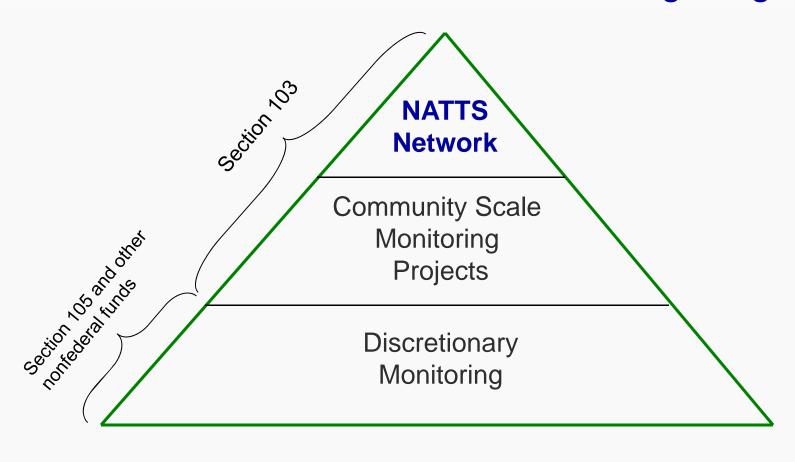
Air Toxics Ambient Monitoring

National Air Toxics Trends Station (NATTS) Network

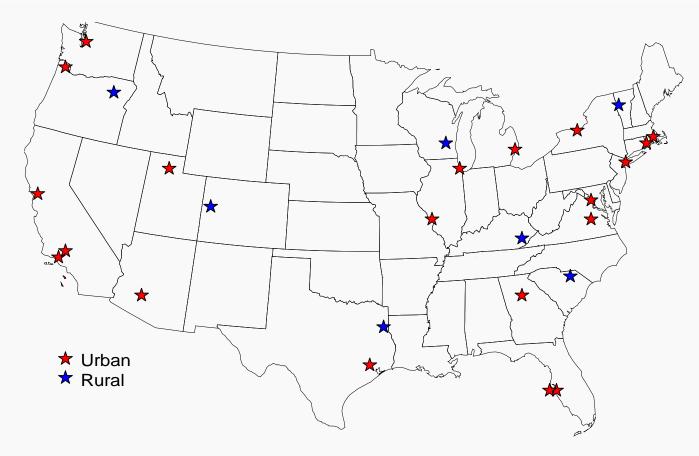
M.N. Jones, OAQPS/AQAD



Agenda

- ✓ Program Overview
- **✓** NATTS
 - Overview
 - Data Reporting Assessment
 - Network Assessment
- √ Conclusion

National Air Toxics Ambient Monitoring Program



NATTS Objectives / Data Uses

- ✓ Provide quality assured, standardized ambient data
 - Identify and assess trends / program progress
 - Ground truth air quality and human exposure models
 - Direct input into source-receptor models
 - Assess exposure and risk

NATTS Network

U.S. Environmental Protection Agency

Minimum Required NATTS Analytes

VOCs

Acrolein

Benzene

Chloroform

1,3-butadiene

Vinyl Chloride

Perchloroethylene

Carbon Tetrachloride

Trichloroethylene

1,2-dichloropropane

Dichloromethane

Carbonyls

Formaldehyde

Acetaldehyde

PAHs

Benzo(a)pyrene

Naphthalene

PM10 Metals

Nickel compounds

Arsenic compounds

Cadmium compounds

Manganese compounds

Beryllium compounds

Lead compounds

TSP Hexavalent Chromium

Other Key Requirements

- √ Sampling
 - 1 in 6 day frequency
 - o 10% field blanks
- ✓ Analysis
 - Specific methods and target MDLs
 - 10% replicate analyses
- ✓ Reporting
 - Data to AQS within 120 days
 - Data below MDL

