershed Copland Pasturelan Forest User Defined Sub 1 <td c<="" td=""><td>Renet delivery ratio (DR) is calculated using: DR=0.42%-0.125 if A-200 acres, and DR=0.417662A+0.134958 - 0.127097 if A>=200 acres. o A is the watershed area (mr): STEPL calcules sheet and rill erosion only (using USLE) and does not account for gully erosion and stream bank erosion. streted Cropland Pastureland Forest User Defined Individual subtract in the watershed area (mr). Sub Note: Sub Individual Note: Sub Sub Individual Note: Sub Individual Sub Sub Ind</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td>	<td>Renet delivery ratio (DR) is calculated using: DR=0.42%-0.125 if A-200 acres, and DR=0.417662A+0.134958 - 0.127097 if A>=200 acres. o A is the watershed area (mr): STEPL calcules sheet and rill erosion only (using USLE) and does not account for gully erosion and stream bank erosion. streted Cropland Pastureland Forest User Defined Individual subtract in the watershed area (mr). Sub Note: Sub Individual Note: Sub Sub Individual Note: Sub Individual Sub Sub Ind</td> <td></td>	Renet delivery ratio (DR) is calculated using: DR=0.42%-0.125 if A-200 acres, and DR=0.417662A+0.134958 - 0.127097 if A>=200 acres. o A is the watershed area (mr): STEPL calcules sheet and rill erosion only (using USLE) and does not account for gully erosion and stream bank erosion. streted Cropland Pastureland Forest User Defined Individual subtract in the watershed area (mr). Sub Note: Sub Individual Note: Sub Sub Individual Note: Sub Individual Sub Sub Ind																										
Where A is the watershed area (mi) STEPL calcules sheet and rill erosion only (using USLE) and does not account for gully erosion and stream bank erosion. Input USLE parameters Watershed Cropland Pastureland Forest User Defined Individual Number R K LS C P R K LS C C D	e A is the watershed area (m ²) STEPL calcultes sheet and nil erosion only (using USLE) and does not account for gully erosion and stream bank erosion. Dut USLE parameters Impleted Cropland Pastureland Forest User Defined Individual Not USLE P R K Individual Individual <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																											
Input USLE parameters Watershed Cropland Pastureland Forest User Defined Individual Sub W1 140.1 0.167 0.234 0.04 1 140.1 0.167 0.234 0.04 1 140.1 0.167 0.234 0.04 1 140.1 0.167 0.234 0.04 1 140.1 0.167 0.234 0.04 1 140.1 0.167 0.234 0.04 1 140.1 0.167 0.234 0.04 1 140.1 0.167 0.234 0.04 1 140.1 0.167 0.234 0.04 1 140.1 0.167 0.234 0.077 1 0.316 410 W2 140.1 0.167 0.234 0.04 1 140.1 0.167 0.234 0.177 1 0 0 W3 140.1 0.167 0.234 0.221 140.1 0.167 0.234 0.003 1 140.1	vished Cropland Pastureland Forest User Defined Individual Sub R K LS C P R K LS C																											
Watershed Cropland Pastureland Forest User Defined Individual Sub W1 140.1 0.167 0.234 0.04 1 140.1 0.167 0.234 0.04 1 140.1 0.167 0.234 0.04 1 140.1 0.167 0.234 0.04 1 140.1 0.167 0.234 0.02 1 140.1 0.167 0.234 0.02 1 140.1 0.167 0.234 0.02 1 410 0.167 0.234 0.04 1 140.1 0.167 0.234 0.03 1 140.1 0.167 0.234 0.03 1 140.1 0.167 0.234 0.03 1 140.1 0.167 0.234 0.03 1 140.1 0.167 0.234 0.03 1 140.1 0.167 0.234 0.03 1 140.1 0.167 0.234 0.03 1 140.1 0.167 0.234 0.03 1 140.1 0.167 0.234	Individual constraint Pasture land Forest User Defined Individual Sub 140.1 0.167 0.234 0.2 1 140.1 0.167 0.234 0.04 1 140.1 0.167 0.234 0.04 1 140.1 0.167 0.234 0.04 1 140.1 0.167 0.234 0.04 1 140.1 0.167 0.234 0.04 1 140.1 0.167 0.234 0.04 1 140.1 0.167 0.234 0.04 1 140.1 0.167 0.234 0.04 1 140.1 0.167 0.234 0.04 1 140.1 0.167 0.234 0.04 1 140.1 0.167 0.234 0.077 1 0 0 140.1 0.167 0.234 0.04 1 140.1 0.167 0.234 0.033 1 140.1 0.167 0.234 0.177 1 0 0 140.1 0.167 0.234 0.003		Where A is	the wat	ershed	area (I	mr). S	IEPL (calculte	es shee	et and ri	Il erosion	only	(using USI	LE) and	does not	accou	int for gu	illy eros	ion and	i strear	n bank ei	rosion.					
Watershed Cropland Pastureland Forest User Defined Individual Sub W R K LS C P R K LS C R	Individual constraint Pasture land Forest User Defined Individual Sub 140.1 0.167 0.234 0.2 1 1 1 0.167 0.234 0.177 1 0.316 410 140.1 0.167 0.234 0.4 1 1 0.167 0.234 0.177 1 0.316 410 140.1 0.167 0.234 0.04 1 1 1 0.167 0.234 0.177 1 0.316 410 140.1 0.167 0.234 0.44 1 1 0.167 0.234 0.177 1 0 0 140.1 0.167 0.234 0.44 1 1.017 0.234 0.033 1 140.1 0.167 0.234 0.077 1 0 0 140.1 0.167 0.234 0.04 1 140.1 0.167 0.234 0.077 1 0 0 140.1 0.167 0.234 <td></td> <td>4 Input IIC</td> <td></td> <td>omoto</td> <td>-</td> <td></td>		4 Input IIC		omoto	-																						
Vatershed Cropland Forest User Defined Subbarrance R K LS C P R K LS C C34	Insted Cropland Pastureland Forest User Defined Sub- R K LS C P R K LS LS LS LS LS<		1. mput 03	LE pai	amete	15											_			_	_		Individ	lual				
R K LS C P R K LS C D D	R K LS C P Rea (ac) 140.1 0.167 0.234 0.2 1 140.1 0.167 0.234 0.04 1 140.1 0.167 0.234 0.04 1 140.1 0.167 0.234 0.04 1 140.1 0.167 0.234 0.077 1 0		Watershed	Cropl	and				Past	ireland	1			Forest				User D)efined									
W1 140.1 0.167 0.234 0.2 1140.1 0.167 0.234 0.04 1140.1 0.167 0.234 0.03 1140.1 0.167 0.234 0.177 1 0.316 410 W2 140.1 0.167 0.234 0.2 1140.1 0.167 0.234 0.03 1140.1 0.167 0.234 0.177 1 0 0 W3 140.1 0.167 0.234 0.2 1140.1 0.167 0.234 0.03 1140.1 0.167 0.234 0.177 1 0 0 W3 140.1 0.167 0.234 0.04 1140.1 0.167 0.234 0.03 1140.1 0.167 0.234 0.04 1140.1 0.167 0.234 0.03 1140.1 0.167 0.234 0.03 1140.1 0.167 0.234 0.03 1140.1 0.167 0.234 0.03 1140.1 0.167 0.234 0.03 1140.1 0.167 0.234 0.03 1140.1 0.167 0.234 0.03 1140.1 0.167 0.234 <td>140 1 0 167 0 234 0.2 1 40.1 0 167 0 234 0.04 1 140.1 0 167 0 234 0.03 1 140.1 0 167 0 234 0.177 1 0.316 410 140 1 0 167 0 234 0.2 1 140.1 0 167 0 234 0.04 1 140.1 0 167 0 234 0.03 1 140.1 0 167 0 234 0.177 1 0.316 410 140.1 0 167 0 234 0.2 1 140.1 0 167 0 234 0.04 1 140.1 0 167 0 234 0.03 1 140.1 0 167 0 234 0.177 1 0 0 140.1 0 167 0 234 0.2 1 140.1 0 167 0 234 0.04 1 140.1 0 167 0 234 0.03 1 140.1 0 167 0 234 0.177 1 0 0 140.1 0 167 0 234 0.2 1 140.1 0 167 0 234 0.04 1 140.1 0 167 0 234 0.03 1 140.1 0 167 0 234 0.177 1 0 0 140.1 0 167 0 234 0.2 1 140.1 0 167 0 234 0.04 1 140.1 0 167 0 234 0.03 1 140.1 0 167 0 234 0.177 1 0 0 140.1 0 167 0 234 0.2 1 140.1 0 167 0 234 0.04 1 140.1 0 167 0 234 0.077 1 0 0 140.1 0 167 0 234 0.2 1 140.1 0 167 0 234 0.04 1 140.1 0 167 0 234 0 177 1 0 0 140.1 0 167 0 234 0.2 1 140.1 0 167 0 234 0.04 1 140.1 0 167 0 234 0 177 1 0 0 140.1 0 167 0 234 0.2 1 140.1 0 167 0 234 0.04 1 140.1 0 167 0 234 0 177 1 0 0 140.1 0 167 0 234 0.2 <</td> <td></td> <td></td> <td></td> <td></td> <td>LS</td> <td>С</td> <td>Р</td> <td></td> <td></td> <td></td> <td>C P</td> <td></td> <td></td> <td>LS</td> <td>C</td> <td>Р</td> <td></td> <td></td> <td>S</td> <td>c li</td> <td>P DF</td> <td></td> <td>ac)</td> <td></td> <td></td> <td></td>	140 1 0 167 0 234 0.2 1 40.1 0 167 0 234 0.04 1 140.1 0 167 0 234 0.03 1 140.1 0 167 0 234 0.177 1 0.316 410 140 1 0 167 0 234 0.2 1 140.1 0 167 0 234 0.04 1 140.1 0 167 0 234 0.03 1 140.1 0 167 0 234 0.177 1 0.316 410 140.1 0 167 0 234 0.2 1 140.1 0 167 0 234 0.04 1 140.1 0 167 0 234 0.03 1 140.1 0 167 0 234 0.177 1 0 0 140.1 0 167 0 234 0.2 1 140.1 0 167 0 234 0.04 1 140.1 0 167 0 234 0.03 1 140.1 0 167 0 234 0.177 1 0 0 140.1 0 167 0 234 0.2 1 140.1 0 167 0 234 0.04 1 140.1 0 167 0 234 0.03 1 140.1 0 167 0 234 0.177 1 0 0 140.1 0 167 0 234 0.2 1 140.1 0 167 0 234 0.04 1 140.1 0 167 0 234 0.03 1 140.1 0 167 0 234 0.177 1 0 0 140.1 0 167 0 234 0.2 1 140.1 0 167 0 234 0.04 1 140.1 0 167 0 234 0.077 1 0 0 140.1 0 167 0 234 0.2 1 140.1 0 167 0 234 0.04 1 140.1 0 167 0 234 0 177 1 0 0 140.1 0 167 0 234 0.2 1 140.1 0 167 0 234 0.04 1 140.1 0 167 0 234 0 177 1 0 0 140.1 0 167 0 234 0.2 1 140.1 0 167 0 234 0.04 1 140.1 0 167 0 234 0 177 1 0 0 140.1 0 167 0 234 0.2 <					LS	С	Р				C P			LS	C	Р			S	c li	P DF		ac)				
