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1 INTRODUCTION 

1.1 BENEFITS ANALYSIS BACKGROUND 
The EPA’s Guidelines for Preparing Economic Analyses describe the purpose of benefit-cost analysis 

(BCA), related economic analyses, and the best-practices for conducting them (U.S. EPA, 2014). As 

described in the Guidelines, the fundamental objective of a BCA is to determine whether those who 

experience a net gain from a regulatory action can potentially compensate those who experience a net 

loss and remain no worse off. These gains and losses are measured by an individual’s willingness to pay 

(WTP) for, or willingness to accept, changes attributable to the regulatory action. Consistent with 

economic theory, the WTP for reductions in exposure to an environmental hazard, like PM2.5 or O3, 

depends on the expected effect of those reductions on human health. BCA is the primary tool used for 

regulatory analysis and is used to inform the decision of whether the benefits of an action are likely to 

justify the costs (EO 12886, 1993, OMB, 2003).  

Estimating the health benefits of reductions in PM2.5 and O3 exposure in a BCA begins with estimating 

the change in exposure for each individual and then estimating the change in each individual’s risks for 

those health outcomes affected by exposure. The benefit of the reduction in each health risk is based on 

the exposed individual’s WTP for the risk change.1 The greater the magnitude of the risk reduction from 

a given change in concentration, the greater the individual’s WTP, all else equal. The social benefit of the 

change in health risks equals the sum of the individual WTP estimates across all of the affected 

individuals.2 There are various sources of uncertainty inherent in each of these steps, many of which are 

discussed in section 6.  

There are three key information collection and assessment steps for implementing this framework for 

evaluating the health benefits of changes in exposure:  

(1) Identifying health endpoints affected by exposure by assessing the strength of evidence,  

(2) Identifying suitable empirical estimates of the magnitude of the relationship between 

exposure and these health endpoints, and  

(3) Estimating the WTP for reductions in the risk of these health endpoints.   

 
1 As described in section 0, cost-of-illness (COI) estimates are used as a proxy for WTP estimates due to data 
limitations.  
2 BCA also often report the change in the sum of the risk, or the change in the total incidence, of a health outcome 
across the population. If WTP per unit of risk is invariant across individuals, the total expected change in the 
incidence of the health outcome across the population can be multiplied by the WTP per unit of risk to estimate 
the social benefit of the total expected change in the incidence of the health outcome. Also, if suitable WTP 
estimates for a health effect are unavailable, this effect will still, when possible, be quantified to provide a full 
picture of the potential benefits of a regulation.  
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This document describes all three steps for the purposes of estimating health benefits from changes in 

ambient PM2.5 and O3 exposure.3  

1.2 THE RELATIONSHIP BETWEEN IDENTIFYING HEALTH ENDPOINTS FOR VALUATION AND WTP 
The first step requires collecting and integrating scientific evidence from different types of studies and 

scientific fields (e.g., epidemiologic, controlled human exposure, and animal toxicological studies), as 

well as evaluating the quality of evidence and the consistency in the pattern of effects. Determining the 

strengths, limitations, and uncertainties in the overall evidence are key components, all of which could 

affect WTP, as this information is the basis of the desire to avoid or reduce PM2.5 and O3 exposure.  

While the first and third step are presented as independent, they are related for an individual. All else 

equal, WTP is expected to be higher when there is stronger evidence of a causal relationship between 

exposure to the contaminant and changes in a health outcome (McGartland et al., 2017).4,5 For example, 

in the case where there is no evidence of a potential relationship the WTP would be expected to be zero 

and the effect should be excluded from the analysis. Alternatively, when there is some evidence of a 

relationship between exposure and the health outcome, but that evidence is insufficient to definitively 

conclude that there is a causal relationship, individuals may have a positive WTP for a reduction in 

exposure to that hazard (Honeycutt, 2020, Kivi and Shogren, 2010). Lastly, the WTP for reductions in 

exposure to pollutants with strong evidence of a relationship between exposure and effect are likely 

positive and larger than for endpoints where evidence is weak, all else equal. Unfortunately, the 

economic literature currently lacks a settled approach for accounting for how WTP may vary with 

uncertainty about causal relationships. 

Given these challenges, for step 1 the EPA draws its assessment of the strength of evidence on the 

relationship between exposure to PM2.5 or O3 and potential health endpoints from the Integrated 

Science Assessments (ISAs) that are developed for the NAAQS process. Specifically, in the PM2.5 and O3 

benefits analysis for the final Revised Cross-State Air Pollution Rule (CSAPR) Update RIA, the EPA 

quantifies and monetizes all health effects that the ISA determines are “causal” or “likely to be causal,” 

using scientific assessment methods described in the ISAs. The focus on categories identified as having a 

“causal” or “likely to be causal” relationship with the pollutant of interest is to estimate the pollutant-

 
3 In addition to EPA’s Guidelines for Preparing Economic Analyses, these methods and choices adhere to other 
relevant EPA and OMB guidance documents, EPA regulations, previous scientific advisory reviews, and available 
scientific information (U.S. EPA, 2014). 
4 It is also case that the third step depends on sources of uncertainty in the second step. That is, even if a causal 
relationship between exposure and a particular health risk were established with certainty, the precise empirical 
relationship between exposure and effect may not be known, and of the resulting uncertainty may influence the 
WTP to avoid this risk. For example, there may be parameter or model uncertainty in the empirical relationship 
between exposure and a health effect that would influence the WTP to avoid exposure (Bleichrodt et al., 2019, 
Freeman III et al., 2014). Section 5 describes how WTP estimates may be influenced by these sources of 
uncertainty. 
5 Here we are referring to causality as a general notion of how well established the relationship between a cause 
and possible effect is for the purposes of estimating WTP, and not to the specific approach for evaluating and 
determining causality between health effects and PM2.5 and O3 exposure used in the ISAs. 
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attributable human health benefits in which we are most confident.6 All else equal, this approach may 

underestimate the benefits of PM2.5 and O3 exposure reductions as individuals may be WTP to avoid 

specific risks where the evidence is insufficient to conclude they are “likely to be caus[ed]” by exposure 

to these pollutants.7 At the same time, WTP may be lower for those health outcomes for which causality 

has not been definitively established. This approach treats relationships with ISA causality 

determinations of “likely to be causal” as if they are known to be causal, and therefore benefits could be 

overestimated (section 6.5.2). This approach may be revisited in the future with scientific advancements 

and development of a theoretically consistent framework that jointly accounts for causal uncertainty 

and individuals’ WTP for reducing uncertain health impacts. 

1.3 DOCUMENT PURPOSE AND OVERVIEW 
This is a technical support document (TSD) to the Final Revised CSAPR Update for the 2008 Ozone (O3) 

Season NAAQS rulemaking. Sections relate to the three key information collection and assessment steps 

presented in section 1.1 and detail the methodological approaches used for identifying new benefits 

assessment data inputs: 

1. Establish criteria for identifying studies and risk estimates most appropriate to inform a PM2.5 

and O3 benefit analysis for an RIA (section 2.1). Study criteria, such as study design, location, 

population characteristics, and other attributes, were used to identify the most suitable 

estimates.8 This step precedes health endpoint identification to ensure impartial health 

endpoint identification and prevent identification of non-quantifiable endpoints. 

2. Identify pollutant-attributable health effects for which the ISA reports strong evidence and that 

may be quantified in a benefits assessment (section 2.2). EPA considered new evidence reported 

in the recent ISAs (U.S. EPA, 2019c, U.S. EPA, 2020a) and clinically significant outcomes (e.g. 

premature mortality and hospital admissions) for which endpoint-specific baseline incidence 

data is available. 

3. Collect baseline incidence and prevalence estimates (section 3) and demographic information 

(section 4). EPA develops either daily or annual baseline incidence and prevalence rates at the 

most geographically- and age-specific levels feasible for each health endpoint assessed.  EPA 

uses population projections based on economic forecasting models developed by Woods and 

Poole, Inc. (Woods & Poole, 2015). The Woods and Poole (WP) database contains county-level 

projections of population by age, sex, and race out to 2050, relative to a baseline using the 2010 

Census data. 

 
6 This decision criterion for selecting health effects to quantify and monetize PM2.5 and O3 is only applicable to 
estimating the benefits of exposure of these two pollutants. This decision criterion may not be applicable or 
suitable for quantifying and monetizing health and ecological effects of other pollutants. 
7 EPA includes an example health endpoint with a causality determination of “suggestive, but not sufficient to 
infer” and associated with a potentially substantial economic value in the quantitative uncertainty characterization 
(section 6.2.3). 
8 If recent ISAs identify more new epidemiologic studies that are better suited than the prior studies for estimating 
risks for endpoints whose causality did not change between the prior ISA and the current ISA (e.g. respiratory 
hospital admissions), we use this new epidemiologic evidence to estimate risks despite the causality conclusion not 
changing between the prior and most recent ISAs.  
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4. Develop economic unit values (section 5). To directly compare benefits estimates associated 

with a rulemaking to cost estimates, the number of instances of each air pollution-attributable 

health impact must be converted to a monetary value. This requires a valuation estimate for 

each unique health endpoint, and potentially also discounting if the benefits are expected to 

accrue over more than a single year. EPA develops valuation estimates at the most age-refined 

level feasible for each health endpoint assessed.  

5. Characterize uncertainty associated with quantified benefits estimates (section 6). Building on 

EPA’s current methods for characterizing uncertainty, these approaches include, among others, 

reporting confidence intervals calculated from risk estimates, separate quantification using 

multiple studies and risk estimates for particularly influential endpoints (e.g., mortality risk), and 

approaches for aggregating and representing the results of multiple studies evaluating a 

particular health endpoint.9   

  

 
9 Study quality, inter-study heterogeneity, and redundancy issues will be taken into consideration if epidemiologic 
risk estimates are aggregated. 
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2 APPROACH TO IDENTIFYING STUDIES AND RISK ESTIMATES10  

This section describes the criteria EPA applies to available fine particulate matter (PM2.5) and ozone (O3) 

epidemiologic studies and risk estimates to quantify air pollution-attributable health impacts for 

regulatory purposes, such as Regulatory Impact Analyses (RIAs). We specify the criteria used to identify 

the available body of epidemiologic literature potentially suitable for supporting a benefits analysis 

(section 2.2); apply the identification criteria to the body of available literature (section 2.2.4.3); and, 

finally, present the identified health endpoints and risk estimates (section 2.3) that best characterize risk 

to the U.S. population for health impact benefits assessments. The identification criteria precede the 

health endpoint identification because epidemiologic studies must meet certain minimum criteria 

(section 2.1.1). 

2.1 STUDY AND RISK ESTIMATE IDENTIFICATION CRITERIA 
We follow a systematic approach to identify the studies and risk estimates most appropriate to inform a 

PM2.5 and O3 benefit analysis for an RIA.11 Epidemiologic studies report estimated risks of population 

exposure to one or more pollutants across a variety of geographic locations, age groups, population 

attributes, methods for estimating exposure, PM2.5 and O3 concentrations, time periods, study sizes, 

follow-up durations, and other attributes. Identification criteria, specified below, provide transparency 

into the scientific judgements used for identifying benefit assessment input parameters. These criteria 

are similar to those applied in previous EPA RIAs (Table 1) with the primary goal of identifying risk 

estimates that best characterize risk from PM2.5 and O3 exposure among the total population located 

throughout the U.S.12  

 Minimum Criteria 
All studies must meet the following minimum required criteria to be considered for use in PM2.5 and O3 

benefits assessments. These minimum criteria ensure that the subset of studies evaluated include the 

information necessary to justifiably quantify health effects when estimating benefits across the U.S. 

1. The study must be referenced in the latest externally reviewed ISA or equivalent assessment 

(e.g., provisional assessment or supplement) to ensure the literature search and screening 

process were performed in a transparent and systematic manner and only included peer-

reviewed research. 