Data Reporting Assessment: What We Did

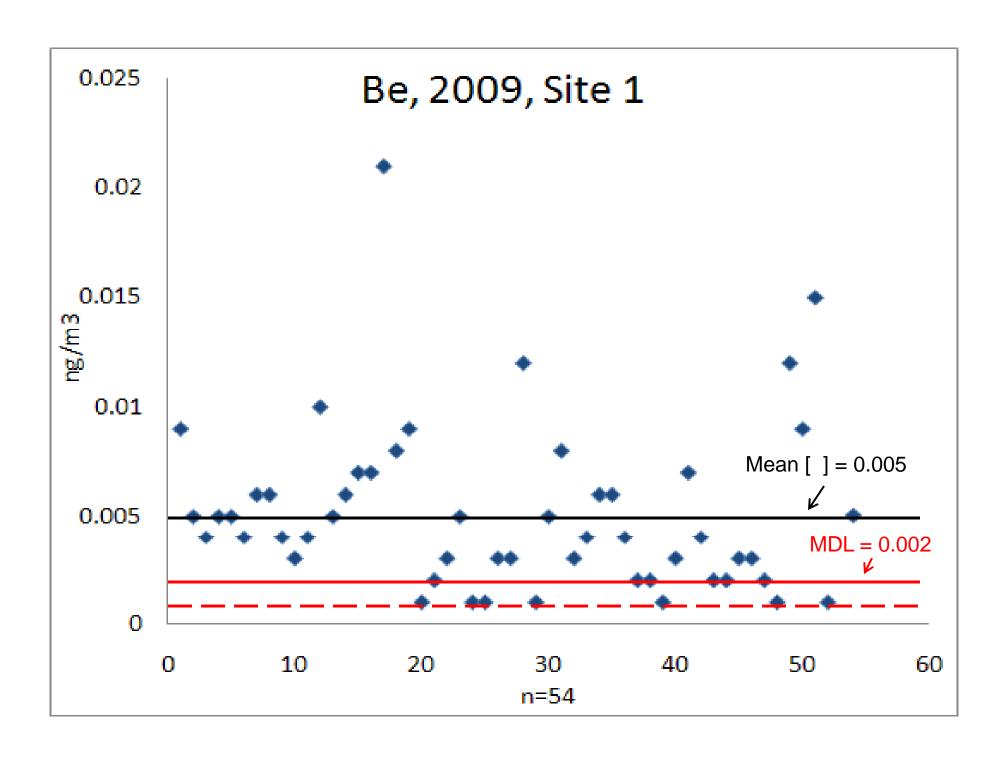
- ✓ In anticipation of network assessment, OAQPS conducted data "pre-screen" (Data Reporting Assessment)
 - Data retrieval
 - Nineteen required analytes
 - All NATTS (2003 2009)
 - Assessed
 - Requisite data present
 - MDLs
 - Data completeness
 - Data censoring, flagging, etc.

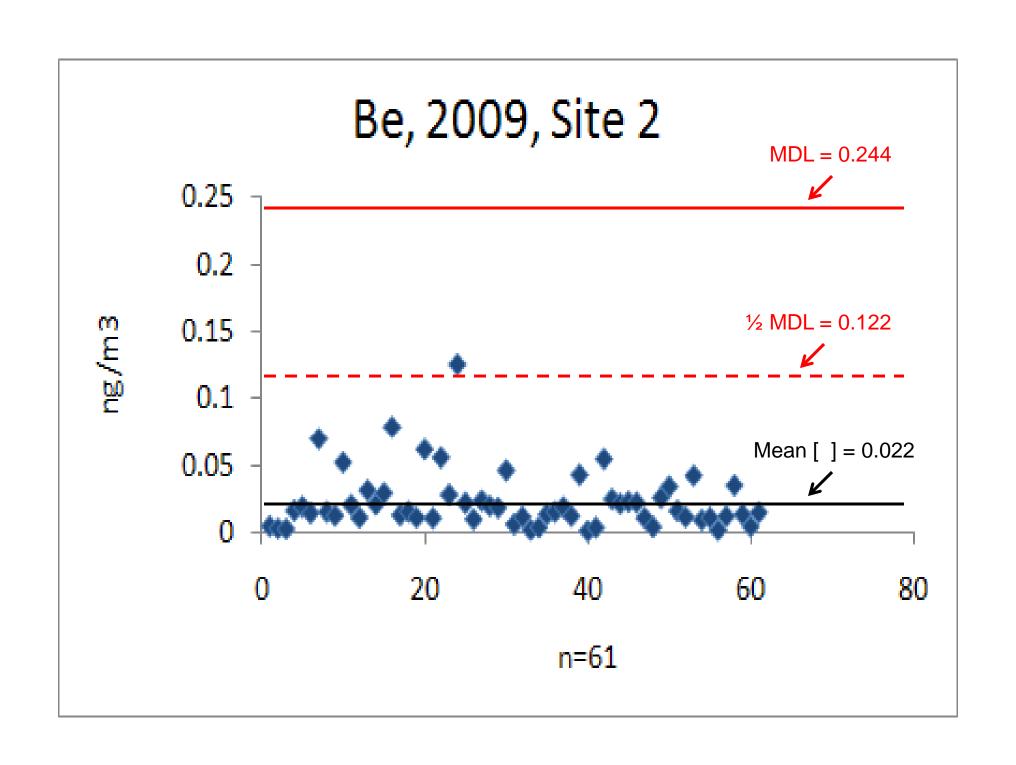
Data Reporting Assessment: What We Found