W3 140.1 0.167 0.234 0.2 140.1 0.167 0.234 0.03 140.1 0.167 0.234 0.177 1 0 0 W4 140.1 0.167 0.234 0.2 1 140.1 0.167 0.234 0.03 1 140.1 0.167 0.234 0.03 1 140.1 0.167 0.234 0.03 1 140.1 0.167 0.234 0.03 1 140.1 0.167 0.234 0.03 1 140.1 0.167 0.234 0.03 1 140.1 0.167 0.234 0.04 1 140.1 0.167 0.234 0.03 1 140.1 0.167 0.234 0.04 1 140.1 0.167 0.234 0.03 1 140.1 0.167 0.234 0.04 1 140.1 0.167 0.234 0.04 1 140.1 0.167 0.234 0.03 1 140.1 0.167 0.234 0.03 1 140.1 0.167 0.234 0.03 1 140.1 0.167 0.234 <t< td=""><td>140.1 0.167 0.234 0.2 1 40.1 0.167 0.234 0.177 1 0 0 140.1 0.167 0.234 0.22 1 140.1 0.167 0.234 0.177 1 0 0 140.1 0.167 0.234 0.24 1 140.1 0.167 0.234 0.177 1 0 0 140.1 0.167 0.234 0.22 1 140.1 0.167 0.234 0.03 1 140.1 0.167 0.234 0.177 1 0 0 140.1 0.167 0.234 0.22 1 140.1 0.167 0.234 0.003 1 140.1 0.167 0.234 0.177 1 0</td></t<> <td></td> <td>W1</td> <td>140.1</td> <td>0.167</td> <td>0.234</td> <td>0.2</td> <td>1</td> <td>140.1</td> <td>0.16</td> <td>0.234</td> <td>0.04</td> <td>1</td> <td>140.1 0.1</td> <td>167 0.23</td> <td>4 0.003</td> <td>1</td> <td>140.1</td> <td>0.167</td> <td>0.234</td> <td>0.177</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	140.1 0.167 0.234 0.2 1 40.1 0.167 0.234 0.177 1 0 0 140.1 0.167 0.234 0.22 1 140.1 0.167 0.234 0.177 1 0 0 140.1 0.167 0.234 0.24 1 140.1 0.167 0.234 0.177 1 0 0 140.1 0.167 0.234 0.22 1 140.1 0.167 0.234 0.03 1 140.1 0.167 0.234 0.177 1 0 0 140.1 0.167 0.234 0.22 1 140.1 0.167 0.234 0.003 1 140.1 0.167 0.234 0.177 1 0		W1	140.1	0.167	0.234	0.2	1	140.1	0.16	0.234	0.04	1	140.1 0.1	167 0.23	4 0.003	1	140.1	0.167	0.234	0.177							
W3 140.1 0.167 0.234 0.2 1 140.1 0.167 0.234 0.03 1 140.1 0.167 0.234 0.17 1 0 0 W4 140.1 0.167 0.234 0.2 1 140.1 0.167 0.234 0.03 1 140.1 0.167 0.234 0.03 1 140.1 0.167 0.234 0.03 1 140.1 0.167 0.234 0.03 1 140.1 0.167 0.234 0.03 1 140.1 0.167 0.234 0.03 1 140.1 0.167 0.234 0.03 1 140.1 0.167 0.234 0.03 1 140.1 0.167 0.234 0.03 1 140.1 0.167 0.234 0.03 1 140.1 0.167 0.234 0.03 1 140.1 0.167 0.234 0.03 1 140.1 0.167 0.234 0.007 1 0 0 0.03 1 140.1 0.167 0.234 0.037 1 140.1 0.167 0.234	140.1 0.167 0.234 0.2 1 40.1 0.167 0.234 0.177 1 0 0 140.1 0.167 0.234 0.22 1 140.1 0.167 0.234 0.177 1 0 0 140.1 0.167 0.234 0.24 1 140.1 0.167 0.234 0.177 1 0 0 140.1 0.167 0.234 0.22 1 140.1 0.167 0.234 0.03 1 140.1 0.167 0.234 0.177 1 0 0 140.1 0.167 0.234 0.22 1 140.1 0.167 0.234 0.003 1 140.1 0.167 0.234 0.177 1 0 <td></td> <td>W2</td> <td>140.1</td> <td>0.167</td> <td>0.234</td> <td>0.2</td> <td>1</td> <td>140.1</td> <td>0.16</td> <td>0.234</td> <td>0.04</td> <td>1</td> <td>140.1 0.1</td> <td>167 0.23</td> <td>4 0.003</td> <td>1</td> <td>140.1</td> <td>0.167</td> <td>0.234</td> <td>0.177</td> <td>1</td> <td>0</td> <td>0</td> <td></td> <td></td> <td></td>		W2	140.1	0.167	0.234	0.2	1	140.1	0.16	0.234	0.04	1	140.1 0.1	167 0.23	4 0.003	1	140.1	0.167	0.234	0.177	1	0	0				
W5 140.1 0.167 0.234 0.2 1 140.1 0.167 0.234 0.03 1 140.1 0.167 0.234 0.177 1 0 0 Z. Erosion and sediment delivery (ton/year) Watershed Cropland Pasturelan Forest User Erosion Sediment Sed. %Reduction W1 109.552 21.910 1.643 0.000 0.000 0.000 0.000 0.00	140.1 0.167 0.234 0.2 1 140.1 0.167 0.234 0.003 1 140.1 0.167 0.234 0.177 1 0 0 osion and sediment delivery (ton/year)		W3						140.1	0.16	0.234	0.04	1				1					1	0	0				
Z. Erosion and sediment delivery (ton/year) Watershed Cropland Pasturelan Forest User Erosion Sediment Sed. %Reduction W1 109.552 21.910 1.643 0.000 1.33.106 42.120 0.000 0.0 W2 0.000 0.000 0.000 0.000 0.000 0.00 W3 0.000 0.000 0.000 0.000 0.000 0.00 W4 0.000 0.000 0.000 0.000 0.000 0.0 W4 0.000 0.000 0.000 0.000 0.000 0.0	Oslon and sediment delivery (ton/year) Inshed Cropland Pasturelan Forest User Erosion Sediment %Reduction 100 552 21 910 16.43 0.000 133 106 42.120 0.000 0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 trient load from sediment (ton/year) and E, coli (MPNyear) 4. Nutrient load reduction (ton/year) and E, coli (MPNyear) 15.000 trient load from sediment (ton/year) and E, coli conc N Load P Load BOD Load E. coli Load N P BOD Reduction E. coli 0.000		W4	140.1	0.167	0.234							1				1					1	0	0				
Watershed Cropland Pasturelan Forest User Erosion Sediment Sed. %Reduction V/1 199.552 21.910 1.643 0.000 133.106 42.120 0.000 0.0 V/2 0.000 0.000 0.000 0.000 0.000 0.00 0.0 V/3 0.000 0.000 0.000 0.000 0.000 0.00 0.00 0.00 W/3 0.000 0.000 0.000 0.000 0.000 0.00 0.00 0.00 W/4 0.000 0.000 0.000 0.000 0.000 0.00 0.00 0.00	Insted Cropland PastureIan Forest User Erosion Sediment Sed. %Reduction 109.552 21.910 1.643 0.000 13.106 42.120 0.000 0.0 0.000 0.000 0.000 0.000 0.000 0.00 0.0 0.000 0.000 0.000 0.000 0.000 0.00 0.0 0.000 0.000 0.000 0.000 0.000 0.00 0.0 0.000 0.000 0.000 0.000 0.000 0.00 0.0 0.000 0.000 0.000 0.000 0.000 0.00 0.0 0.000 0.000 0.000 0.000 0.000 0.000 0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.00 trient load from sediment (ton/year) and E. coli (MPNyear) E. coli Load P Load BOD Load E. coli Load N P BOD Reduction [E. coli 0.080 0.031 0.160		W5	140.1	0.167	0.234	0.2	1	140.1	0.16	0.234	0.04	1	140.1 0.1	167 0.23	4 0.003	1	140.1	0.167	0.234	0.177	1	0	0				
Watershed Cropland Pasturelan Forest User Erosion Sediment Sed. %Reduction VH1 109.552 21.910 1.643 0.000 133.106 42.120 0.000 0.0 VV2 0.000 0.000 0.000 0.000 0.000 0.00 0.00 V3 0.000 0.000 0.000 0.000 0.000 0.00 0.00 0.00 V3 0.000 0.000 0.000 0.000 0.000 0.00 0.00 0.00 V44 0.000 0.000 0.000 0.000 0.000 0.00 0.00 0.00	Insted Cropland PastureIan Forest User Erosion Sediment Sed. %Reduction 109.552 21.910 1.643 0.000 1.643 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Itrient load from sediment (ton/year) and E. coli (MPN/year) Itrient load from sediment (ton/year) and E. coli concl N Load P Load BOD Load E. coli Load N P BOD Reducti																											
Watershed Cropland Pasturelan Forest User Erosion Sediment Sed. %Reduction V/1 109.552 21.910 1.643 0.000 133.106 42.120 0.000 0.0 V/2 0.000 0.000 0.000 0.000 0.000 0.00 0.0 V/3 0.000 0.000 0.000 0.000 0.000 0.00 0.0 V/4 0.000 0.000 0.000 0.000 0.000 0.0	Insted Cropland PastureIan Forest User Erosion Sediment Sed. %Reduction 109.552 21.910 1.643 0.000 13.106 42.120 0.000 0.0 0.000 0.000 0.000 0.000 0.000 0.00 0.0 0.000 0.000 0.000 0.000 0.000 0.00 0.0 0.000 0.000 0.000 0.000 0.000 0.00 0.0 0.000 0.000 0.000 0.000 0.000 0.00 0.0 0.000 0.000 0.000 0.000 0.000 0.00 0.0 0.000 0.000 0.000 0.000 0.000 0.000 0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.00 trient load from sediment (ton/year) and E. coli (MPNyear) E. coli Load P Load BOD Load E. coli Load N P BOD Reduction [E. coli 0.080 0.031 0.160																											
W1 109.552 21.910 1.643 0.000 133.106 42.120 0.000 0.0 W2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 W3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 W4 0.000 0.000 0.000 0.000 0.000 0.000 0.00	109 552 21 910 1 643 0.000 133 106 42.120 0.000 0.00 0.000																											
W2 0.000 0.	0 000 0.000 0 000 triangle difference BOD E. coli concl N Load P Load BOD Load E. coli Load N P BOD Reduction E. coli 0 0 000 0 0 000 0 0 000 0 0 000 0 0 000 0 0 000 0 0 000 0 0 000 0 0 000																											
W3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 W4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 <th< td=""><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>			1																								
W4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																											
	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 trient load from sediment (ton/year) and E. coli (MPN/year) 4. Nutrient load reduction (ton/year) and E. coli (MPN/year) rshed N conc.% P conc.% BOD E. coli conc N Load P Load BOD Load E. coli Load N P BOD Reduction E. coli 0.080 0.031 0.160 0.000 0.026 0.135 0.000 0.000 0.000 0.000																											
	Intrinct load from sediment (ton/year) and E, coli (MPN/year) 4. Nutrient load reduction (ton/year) and E, coli (MPN/year) rshed N conc.% P conc.% BOD E, coli conc N Load P Load BOD Load E, coli Load N P BOD Reduction E, coli 0.080 0.031 0.160 0.000 0.025 0.135 0.000 0.000 0.000 0.000																											
	rshed N conc.% P conc.% BOD E. coli conc N Load P Load BOD Load E. coli Load N P BOD Reduction E. coli 0.080 0.031 0.160 0.000 0.067 0.026 0.135 0.000 0.000 0.000 0.000 0.000 0.000		VV5	1	0.000		0.000		0.000	/	0.000	1 0	.000	0.0		0.000		0.0										
	rshed N conc.% P conc.% BOD E. coli conc N Load P Load BOD Load E. coli Load N P BOD Reduction E. coli 0.080 0.031 0.160 0.000 0.067 0.026 0.135 0.000 0.000 0.000 0.000 0.000 0.000																											
3. Nutriant load from radiment (ton/wear) and E. coli (MDN/wear)	rshed N conc.% P conc.% BOD E. coli conc N Load P Load BOD Load E. coli Load N P BOD Reduction E. coli 0.080 0.031 0.160 0.000 0.067 0.026 0.135 0.000 0.000 0.000 0.000 0.000 0.000		3 Nutrient	load fr	om co	dimon	t Iton/w	e free	nd E	oli (M	DN/voa	r)							A Nutri	ont lo	ad rod	uction It	on/voar) ar	d E c		(voar)		
	0.080 0.031 0.160 0.000 0.067 0.026 0.135 0.000 0.000 0.000 0.000 0.000 0.000								<u>IIU L. (</u>					Pload	BOL	Load	E col									year)		
				in con					0.160																	00		
			W2				0.031				0.000					0.000		0.000										