 
10 What we call risk estimates in this document are results from epidemiologic studies characterizing the 
magnitude of exposure-related risk. This term is synonymous with several others, including concentration-
response functions, effect estimates, health impact functions, risk models, and beta (β) coefficients. 
11 Epidemiological studies estimate the association between exposure to air pollution concentrations and adverse 
health outcomes and generally provide a relative comparison about the strength of the relationship between 
exposure to air pollution and the health outcome, rather than estimating the absolute health impact of an 
exposure (i.e. the number of avoided cases). For example, a 10 µg/m3 decrease in daily PM2.5 levels might be 
associated with a decrease in hospital admissions of 5% or a 5 ppb decrease in 8-hour maximum daily ozone 
concentration might be associated with a decrease in hospital admissions of 3%. A benefits analysis reports 
absolute values with respect to the public health impact of an exposure. 
12 See: https://www3.epa.gov/ttn/ecas/docs/ria/naaqs-pm_ria_final_2012-12.pdf 



 

6 
 

2. The study must have been conducted in either the U.S. or Canada and represent air quality 

conditions, affected populations, and other underlying characteristics of the U.S.13 

3. The study must have been epidemiologic in nature, assess either PM2.5 or O3, and report 

numerical risks/hazards expressed as per a unit change in pollutant concentration to provide 

necessary information for health effect quantification. 

 Preferred Criteria Categories 
Studies meeting the minimum criteria are then evaluated based on various factors, which we call 

preferred criteria, in order to identify risk estimates that best characterize risk across the U.S. These 

preferred criteria define other important study design features or attributes and are considered 

collectively (Table 1). Most criteria described below can be applied to both the studies and risk 

estimates, though criteria applicable only to risk estimates are noted.  

Importantly, preferred criteria are established prior to study and risk estimate evaluation and these 

choices are based on study quality and suitability. Conversely, factors such as the magnitude of the risk 

estimates, are not considered when identifying studies and risk estimates.14 Considering these factors 

might inadvertently bias our choice of studies or risk estimates. 

Preferred criteria (Table 1) are considered simultaneously when identifying studies and risk estimates 

best for use in benefits assessment. Table 2 identifies specific attributes within each preferred criterion 

that make a particular study more (or less) suitable for identification. In practice, an identified study or 

risk estimate identified may not have the ideal attributes for all criteria, thus there needs to be a 

simultaneous assessment of the collective merits of any study or risk estimate. This means that the risk 

estimates ultimately identified for application in benefits assessment may not be the highest ranked in 

each individual preferred study criterion category, but that they rise to the top when all criteria are 

considered simultaneously.  

Table 1. Criteria for Identifying Studies and Risk Estimates for Application in Benefits Assessment 

Criteria1 Description 

Study Period 

Studies examining a relatively longer period of time (and therefore having more temporal 
coverage) are preferred because they have greater statistical power to detect effects (e.g., 
all else being equal, a study over a five year duration would be preferred over a study 
duration of one year). Studies that are more recent are also preferred because of possible 
changes in pollution mixes, medical care, and lifestyle over time. When identifying risk 
estimates, models with the broadest time coverage and overlapping air quality and health 
data are preferred.  

Exposure 
Estimate 

Studies estimating air quality/exposure using a combination of approaches (e.g., remote 
sensing techniques ground-truthed by monitoring data) are preferred over those that use a 
single method (e.g., monitor data), because multiple measurement methods can reduce 

 
13 While there are differences between the U.S. and Canada, notably with regards to the health care systems, there 
is considerable pollutant transport between Canada and the US, ~90% of Canadians live within ~100 miles of the 
US border, and ambient PM2.5 concentrations are similar in Canada and the US (Canada, 2016, CBC, 2016, U.S. EPA, 
2019b). 
14 Forest plots of the magnitudes of central risk estimates and associated confidence intervals from epidemiologic 
studies evaluated by the ISAs by health endpoint can be found in the respective ISAs (U.S. EPA, 2019c, U.S. EPA, 
2020a). These figures illustrate the heterogeneity in the size of the reported effect among this subset of studies 
and risk estimates. 
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exposure estimate bias and generate higher-resolution of estimates than exposure data 
from a single source. When available, studies of long-term/chronic exposure are preferred 
over short-term exposure (i.e., hours up to 1 month), considering the limitations of each 
exposure duration, as risk estimates based on long-term exposures may include some short-
term exposure effects and provide a more comprehensive estimates of health impacts. 

Study Type 

Among epidemiologic studies that consider long-term exposure (e.g., one month to years), 
cohort studies are preferred over case-control15 studies when estimating benefits across the 
U.S., as they are more representative of the overall population, and both are preferred over 
cross-sectional16 or ecological17 studies because they control for important individual-level 
confounding. An exception to the preference for cohort studies is for rare disease, when 
case-control studies may have more power and less selection bias. For short-term exposure 
studies, case-crossover and time series studies are preferred over cross-sectional or 
prevalence studies also because they are better able to control for potential confounders.  

Population 
Attributes 

Study populations representative (in terms of age, sex, race/ethnicity, etc.) of the 
population in which health effects are supported are preferred. The most technically 
appropriate measures of benefits would be based on health impact functions that cover the 
entire sensitive population but allow for effect modification by age, sex, race/ethnicity, or 
other relevant demographic factors (e.g., educational status). In the absence of effect 
estimates specific to age, sex, preexisting condition status, or other relevant factors, it may 
be appropriate to identify effect estimates that cover the broadest population to match 
with the desired outcome of the analysis, which for most EPA benefit-cost analyses is total 
national-level health impacts. Where both are available, both age-stratified and overall risk 
estimates should be considered for inclusion.  

Study Location 

U.S. or Canadian studies are used exclusively because studies conducted elsewhere may 
exhibit influences of potential differences in pollution characteristics, exposure patterns, 
medical care system, population behavior, and lifestyle. National estimates are most 
appropriate when benefits are nationally distributed; the impact of regional differences may 
be important when benefits only accrue to a single area. City-specific risk estimates from 
multi-city studies of hospital admissions or emergency department visits for non-fatal 
morbidities may be evaluated for site-specific application to the corresponding city. 
Canadian studies are considered when U.S study options are limited or less informative. Risk 
estimates with the broadest geographic coverage are preferred (e.g., multi-city studies 
preferred to single-city studies) because they provide a more generalizable representation 
of the health impacts. 

Health 
Endpoint 

To comprehensively capture the suite of attributable public health impacts and increase the 
power to detect effects, when estimating hospital admissions and emergency department 
visits, broad health endpoints are preferred over narrower, more specific endpoints. For 
example, more-inclusive respiratory hospital admissions endpoint would be selected over 
combining hospital admissions for various individual respiratory endpoints, such as asthma, 
long-term obstructive pulmonary disease, and respiratory infection. Please note, broad 
endpoint categories do not overlap (e.g., nervous system effects and respiratory effects), so 
there is no potential for double counting impacts. 

Study Size 

Studies examining a relatively large sample are preferred because they generally have more 
power to detect small magnitude effects. A large sample can be obtained in several ways, 
including through a large study population, through repeated observations on a smaller 
population (e.g., through a symptom diary recorded for a panel of asthmatic children) or 

 
15 Retrospective study in which two groups, differing in a health outcome, are identified and compared based on 
some hypothesized causal characteristic or exposure. 
16 Analysis of a cross-section of a population at a single point in time. 
17 Comparison of groups, rather than individuals. 
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through a case crossover study design. In general, studies of larger numbers of participants 
and/or events are preferred. 

Pollutant 
Concentrations 

Studies evaluating air pollutant exposures closer to or below current conditions are 
preferred, as the risk associated with exposure may change at different pollutant 
concentrations and air pollution concentrations may decrease in the future, 

Hazard/Risk 
Estimate 

Studies evaluating multiple well-established statistical models adjusted for the most 
relevant covariates are preferred. 

Inclusion of 
Other 
Pollutants  

When estimating the effects of O3 and PM (or other pollutant combinations) jointly, it is 
preferable to use properly specified health impact functions that include both pollutants. 
Using single-pollutant estimates in cases where both pollutants are expected to affect a 
health outcome can lead to double-counting of benefits when pollutants are correlated.  

Lag Period 

Lag durations were identified according to the hierarchy described in Table A-1 of the PM 

and O3 ISAs. Briefly, the strongest multi-day/distributed lag periods that are more 

biologically plausible are preferred. 

O3 Season 

Studies and risk estimates of O3 exposure for the full year are preferred over those 

estimating O3 exposures in the summer or warm season only, as O3 concentrations can 

remain relatively high outside of the standard warm season in many parts of the country. As 

such, year-round time coverage can provide a more complete estimate of O3 exposure 

health impacts.  

O3 Metric 

Risk estimates based on changes in the maximum daily 8-hour average (MDA8) O3 
concentration are preferred. As discussed in the 2020 PM Policy Assessment (PA), there is 
considerable support from human chamber and epidemiologic studies, as well as advice 
from EPA’s Clean Air Scientific Advisory Committee (CASAC) to support relationships 

between an 8-hour exposure period and short- and long-term health impacts of O3 (U.S. 

EPA, 2020c). 
1 Although preferred criteria categories are not hierarchical, not all criteria are weighted equally, and expert judgement is involved. 

2.1.2.1.1 Prioritizing Preferred Identification Criteria 

Where Table 1 provides general information on how we determine which studies and risk estimates best 

characterize U.S. risk, Table 2 describes how the attributes for each of the 13 criteria are prioritized 

within each criteria category. Again, we use the overall study information, and studies ultimately 

identified generally performed better across all categories. Importantly, the order of prioritization 

presented in Table 2 are relative. For example, the most preferred option may be considered only 

slightly more preferable than the other alternative. 

Table 2. Study and Risk Estimate Criteria Prioritization Order  

Criteria Prioritization Detail (In order of most to least preferred) 

Study Period 
1. Most recent years with overlapping air quality and health data 
2. Less recent years with partially overlapping air quality and health data 
3. Studies with air quality monitoring conducted prior to 2000 

Exposure 
Estimate 

1. Studies estimating exposure using a combination of approaches (e.g., chemical transport 
modeling, monitoring data, land use regression techniques, and satellite data)  
2. Studies estimating exposure using some, but not all, of the above approaches (prioritized if 
using monitoring data and/or chemical transport modeling) 
3. Studies estimating exposure using monitoring data only (prefer data from federal 
reference [FRM] monitors  

Study Type 

Long-Term Exposure (i.e., 
one month to years) Studies 
1. Cohort studies2 

2. Case-control studies 

Short-Term Exposure (i.e., hours up to one month) 
Studies 
1. Case-crossover (each subject serves as own 
control)/Time series studies1 
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Criteria Prioritization Detail (In order of most to least preferred) 
2. Cross-sectional/prevalence (population-level) studies 

 

Population 
Attributes 

Prefer studies that include broad population attributes with diverse race/ethnicities, both 
sexes, and broader age groups (e.g., 0-99 as opposed to only ages 0-17 or only ages 65-99) 

Study Location 

1. Nationwide coverage (most or all states represented), including rural areas 
2. Nationwide coverage, including only urban areas 
3. Multi-city and multi-state coverage 
4. Multi-city or multi-state coverage 
5. Single-city or -state coverage 

Health 
Endpoints 

1. Broad hospital admissions and emergency department visit endpoint categories (e.g., 
hospital admissions and emergency department visits for cardiovascular and respiratory 
effects as opposed to admissions or emergency department visits by individual ICD codes) 
and broad age groups (e.g., 0-99 as opposed to only 0-17 or only 65-99) 
2. Broad hospital admissions and emergency department visit health endpoint categories and 
specific age groups 
3.Specific hospital admissions and emergency department visit health endpoint categories 
and broad age groups 
4. Specific hospital admissions and emergency department visit health endpoints and specific 
age groups 
Note: The first two options are highly preferred over the second two options 

Study Size Larger study size preferred 

Pollutant 
Concentrations 

Pollutant exposures concentrations closest to current conditions preferred. 