- ✓ Most sites monitored / reported for all requisite HAPs
- ✓ Data completeness generally good
- ✓ Data censoring not prevalent
- ✓ Data flagging spotty / inconsistent
- ✓ MDLs
 - Not everyone reports them
 - o Good news: significant improvement with time

	NA	TTS	MDI	L Rat	ios (Rep	orte	d vs.	Tar	get):	Tw	o Sit	es, 2	2003	- 20	09
SIte A	Year	1,3-Butadiene	Acrolein	Benzene	Carbon tetrachloride	Chloroform	Tetrachloroethylene	Trichloroethylene	Vinyl chloride	Acetaldehyde	Formaldehyde	Arsenic PM 10	Beryllium PM10	Cadmium PM10	Manganese PM10	Nickel PM10
	2003	11.1		6.76	47	4.89	20	5.38	11.6			10.9	1.2	0.9	0.11	1.19
	2004	8.49	10.8	5.2	36.7	3.82	15.4	4.15	8.98	2.39	1.1	4.28	0.44	0.3	0.04	0.41
	2005	1.37	10.3	1.06	9.08	0.87	2.46	0.75	1.54	2.27	1.05	1.34	0.1	0.04	0.02	0.07
	2006	0.72	10.2	0.87	3.61	0.44	1.23	0.44	0.65	2.26	1.04	1.42	0.1	0.04	0.02	0.07
	2007	0.55	0.62	0.78	2.47	0.33	1.05	0.41	0.6	2.21	1.02	1.44	0.1	0.04	0.02	0.07
	2008	0.5	0.55	0.68	1.13	0.18	0.78	0.3	0.49	2.21	1.02	1.52	0.1	0.04	0.02	0.07
					2 20	0 24	4 00	0.47		2 40			-0.04		0.04	0.00
	2009	0.7	0.56	0.63	2.39	0.34	1.09	0.47	0.6	2.19	1.01	1.12	0.04	0.02	0.01	0.03
e B	Year	1,3-Butadiene	Acrolein 95.0	Benzene	Carbon tetrachloride	Chloroform	Tetrachloroethylene	Trichloroethylene	Vinyl chloride	Acetaldehyde	Fornaldehyde	Arsenic PM 10	Beryllium PM10	Cadmium PM10	Manganese PM10	Niccel PM10
<u>+</u>	2003	5. 1,3-Butadiene		90 Benzene	.51 Carbon tetrachloride	Chloroform	9 Tetrachloroethylene	Trichloroethylene	Vinyl chloride	90 Acetaldehyde	S Fornaldehyde	oo Arsenic PM 10	90.0 Beryllium PM10	Cadmium PM10	Manganese PM 10	Niccel PM10
a	2003 2004	1.3-Butadiene	Acrolein	3.06 80.1	Section 2.5 Carbon tetrachloride	1.36 0.45	7.7 90.9 Tetrachloroethylene	7.0.7 Trichloroethylene	Vinyl chloride	80.0 80.0 80.0	© 0.0 Eornaldehyde	10.0 E0.0 Arsenic PM10	60.0 90.0 Beryllium PM10	Cadmium PM10	0.0 Wanganese PM10	Niccel PM10
<u>+</u>	2003 2004 2005	1,33-Butadiene	Acrolein	3.06 1.08 0.97	S.75 Carbon tetrachloride	Chloroform 1.36 0.45 0.48	27.2 1.73	Trichloroethylene	3.13 0.89 1.24	90.0 80.0 70.0	80.0 80.0 80.0 80.0	0.00 80.00 41.000 80.00	0.06 0.09 0.26	2004 10.0 10.0	0.0 0.0 0.0 0.0 0.0 0.0	0.13 0.13 0.11
<u>+</u>	2003 2004 2005 2006	1,33-Butadiene	Acrolein Acrolein	3.06 1.08 0.97 0.28	15.8 9.32 57.5 1.68	Ulproform 1.36 0.45 0.48 0.17	27.2 1.73 1.02	1.47 0.7 0.57	o.52	80.0 80.0 80.0	0.03 0.03 0.03	10.0 80.0 10.0 88.0	0.06 0.09 0.26 0.34	Cadminm PM10 10.0 10.0 10.04 0.25	0.03 0.04 0.05 0.06	0.13 0.13 0.11 0.09
<u>+</u>	2003 2004 2005 2006 2007	1,33 Pantadiene 1,39 Pantadiene	9.74 2.37 0.61	3.06 1.08 0.97 0.28 0.61	8.21 8.25 27.5 8.15 8.15	1.36 0.45 0.48 0.17 0.19	0.53 1.02 2.72 1.73 1.02	1.47 0.7 0.57 0.22 0.22	3.13 0.89 1.24 0.52 0.59	0.06 80.0 80.0 0.08	0.03 0.03 0.03 0.02 0.01	0.03 0.01 0.33 0.61 0.65	0.06 0.09 0.26 0.34 0.38	0.04 0.01 0.14 0.25 0.26	0.03 0.04 0.05 0.06	0.13 0.13 0.11 0.09 0.09
<u>+</u>	2003 2004 2005 2006	1,33-Butadiene	Acrolein Acrolein	3.06 1.08 0.97 0.28	15.8 9.32 57.5 1.68	Ulproform 1.36 0.45 0.48 0.17	27.2 1.73 1.02	1.47 0.7 0.57	o.52	80.0 80.0 80.0	0.03 0.03 0.03	10.0 80.0 10.0 88.0	0.06 0.09 0.26 0.34	Cadminm PM10 10.0 10.0 10.04 0.25	0.03 0.04 0.05 0.06	0.13 0.13 0.11 0.09