Figure B8. The *Sediment* worksheet, which uses USLE and the sediment delivery ratio to calculate sediment load from various land uses.

B.9 Reference and CountyData worksheets

The *Reference* and *CountyData* worksheets are hidden from users by default. The reference worksheet contains a standard animal weight table modified from the ASAE standard handbook (ASAE 1998). Animal weight data are used to calculate the animal equivalent unit in the *Animal* worksheet. The reference sheet also contains all the references that STEPL uses for estimating the default input parameter values.

The *CountyData* worksheet has a collection of state and county names, and an USLE parameter value summary by U.S. county (Figure B9). The data on this worksheet are used as default values for USLE table in the *Input* worksheet after you select a state name and a county name.

	F	G	Н	1	0	P	Q	R	S
1	State_name-Name	Rainfall (inches	RainDays	Runoff	Rmean	Kmean	LSavg	Cavg	Pavg
2	Alabama-Autauga	60	87.3	19	374.7	0.20	0.29	0.14	0.99
3	Alabama-Baldwin	60	104.4	25.875	550.0	0.21	0.18	0.20	0.99
4	Alabama-Barbour	60	89.2	18	376.7	0.19	0.56	0.15	0.94
5	Alabama-Bibb	60	97.8	21	375.0	0.25	1.09	0.05	0.99
6	Alabama-Blount	60	95.5	24	325.0	0.26	0.77	0.10	0.96
7	Alabama-Bullock	60	97.2	18	375.0	0.25	0.36	0.05	0.96
8	Alabama-Butler	60	97.8	18	425.0	0.24	0.43	0.10	0.95
9	Alabama-Calhoun	60	97.8	23	325.0	0.27	0.36	0.15	1.00
10	Alabama-Chambers	60	97.8	20	346.8	0.21	0.85	0.02	1.00
11	Alabama-Cherokee	60	100.8	22.75	300.0	0.29	0.56	0.20	0.85
12	Alabama-Chilton	60	90.4	20	374.9	0.24	0.44	0.10	0.94
13	Alabama-Choctaw	60	96.3	22	425.0	0.27	0.52	0.03	0.97
14	Alabama-Clarke	60	98.4	19	450.0	0.27	0.30	0.08	1.00
15	Alabama-Clay	60	98.3	26.333	350.0	0.20	0.62	0.02	1.00
16	Alabama-Cleburne	60	97.3	21.333	325.0	0.30	0.55	0.06	0.96
17	Alabama-Coffee	60	99.7	20	450.0	0.18	0.38	0.14	0.84
18	Alabama-Colbert	60	97.8	24.5	300.0	0.29	0.33	0.23	0.99
19	Alabama-Conecuh	60	93.3	20	449.8	0.21	0.30	0.14	0.91
20	Alabama-Coosa	60	97.8	24	350.3	0.20	0.54	0.03	0.99
21	Alabama-Covington	60	100	21	474.7	0.20	0.36	0.09	0.93
22	Alabama-Crenshaw	60	97.8	18	425.0	0.19	0.36	0.15	0.90
23	Alabama-Cullman	60	101.7	24	325.0	0.25	0.65	0.06	0.96
24	Alabama-Dale	60	97.8	20	424.9	0.17	0.42	0.19	0.86
25	Alabama-Dallas	60	96.4	18	399.9	0.25	0.21	0.12	1.00
26	Alabama-De Kalb	60	115	26.333	300.0	0.24	0.62	0.15	0.91
27	Alabama-Elmore	60	97.8	19	375.0	0.23	0.29	0.18	0.93
28	Alabama-Escambia	60	93.3	23	525.0	0.20	0.22	0.19	0.90
29	Alabama-Etowah	60	96.9	24	325.0	0.27	0.37	0.09	0.96
30	Alabama-Fayette	60	98.5	22	350.0	0.29	0.60	0.11	0.95
31	Alabama-Franklin	60	97.8	24	323.4	0.22	0.43	0.07	0.98
32	Alabama-Geneva	60	98.2	21.333	450.0	0.19	0.37	0.19	0.88
33	Alabama-Greene	60	97.5	20	373.8	0.29	0.23	0.04	1.00
34	Alabama-Hale	60	97.2	20	372.3	0.27	0.26	0.04	0.98
35	Alabama-Henry	60	89	18	400.0	0.17	0.42	0.22	0.90
36	Alabama-Houston	60	97.8	20	424.8	0.18	0.27	0.21	0.90
37	Alabama-Jackson	60	108.8	28	275.0	0.24	0.24	0.15	0.98
38	Alabama-Jefferson	60	98.3		350.0	0.28	0.67	0.02	1.00
00	Alabama I	00	07.0		250.0	0.01	0.50	0.05	0.00

Figure B9. *CountyData* worksheet, which contains USLE parameter values by U.S. county.

Appendix C: STEPL Worksheets Summary

1. Input Worksheet

Function:

This worksheet collects input for STEPL. Average annual precipitation, number of days with measurable precipitation, correction factors for precipitation and number of days with precipitation, and USLE soil erosion parameter values are automatically entered once the user selects a state name, a county name, and a weather station name.

User input:

<u>Required</u>: State name, county name, weather station name, land use areas, percent of pavement in feedlots, agriculture animals, number of months that manure is applied to croplands, number of septic systems in each watershed, and septic system failure rates.