Hazard/Risk 
Estimate 

1. Risk estimates including the most relevant covariates (e.g., age, sex, race, education, 
smoking status, etc.) 
2. Risk estimates including some relevant covariates 
3. Risk estimates that do not include relevant covariates 

Inclusion of 
Other 
Pollutants 

1. Multipollutant risk estimates including other pollutants and not likely to be affected by 
collinearity among pollutant covariates. 
2. Copollutant risk estimates including either PM2.5 or O3.  
3. Single-pollutant risk estimates. 

Lag Period 

1. Distributed lag models 
2. Average of multiple days (e.g., 0-2) 
3. A priori lag days 
4. Individual lag days, using expert judgment to identify the appropriate result to focus on 
considering the time course for physiologic changes for the health effect or outcome being 
evaluated. 

O3 Season 

Annual/full-year exposures are preferred over summer/warm season-only O3 exposures for 
long-term exposure-related health endpoints. Summer/warm season-only exposures are 
preferred over annual/full-year exposures for short-term O3 exposure-related health 
endpoints. 

O3 Metric 

1. 8-hour maximum O3 

2. 1-hour maximum O3 

3. 24-hour average O3 

4. Other metrics 
ICD- International Statistical Classification of Diseases and Related Health Problems 
1If a study presents both case crossover and time series results, case crossover will be identified 
2An exception to the preference for cohort studies is for rare disease, when case control studies may have more power and less 
selection bias. 
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2.2 AVAILABLE EPIDEMIOLOGIC LITERATURE  
We follow a structured and transparent process, documented below, to identifying epidemiologic 

literature from the body of available epidemiologic literature (section 2.1). This involves the 

identification of health endpoints that are both attributable to exposure (section 2.2.1) and for which 

we can quantify counts of cases (section 2.2.2). This literature is then reviewed using the criteria 

identified in Table 1 and Table 2.  

 Identification of Exposure-Attributable Health Outcomes 
Our process for identifying exposure-attributable health endpoints is informed by the findings of the 

Integrated Scientific Assessment (ISA), which identifies broad endpoint categories causally related to 

pollutant exposure (section 2.2.1.1); these findings are in turn supported by plausible biological 

pathways of disease (section 2.2.1.2).  

Each potential health endpoint must satisfy the below conditions prior to inclusion in the main benefits 

assessment: 

• The broad endpoint category is sufficiently causally related to exposure (section 2.2.1.1) 

• The specific health endpoint is a biologically plausible health effect of exposure (section 2.2.1.2) 

The air quality criteria used to support the review of the National Ambient Air Quality Standards 

(NAAQS) undergo a structured and transparent review process for evaluating scientific information and 

reaching conclusions about causal determinations that are supported by the scientific information for air 

pollution exposures and health effects, as presented in the ISAs. To inform the NAAQS, ISAs draw upon 

the existing body of evidence to comprehensively evaluate and synthesize policy-relevant air pollution 

science. ISAs transparently identify, critically evaluate, and synthesize the current scientific literature, 

including epidemiology studies, making them a suitable source of 1) the causal relationships between 

exposure and health outcomes18 (section 2.2.1.1), and 2) available epidemiologic literature from which 

to identify studies and risk estimates for consideration in benefits assessments (section 2.2.3). 

A 2002 National Academy of Science review supported the use of ISAs as the basis for determining 

which health endpoints to include in benefits assessment, stating “the goal of health benefits analysis is 

to consider all relevant health outcomes” and “a comprehensive discussion of causality is not necessary 

for a benefits analysis” if the information is “provided in the scientific documentation for the rule-

making, such as the criteria document and other related reports, and in guidance provided by EPA’s 

Science Advisory Board” (NRC, 2002). For background, we provide a “brief review of the evidence for 

causality” from the most recent ISAs to “provide justification for inclusion and exclusion of specific 

health outcomes considered” and to acknowledge “uncertaint[ies] associated with this assumption” 

(section 2.2.1). This section of the TSD also provides background information with regard to potential 

 
18 While ISAs form causal determinations for broad endpoint categories (e.g., respiratory effects), which are 
generally preferred over specific health endpoints (e.g., hay fever symptoms) for comprehensive benefits 
assessments, they do not make causal determinations for each specific health endpoint. Instead, the ISAs provide 
information on the strength and consistency of the evidence supporting more specific endpoints within each broad 
category. The strength and consistency of evidence supporting relationships with specific health endpoints, 
together with the broad category causality determinations, are used when identifying specific health endpoints for 
inclusion in benefits assessments. 
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biological plausibility pathways presented in the ISAs (section 2.2.1.2) that support the causality 

determinations. 

In addition to the causality determinations, ISAs can also serve as a curated source of pollutant-, 

exposure-, and endpoint-specific available epidemiologic literature. Each ISA begins with a broad, 

thoroughly documented literature search, the results of which undergo several screening stages to 

ensure included studies are within the clearly defined scope of each ISA, in order to identify the most 

policy-relevant science (U.S. EPA, 2015b, U.S. EPA, 2019c).19 For example, with regard to the PM2.5-

related health effects, the 2019 PM ISA focused on epidemiologic exposures reflecting current PM2.5 

levels for health effect categories where the 2009 PM ISA concluded a “causal” or “likely to be causal” 

relationship (U.S. EPA, 2009).20 As such, EPA relies on the systematic and externally reviewed ISAs for 

criteria pollutant health endpoints and began the process of identifying epidemiologic risk estimates for 

PM2.5- and O3-attributable benefits assessment with the literature sets identified in the 2019 PM and 

2020 O3 ISAs (U.S. EPA, 2019c, U.S. EPA, 2020a). All epidemiologic studies newly considered for use in 

benefits estimation are available in a separate Study Information Table, described in section 2.2.3.  

2.2.1.1 ISA Causality Determinations 

ISAs characterize the strength and consistency of underlying human clinical, animal toxicological, and 

epidemiologic evidence in making causality determinations. Generally, to estimate the pollutant-

attributable human health benefits in which we are most confident, we estimate benefits resulting from 

health effects that we have high confidence are attributable to pollutant exposure, so we focus on 

categories identified as having a “causal” or “likely to be causal” relationship with the pollutant of 

interest in the most recently published ISA.21 These causality determinations are applied to broad health 

endpoint categories (e.g., mortality, cardiovascular effects, respiratory effects, nervous system effects, 

metabolic effects, etc.) using a weight-of evidence approach (U.S. EPA, 2015b, U.S. EPA, 2019c), 

according to the rationale described below:22 

o Causal relationship- Evidence is sufficient to conclude that there is a causal relationship with 

relevant pollutant exposures (e.g., doses or exposures generally within one to two orders of 

 
19 Studies identified for the 2019 PM ISA were based on the review’s opening “call for information” (79 FR 71764, 
December 3, 2014), as well as literature searches conducted routinely to identify and evaluate “studies and reports 
that have undergone scientific peer review and were published or accepted for publication between January 1, 
2009 and March 31, 2017. A limited literature update identified some additional studies that were published 
before December 31, 2017” (U.S. EPA, 2009, U.S. EPA, 2019c, Appendix, p. A-3). For the 2020 O3 ISA that date was 
March 30, 2018. Relevant studies published after these dates were provisionally considered by the EPA for the 
final PM and O3 NAAQS 2020 decisions but were not found to materially change any of the broad scientific 
conclusions regarding the health effects of PM and O3exposure made in the 2019 PM ISA and 2020 O3 ISAs. This 
process ensures a thorough and transparent strategy for literature identification.  
20 The 2019 PM ISA focuses on studies conducted in areas where mean PM2.5 concentrations are <20 μg/m3 or, in 
the case of a multicity study, where more than half of the cities have concentrations <20 μg/m3. However, studies 
with mean PM2.5 concentrations exceeding 20 μg/m3 are included if they address specific areas of uncertainty or 
where limitations remain in the evidence base, as identified in the 2009 PM ISA, such as copollutant confounding. 
21 This is not to imply that there may not be benefits associated with endpoints having a “suggestive of, but not 
sufficient to infer, a causal relationship” but rather that there is greater uncertainty associated with estimating 
these potential benefits (section 1.2). While these benefits are not included in the main assessment, they may be 
included in sensitivity analyses.  
22 See Preamble to Integrated Science Assessments, EPA/600/R-15/067, 
https://cfpub.epa.gov/ncea/isa/recordisplay.cfm?deid=347534 
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magnitude of recent concentrations). That is, the pollutant has been shown to result in health 

effects in studies in which chance, confounding, and other biases could be ruled out with reasonable 

confidence. For example: (1) controlled human exposure studies that demonstrate consistent 

effects, or (2) observational studies that cannot be explained by plausible alternatives or that are 

supported by other lines of evidence (e.g., animal studies or mode-of-action information). Generally, 

the determination is based on multiple high-quality studies conducted by multiple research groups. 

o Likely to be causal relationship- Evidence is sufficient to conclude that a causal relationship is likely 

to exist with relevant pollutant exposures. That is, the pollutant has been shown to result in health 

effects in studies where results are not explained by chance, confounding, and other biases, but 

uncertainties remain in the evidence overall. For example: (1) observational studies show an 

association, but copollutant exposures are difficult to address and/or other lines of evidence 

(controlled human exposure, animal, or mode of action information) are limited or inconsistent or 

(2) animal toxicological evidence from multiple studies from different laboratories demonstrate 

effects but limited or no human data are available. Generally, the determination is based on 

multiple high-quality studies. 

Conclusions made in the 2019 PM and 2020 O3 ISAs regarding the relationships between exposure and 

various broad health endpoints, as well as previous determinations from the 2009 PM and 2013 O3 ISAs, 

are provided below, with “causal” and “likely to be causal” judgements highlighted (Table 3 and Table 4) 

(U.S. EPA, 2009, U.S. EPA, 2013, U.S. EPA, 2019c, U.S. EPA, 2020a).23 There were no “causal” or “likely to 

be causal” relationships for PM10-2.5 or ultrafine particles in the 2019 PM ISA, so Table 3 focuses on PM2.5 

determinations.24 Table 3 also highlights how the causal determinations in the 2019 PM ISA are similar 

to, or different from, the determinations from the 2009 PM ISA. Table 4 highlights how the new causal 

determinations in the 2020 O3 ISA are similar to, or different from, the determinations from the 2013 O3 

ISA. Sections of the 2019 PM and 2020 O3 ISAs related to “causal” and “likely to be causal” 

determinations were used as the basis for identifying the set of available epidemiologic literature best 

suited for consideration in benefit estimation (U.S. EPA, 2009, U.S. EPA, 2013, U.S. EPA, 2019c, U.S. EPA, 

2020a), as discussed in more detail on section 2.2.4.3.  

 Table 3. Causality Determinations for PM2.5-Related Health Effects 

Exposure Health Outcome 2009 ISA Conclusion 2019 ISA Conclusion 

Long-term 

Mortality1 Causal Causal 

Cardiovascular Effects Causal Causal 

Respiratory Effects Likely to be causal Likely to be causal 

Nervous System Effects None Likely to be causal 

Cancer 
Suggestive of, but not 

sufficient to infer 
Likely to be causal 

Metabolic Effects None 
Suggestive 

of, but not sufficient to infer 

Male and Female 
Reproduction and Fertility 

Suggestive of, but not 
sufficient to infer 

Suggestive of, but not 
sufficient to infer 

 
23 Full summaries of causality determinations by exposure duration and health outcome are available in Table ES- 
of both the 2019 PM and 2020 O3 ISAs.  
24 Ultrafine particles are generally considered to have an aerodynamic diameter less than or equal to 0.1 μm. 
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Pregnancy and Birth 
Outcomes 

Suggestive of, but not 
sufficient to infer 

Suggestive 
of, but not sufficient to infer 

Short-
term 

Mortality1 Causal Causal 

Cardiovascular Effects Causal Causal 

Respiratory Effects Likely to be causal Likely to be causal 

Metabolic Effects None 
Suggestive 

of, but not sufficient to infer 

Nervous System Effects Inadequate to infer 
Suggestive 

of, but not sufficient to infer 
1Total mortality includes all nonaccidental causes of mortality and is informed by findings for the spectrum of morbidity effects 

(e.g., respiratory, cardiovascular) that can lead to mortality. Many studies contributing to the total mortality determination 

assess all causes of mortality. The proportion of cause-specific deaths differs by analysis. 