Method Detection Limits


"... the minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero..."


40 CFR Appendix B to part 136

Method Detection Limit (MDL) Development and Standardization

Julie Swift, ERG, 2009 National Ambient Air Monitoring Conference

http://www.epa.gov/ttnamti1/files/2009conference/swift.pdf

Network Assessment

"... structured evaluation of a monitoring network to determine if the goals and objectives for that network are being met..."

National Ambient Air Monitoring Strategy, Section 5, Pg 5-1

"... the NATTS must be evaluated, and modified as needed, on 6-year intervals to assure continued relevancy..."

National Ambient Air Monitoring Strategy - Air Toxics Component, Section 1, Pg 6

Network Assessment - Process

- ✓ Assessment will include data through 2010
- √ All 2010 data in AQS by 3/31
- ✓ OAQPS data retrieval on 4/1
- ✓ Data verification by 5/2
- ✓ OAQPS provides data to contractor
 - Network assessment begins
- ✓ Assessment structured as series of discreet steps
 - o Interim deliverables

Network Assessment – Focus Areas

- ✓ Degree to which network has met stated goals and objectives?
- ✓ Continued relevance of network goals and objectives?
 - Optimal for addressing current and projected program priorities / data needs?
 - o If not, revised goals and objectives?
- ✓ Adequacy of number and location of sites?
 - Appropriate geographic distribution and urban / rural mix?
 - Appropriately sited for urban- or rural-scale representativeness?

Conclusions

- ✓ Greatest challenge: achieving consistency
 - Data comparability directly related to utility
- ✓ NATTS making progress
 - Kudos to the NATTS state and local agencies
- ✓ Still have work to do
 - Data reporting and network assessments will further the progress