<u>Optional</u>: Treat all the subwatersheds as parts of a single watershed, groundwater load calculation, number of people that discharge wastewater directly, reduction percentage of direct wastewater discharge, soil hydrologic group, reference runoff curve numbers, nutrient concentrations in runoff and soils, urban land use distribution, and

area/amount/frequency/reduction of cropland irrigation

Visible tables:

Input watershed land use area (ac) and precipitation (in) Input agricultural animals Input septic system and illegal direct wastewater discharge data

Input septic system and megal direct wastewater discharge data

Modify the Universal Soil Loss Equation (USLE) parameters

Select average soil hydrologic group (SHG)

Reference runoff curve number (may be modified)

Detailed urban reference runoff curve number (may be modified)

Nutrient concentration in runoff (mg/L)

Nutrient concentration in shallow groundwater (mg/L)

Input or modify urban land use distribution

Input irrigation area (ac) and irrigation amount (in)

Hidden tables:

None

2. General Input Data Worksheet

Function:

This is the first worksheet generated by the main program, STEPL.exe. It shows the number of watersheds, land uses, pollutants, and animal types the user specified in the VB interface. Users may use it to verify general input information. Note that it also contains the date and time the worksheet was generated.

User input:

None

Visible tables: Summary of initial user's input Hidden tables: None

3. Land&Rain Worksheet

Function:

Calculates surface runoff (inches) and runoff volume (acre-feet) for land uses in each watershed using the Soil Conservation Service (SCS, now Natural Resources Conservation Service or NRCS) curve number method.

User input:

Rainfall initial abstraction factor (default = 0, range 0 to 0.2) Visible tables

- Input watershed land use area (ac) and precipitation (in)
- Select average soil hydrologic group
- Reference runoff curve number (may be modified)
- Annual runoff by land uses (ac-ft)
- Nutrient concentration in runoff (mg/L)
- Reference soil infiltration fraction for precipitation
- Calculated infiltration volume (ac-ft)

Hidden tables:

- Curve number CN
- Calculated runoff (in)
- Detailed urban land use area (ac)
- Urban runoff curve number
- Runoff by urban land use (in)
- Urban annual runoff (ac-ft)
- Irrigation runoff (in)
- Runoff reduction by land uses (ac-ft) (for irrigation reduction in cropland)
- Infiltration fraction based on SHG
- Calculated infiltration (in)

Notes:

- Tables for precipitation, number of days with precipitation, and runoff are provided through a menu under the customized menu bar "STEPL."
- A reference table for correction factors for precipitation and number of days with precipitation is provided through a menu under the customized menu bar "STEPL."

4. Animal Worksheet

Function:

Inputs animal-related information for each land use in each watershed. User input:

Wild animal densities in agricultural areas (default to zeros)

Visible table:

Agricultural animals

Hidden tables:

- Wildlife density in cropland
- Estimated wildlife and AEU in watersheds
- Total animal equivalent units and nutrient concentrations
- AEU and nutrient in runoff (mg/l)

5. BMPs Worksheet

Function:

Allows users to select best management practices (BMPs) for cropland, pastureland, forest, user-defined land, feedlot, and urban.

User input:

- Select appropriate BMPs for different land uses
- Specify partial area (% area) BMP applications
- Use the *Urban BMP Tool* for setting and changing LIDs/BMPs for urban land uses
- Use the *Gully and Streambank Erosion* for defining the dimensions for each gully formation and impaired streambank in a separate *Gully&Streambank* worksheet
- Optional: Enter the watershed-wide combined BMP efficiencies Visible tables
- BMPs and efficiencies for different pollutants on cropland
- BMPs and efficiencies for different pollutants on pastureland
- BMPs and efficiencies for different pollutants on forest
- BMPs and efficiencies for different pollutants on user-defined land use
- BMPs and efficiencies for different pollutants on feedlot
- BMPs and efficiencies for different pollutants on urban
- Combined watershed BMP efficiencies from the BMP calculator.

6. Urban Worksheet

Function:

Calculates pollutant load from urban runoff and potential load reductions from various BMPs using the runoff volume x concentration approach.

User input:

Urban BMP Tool: Select urban LID/BMPs and the application areas for the selected urban land uses.

Visible tables:

- (Urban) pollutant concentration in runoff (mg/l)
- Urban land use distribution
- Effective BMP application area
- Selected urban BMPs
- Percentage of BMP effective area (%)
- Pollutant loads from urban in lb/yr

Hidden tables:

- Urban runoff (ac-ft)
- Total urban N load (kg)
- Selected urban N reduction efficiency
- Urban N reduction (kg)
- Total urban P load (kg)
- Selected urban P reduction efficiency
- Urban P reduction (kg)
- Total urban BOD load (kg)
- Selected urban BOD reduction efficiency
- Urban BOD reduction (kg)
- Total urban TSS load (kg)
- Selected urban TSS reduction efficiency
- Urban TSS reduction (kg)

7. Gully&Streambank Worksheet

Function:

Calculates pollutant load from gully and streambank erosion and potential load reductions due to the BMPs implementation.

User input:

The dimensions, BMP efficiency, and soil textural class for each gully formation and impaired streambank.

Visible tables:

- Gully dimensions in the different watersheds
- Impaired streambank dimensions in the different watersheds Hidden tables:
- Load and load reduction (lb/year, GU=Gully; SB=Streambank) in the different watersheds

8. Feedlots Worksheet

Function:

Calculates pollutant load from feedlots based on animal types, weight, and average rainfall.

User input:

Input young animal numbers if available

Visible tables:

- Select a range of paved percentage for feedlots
- Agricultural animals
- Load from feedlot (lb/yr)

Hidden tables:

- Feedlot load calculation
- Ratio of nutrients produced by animals relative to 1,000 lb. of slaughter steer

9. *Septic* Worksheet

Function:

Computes pollutant (nitrogen, phosphorus, and BOD) load from failing septic systems and illegal direct discharges.

User input:

None

Visible tables:

- Nutrient load from septic systems (lb/hr)
- Septic nutrient load in lb/yr

Hidden tables:

Assumed average flow rate and concentrations reaching the stream (from overcharge of the failed septic systems and direct wastewater discharge)

10. Sediment Worksheet

Function:

- Calculates erosion and sediment load from land and watersheds using USLE.
- Calculates load reduction in sediment and nutrients from BMPs.

User input:

None

The sediment delivery ratio (SDR) is calculated either using the total watershed area or the individual subwatershed (or project) area (the default) on the basis of the user's selection on the *Input* page, which has a checkbox for treating all the subwatersheds as parts of a single watershed.

Visible tables:

- Input USLE parameters
- Erosion and sediment delivery (ton/year)
- Nutrient load from sediment (ton/year)
- Nutrient load reduction (ton/year)

Hidden tables:

- BMPs and efficiencies
- Erosion and sediment delivery after BMPs (ton/year)
- Sediment and sediment nutrients by land uses (tons/year)

11. Total Load Worksheet

Function:

Summarizes pollutant loads from different worksheets by watersheds and land uses.

User input:

None

Visible tables:

- Total load by watershed(s)
- Total load by land uses (with BMP)

Hidden tables:

- Nutrient load from runoff (lb/year) without BMPs
- Nutrient load reduction in runoff with BMPs (lb/yr)
- Nutrient and sediment load by land uses with BMPs (lb/yr)
- Load from groundwater by land uses with BMP (lb/year)

12. Graphs Worksheet

Function:

Plots the pollutant and sediment load by land use and watersheds.

User input:

None

Visible charts:

- Comparison of nutrient loads among the watersheds
- Comparison of sediment loads among the watersheds
- Comparison of nutrient reductions among the watersheds
- Comparison of sediment reductions among the watersheds
- Total nitrogen load by land uses (with BMP) (lb/yr)
- Total phosphorus load by land uses (with BMP) (lb/yr)
- Total BOD load by land uses (with BMP) (lb/yr)
- Total sediment load by land uses (with BMP) (t/yr)

Hidden tables (copied from the *Total Load* worksheet):

- Copy of total load by land uses (with BMP)
- Copy of total load by watersheds

13. BMPList Worksheet

Function:

Displays BMP efficiency data and provides users the ability to add, change, or delete the data.

User input:

None or new BMP names and pollutant removal efficiencies.

Visible tables:

List of BMP names and pollutant removal efficiencies for cropland, pastureland, forest, user-defined land, feedlots, and urban land.

Hidden tables:

None

14. Reference Worksheet

Function:

Provides necessary reference data or parameter values used for the calculations in other sheets, including typical animal weight.

User input:

None

Visible tables:

Standard animal weight table modified from ASAE standard handbook (ASAE 1998)

Hidden tables: None

15. CountyData Worksheet

Function:

Provides necessary default county data or parameter values used for the calculations in other sheets.

User input: None Visible tables: State names, precipitation, number of rain days and runoff by U.S. counties, and 1992 USLE parameters by U.S. counties. Hidden tables: None

16. WeatherData Worksheet

Function:

Provides necessary default weather station data used for the calculations in other sheets.

User input:

None

Visible tables:

State name, station ID, precipitation correction factor, rain days correction factor, annual precipitation, annual precipitation greater than 5mm, annual rain days, annual rain days exceeding 5mm of precipitation.

Hidden tables:

None

17. USLE_Parms Worksheet

Function:

Provides Universal Soil Loss Equation (USLE) parameters by state-county used for the calculations in other sheets.

User input:

None Visible tables:

State Com

State-County, Rmean, Kmean, LSavg, Cavg, Pavg

Hidden tables:

None

18. *ManureApplication* Worksheet

Function:

Calculates the area-weighted frequency of manure application based on user-defined input.

User input:

Total acres, acres in each treatment area, number of months manure is applied to each treatment area.

Visible tables:

Estimated area-weighted frequency of application

Hidden tables:

None

19. CombinedBMPEfficiency Worksheet

Function:

Calculates the area-weighted combined efficiency of multiple BMPs in parallel across a watershed.

