EPA Community Air Toxics Grant: PAH Measurements Using Passive and Active Techniques <u>"CALIBRATING CONCERN ABOUT PAHS IN URBAN AIR USING MONITORING AND MODELING"</u>

Kristie M Ellickson , Cassie-R-McMahon, Gregory C Pratt, Carl Herbrandson, Mike J Krause, Christina M Schmitt, Stephanie Drier, Charles J Lippert

Co-Investigators

Minnesota Pollution Control Agency

Sampling Locations

Active and Passive Air Sampling

Sampling Locations

Chemical Analysis

• Extract: XAD-4 and Quartz fiber filters

– Dionex ASE-350

- Separate: Varian Select PAH column
 - 30m x 0.25mm (0.14 μ m film thickness)
- Detect: Agilent 5977 GC/MS, SIM (selective ion monitoring)

Calibration of Passive Samplers

Sampling Rate (m³ day⁻¹) = $\frac{C_{PAS}}{C_{AIR}*Sampling Duration (days)}$

C_{PAS} = mass of specific PAH on passive sampler media (ng)

C_{AIR} = concentration of specific PAH in air (ng m⁻³) by SEASON AND STUDY LOCATION

Air Sampling Rates for Passive Samplers by Season Active Sampling Rate is 173

Air Sampling Rates for Passive Samplers by Study Location Active Sampling Rate is 173

Collocated Naphthalene Results at Near Roadway

Near Roadway Site_962_south_active (ng/m3)

Collocated Benzo(a)pyrene Results at Near Roadway

Near Roadway Site_962_south_active (ng/m3)

MNRiskS (Minnesota Risk Screening)

A multi-source, air pollution risk model

Developed by

Lakes Environmental Consultants, Ontario

and Minnesota Pollution Control Agency

Total Measured PAHs and Mean Modeled PAHs within a 1km Buffer

average modeled

Total Measured PAHs and Average Modeled PAHs within a 1km Buffer

Percent Benzo[a]Pyrene Equivalent Potency by Site and PAH

Percent Benzo[a]Pyrene Equivalent Potency by Site and PAH

BEFORE CLEAN-UP

AFTER CLEAN-UP

Anderson School_963_not collocated_active Mille Lacs_3051_not collocated_active Near Roadway Site_962_north_active Near Roadway Site_962_south_active

Thanks! Questions?

PAHs in Air Project Website: <u>http://www.pca.state.mn.us/yqq4pfk</u>

kristie.ellickson@state.mn.us

<u>Funding</u>: U.S. EPA Community Air Toxics Ambient Monitoring Grant # XA00E00976

<u>Passive Monitors</u>: donated by Oregon State University, Simonich Environmental Chemistry Laboratory