Table 4. Causality Determinations for O3-Related Health Effects 

Exposure Health Outcome 2013 ISA Conclusion 2020 ISA Conclusion 

Long-term 

Respiratory Effects Likely to be causal Likely to be causal 

Cardiovascular 
Effects 

Suggestive of a causal 
relationship 

Suggestive of, but not sufficient to infer, 
a causal relationship 

Metabolic Effects None 
Suggestive of, but not sufficient to infer, 

a causal relationship 

Total Mortality1 Suggestive of a causal 
relationship  

Suggestive of, but not sufficient to infer, 
a causal relationship 

Reproductive 
Effects 

Suggestive of a causal 
relationship 

Effects on fertility and reproduction: 
suggestive of, but not sufficient to infer, 

a causal relationship 

Effects on pregnancy and birth 
outcomes: suggestive of, but not 

sufficient to infer, a causal relationship 

Central Nervous 
System Effects 

Suggestive of a causal 
relationship 

Suggestive of, but not sufficient to infer, 
a causal relationship 

Short-
term 

Respiratory Effects Causal Causal 

Total Mortality1 Likely to be causal 
Suggestive of, but not sufficient to infer, 

a causal relationship 

Cardiovascular 
Effects 

Likely to be causal 
Suggestive of, but not sufficient to infer, 

a causal relationship 

Metabolic Effects None Likely to be causal 

Central Nervous 
System Effects 

Suggestive of a causal 
relationship 

Suggestive of, but not sufficient to infer, 
a causal relationship 

1Total mortality includes all nonaccidental causes of mortality and is informed by findings for the spectrum of morbidity effects 

(e.g., respiratory, cardiovascular) that can lead to mortality. Many studies contributing to the total mortality determination 

assess all causes of mortality. The proportion of cause-specific deaths differs by analysis. 

2.2.1.2 Biological Plausibility 

ISAs establish causality determinations for broad health effect categories (e.g., cardiovascular effects) 

and provide information on the strength and consistency of the evidence supporting more specific 

endpoints (e.g., heart failure) within each section. Both types of information are utilized in benefits 

assessments. Broad causality determinations can support the use of more comprehensive endpoints 
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found in epidemiologic studies of hospital admissions and emergency department visits, whereas the 

support of specific endpoints resulting from pollutant exposure may be more relevant to incidence 

endpoints such as cardiac arrest. 

In forming the key science judgments for each of the health effects categories evaluated, the recent ISAs 

draw conclusions about relationships between PM and O3 exposure and health effects by integrating 

information across scientific disciplines and related health outcomes and synthesizing evidence from 

previous and recent studies. An advancement in these most recent ISAs is the inclusion of biological 

plausibility sections that are specific for each exposure duration and broad health outcome category for 

which causality determinations are formed. These discussions outline potential pathways along the 

exposure-to-outcome continuum and provide plausible links between pollutant inhalation and health 

outcomes at the population level. We include unedited diagrams from the biological plausibility sections 

of the 2019 PM and 2020 O3 ISAs here to provide information regarding the plausibility of individual 

health endpoints resulting from PM and/or O3 exposures. 

Biological plausibility can strengthen the basis for causal inference (U.S. EPA, 2015b). In the recent ISAs, 

biological plausibility is part of the weight-of-evidence analysis that considers the totality of the health 

effects evidence, including consistency and coherence of effects described in experimental and 

observational studies. Although there is some overlap in the potential pathways between the ISA health 

effects chapters, each biological plausibility section is tailored to the health outcome category, 

pollutant, and exposure duration being evaluated within the respective section of each ISA health 

effects chapter. Diagrams illustrate possible pathways relating exposure to evidence evaluated in 

current and previous assessments, considering physiology and pathophysiology (Figure 1).25 These 

diagrams portray the available evidence that supports the biological plausibility of exposures leading to 

specific health outcomes, but does not provide information on the weight of evidence supporting each 

biological pathway (section 2.2.1.2). Gaps and limitations in the evidence base, shown by the absence of 

a connecting arrow, correspond to gaps in the figure. 

Each box represents evidence that has been demonstrated in a study or group of studies for a particular 

effect related to exposure. While most of the studies used to develop the figures are experimental 

studies (i.e., animal toxicological and controlled human exposure studies), some observational 

epidemiologic studies also contribute to the pathways. These epidemiologic studies are generally: 1) 

panel studies that measure the same or similar effects as the experimental studies (and thus provide 

supportive evidence) or 2) emergency department and hospital admission studies or studies of 

mortality, which are effects observed at the population level. The boxes are arranged horizontally, with 

boxes on the left side representing initial effects that reflect early biological responses and boxes to the 

right representing potential intermediate (i.e., subclinical or clinical) effects and potential effects at the 

population level. The boxes are color coded according to their position in the exposure-to-outcome 

continuum. 

The arrows that connect the boxes indicate a potential progression of effects resulting from exposure. In 

most cases, arrows are dotted (Figure 1, Arrow 1), denoting a possible relationship between the effects. 

While most arrows point from left to right, some arrows point from right to left, reflecting progression 

 
25 Information in the biological plausibility diagrams includes studies identified in previous ISAs and Air Quality 
Criteria Documents (AQCDs). 
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of effects in the opposite direction or a feedback loop (Figure 1, Arrow 2). In a few cases, the arrows are 

solid (Figure 1, Arrow 2), indicating that progression from the upstream to downstream effect occurs as 

a direct result of exposure. This relationship between the boxes, where the upstream effect is necessary 

for progression to the downstream effect, is termed “essentiality” (OECD, 2016). Evidence supporting 

essentiality is generally provided by experimental studies using pharmacologic agents (i.e., inhibitors) or 

animal models in which the molecular pathway is obstructed. The use of solid lines, as opposed to 

dotted lines, reflects the availability of specific experimental evidence that exposure results in an 

upstream effect which is necessary for progression to a downstream effect, for example, by a genetically 

deficient model or a chemical inhibitor used in an experimental study involving pollutant exposure. 

In the diagrams, upstream effects are sometimes linked to multiple potential downstream effects. Boxes 

represent the effects for which there is experimental or epidemiologic evidence related to air pollutant 

exposure, and the arrows indicate a proposed relationship between those effects. To illustrate the 

proposed relationship using a minimum number of arrows, downstream boxes are grouped together 

within a larger shaded box and a single arrow (Figure 1, Arrow 3) connects the upstream single box to 

the outside of the downstream shaded box containing multiple green boxes. Multiple upstream effects 

may similarly be linked to a single downstream effect using an arrow (Figure 1, Arrow 4) that connects 

the outside of a shaded box which contains multiple boxes, to an individual box. In addition, arrows 

sometimes connect one individual box to another individual box that is contained within a larger shaded 

box (Figure 1, Arrow 2) or two individual boxes both contained within larger shaded boxes (Figure 1, 

Arrow 5). Thus, arrows may connect individual boxes, groupings of boxes, and individual boxes within 

groupings of boxes depending on the proposed relationships between effects represented by the boxes. 

Population level effects generally reflect results of epidemiologic studies. When there are gaps in the 

evidence base, there are complementary gaps in the figure and the accompanying text below.  

 

Note: For additional information, please refer to the original biological plausibility diagrams in the ISAs (U.S. EPA, 2019c, U.S. 

EPA, 2020a).  

Figure 1. Illustrative Diagram of Potential Biological Pathways of Health Effects Following Pollutant 

Exposure. 
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2.2.1.2.1 PM2.5-Attributable Endpoints and Biological Plausibility 

Below are the ISA biological plausibility diagrams for PM2.5 and O3 endpoints judged to have either a 

“causal” and “likely to be causal” relationship with pollutant exposure in the 2019 PM and 2020 O3 ISAs, 

as well as information on which of the endpoints identified in the diagrams have or have not been 

previously included in benefits assessments. These diagrams have been reproduced verbatim from the 

ISAs, for the convenience of the reader, and no new independent judgements are rendered regarding 

biological plausibility in this TSD. Although it is not possible to develop a biological plausibility diagram 

for total mortality, taken together, the individual endpoint-specific biological plausibility diagrams each 

provide potential pathways by which PM2.5 exposures could result in mortality. 

2.2.1.2.1.1 Cardiovascular Effects 

The 2019 PM ISA diagram of biological pathways for cardiovascular effects following short-term PM2.5 
exposure includes emergency department visits and hospital admissions as population level effects, for 
which EPA has historically presented benefits impact estimates (Figure 2). The diagram also includes 
mortality as a key endpoint, which EPA has not included in benefits estimates due to the possibility of 
overlap with all-cause mortality impacts from long-term exposure resulting in double counting. 

 

Figure 2. Potential Biological Pathways for Cardiovascular Effects Following Short-Term PM2.5 Exposure 

The 2019 PM ISA diagram of biological pathways for cardiovascular effects following long-term PM2.5 

exposure includes acute myocardial infarctions (AMI; heart attacks) and mortality, which EPA has 

historically presented benefits impact estimates for, and conductance abnormalities/arrhythmia, heart 

failure, stroke, and thromboembolic disease, which have not been included in previous benefits 

estimates (Figure 3). 
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Figure 3. Potential Biological Pathways for Cardiovascular Effects Following Long-Term PM2.5 Exposure 

2.2.1.2.1.2 Respiratory Effects 

The 2019 PM ISA diagram of biological pathways for respiratory effects following short-term PM2.5 

exposure includes emergency department visits and hospital admissions for asthma 

exacerbation/symptoms, chronic obstructive pulmonary disease (COPD), and respiratory infections as 

key population level health endpoints, for which EPA has historically presented benefits impact 

estimates (Figure 4). 

 

Figure 4. Potential Biological Pathways for Respiratory Effects Following Short-Term PM2.5 Exposure 

The 2019 PM ISA diagram of biological pathways for respiratory effects following long-term PM2.5 

exposure includes asthma development/onset and impaired lung function, for which we have not 

previously presented benefits impact estimates (Figure 5). 
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Figure 5. Potential Biological Pathways for Respiratory Effects Following Long-Term PM2.5 Exposure 

2.2.1.2.1.3 Cancer 

The diagram of biological pathways of cancer following long-term PM2.5 exposure is provided (Figure 6)., 

This relationship was  “suggestive” in the 2009 PM ISA and “likely to be causal” in the 2019 ISA (U.S. EPA, 

2009, U.S. EPA, 2019c). 

As cancer is a long-term disease, the 2019 PM ISA did not provide a diagram of biological pathways for 

cancer following short-term PM2.5 exposure. 

 

Figure 6. Potential Biological Pathways for Cancer Effects Following Long-Term PM2.5 Exposure 

2.2.1.2.1.4 Nervous System Effects 

The 2019 PM ISA diagram of biological pathways for nervous system effects following long-term PM2.5 

exposure includes neurodevelopmental disorders, Parkinson’s and Alzheimer’s disease hospital 

admissions and emergency department visits, cognitive decrements/behavioral effects, and cognitive 
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issues (Figure 7). Please note, the weight of evidence supporting each potential is not equivalent and 

additional information can be found in the 2019 PM ISA (U.S. EPA, 2019c). As the previous nervous 

system effect ISA determination did not rise to the “causal” or “likely to be causal” level, EPA has not 

previously included any nervous system endpoints in benefits impact estimates. 