User input:

Total land use acres, land use type, acres of each treatment area, BMP type in each treatment area

Visible tables:

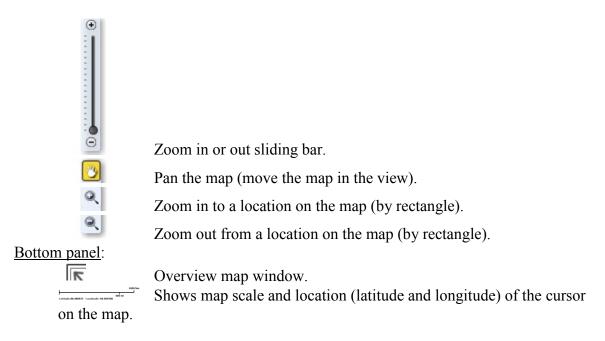
Estimated area-weighted combined efficiency of multiple BMPs Hidden tables:

None

Appendix D: Guide for Using STEPL On-line Data Access System

The "STEPL Model Input Data Server" uses ArcGIS Viewer for Flex 2.1. The ArcGIS Viewer for Flex is a ready-to-deploy, configurable client application that is built on the ArcGIS API for Flex. The Viewer application is designed to work with ArcGIS Server and ArcGIS Online Web services. The web interface (Figure D1) of this "On-line Data Access System" has the following key features:

Top panel: Search watershed boundary feature is selected by default. •


Add bookmark to the current extent of the map or zoom to the previously saved book mark location. Search watershed boundary and report STEPL model input data. More... Identify feature on the map (select at least one from the list of background maps). 8 Print the current view of the map. Mid panel: An extent of United States of America elevation map is shown by default. <u>Right panel</u>: Select background map and additional GIS data layers as an optional feature. Streets Aerial Elevation Switch background map to view street, aerial, or elevation map. More... National Hydrography Dataset Plus NHDPlus Catchments Smoothed Watershed Boundary Boundaries and Places Select check box to view additional background map layers. Left panel:

Zoom to full extent of the map (to see the entire map). Pan the map (right, left, up, and down).

Zoom to previous or next extent of the map.

STEPL 4.4 User's Guide

D.1. Steps for using the STEPL on-line data access system

- **Step 1.** On the watershed search window (Figure D1), select a State name from the state list. The map will zoom to the State you have selected.
- Step 2. Select a County name from the County list (Figure D1). The map will zoom to

the County you have selected. Click the run report **under the button** to obtain a report in a new window which provides data for the entire county, or go to Step 3.

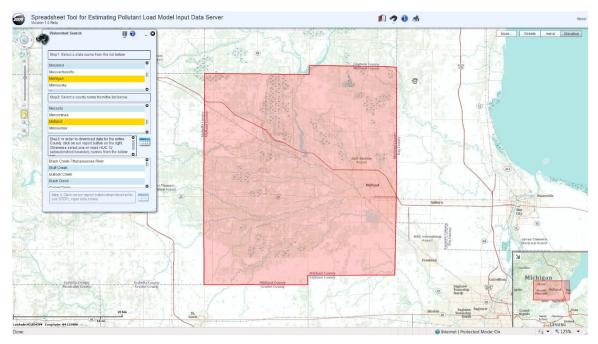


Figure D1. STEPL on-line data access system: ArcGIS Viewer for Flex 2.1 interface

- Step 3. Select one or more subwatershed(s) names from the HUC12 subwatershed list (Figure D1). The map will zoom to and will show the selected HUC12 subwatershed(s).
- **Step 4.** Click the run report button to obtain a report in a new window. The report will provide the following tables for the selected HUC12 subwatershed(s) you have selected:
 - Information for selected HUC12 subwatersheds (based on <u>USDA-NRCS</u>, <u>USGS</u>, and <u>USEPA</u>)
 - Landuse area (in acres) for selected HUC12 subwatershed(s) (based on <u>NLCD</u> and USDA Cropland Data Layer (CDL), 2011)
 - Agricultural animals distribution for selected HUC12 subwatershed(s) (based on <u>USDA Census of Agriculture</u>, 2012)
 - Septic system data for selected HUC12 subwatershed(s) (based on septic system surveys by <u>National Small Flows Clearinghouse</u> in 1992 and 1998)
 - Hydrological soil group for selected HUC12 subwatershed(s) (based on <u>STATSGO database</u>)

The table format is consistent with the required table format in the STEPL model.

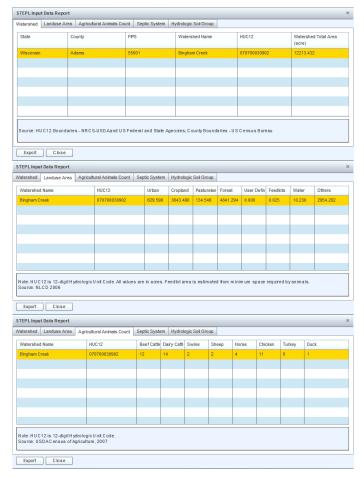


Figure D2. STEPL on-line data access system: STEPL input data tables

Landuse areas in *Landuse Area* table include feedlots. Feedlot areas are estimated based on the following minimum space requirement by farm animals:

- Beef cow: 25 ft^2
- Dairy cow: 40 ft^2
- Swine: 15 ft^2
- Chicken: 1 ft²
- Horse: 45 ft^2
- Sheep: 8 ft²
- Turkey: 6 ft^2
- Duck: 3 ft^2

Step 5. Export the results from the report tables to an Excel spreadsheet for use in STEPL model to estimating the pollutant loads.

D.2. Rules/Assumptions made for STEPL on-line data access system

- The user can select only one State and one County name from each list.
- The user can select one or more HUC12 subwatershed(s) from the list.
- The results are generated at HUC12 level.
- The landuse data source is NLCD 2006.
- The agricultural animal data source is at the County level and is summarized at the HUC12 level based on the pastureland area weighted ratio.
- The septic system data source is at the County level and is summarized at the HUC12 level based on the low-density residential area weighted ratio.
- The Hydrologic Soil Group (HSG) is summarized at the HUC12 subwatershed.

D.3. The URLs for the Web services used in this application

- Street Map: <u>https://server.arcgisonline.com/ArcGIS/rest/services/World_Street_Map/MapServer</u>
- Aerial Map: <u>https://server.arcgisonline.com/ArcGIS/rest/services/World_Imagery/MapServer</u>
- Elevation Map: <u>https://server.arcgisonline.com/ArcGIS/rest/services/World_Topo_Map/MapServer</u>
- Boundaries and Places: <u>https://server.arcgisonline.com/ArcGIS/rest/services/Reference/World_Boundaries_and_Places_Alternate/MapServer</u>
- State and County Boundaries: <u>https://services.nationalmap.gov/ArcGIS/rest/services/govunits/MapServer</u>
- Watershed Boundary: https://watersgeo.epa.gov/ArcGIS/rest/services/OW/WBD_WMERC/MapServer
- NHDPlus Catchments (Simplified): <u>https://watersgeo.epa.gov/arcgis/rest/services/NHDPlus_NP21/Catchments_NP21_Simpli_fied/MapServer</u>

 National Hydrography Dataset Plus: <u>https://watersgeo.epa.gov/arcgis/rest/services/NHDPlus_NP21/NHDSnapshot_NP21_Lab</u> <u>eled/MapServer</u>

Appendix E: STEPL Underlying Formulas Documentation

STEPL Underlying Formulas

Contents

1.	Introduction	2
2.	Surface Runoff	3
3.	Nutrient Load from Runoff	5
4.	Sediment Loading Calculations	7
5.	Nutrient and Sediment Runoff Loads with BMP application	8
6.	Groundwater	.12
7.	Feedlot Calculations	.13
8.	Septic Load	.15
9.	Gully Erosion Load	.17
10.	Impaired Streambank Load	.18

1. Introduction

The purposed of this document is to provide all relevant equations and methods used in the STEPL spreadsheet program. STEPL employs simple algorithms to calculate nutrient and sediment loads from different land uses and the load reductions that would result from the implementation of various best management practices (BMPs), including Low Impact Development practices (LIDs) for urban areas. It computes surface runoff; nutrient loads, including nitrogen, phosphorus, and 5-day biological oxygen demand (BOD5); and sediment delivery based on various land uses and management practices. The land uses considered are urban land, cropland, pastureland, feedlot, forest, and a user-defined type. The pollutant sources include major nonpoint sources such as cropland, pastureland, farm animals, feedlots, urban runoff, and failing septic systems. The types of animals considered in the calculation are beef cattle, dairy cattle, swine, horses, sheep, chickens, turkeys, and ducks. For each watershed, the annual nutrient loading is calculated based on the runoff volume and the pollutant concentrations in the runoff water as influenced by factors such as the land use distribution and management practices. The annual sediment load (from sheet and rill erosion only) is calculated based on the Universal Soil Loss Equation (USLE) and the sediment delivery ratio. The sediment and pollutant load reductions that result from the implementation of BMPs are computed using the known BMP efficiencies.

Total Load from various Sources

Equation 1

- = Urban + Cropland + Pastureland + Forest + Feedlots
- + User Defined + Septic + Gully + Streambank
- + Groundwater

2. Surface Runoff

The Runoff Curve Number (CN) method is used to estimate runoff from urban land, cropland, pastureland, forest and a user-defined landuse. The runoff equation used is:

$$Q = \frac{(P - Ia)^2}{(P - Ia) + S} \text{ or } Q = \frac{(P - \alpha \cdot S)^2}{P - \alpha \cdot S + S}$$
 Equation 2

Where:

Q = Surface Runoff (in/day)

P = Rainfall (in) per event.

STEPL calculates the average rainfall per even as follows:

P = (Annual Rainfall x Rainfall correction factor) ÷ (Rain days x Rain day correction factor)

 $P = (AR \cdot R_{cor}) / (Rdays \cdot RD_{cor})$ Equation 3

Where:

AR = Average Annual rainfall

Rdays = Average rain days in a year

 R_{cor} = Rainfall correction factor refers to the percentage of rainfall events that exceed 5 mm/event

 RD_{cor} = Rain day correction factor refers to the percentage of rain day events that generate runoff

Ia = Initial abstraction which determines the initial rainfall retention on the land surface. Ia is given by α S (where α ranges from 0 to 0.2). Note that STEPL uses zero initial abstraction factor as a default value. This is because rainfall and rainy days correction factors are already considering that runoff occurs when it rains more than 5mm in a day, a criterion used to calculate the correction factors. For example, for a value of $\alpha = 0$ Equation 2 reduces to P²/(P+S)

S = Potential maximum retention after runoff begins (in). S is related to the soil and cover conditions of the drainage area through the CN. CN has a range of 0 to 100, and S is related to CN by:

$$S = \left(\frac{1000}{CN}\right) - 10$$

Equation 4

The estimated average daily runoff volume is multiplied by the corrected number of average rain days in a year to calculate the annual runoff volume.

Annual Runoff Volume
$$(ac - ft) = \frac{Q}{12} \times A \times (Rdays \cdot RD_{cor})$$
 Equation 5

Where:

Q = surface runoff (in)

A = area of landuse (acres)

Rdays = Average rain days in a year

 RD_{cor} = Rain day correction factor refers to the percentage of rain day events that generate runoff

STEPL also includes the Irrigation runoff contribution to Croplands when irrigation is applied. The irrigation runoff depth (Q_{irr}) is calculated using Equation 1. The water depth per irrigation (inches) is used instead of the rainfall (P). The annual runoff volume for cropland is calculated as the sum of the surface runoff volume and irrigation volume.

Annual Runoff Volume Cropland
$$(ac - ft)$$

= Runoff Volume of Cropland + Irrigated Runooff volume
= $\frac{Q}{12} \times A \times (Rdays \cdot RD_{cor}) + \frac{Q_{irr}}{12} \times A_{irr} \times IF$

Where:

Q_{irr} = Irrigation runoff (in)

A_{irr} = Cropland acres irrigated

IF = Irrigation frequency (#/year)

Urban load is calculated based on the loading from nine separate landuse categories – Commercial, Industrial, Institutional, Transportation, Multi-Family, Single-Family, Urban-Cultivated, Vacant (developed), and Open Space. The surface runoff depth for each Urban category is calculated using Equation 5.

3. Nutrient Load from Runoff

<u>Urban</u>

The following equations refers to the total load calculation for Urban land. The loading is calculated using the calculated annual runoff volume and assumed nutrient and *E. coli* EMC concentration in runoff, for each of the nine urban landuse categories

$W_N = [V \cdot C_N] \times 4047 \cdot 0.3048/1000$	Equation 7
$W_P = [V \cdot C_P] \times 4047 \cdot 0.3048/1000$	Equation 8
$W_{BOD} = [V \cdot C_{BOD}] \times 4047 \cdot 0.3048/1000$	Equation 9
$W_{TSS} = [V \cdot C_{TSS}] \times 4047 \cdot 0.3048/1000$	Equation 10
$W_{ecoli} = [V \cdot C_{ecoli}] \times 4047 \cdot 0.3048/1000$	Equation 11

Where:

 W_N , W_P , W_{BOD} , W_{ecoli} , W_{TSS} = annual N, P, BOD, *E. coli*, and TSS (sediment) loads from Urban land (Kg)

V = the total calculated annual runoff volume from the various urban landuse categories (ac-ft)

 C_N , C_P , C_{BOD} , C_{ecoli} , C_{TSS} = urban pollutant (N, P, BOD, *E. coli*, and TSS) concentration in runoff in mg/L

Cropland and Pasture

The following equations refer to the total load calculation for Cropland and Pasture land. The loading is calculated using the calculated annual runoff and assumed nutrient and *E. coli* concentration in runoff.

$$W_N = V \times \left[\left(1 - \frac{N_m}{12} \right) \cdot C_N + \left(\frac{N_m}{12} \right) \cdot C_{N_{mn}} \right] \times 4047 \cdot \frac{0.3048}{454}$$
Equation 12

$$W_P = V \times \left[\left(1 - \frac{N_m}{12} \right) \cdot C_P + \left(\frac{N_m}{12} \right) \cdot C_{P_{mn}} \right] \times 4047 \cdot \frac{0.3048}{454}$$
Equation 13

$$W_{BOD} = V \times \left[\left(1 - \frac{N_m}{12} \right) \cdot C_{BOD} + \left(\frac{N_m}{12} \right) \cdot C_{BOD_{mn}} \right] \times 4047 \cdot \frac{0.3048}{454}$$
Equation 14

$$W_{ecoli} = V \times \left[\left(1 - \frac{N_m}{12} \right) \cdot C_{ecoli} + \left(\frac{N_m}{12} \right) \cdot C_{ecoli_{mn}} \right] \times 4047 \cdot \frac{0.3048}{454} \cdot 10 \cdot 453592$$
 Equation 15

Where:

W_N, W_P, W_{BOD}, W_{ecoli} = annual N, P, BOD, and *E. coli* loads from Cropland and Pasture land (lbs)

V = the calculated annual runoff volume (ac-ft)

N_m= number of months manure is applied

 C_N , C_P , C_{BOD} , $C_{ecoli} = N$, P, BOD or *E. coli* nutrient concentration in agricultural area or pasture area in mg/L

 C_{N_nm} , C_{P_mn} , $C_{BOD_mn} = N$, P, BOD or *E. coli* nutrient concentration in manured agricultural area or manured pasture area in mg/L

Note that nutrient concentrations are calculated based on input of number of agricultural animals in the watershed. Animal Equivalent Counts (AEU; 1 AEU = 1000 lb/ac) are first calculated based on typical animal mass (lb) and counts of animals. The calculated AEU for each watershed is then used to estimate the nutrients in cropland and pasture runoff, based on literature values (for manured and non-manured areas).

Forested and User Defined

The Forested and User-Defined landuse annual runoff loading is calculated using the calculated annual runoff and assumed nutrient concentration in runoff for forested landuse.

$W_N = [V \cdot C_N] \times 4047 \cdot 0.3048/454$	Equation 16
$W_P = [V \cdot C_P] \times 4047 \cdot 0.3048/454$	Equation 17
$W_{BOD} = [V \cdot C_{BOD}] \times 4047 \cdot 0.3048/454$	Equation 18
$W_{ecoli} = [V \cdot C_{ecoli}] \times 4047 \cdot 0.3048/454 \cdot 10 \cdot 453592$	Equation 19

Where:

 W_N , W_P , W_{BOD} , W_{ecoli} = annual N, P, BOD, and *E. coli* loads from Forested or User-Defined landuse (lbs)

V = the calculated annual runoff volume (ac-ft)

 C_N , C_P , C_{BOD} , $C_{ecoli} = N$, P, BOD or *E. coli* nutrient concentration in Forested or User-Defined landuse area

4. Sediment Loading Calculations

Sediment loads (from Cropland, Pastureland, Forest, and User-defined landuses) are calculated based on the Universal Soil Loss Equation (USLE) equation and sediment delivery ratio (DR). The USLE equation to calculate the mean annual soil loss (E) is calculated as follows:

$$E = R \cdot K \cdot LS \cdot C \cdot P \cdot DA$$
Equation 20

Where:

E = the computed annual soil loss (sheet and rill erosion) in tons/year

R = the rainfall factor

K = the soil erodibility factor

LS = the topographic factor which combines the slope length and gradient

C = the cropping management factor

P = the erosion control practice factor

 $W_{sed} = E \cdot DR$ Equation 21

Where:

DR = sediment delivery ratio,

Wsed = Sediment Load in tons/year

Sediment delivery ratio is calculated using:

$DR = 0.42 \cdot A^{-0.125}$	<i>if A</i> < 200 <i>acres</i>	Equation 22

Where:

A = watershed area (mi^2).

STEPL calculates only sheet and rill erosion using USLE. Gully erosion and stream bank erosion are calculated separately.

5. Nutrient and Sediment Runoff Loads with BMP application

Pasture, Forested, and User-Defined

The nutrient, BOD, *E. coli*, and sediment load calculations after BMP application for Pasture, Forested and User-Defined landuse are given below:

$W_{N1} = W_N - W_N \cdot e + SED_N \times 2000$	Equation 24
$W_{P1} = W_P - W_P \cdot e + SED_P \times 2000$	Equation 25
$W_{BOD1} = W_{BOD} - W_{BOD} \cdot e + SED_{BOD} \times 2000$	Equation 26
$W_{ecoli1} = W_{ecoli} - W_{ecoli} \cdot e + SED_{ecoli}$	Equation 27
$SED = E \cdot DR (1 - e) \cdot 2000$	Equation 28

Where:

W_N, W_P, W_{BOD}, W_{ecoli} = annual N, P, BOD or *E. coli* loads (lbs)
SED = sediment load (lbs/year)
SED_N, SED_P, SED_{BOD}, SED_{ecoli}, are the nutrient loading (tons/year) from the sediment

 SED_N , SED_P , SED_{BOD} and SED_{ecoli} are calculated as follows:

$SED_N = E \cdot DR (1 - e) \cdot \% soil N conc \cdot 2/100$	Equation 29
$SED_P = E \cdot DR (1 - e) \cdot \% soil P conc \cdot 2/100$	Equation 30
$SED_{BOD} = E \cdot DR (1 - e) \cdot \% soil BOD conc \cdot 2/100$	Equation 31
$SED_{ecoli} = E \cdot DR (1 - e) \cdot \%$ soil ecoli conc/100	Equation 32