 

 

Figure 7. Potential Biological Pathways for Nervous System Effects Following Long-Term PM2.5 Exposure 

2.2.1.2.2 O3-Attributable Endpoints and Biological Plausibility 

2.2.1.2.2.1 Respiratory Effects 

The 2020 O3 ISA diagram of biological pathways for respiratory effects following short-term O3 exposure 

includes emergency department visits and hospital admissions for asthma exacerbation/symptoms and 

respiratory infections, for which we have historically presented benefits impact estimates, and lung 

function decrements, which EPA has not previously estimates associated benefits (Figure 8). Although 

respiratory mortality is supported as a key clinical effect of short-term ozone exposure in the ISA text 

and should be included in this diagram, it was mistakenly left out due to the expedited timeline of the 

2020 O3 ISA.26 

 
26 This information was obtained through conversations with the authors of the 2020 O3 ISA. 
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Figure 8. Potential Biological Pathways for Respiratory Effects Following Short-Term O3 Exposure 

The 2020 O3 ISA diagram of biological pathways for respiratory effects following long-term O3 exposure 

includes mortality, which EPA has included in prior benefits assessments, and asthma 

development/onset, fibrotic- or emphysema-like disease/COPD, and altered lung development, which 

EPA has not previously included in benefits impact estimates (Figure 9). 
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Figure 9. Potential Biological Pathways for Respiratory Effects Following Long-Term O3 Exposure 

2.2.1.2.2.2 Metabolic Effects 

The 2020 O3 ISA concluded that short-term exposure was likely to cause metabolic effects and long-term 

exposure was suggestive of a causal relationship. Neither short- nor long-term causal determinations 

were made for metabolic effects in the 2013 O3 ISA. The ISA diagram of biological pathways for 

metabolic effects indicates that long-term O3 exposure leads to complications related to diabetes and 

changes or contributors to metabolic syndrome, which EPA has not previously included in benefits 

assessments. 

 

Figure 10. Potential Biological Pathways for Metabolic Effects Following Short-Term O3 Exposure 

 Identification of Quantifiable Health Outcomes27 
Health endpoints referenced in the latest externally reviewed ISA or equivalent assessment include both 

subclinical and clinically relevant endpoints. However, health impacts assessments tend to focus on 

quantifying the number of instances of clinically relevant endpoints (e.g., mortality, hospital admissions, 

and disease onset/development) and not subclinical endpoints (e.g., inflammation, oxidative stress, 

changes in circulation biomarkers, or changes in heart or lung function) for several reasons.  

1. Specific baseline event incidence, or the amount of a particular health endpoint present within 

the population, is required when using epidemiologic risk estimates to project health impacts of 

changes in air quality. Baseline incidence data is more likely to be available for clinically relevant 

health endpoints (e.g., hospital admissions for cardiovascular ICD codes 390-459 or the 

 
27 This approach is consistent with the “effect by effect” approach described in the benefits chapter of the 
Guidelines for Preparing Economic Analyses (U.S. EPA, 2014). Quantification is treated as separable from 
monetization given resource and data limitations (section 1.2).  
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prevalence of asthma in children) then for subclinical endpoints (e.g., forced expiratory volume 

or hypertension). 

2. Quantifying subclinical endpoints involve additional uncertainties when relating upstream 

subclinical effects with clinically relevant downstream health impacts. This does not mean that 

subclinical health impacts of PM2.5 and O3 do not exist. In fact, considerably more instances of 

pollutant-attributable subclinical effects than clinically relevant effects would be expected. 

Although causal determinations are made for broad health endpoint categories (e.g., cardiovascular 

effects), the ISAs do review support for specific endpoints (e.g., acute myocardial infarctions) (section 

2.2.1.2). Evidence associating specific health endpoints falling under broad health endpoints with “likely 

to be causal” or “causal” relationships with air pollution exposures are used to identify comprehensive, 

but not overlapping, health endpoints, when suitable studies for quantification based on the criteria 

identified above are available. 

 Study Information Table 
Extensive and comprehensive study information is provided for transparency regarding study 

comparisons and identification for benefits assessment. Specific study information, corresponding to the 

preferred criteria in section 2.1.2, is available for all endpoint-specific, ISA-derived epidemiologic studies 

newly considered for use in the main and sensitivity benefits estimation in a separate Excel file titled 

Study Information Table for the Estimating PM2.5- and Ozone-Attributable Health Benefits TSD.28,29 

Specific studies are listed once per pollutant health endpoint. 

Descriptions of the specific types of information extracted from the studies and included in the Study 

Information Table are available in Table 5. Studies differed in the type and level of detail of information 

provided. Additionally, sometimes information was not reported (NR) by the study and is therefore not 

available in the Study Information Table. For example, not all studies provided information on the race, 

sex, age range of the study population. Please note, individual studies may be listed multiple times in 

the Study Information Table if they report results for multiple endpoints, but they are listed only once 

per pollutant endpoint. 

Table 5. Study Information Tables 

Column Name Description 

Endpoint Group “Causal” or “likely to be causal” health endpoint included in benefits 
assessment. 

Endpoint Specific health endpoint included in benefits assessment. 

HERO ID Identifier used by the Health and Environmental Research Online (HERO) 
database. This database is a repository for studies and other references 
and is used for various peer-reviewed documents, such as ISAs and 
research projects. 

First Author First study author listed. 

Publication Year Year the article was published, according to PubMed. 

Pollutant PM2.5 or O3. 

 
28 Study information is kept in a separate Excel file to support ease of use.  
29 Risk estimate information tables are not provided as the identification of suitable risk estimates followed the 
hierarchy described in Table A-1 of the 2019 PM ISA appendix. 
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Study Type Epidemiologic study design (e.g., cohort, case control, case crossover, etc.). 

Meta-Analysis Identifies meta-analyses for use when considering pooling city- or regional-
specific estimates to generate an overall risk estimate.  

Exposure Duration Long-term (one month to years) or short-term (hours to less than one 
month) exposures. 

Study Population Cohort name or description if unnamed. 

Study Size (number of 
participants or events) 

This can take various forms, such as the number of participants, person-
years, number of hospitalizations/admissions/discharges, or number of 
cases and controls. All information provided by the study is included. 

Demographics Demographics of the study participants, such as race/ethnicity, education 
level, income level, and socioeconomic status.  

Ages Ages of study participants, with maximum age of 99 reported when 
maximum participant age 99 and older. 

Exposure Method Summary of the type of exposure estimate technique. Monitor studies 
denote monitor-based studies, and often include land use regression (LUR) 
techniques. Hybrid studies include photochemical model and/or satellite 
data.  

Country Location of study population (U.S. or Canada). 

Study Location Brief description of the locations included in the study. 

Health Years Years of health data included. 

Air Quality Years Years of air quality data included. Many studies used a specific common 
time frame for entire sample, but some used other criteria, such as 
exposure over the first year of life. 

Pollutant 
Concentrations (author-
reported) 

Typically, the overall mean and/or median concentrations across study 
areas, but sometimes provided information was at a different geographic 
and temporal scales (e.g., by state and over multiple years). 

LRL/Minimum Exposure 
Concentration 

The lowest reported pollutant level/concentration. 

Pollutant Concentration 
Notes 

Author-reported exposure estimation method. If multiple types of 
exposure estimation techniques were used for an individual pollutant, all 
are included. 

Outcome Measure Specific health outcome. Examples include the ICD codes used for hospital 
admission and emergency department visits or the criteria used to identify 
disease onset. 

Lag Periods For short-term studies, the time period of exposure prior to health effect. 

Copollutants Adjustments for copollutants in the risk estimates. 

Covariates/Confounders Author-reported covariates/confounders included in the risk estimate. 

Statistical Technique Analytical methods used to generate the risk estimate. 

Qualitative Limitations Summary comparison of each study to others investigating the same 
pollutant and specific health endpoint. 

Relative Determination Denotes which studies were identified as best characterizing risk as 
compared to other available studies for each pollutant endpoint. 
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 Methods for Presenting Health Benefits Estimates Using Multiple Risk Estimates for a 

Single Endpoint 

2.2.4.1 Pooling 

If more than one study or risk estimate is suitable for characterizing risk across the U.S. for an individual 

health endpoint, we prefer to use multiple risk coefficients to the extent technically feasible. In such 

instances, we combine the risk estimates using pooling30 methods in order to avoid a loss of information 

from multiple suitable studies; this approach is consistent with advice received from the National 

Academies of Sciences (NRC, 2002). Pooling yields a summary mean value estimate and confidence 

intervals reflecting variability across the pooled risk estimates. These pooled estimates take into account 

both the within-study variances and the between-study variance when weighting.  

Unfortunately, the heterogeneous nature31 of epidemiological studies often make them difficult to pool 

or otherwise aggregate. For example, it would be inadvisable to combine results from a long-term 

exposure study with a short-term exposure study. Other types of study heterogeneity that would 

prevent one from aggregating across studies include exposure duration (i.e., short- and long-term), 

some population attributes (e.g., age or race/ethnicity), health endpoint outcome measure (e.g., specific 

international classification of disease [ICD] codes), and study type (e.g., cohort vs case control).  

Combining studies that differ in other aspects can be less straightforward, as there can be both 

advantages and disadvantages. For example, recent advancements in exposure estimation methods 

allow newer hybrid techniques to estimate pollutant concentrations at more detailed temporal and 

spatial scales. As the uncertainties associated with hybrid- and monitor-based exposure estimates vary 

and we consider the quality of the exposure estimate during study and risk estimate identification, we 

expect pooling risk estimates that vary by exposure technique will increase the confidence in the overall 

benefits estimate. We also consider pooling studies that differ in the study period, North American 

country, geographic area, pollutant concentrations, included covariates, or regression technique. 

Conversely, while consistency between studies is generally desirable when pooling, there are some 

instances when it could introduce uncertainty and/or bias. For example, we would not pool multiple 

studies of the same cohort over different time periods, as these are not independent results—but rather 

different results from the same cohort. Hence, we would instead identify the most recent analysis or the 

analysis considering the longest time series of air quality data, so that the study population is not over-

represented when estimating health impacts.32  

 
30 Pooling estimates would be accomplished by performing a meta-analysis, a statistical method of aggregating 
independent risk estimates to provide an overall single estimate. EPA has in the past sought to characterize the 
magnitude of uncertainty across risk estimates by either applying a fixed effect or random effects pooling 
technique to combine two or more risk estimates 
31 This is considered a strength when determining whether an outcome is causally linked to a pollutant. 
32 If multiple studies of the same cohort suitably characterize risk, multi-step pooling to avoid over-weighting is an 
option. This would involve first combining analyses of the same cohort and then combining with estimates from 
other cohorts. 
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2.2.4.2 Individual Alternate Risk Estimates  

In situations where multiple scientifically robust risk estimates should not or cannot be pooled33, we 

instead estimate incidence using each risk estimate independently. Where pooling synthesizes the 

results of multiple risk estimates into a single value, presenting multiple estimates from various key 

epidemiological studies identified by the latest ISA or equivalent could provide readers with insight to 

the plausible range of air pollution-attributable impacts. Therefore, if pooling is infeasible due to the 

issues mentioned above, we report individual results from each risk estimate suitable for characterizing 

risk across the U.S. for an individual health endpoint separately. Reporting a large number of individual 

estimates may characterize the heterogeneity associated with risk but may also make the resulting risk 

estimates more difficult to interpret. To keep results manageable, we may report additional estimates as 

a quantitative sensitivity analysis.  

2.2.4.3 Systematic Identification of Epidemiologic Studies and Risk Estimates for Benefits Assessment 

This section describes the systematic application of the identification criteria (section 2.1) to the body of 
available epidemiologic studies and risk estimates (section 2.2). Summary information on the number of 
available and included studies and risk estimates is presented in Table 6 and Table 7. Descriptions of 
endpoint-specific ISA support and available epidemiologic literature are available for each pollutant-
attributable and quantifiable health endpoint. 