Where:

e = BMP efficiency

<u>Cropland</u>

The nutrient, BOD, *E. coli*, and sediment load calculations after BMP application for Cropland are as follows:

$$W_{N1} = (W_N - (V_{irr} \cdot C_N) \times 4047 \cdot 0.3048/454) \cdot e + (V_{irr} \cdot C_N) \times 4047$$
Equation 33
$$\cdot 0.3048/454 + SED_N \times 2000$$
Equation 24

$$W_{P1} = (W_N - (V_{irr} \cdot C_P) \times 4047 \cdot 0.3048/454) \cdot e + (V_{irr} \cdot C_P) \times 4047$$
 Equation 34
 $\cdot 0.3048/454 + SED_P \times 2000$

$$W_{BOD1} = (W_{BOD} - (V_{irr} \cdot C_{BOD}) \times 4047 \cdot 0.3048/454) \cdot e + (V_{irr} \cdot C_{BOD}) \times 4047$$
Equation 35
 $\cdot 0.3048/454 + SED_{BOD} \times 2000$

$$W_{ecoli1} = (W_{ecoli} - (V_{irr} \cdot C_{ecoli}) \times 4047 \cdot 0.3048/454 \cdot 10 \cdot 453592) \cdot e$$

$$+ (V_{irr} \cdot C_{ecoli}) \times 4047 \cdot 0.3048/454 \cdot 10 \cdot 453592 + SED_{ecoli}$$
Equation 36

Where:

<u>Urban</u>

The nutrient, BOD, *E. coli*, and sediment load calculations after BMP application for Urban land areas are given below. A separate loading value is calculated for each of the Urban landuse categories depending on whether a BMP is applied on it or not. The resulting loading from each of the nine Urban landuse categories is then summed up to calculate the total Urban load.

$W_{N1} = W_N - W_N \cdot e \cdot \% A_{eff}$	Equation 37
$W_{P1} = W_P - W_P \cdot e \cdot \% A_{eff}$	Equation 38
$W_{BOD1} = W_{BOD} - W_{BOD} \cdot e \cdot \% A_{eff}$	Equation 39
$W_{ecoli1} = W_{ecoli} - W_{ecoli} \cdot e \cdot \% A_{eff}$	Equation 40
$W_{TSS1} = W_{TSS} - W_{TSS} \cdot e \cdot \% A_{eff}$	Equation 41

Where:

 W_{N1} , W_{P1} , W_{BOD1} , W_{ecoli1} , W_{TSS1} = annual N, P, BOD, *E. coli*, and TSS (sediment) loads from Urban land (Kg) after application of BMP

 W_N , W_P , W_{BOD} , W_{ecoli} , W_{TSS} = annual N, P, BOD, *E. coli*, and TSS (sediment) loads from Urban land (Kg)

e = BMP efficiency application to the Urban landuse category

 $%A_{eff}$ = percentage of BMP effective area for each of the Urban landuse categories.

Total N Load (lb/year) =
$$2000 \times \sum_{i=1}^{9} W_{N1}$$
Equation 42Total P Load (lb/year) = $2000 \times \sum_{i=1}^{9} W_{P1}$ Equation 43Total BOD Load (lb/year) = $2000 \times \sum_{i=1}^{9} W_{BOD1}$ Equation 44Total ecoli Load (lb/year) = $2000 \times \sum_{i=1}^{9} W_{ecoli1}$ Equation 45Total TSS Load (lb/year) = $2000 \times \sum_{i=1}^{9} W_{TSS1}$ Equation 46

Where:

i refers to each of individual Urban landuse category

STEPL also calculates flow volume reductions for selected Urban LID and infiltration BMP practices for each of the Urban landuse categories.

The approach involves calculation of BMP storage capacity and the runoff volume per event. The computed BMP storage capacity is then compared with the runoff volume per event to determine the captured volume per event for the BMP (based on the minimum of both the computed volumes.

BMP storage capacity $(ac - ft) = DA \cdot PI \cdot RD/12$	Equation 47
Runoff volume per event (ac – ft) = $DA \cdot PI \cdot P/12$	Equation 48
Captured volume per event = minimum(BMP storage capacity, Runoff volume)	Equation 49

Captured volume per year (gal) = (Per_captured_Vol_per_Event/100 · DA_Runoff_volume) × 325850.58	Equation 50
Where:	
DA = BMP drainage area (acre)	
PI = Percent imperviousness within the drainage area, assuming 100% by default	(%)
RD = Impervious area runoff depth to be captured (in)	
P = Rainfall (in) per event.	
Percent Captured Volume per Event = (BMP storage capacity/Runoff volume per event)x100	Equation 51
Note that when the capture volume per event is equal to the runoff volume in Equation 49 percent captured volume is 100 percent.	then the
DA_Runoff_volume = LU_Runoff_volume * BMPDAAr / LUArea	Equation 52

In addition, STEPL also provides an estimate of the required BMP surface area or the required number of BMP units depending the type of BMP chosen.

Required BMP surface area (acres) =
$$\frac{BMP \text{ storage capacity(ac-ft)}}{Typical design BMP \text{ storage depth(ft)}}$$
 Equation 53

Required BMP units = $\frac{BMP \text{ storage capacity}(ac-ft) \cdot 325850.58 \text{ (gal/acft)}}{Typical design unit volume (e.g., rain barrel) (gal)}$ Equation 54

6. Groundwater

Groundwater infiltration is estimated as a fraction of the precipitation. STEPL uses reference soil infiltration fractions for precipitation (P) for the various landuses based on hydrologic soil group (HSG) to calculate the amount of infiltration to groundwater.

$$Infiltration (in) = Infiltration Fraction \times P (in)$$
 Equation 55

The infiltrated volume or groundwater volume is then calculated as follows:

 $Infiltration Volume (ac-ft) = \frac{Infiltration (in)}{12} \times A (ac) \times (Rdays \cdot RD_{cor})$ Equation 56

Note that for urban areas, in order to calculate the amount infiltrated, the pervious areas are first calculated. The pervious area is calculated based on the difference between the total urban area and impervious area. The impervious area is calculated based on assumed percent imperviousness for the various urban landuse categories.

Pervious Urban Area(ac)	Equation 57
$=$ Total Urban Area $-$ (Commercial \cdot 0.85 $+$ Industrial \cdot 0.7	
+ Institutional · 0.5 + Transportation · 0.95 + Multi – Family	
\cdot 0.75 + Single – Family $*$ 0.3 + Urban – Cultivated \cdot 0.01	
+ Vacant – developed \cdot 0.7 + Open Space \cdot 0.01)	

Groundwater volumes from Feedlot areas are calculated using the calculated infiltration from Urban areas and the Feedlot pervious area. The Feedlot pervious area is calculated based on the contribution from Feedlot areas and a fraction based on Feedlot percent paved area as shown below:

Feedlot Pervious Area(ac)	
= Feedlot Area × pervious fraction based on feedlot % paved	

Equation 58

Feedlot Percent Paved and associated fraction used in STEPL

recurse recent raved and associated fraction as	
Percent paved	Pervious Fraction
0-24%	0.875
25-49%	0.625
50-74%	0.375
75-100%	0.125

7. Feedlot Calculations

Pollutant loads from feedlots in STEPL are based on animal types, weight, and average rainfall. Runoff volume from the feedlots are calculated based on contributing area in acres, feedlot percent paved, and average event rainfall in inches.

$$V(ac-in) = Q(in) \cdot A(ac)$$
Equation

Where:

A = contributing feedlot area (acres)

Q = surface runoff (inches) and is calculated as

The surface runoff (Q) calculations are based on the SCS runoff curve number method as discussed in Section 2-Surface Runoff. Note that the CN used in the runoff calculations is estimated based on the selected range of percent imperviousness in the feedlot.

Nutrient contributions in cropland from animals are used to derive load estimates for feedlots. The equivalent animal units (EAU) for N, P, BOD, and *E. coli* (*E. coli* currently is just a place holder) are first calculated using the equation below for each watershed.

$$EAU = No. \times Factor$$

Where:

No. = number of animals

Factor = Ratio of nutrients produced by animals relative to 1000 lb. of slaughter steer

The Animal Unit Density (AUD) and % manure pack using the following equation:

AUD = EAU / A

If AUD < 100, percent manure pack = AUD;

If AUD > 100, percent of manure pack = 100%

Finally, the pollutant concentration of in the feedlot runoff is calculated using the following equation:

 $C_{feedlot} = Fraction of manure pack \times Constant$

59

Equation 61

Equation 62

Equation 60

Where:

 $C_{\text{feedlot}} = \text{runoff concentration from Feedlot (mg/L)}$

Fraction of manure pack = manure pack/100

Constant is pollutant specific and based on 100% manure pack. N constant = 1500 mg/L, P constant = 300 mg/L, and BOD constant = 2000 mg/L

The calculated runoff volume and concentration from Feedlots (Equation 59 and Equation 62) are then used to calculate the Feedlot loading.

 $W_{feedlot}(lb/year) = V (ac-in) \cdot (Rdays \cdot RD_{cor}) \cdot C_{feedlot}(mg/L) \cdot 0.227$ Equation 63

8. Septic Load

The septic load is calculated as the sum of the failing septic load and the direct wastewater loading.

Septic Load
$$\left(\frac{lb}{year}\right)$$
 Equation 64
= $\left[\text{Failing Septic Load } \left(\frac{lb}{hr}\right) + \text{ Direct Wastewater Load } \left(\frac{lb}{hr}\right)\right]$
 $\times 24 \times 365$

The Failing Septic Load and Direct Wastewater Load calculations are shown below.

Failing Septic Load

The failing septic load is calculated using the failing septic flow and an average concentration reaching the stream from septic overcharge. The failing septic flow is calculated using the number of septic systems (tanks), the failure rates (percentage), and the ratio of persons per septic system.

Failing Septic Load
$$\binom{lb}{hr}$$
Equation 65= $\left[Failing Septic Flow \left(\frac{L}{hr} \right) \right]$ × Avg. concentration reaching stream from septic overcharge $\binom{mg}{L} \right] / 453592$ /453592Where:Failing Septic Flow (L/hr)Equation 66= Population of Failing Septic (persons)
× Typical Septic Overcharge Flow Rate (gal/day/person)
× (3.785412/24)Equation 66The population of failing septic is calculated as follows:Equation 67Population of Failing Septic (persons)
= No. of Septic Systems × Population per Septic System
× Septic Failure Rate%Equation 67

Typical Septic Overcharge Flow Rate in STEPL is 70 gal/day/person (range of 45 to 100).

The average concentration reaching the stream from septic overcharge are determined based on ranges observed in literature for Total Nitrogen, Total Phosphorous, and Organics (BOD) (as specified in the STEPL model). Note *E. coli* is included but currently a placeholder as no values are populated.

69

Direct Wastewater Load

Direct Wastewater Load
$$\left(\frac{lb}{hr}\right)$$
 Equation 68
= [Direct Wastewater Flow $\left(\frac{L}{hr}\right) \times Avg. concentration(\frac{mg}{L})$]
/453592

Direct wastewater flow is calculated based on per capita flow 75 gal/day/person (range of 75 to 125) and the specified direct discharge population as:

Direct Wastewater Flow
$$\left(\frac{L}{hr}\right)$$
 Equation
= percapita flow (gal/day/person)
× direct discharge population(persons) × (3.785412/24)

Average concentrations reaching the stream from wastewater load as specified in STEPL for Total Nitrogen, Total Phosphorous, and Organics (BOD). Note *E. coli* is included but currently a placeholder as no values are populated.

Gully Erosion Load 9.

The annual load due to Gully Erosion (GE) for each watershed is calculated as the sum of the all the impaired Gully loading as follows:

$$\begin{array}{ll} \mbox{GE Sediment Load (lb/year)} &= 2000 \times \sum_{i=1}^{n} [(TW + BW) \cdot D \cdot L \cdot Wt/T/2] & \mbox{Equation 70} \\ \mbox{GE Nitrogen Load (lb/year)} & \mbox{Equation 71} \\ &= 2000 \times \% \mbox{ Soil N Conc} \times \sum_{i=1}^{n} [(TW + BW) \cdot D \cdot L \cdot Wt \cdot NCF/T/2] \\ \mbox{GE Phosphorous Load (lb/year)} & \mbox{Equation 72} \\ &= 2000 \times \% \mbox{ Soil P Conc} \times \sum_{i=1}^{n} [(TW + BW) \cdot D \cdot L \cdot Wt \cdot NCF/T/2] \\ \mbox{GE BOD Load (lb/year)} & \mbox{Equation 73} \\ &= 2000 \times \% \mbox{ Soil BOD Conc} \times \sum_{i=1}^{n} [(TW + BW) \cdot D \cdot L \cdot Wt \cdot NCF/T/2] \\ \mbox{Where:} \\ TW = top width (ft) \end{array}$$

BW = bottom width (ft)D = depth (ft)L = length (ft)Wt. = Soil Dry Weight (ton/ft3) – based on soil textural class NCF = Nutrient correction factor – based on soil textural class

T = time (number of years) that the gully has taken to form the current size

STEPL uses default 0.08, 0.031, and 0.160 % soil nitrogen, phosphorous and BOD values which can be updated.

The gully erosion load reduction is calculated using a specified BMP efficiency due to gully stabilization (0 to 1) as follows:

GullyErosionLoad Reduction = GullyErosionLoad × BMP Efficiency Equation 74

10. Impaired Streambank Load

The annual load due to Streambank (SB) Erosion for each watershed is calculated as the sum of the all the impaired stream bank loading as follows:

SB Sediment Load (lb/year) =
$$2000 \times \sum_{i=1}^{n} L \cdot H \cdot LRR \cdot Wt$$
Equation 75SB Nitrogen Load (lb/year) = $2000 \times \%$ Soil N Conc $\times \sum_{i=1}^{n} L \cdot H \cdot LRR \cdot Wt \cdot NCF$ Equation 76SB Phosphorous Load (lb/year) = $2000 \times \%$ Soil P Conc $\times \sum_{i=1}^{n} L \cdot H \cdot LRR \cdot Wt \cdot NCF$ Equation 77SB BOD Load (lb/year) = $2000 \times \%$ Soil BOD Conc $\times \sum_{i=1}^{n} L \cdot H \cdot LRR \cdot Wt \cdot NCF$ Equation 78

Where:

L = length (ft)

H = height (ft)

LRR = lateral recession rate (ft/yr) – based on categorization of LRR i.e. slight, moderate, severe or very severe

Wt. = Soil Dry Weight (ton/ft3) – based on soil textural class

NCF = Nutrient correction factor – based on soil textural class

STEPL uses default 0.08, 0.031, and 0.160 % soil nitrogen, phosphorous and BOD values.

The stream bank load reduction is calculated using a specified BMP efficiency due to stream bank stabilization (0 to 1) as follows:

StreamBankLoad Reduction = StreamBankErosionLoad × BMP Efficiency Equation 79

Appendix F: Release Notes

RELEASE NOTES:

March 2018

Version 4.4 release.

- 1. Updated runoff depth calculation formula. The revised equation removed the hardcoded coefficient of 0.8 in the denominator, which is valid only when the specified initial abstraction is 0.2. The revised equation is general and takes into account the specified initial abstraction coefficient (set to zero by default which is recommended for STEPL) and correctly accounts for the initial abstraction.
- 2. Fixed Feedlot Pervious area calculation to correctly calculate the area.
- 3. Fixed load reduction calculation formula references for Forested and User-defined landuse. Beta release had incorrect references to the BMP reduction efficiencies for Forested and User-defined landuse.
- 4. Added a reporting/logging capability to export/save intermediate Combined BMP efficiency calculations.

September 2017

Version 4.4 (beta) was released.

Updates in this version include:

- 1. adding new agricultural BMPs (cropland and pastureland) and updating the pollutant efficiency numbers for nutrients.
- 2. adding new weather stations and updating the weather data for the entire country.
- 3. adding manure application on pastureland. The previous versions provide manure applications on cropland only.
- 4. adding a new worksheet to calculate the average number of months for manure application with varying application frequency across the watershed.
- 5. adding flow volume reductions for infiltration practices on urban land use.
- 6. adding a new worksheet to calculate the combined efficiency from multiple types of management practices on the same landuse category.
- 7. adding a simple optimization algorithm (Excel Solver) to identify the extent of treatment areas to meet the load reduction target from the given BMP types (customized spreadsheet model).
- 8. adding two customized spreadsheet models with 10 watersheds and 30 watersheds
- 9. adding a new pollutant E.coli as a place holder for next release.
- 10. adding a reporting function to export the model input/output summary tables and plots in a word document.

March 2014

Version 4.3 was released.

Updates in this version include:

- 1. updating Puetro Rico weather dataset (increased stations from 5 to 21) using the daily NCDC rain gages.
- 2. summarizing average annual rainfall (1981-2013) at the station level (not at county) and counting the days if rainfall > 5 mm/day.
- 3. filtering the weather stations pick list in STEPL spreadsheet model based on the user selected state.

April 2013

Version 4.2 was released.

Updates in this version include:

1. adding Puetro Rico dataset at the local assessment unit boundaries.

2. modifying BMP calculator tool for a bug fix.

3. adding an option to create STEPL model in Excel 2010 format.

December 10,2006

Version 4.1 beta was released.

New features added:

1. The program was modified to work with Excel 2007.

October 28, 2006

- 1. Users can now calculate gully and streambank erosion in the new Gully&Streambank worksheet.
- 2. Users can now calculate pollutant loading from shallow groundwater using the groundwater option on the Input worksheet.
- 3. Users now have the option (on the Input worksheet) to calculate pollutant loads for:(1) the entire watershed (treat all the subwatersheds as the pats of a larger
 - watershed, considering sediment transport routing loss in the watershed), or (2) the individual watershed or project and (treat subwatersheds or groups of
 - (2) the individual watershed or project area (treat subwatersheds or areas as independent project areas, no watershed transport routing is considered).

September 29, 2005

1. Users can now specify partial area BMP applications in the BMPs worksheet.

March 29, 2005

1. A bug related to the urban BMP application area is fixed

September 24, 2004

Version 3.0 beta was released.

New features added:

- 1. Rainfall correction factors have been compiled and incorporated into the model.
- 2. Model can now estimate load reductions from projects dealing with direct wastewater discharge
- 3. Model can now estimate load reductions from projects dealing with runoff reduction from irrigation conservation.
- 4. Model can now estimate load reductions from projects dealing with Low Impact Development.
- 5. Users can now copy the calculated BMP efficiencies from BMP calculator to STEPL Excel sheets.

July 28, 2003

Version 2.2 was released.

The best management practice database can be changed, added, and deleted through the BMPList worksheet.

December 14, 2001

A BMP calculator was developed (Visual C++) and linked to the STEPL in this release. Changes were made in STEPL to use the composite BMP efficiencies from the BMP calculator.

October 18, 2001

This is the readme file of STEPL 2.0

1. System Requirements

Windows 95/ 98/ NT/2000. MS Excel 97/2000. MS Excel 2000 is recommended. 30 MB hard disk space. 2. Installing STEPL

To install STEPL, you run the setup.exe in the distribution CD. STEPL can also be downloaded as a zipped file. If you downloaded the STEPL2.zip file, unzip it to a temporary directory and then run the setup.exe program. It is recommended that you install STEPL in the default STEPL folder on the target drive. Reboot your computer.

- 3. Tips
 - Set your Excel security level to Medium.
 - Enable Macros when you start a file created by STEPL program.
 - Study the 'sample.xls" or "sample97.exe" examples with the User's Guide.
 - As you become more and more familiar with STEPL, you may change parameter values in the optional input tables, or view the hidden sheets and tables.

Contact stepl@tetratech.com for more information about STEPL.

Tetra Tech 10306 Eaton Place, Suite 340 Fairfax, VA 22030 (703) 385-6000