 PM2.5  
The following sections of the PM ISA correspond to health endpoints judged as having a “causal” or 

“likely to be causal” relationship with PM2.5 exposure:  

• 5.1 Short-Term PM2.5 Exposure and Respiratory Effects, 

• 5.2 Long-Term PM2.5 Exposure and Respiratory Effects, 

• 6.1 Short-Term PM2.5 Exposure and Cardiovascular Effects, 

• 6.2 Long-Term PM2.5 Exposure and Cardiovascular Effects, 

• 8.2 Long-Term PM2.5 Exposure and Nervous System Effects, 

• 10.2 [Long-Term] PM2.5 Exposure and Cancer, 

• 11.2 Long-Term PM2.5 Exposure and Total Mortality 

Following the approach to identifying available epidemiologic literature (section 2.2), we began with the 

2,656 studies cited by the 2019 PM ISA. Of these, 491 studies evaluated mortality or morbidity health 

endpoints that the 2019 PM ISA determined as having a “causal” or “likely causal” relationship with 

PM2.5 exposure and are clinically relevant (sections 2.2.1 and 2.2.2). 34 Of these, 82 studies met the 

minimum required criteria (section 2.1.1). 35 

As studies that evaluated broad and more inclusive hospital admissions and emergency department visit 
health endpoints (e.g., hospital admissions including a variety of respiratory endpoints) were preferred 
over studies that focused on hospital admissions or emergency department visits for specific health 

 
33 As an example, we often cannot pool across hazard ratios reported in long-term exposure cohort studies. The 
challenges associated with synthesizing the results of long-term cohort studies have been described elsewhere 
(Burnett et al., 2018). 
34 Mortality studies were treated slightly differently. More information is available in section 2.2.5.1.1. 
35 This number may not equal the sum of available studies in Table 6 as individual studies may present risk 
estimates for multiple health endpoints. 
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endpoints (e.g., hospital admissions for asthma only), we began by focusing on epidemiologic studies 
including broad hospital admissions and emergency department visits ICD-9 codes. This reflects strong 
support for these broad endpoints in the ISA, the desire to avoid double-counting of health benefits 
across categories, and recommendations from advisory board recommendations.36 The remaining 
studies were sorted by health endpoint and PM2.5 exposure relationship (i.e., short-term or long-term 
exposure to PM2.5). These studies included 16 unique health endpoints (Table 6). In Table 6, the number 
of available studies refers to the number of North American studies meeting the minimum required 
criteria within each health endpoint, and a single study may be relevant to multiple endpoints. The risk 
estimates from the different studies for each endpoint can either be pooled (section 2.2.4.1) or kept as 
separate estimates (section 2.2.4.2), the latter of which is more common for mortality endpoints. The 
two columns to the far left provide the number of available risk estimates from each included study, as 
well as the number of risk estimates to be pooled or kept separate for each endpoint.  

Once the studies were grouped by health endpoint, we applied the preferred criteria to obtain the final 

set of studies to inform each health endpoint. For each of the 16 endpoints, we performed a study 

ranking process based on these criteria that emphasized characteristics in Table 2. When no new 

epidemiologic studies of health endpoints previously supported by the ISAs were available, the risk 

estimates used previously were brought forward (e.g., work loss days). 

 
36 The Health Effects Subcommittee (HES) of the Advisory Council on Clean Air Compliance Analysis (Council) 

provided recommendations on the distinction between specific diagnostic codes and broad health outcome 

categories in 2004 (Ostro, 2004). The HES recommended “health outcome estimates that can be more closely 

linked to the results of epidemiologic studies. However, if in the efforts to achieve a match, the outcome 

specification is too narrow (e.g., “acute bronchitis” instead of “all respiratory conditions”), small numbers will 

seriously reduce the reliability of the analysis. Therefore, careful consideration of the diagnostic codes to use (with 

the related tradeoffs in uncertainty) will be an important step in constructing the baseline data sets.” 
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Table 6. PM2.5 Study and Risk Estimate Identification Diagram* 

PM Endpoint and 
Exposure Duration 

Studies 
Available 

Studies 
Included 

Ages 
Risk 

Estimates 
Available 

Risk 
Estimates 
Included 

Mortality (LT) 

2 1 Infants 1 1 

19 2 
Adults and older adults 19  1 

Older adults 64 1 

Cardiovascular 
Hospital Admissions 
(ST) 

10 1 
Children, adults, and older 

adults 
28 7 

Cardiovascular 
Emergency 
Department Visits (ST) 

1 1 
Children, adults, and older 

adults 
3 1 

AMI (ST) NA 1 Adults and older adults NA 1 

Stroke (LT) 3 1 Older adults 1 1 

Cardiac Arrest (ST) 3 3 Adults and older adults 

12 1 

12 1 

7 1 

Respiratory Hospital 
Admissions (ST) 

13 2 
Children 3 1 

Older adults 4 1 

Respiratory 
Emergency 
Department Visits (ST) 

10 1 Children 16 4 

Asthma Onset (LT) 5 1 Children 7 1 

Asthma Symptoms 
(ST) 

8 1 Children 8 1 

Allergic Rhinitis 1 1 Children 5 1 

Minor Restricted 
Activity Days 

NA 1 Adults and older adults NA 1 

Work Loss Days NA 1 Adults and older adults NA 1 

Lung Cancer (LT) 4 1 Adults and older adults 24 1 

Alzheimer’s Disease 
(LT)   

1 1 Older adults 53 1 

Parkinson’s Disease 
(LT) 

3 1 Older adults 53 1 

ST- short-term exposure; LT- long-term exposure; NA- not applicable due to the absence of recent available epidemiologic 
studies in the ISA; Risk estimates identified in the 2012 PM NAAQS RIA will continue to be utilized. 
*See associated Study Information Table for specific study details. 
 

2.2.5.1 All-Cause Mortality 

The 2019 PM ISA concluded that a “causal” relationship exists between both long- and short-term PM2.5 

exposure and all-cause mortality. Specifically, the 2019 ISA states that:  

Recent U.S. and Canadian cohort studies demonstrate consistent, positive associations 

between long-term PM2.5 exposure and mortality across various spatial extents, 

exposure assessment metrics, and statistical techniques, and locations, where mean 



 

28 
 

annual average concentrations are ≤12 μg/m3. Additionally, the evidence from recent 

studies reduce uncertainties related to potential copollutant confounding and continues 

to provide strong support for a linear, no-threshold concentration-response relationship. 

The body of evidence for total mortality is supported by generally consistent positive 

associations with cardiovascular and respiratory mortality. There is coherence of effects 

across the scientific disciplines (i.e., animal toxicological, controlled human exposure, 

and epidemiologic studies) and biological plausibility for PM2.5-related cardiovascular, 

respiratory, and metabolic disease, which supports the PM2.5-mortality relationship. (U.S. 

EPA, 2019c, section 11.2.7) 

As the biological pathways by which short- and long term PM2.5 exposures are understood to lead to 

health effects are quite similar (section 2.2.1.2.1), we assume that effects found in studies of long-term 

exposures may include some effects of short-term exposures. Therefore, only mortality impacts from 

long-term PM2.5 exposure will be quantified, so as not to overestimate impacts. This may potentially bias 

long-term, all-cause PM2.5-attributable mortality impact estimates toward the null in the main benefit 

estimate. 

Additional support for including estimates of all-cause PM2.5 mortality, as opposed to cause-specific, 

comes from the recommendations of advisory boards and review panels. For example, in response to 

suggestions made in a 2002 National Resources Council (NRC) report, expert judgement studies of 

mortality impacts were conducted (NRC, 2002). The report recommended that “the main quantitative 

question should focus on all-cause mortality as the outcome, rather than eliciting separate 

concentration-response functions for specific causes of death” (IEc, 2006).  Similarly, a more recent 

Health Effects Subcommittee (HES) of the Advisory Council on Clean Air Compliance Analysis (Council) 

affirmed the inclusion of all-cause long-term PM2.5 estimate with no threshold was “sound” (Hammitt 

and Bailar, 2010). 

2.2.5.1.1 Available Epidemiologic Literature 

Whereas for all other health endpoints we began by identifying North American epidemiologic studies 

from the relevant ISA (U.S. EPA, 2019c, Figures 11-17 and 11-18), available literature for this health 

endpoint had been further reviewed by EPA in the 2020 PM Policy Assessment (PA) (U.S. EPA, 2020c 

section 3.2 and Figure 3-3). As part of this review, the PA identified multi-city studies and more recent 

reanalysis or extensions of some of the commonly used cohorts. As such, for this health endpoint we 

began with the 19 epidemiologic multi-city cohort studies identified in the 2020 PM PA, which all met 

the minimum criteria (section 2.1.1).  

We separately evaluated the more limited literature available regarding PM2.5-attibutable infant 

mortality (ages 0-12 months) cited in the 2009 ISA, as no more recent studies of PM2.5-attributable all-

cause infant mortality were available in the 2019 ISA. Full study information can be found in the Study 

Information Table.  

2.2.5.1.2 Identifying Suitable Studies for Use in Benefits Assessments 

The systematic identification criteria (section 1) was applied to the 19 studies of PM2.5-attributable long-

term all-cause mortality in adults, which prioritized particularly germane attributes including geographic 

coverage, population representativeness, and method of exposure estimation. As it is not relevant to 

study identification, we did not consider the risk effect magnitude as a criterion for study identification.  
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The 19 studies varied considerably with regards to all criteria considered. For example, study sizes 

ranged from the thousands to the tens of millions. Ultimately, all preferred criteria relevant to PM2.5 

factored into the identification of the studies best characterizing risk across the country, although 

geographic diversity, exposure estimation technique, population attributes, PM2.5 concentrations, and 

inclusion of the copollutant O3 were particularly germane. Specific information can be found in the 

corresponding Study Information Table. 

2.2.5.1.3 Studies and Risk Estimates Identified as Most Suitable for Use in Benefits Assessments 

As mortality impacts constitute such a large portion of health impacts and every study has inherent 

strengths and limitations, we expect to present mortality estimates using multiple cohort risk estimates. 

This approach is also consistent with previous RIAs (e.g., U.S. EPA, 2011b, U.S. EPA, 2011c, U.S. EPA, 

2011d, U.S. EPA, 2012a, U.S. EPA, 2012b, U.S. EPA, 2015a, U.S. EPA, 2019a).  

The systematic approach led to the initial identification of three studies best characterizing risk across 

the U.S. (Di et al., 2017b, Pope et al., 2015, Turner et al., 2016).37,38 These three studies used data from 

two cohorts, a retrospective analysis of Medicare beneficiaries (Medicare) and the American Cancer 

Society Cancer Prevention II study (ACS CPS-II). The identification of these studies is consistent with the 

2019 PM ISA, which concluded that the ACS CSP-II and Medicare cohorts provide strong evidence of the 

association between long-term PM2.5 exposure and mortality with support from several additional 

cohort studies (U.S. EPA, 2019c). We discuss uncertainty and sensitivity considerations related to the 

identified mortality risk estimates in sections 6.1.2 and 6.5.39 

2.2.5.1.3.1 Adult Mortality 

2.2.5.1.3.1.1 ACS CSP-II 

Two independent studies evaluated the same years of data from the large, nationwide ACS CSP-II cohort 

of those > 29 years old (Pope et al., 2015, Turner et al., 2016). These studies extended the follow-up 

period of the ACS CSP-II to 22 years (1982-2004), evaluating 669,046 participants over 12,662,562 

person-years of follow up and 237,201 observed deaths. These two studies applied a more advanced 

exposure estimation approach than had previously been used when analyzing the ACS cohort, 

combining the geostatistical Bayesian Maximum Entropy framework with national-level land use 

regression models. 

 
37 The PM risk assessment, performed as part of the 2020 PM PA, included Di et al., 2017b, Turner et al., 2016, and 

Pope et al., 2015 as sources of key PM2.5-attributable mortality risk estimates, further supporting their 
identification for benefits assessment. The 2020 PM PA cited a number of relative advantages of these studies 
related to the extended period of observation, the rigorous examination of model forms and effect estimates, the 
coverage for ecological variables, and the large dataset with regards to both population and area (U.S. EPA, 2019c). 
38 The Harvard Six Cities Study, which had been identified for use in estimating mortality impacts in the 2012 PM 
NAAQS RIA, was not identified using this approach due to geographic limitations (U.S. EPA, 2012b). 
39 There are several other assumptions implicit in the calculation of PM2.5-related mortality impacts. Briefly, these 
include 1) an assumption of “cessation” lag in time between the reduction in PM exposure and the full reduction in 
mortality risk that affects the timing (and thus discounted monetary valuation) of the resulting deaths, 2) following 
conclusions of U.S. EPA, 2019c, we assume that all fine particles are equally potent in causing mortality, and 3) 
following conclusions of the U.S. EPA, 2019c, we assume that the health impact function for fine particles is linear 
within the range of ambient concentrations affected by these standards. 
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In addition to adjusting for individual-level and ecological covariates, Turner et al., 2016 also controlled 

for occupational PM2.5 exposure and adjusted for the potential copollutants O3 and nitrogen dioxide. 

Although the copollutant adjustment did not significantly change the hazard ratio, similar to the risk 

assessment performed as part of the PM PA (U.S. EPA, 2020c), we identified it as the most suitable 

hazard ratio when estimating health benefit impacts.40 Thus, the total mortality risk estimate is based on 

the random-effects Cox proportional hazard model that incorporates multiple individual and ecological 

covariates41 (relative risk  =1.06, 95% confidence intervals 1.04–1.08 per 10µg/m3 increase in PM2.5). The 

relative risk estimate is identical to a risk estimate drawn from earlier ACS analysis of all-cause long-term 

exposure PM2.5-attributable mortality (Krewski et al., 2009). Of note, the ACS cohort participants were 

recruited by approximately 77,000 ACS volunteers and may not precisely represent the overall U.S. 

population demographics. 

A depiction of the slope and standard error of the hazard ratio associated with the identified risk 

estimate from the minimum to maximum PM2.5 concentrations evaluated is provided (Figure 11). The 

static standard error is reflected in the proportionally constant 95% confidence intervals shown with red 

dashed lines, depicted as relative to the lowest reported level. 

 

Figure 11. Functional Form of the Identified ACS CSP-II Risk Estimate 

2.2.5.1.3.1.2 Medicare 

The recent Di et al., 2017b analysis evaluated nearly 61 million U.S. Medicare enrollees through 460 

million person-years of follow-up and roughly 22 million observed deaths. This cohort comprised 

approximately 15% of the total U.S. population, included people living in rural areas, and is one of the 

largest cohort studies published to date. The authors modeled PM2.5 exposure across the contiguous 

 
40 Hazard ratios are a subtype of risk estimates. 
41 Covariates include: education; marital status; body mass index (BMI) and BMI squared; cigarette smoking status; 
cigarettes per day and cigarettes per day squared; years smoked and years smoked squared; started smoking at 
younger than 18 years of age; passive smoking (hours); vegetable, fruit, fiber, and fat intake; beer, wine, and liquor 
consumption; occupational exposures; an occupational dirtiness index; and six sociodemographic ecological 
covariates at both the postal code and postal code minus county-level mean derived from the 1990 U.S. Census 
(median household income and percentage of African American residents, Hispanic residents, adults with 
postsecondary education, unemployment, and poverty). 
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U.S. using a sophisticated hybrid methodology that included land use regression, satellite data, and 

monitor data, and resolved estimations to 1 x 1-kilometer areas. Adjustment for potential confounding 

by the copollutant O3 was performed, which slightly attenuated the relationship between PM2.5 and 

mortality. The authors also performed statistical testing for the potential of non-linear effects and 

concluded that the data supported a nearly linear concentration-response relationship with no signal of 

a threshold down to at least 5 µg/m3.  This study is restricted to adults over the age of 64, and thus will 

only be applied to that age group in benefits assessments. 

In addition to the main hazard ratio, Di et al., 2017b presented three additional hazard ratios: one that 

excluded the copollutant O3, one that estimated exposure using only monitor data, and one that 

evaluated a subset of the population experiencing lower exposures. Of these hazard ratios, only the low-

exposure analysis differed substantially from the others and was considerably higher (HR = 1.136 [1.131-

1.141] per 10 μg/m3 PM2.5). However, this analysis was restricted to person-years with both PM2.5 

exposures lower than 12 μg/m3 and O3 exposures lower than 50 parts per billion (ppb). Restricting the 

analysis in this way reduces the sample size and restricts the air quality concentrations, making 

estimates of risk less applicable to the entire U.S. Similarly, we prefer methods for assigning exposure 

that leverage both monitor and modeling techniques and models that account for potential copollutant 

confounding. Hence, we identified a hazard ratio from the main analysis to be the most appropriate for 

use (HR=1.073 [1.071-1.075] per 10 μg/m3 PM2.5). 

A depiction of the slope and 95% confidence intervals of the hazard ratio associated with the identified 

risk estimate from the minimum to maximum PM2.5 concentrations evaluated is provided (Figure 12).  

 

Figure 12. Functional Form of the Identified Medicare Risk Estimate 

2.2.5.1.3.1.3 Summary 

EPA previously used the two best estimates of mortality available, one from the ACS cohort and one 

from the Harvard Six Cities study. While two estimates were again identified as best characterizing risk 

across the U.S., their relative magnitude will depend on the populations included in the analysis (e.g., 

analyses of older or younger populations experiencing higher concentrations will lead to the Medicare 

estimate or the ACS CSP-II generating the “higher” estimate, respectively). Qualitatively, the two risk 

estimates identified here are both very similar to the previously used Krewski et al., 2009 estimate of 

mortality derived from the ACS cohort. 
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2.2.5.1.3.2 Infant Mortality 

In addition to the adult mortality studies described above, several studies show an association between 

PM exposure and mortality in children under 5 years of age (U.S. EPA, 2009).42 The 2019 PM ISA 

concluded that evidence exists for a stronger effect at the post neonatal period and for respiratory-

related mortality, although this trend is not consistent across all studies. In addition, compared to 

avoided deaths estimated for adult mortality, avoided deaths for infants are significantly smaller 

because the number of infants in the population is much smaller than the number of adults and the 

epidemiology studies on infant mortality provide smaller risk estimates associated with exposure to PM. 

EPA has included estimates of post neonatal infant mortality from Woodruff et al., 1997 (U.S. EPA, 

2012a, U.S. EPA, 2019a).  

In a more recent study including a larger and more nationally-representative study size by the same 

group, authors examined the relationship between long-term exposure to fine PM2.5 air pollution and 

post neonatal infant mortality in 3,583,495 births from 96 counties containing >249,999 residents across 

the U.S. between 1999-2002 using data from the National Center for Health Statistics (Woodruff et al., 

2008). They linked average PM2.5 monitoring data over the first two months of life with 6,639 post 

neonatal deaths, using logistic regression that incorporated generalized estimating equations (GEE) to 

estimate the odds ratios for all-cause and cause-specific post neonatal mortality by exposure to air 

pollution.43 The study population experienced a median PM2.5 concentration of 14.8 µg/m3, with 25% of 

the population experiencing concentrations below 12 µg/m3 and above 18.8 µg/m3. The study included 

an evaluation of the appropriateness of a linear form from analysis based on quartiles of exposure and 

determined the linear form as a reasonable assumption. Study results included a single risk estimate of 

PM2.5-attributable all-cause mortality, 1.04 (0.98-1.11) per 7 µg/m3 (interquartile range) increase in 

PM2.5. 

2.2.5.2 Cardiovascular Hospital Admissions  

The ISA found “generally consistent, positive associations observed in numerous epidemiologic studies 

of emergency department visits and hospital admissions for ischemic heart disease, heart failure, and 

combined cardiovascular-related endpoints” (U.S. EPA, 2019c section 6.1.16). Also, the ISA calls out 

cardiovascular hospital admissions as a population level health endpoint related to short-term PM2.5 

exposure (section 2.2.1.2.1.1).  

2.2.5.2.1 Available Epidemiologic Literature 

Ten North American epidemiologic studies of cardiovascular hospital admissions44 were identified in 

section 6.1 of the PM ISA (U.S. EPA, 2019c). Relevant information related to the identification criteria, 

including study location, population attributes, and study period, were extracted from the studies and is 

available in the associated Study Information Table. The hospital admissions endpoint reports the 

number of events, as opposed to the number of individuals who experienced the event. 

 
42 For the purposes of this analysis, we only calculate benefits for infants age 0–12 months, not all children under 5 
years old.   
43 Odds ratios are a subtype of risk estimates. 
44 Of the ~35 million annual hospital discharges, ~20% are related to cardiovascular effects, ~10% to respiratory 
effects, and ~2% to nervous system effects (https://www.cdc.gov/nchs/data/nhsr/nhsr029.pdf).  
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2.2.5.2.2 Identifying Suitable Studies for Use in Benefits Assessments 

Relevant study information was used to identify the most nationally representative study or studies 

available. Study details can be found in the associated Study Information Table. The available 

cardiovascular hospital admissions studies predominantly included locations across the contiguous U.S. 

and evaluated the Medicare cohort, although two studies evaluated all ages. Few studies included 

health or air quality data post-2006, used hybrid exposure estimation techniques, or included O3 as a 

copollutant in the risk estimates. Importantly, while all studies assessed a broad range of cardiovascular 

effects, the specific ICD codes included varied widely. Of the available studies, Bell et al., 2015 evaluated 

the most recent study period and included the most nationally representative study locations. 

2.2.5.2.3 Studies and Risk Estimates Identified as Most Suitable for Use in Benefits Assessments 

Bell et al., 2015 investigated the effects of short-term fine particulate matter (PM2.5) exposure on 

cardiovascular health (ICD-9 410, omitting 410.x2; 410-414; 426-427; 428; 429; 430-438; and 440-448). 

Authors acquired data for 213 U.S. counties (1999-2010) from the Medicare Claims Inpatient Files for 

U.S. residents >65 years of age. Authors chose variables including sex, age, county of residence, and 

cause of hospital admission, as determined by ICD-9 codes. Authors collected PM2.5 exposure data from 

county population-based ambient monitors from the US EPA Air Quality System and averaged for county 

and day. Data were present for 56.5% of study days. Bell et al. (2015) utilized Bayesian hierarchal 

modeling to examine the links between PM2.5 and hospital admissions, running separate models to 

generate risk models for time lags (0-2 days) and season for any estimated variation in health effects. 

The percent increase in risk of 0.65% (95% CI: 0.48-0.83) for an increase of 10 µg/m3 in same-day daily 

mean PM2.5 concentrations came from a single pollutant model. 

2.2.5.3 Cardiovascular Emergency Department Visits 

The ISA found that “generally consistent, positive associations observed in numerous epidemiologic 

studies of emergency department visits and hospital admissions for ischemic heart disease, heart failure, 

and combined cardiovascular-related endpoints” (U.S. EPA, 2019c section 6.1.16). The ISA also calls out 

cardiovascular emergency department visits as a population level health endpoint related to short-term 

PM2.5 exposure (section 2.2.1.2.1.1).  

2.2.5.3.1 Available Epidemiologic Literature 

Although there were several studies of both emergency department visits and hospital admissions, 

there was only one short-term exposure epidemiologic study specific to cardiovascular emergency 

department visits available in the 2019 PM ISA (U.S. EPA, 2019c). 

2.2.5.3.2 Study and Risk Estimates Identified as Most Suitable for Use in Benefits Assessments 

Ostro et al., 2016 investigated the association between short-term, source-specific (vehicular emissions, 

biomass burning, soil, and secondary NO¬
3 and SO4 sources) PM2.5 concentrations and emergency 

department visits for respiratory and cardiovascular diseases in eight cities in California from 2005 to 

2008. Authors obtained medical and demographic data from the Office of Statewide Health Planning 

and Development in California, and diagnosis was defined with ICD-9 codes: all cardiovascular (390-459), 

ischemic heart disease (410–414), AMI (410), cardiac dysrhythmia (427), and heart failure (428). Ostro et 

al., 2016 conducted a case cross-over analysis, stratified by year and month, controlling for weather and 

day of the week covariates. Authors used a county-level logistic regression and random-effects meta-

analysis to examine the association between source-specific PM2.5 and emergency department visits for 

respiratory and cardiovascular diseases. Results indicate a positive association between vehicle PM2.5 
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emissions and emergency department visits for all cardiovascular diseases. The identified excess risk 

estimate of 0.7% (95% CI: -0.2-1.7) per 11.4 µg/m3 (interquartile range) daily mean PM2.5 concentration 

increase came from a single pollutant model lagged by 2 days. 

2.2.5.4 Cardiac Arrest (Out-of-Hospital) 

The 2019 PM ISA stated that “in contrast to the studies from the previous review, recent studies have 

reported generally positive associations between short-term PM2.5 exposure and out-of-hospital cardiac 

arrest” (U.S. EPA, 2019c, section 6.1). The ISA also called out conductance abnormalities as a key clinical 

effects associated with both short-and long-term PM2.5 exposures (section 2.2.1.2.1.1).  

This endpoint, like several others (e.g., lung cancer incidence, section 2.2.5.14) has a very high rate of 

fatality. As mortality due to any cause is captured separately (section 2.2.5.1), we focus on impacts 

following cardiac arrest,  in the population that survive the initial event when considering this health 

endpoint.45  

2.2.5.4.1 Available Epidemiologic Literature 

The 2019 PM ISA included three epidemiologic studies of out-of-hospital cardiac arrest that met our 

minimum identification criteria (section 2.1.1). 

2.2.5.4.2 Identifying Suitable Studies for Use in Benefits Assessments 

All three studies each evaluated separate locations and were similar with regards to study aspects such 

as age range (Ensor et al., 2013, Rosenthal et al., 2008, Silverman et al., 2010). Due to differences only in 

the study period and locations, the three studies are pooled using the random or fixed effects pooling 

method for benefits assessment purposes.46 

2.2.5.4.3 Studies and Risk Estimates Identified as Most Suitable for Use in Benefits Assessments 

Ensor et al., 2013 studied the association between short-term ambient air pollution (PM2.5 and O3) 

exposure and out-of-hospital cardiac arrest. Ensor et al., 2013 gathered medical and demographic data 

from an Emergency Medical Services database in Houston, Texas between 2004 and 2011. Authors 

assessed the medical data and defined out-of-hospital cardiac arrest as emergency medical services 

performing chest compressions. Authors collected ambient air pollution and weather data from Texas 

Commission of Environmental Quality monitors and calculated hourly and daily averages for PM2.5 and 

O3. The authors used a time-stratified case crossover analysis and conditional logistic regression to 

interpret the data and found that with a daily increase of 6 µg/m3 in PM2.5, averaged from a 0- and 1-day 

lag, there was an increased risk of out-of-hospital cardiac arrest of 3.9% (95% CI: 0.5-7.4). 

 
45 Similarly, as any emergency department visits or hospital admissions resulting from cardiac arrest would be 
included in other endpoints (sections 2.2.5.2 and 2.2.5.3), monetized benefits of this health endpoint would not 
include and emergency department visits or hospital admissions costs. 
46 Random or fixed effects pooling is a method to combine two or more distributions into a single new distribution, 
allowing for the possibilities that either 1) a single true underlying relationship exists between the component 
distributions, and that differences among estimated parameters are the result of sampling error, or 2) the 
estimated parameter from different studies may in fact be estimates of different parameters, rather than just 
different estimates of a single underlying parameter, and weights for the pooling are generated via inverse 
variance weighting, thus giving more weight to the studies that exhibit lower variance and less weight to the input 
distributions with higher variance. 
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Silverman et al., 2010 investigated the link between short-term ambient air pollution exposure (PM2.5, 

NO2, SO2, O3, and CO) and out-of-hospital cardiac arrest in New York City between 2002 and 2006. 

Authors obtained medical data from the Emergency Medical Services of the New York City Fire 

Department for 8,216 subjects aged 0 to 99, average age 65.6 with slightly more men than women. 

Authors collected air pollution and weather data from the US EPA’s Air Quality System monitors within a 

20-mile radius of New York City and averaged over 24-hour periods. Authors conducted time series and 

case crossover analyses with 0- and 1-day lagged air pollution levels and by season. Silverman et al., 

2010 found that in a single-pollutant case crossover model, each 10 µg/m3 increase in ambient PM2.5 

resulted in a relative risk of 1.04 (95% CI: 0.99-1.08) in out-of-hospital cardiac arrest incidences 0- and 1-

day prior to onset.  

Rosenthal et al., 2008 examined the effects of short-term PM2.5 exposure on out-of-hospital cardiac 

arrest incidence and whether these effects were connected to demographic data or presence of heart 

rhythm. Additionally, Rosenthal et al., 2008 compared exposure time and measurement method on the 

effects of short-term PM2.5 exposure and out-of-hospital cardiac arrest incidence. Authors obtained 

medical data from the Wishard Ambulance Service, a local emergency medical service in Indianapolis, 

Indiana, from July 2, 2002 to July 7, 2006. The study defined out-of-hospital cardiac arrest using the 

same criteria as Ensor et al., 2013 and Silverman et al., 2010. Authors collected daily and hourly PM2.5 

concentrations from two City of Indianapolis monitoring sites and using two separate methods: the 

Federal Reference Method (FRM) for 24-hour filter samples, and a Federal Equivalence Method (FEM). 

The authors used a case crossover analysis with conditional logistic regressions in order to study the 

effects of short-term PM2.5 exposure on out-of-hospital cardiac arrest incidence. Rosenthal et al., 2008 

found a positive but statistically insignificant association between non-dead on arrival (non-DOA) out-of-

hospital cardiac arrest cases and ambient PM2.5 concentrations. Although they also noted a statistically 

significant positive association when restricted to witnessed, non-DOA out-of-hospital cardiac arrest 

cases, that subgroup is less applicable to the available baseline incidence rate of non-DOA out-of-

hospital cardiac arrest cases. The identified risk estimate of 1.02 (95% CI: 0.92-1.12) for each 10 µg/m3 

increase in daily mean PM2.5 concentrations lagged by 0-1 days, came from a single-pollutant model of 

all non-DOA out-of-hospital cardiac arrest cases. 

2.2.5.5 Acute Myocardial Infarctions (AMI) 

The 2019 PM ISA found that “evidence from the current review strengthens the epidemiologic results 

reported in the 2009 PM ISA” with respect to AMI. Specifically: 

Several new epidemiologic studies conducted in the U.S. and Europe provide additional evidence 

of positive associations between short-term PM2.5 exposure and [ischemic heart disease 

emergency department] visits and hospital admissions. Uncertainties noted in the last review 

with respect to exposure measurement error for those not living near a PM2.5 monitor were 

reduced in the current review by considering recent studies that applied hybrid exposure 

assessment techniques that combine land use regression data with satellite measurements and 

PM2.5 concentrations measured at fixed-site monitors to estimate PM2.5 concentrations. In 

addition to these [emergency department] visit and hospital admissions studies, there is also 

evidence for ST segment depression from epidemiologic panel studies. (U.S. EPA, 2019c). 

The 2019 PM ISA also stated that “associations between long-term exposure to PM2.5 and cardiovascular 

morbidity outcomes (i.e., ischemic heart disease, stroke) were observed in some studies with the most 
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consistent results in people with pre-existing diseases” (U.S. EPA, 2019c, section 6.2). The ISA also found 

that “although the results are not entirely consistent across studies or stroke subtype, some recent well-

conducted studies also support a positive association between long-term exposure to PM2.5 and stroke.” 

Additionally, conductance abnormalities, which can lead to cardiac arrest, were called out as a key 

clinically relevant outcome associated with both short-and long-term PM2.5 exposures (section 

2.2.1.2.1.1). 

2.2.5.5.1 Available Epidemiologic Literature 

While the 2019 PM ISA did identify epidemiological studies associating AMIs with PM2.5 exposures, the 

studies that passed the initial screening stage were not more suitable than those currently used for 

benefits estimation. One (Zhang et al., 2009) involved only postmenopausal women and the other 

(Delfino et al., 2011) studied a population with a history of coronary artery disease. Hence, we retained 

all five studies47 used in the 2012 PM NAAQS RIA. The 2019 PM ISA did not identify any newer studies of 

this type so current risk estimates will continue to be used in benefit assessments (U.S. EPA, 2019c). 

2.2.5.5.2 Studies and Risk Estimates Identified as Most Suitable for Use in Benefits Assessments 

As no studies new to the 2019 PM ISA provided better estimates of PM2.5 -attributable AMI risk, EPA 

continues to rely upon a study by Peters et al., 2001 as the basis for the impact function estimating the 

relationship between PM2.5 and nonfatal heart attacks. Peters et al., 2001 exhibits a number of 

strengths. In particular, it includes a robust characterization of populations experiencing AMIs. The 

researchers interviewed patients within four days of their AMI events and, for inclusion in the study, 

patients were required to meet a series of criteria including minimum kinase levels, an identifiable onset 

of pain or other symptoms and the ability to indicate the time, place and other characteristics of their 

AMI pain in an interview. 

Since the publication of Peters et al., 2001, a number of other single and multi-city studies have 

appeared in the literature. These studies include Sullivan et al., 2005, which considered the risk of PM2.5-

related hospitalization for AMIs in King County, WA; Pope III et al., 2006, based in Wasatch Range, UT; 

Zanobetti and Schwartz, 2006, based in Boston; and, Zanobetti et al., 2009, a multi-city study of 26 U.S. 

communities. Each of these single and multi-city studies, except for Pope III et al., 2006, measure AMIs 

using hospital discharge rates. Conversely, the Pope III et al., 2006 study is based on a large registry with 

angiographically characterized patients—arguably a more precise indicator of AMI. Because the Pope III 

et al., 2006 study reflected both myocardial infarctions and unstable angina, this produces a more 

comprehensive estimate of acute ischemic heart disease events than the other studies. However, unlike 

the Peters et al., 2001, Pope III et al., 2006 did not measure the time of symptom onset, and PM2.5 data 

were not measured on an hourly basis.  

As a means of recognizing the strengths of Peters et al., 2001 while also incorporating the more recent 

evidence found in the four single and multi-city studies, we present a range of AMI estimates. The upper 

end of the range is calculated using Peters et al., 2001 while the lower end of the range is the result of 

an equal-weights pooling of the four newer studies (Pope III et al., 2006, Sullivan et al., 2005, Zanobetti 

et al., 2009, Zanobetti and Schwartz, 2006).  

 
47 Specific study details available in the associated Study Information Table. 
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Peters et al., 2001 studied the relationship between increased particulate air pollution and onset of 

heart attacks in the Boston area from 1995 to 1996. The authors used air quality data for PM10, PM10-2.5, 

PM2.5, “black carbon”, O3, CO, NO2, and SO2 in a case crossover analysis. For each subject, the case 

period was matched to three control periods, each 24 hours apart. In univariate analyses, the authors 

observed a positive association between heart attack occurrence and PM2.5 levels hours before and days 

before onset. The authors estimated multivariate conditional logistic models including 2-hour and 24-

hour pollutant concentrations for each pollutant. They found significant and independent associations 

between heart attack occurrence and 24-hour PM2.5 concentrations before onset. Significant 

associations were observed for PM10 as well. None of the other particle measures or gaseous pollutants 

were significantly associated with AMI for the 2-hour or 24-hour period before onset. The mean age of 

participants was 62 years old, with 21% of the study population under the age of 50. In order to capture 

the full magnitude of heart attack occurrence potentially associated with air pollution and because age 

was not listed as an inclusion criterion for sample selection, we apply an age range of 18 and over in the 

risk estimate. According to the National Hospital Discharge Survey, there were no hospitalizations for 

heart attacks among children <15 years of age in 1999 and only 5.5% of all hospitalizations occurred in 

those aged 15-44 years. The odds ratio is 1.62 (95% CI: 1.13-2.34) for a 20 µg/m3 increase in 24-hour 

average PM2.5. 

Pope III et al., 2006 evaluated the association between short-term exposure to PM2.5 and acute ischemic 

heart disease events, including nonfatal AMI, all acute coronary events, and subsequent myocardial 

infarctions in individuals living in greater Salt Lake City, Utah. In a case crossover study, these ischemic 

events were assessed in relation to a 10 µg/m3 increase in PM2.5. The researchers determined that a 10 

µg/m3 increase in PM2.5 resulted in a 4.5% increase (95% CI: 1.1-8.0) in unstable angina and myocardial 

infarction. 

Sullivan et al., 2005 studied the relationship between onset time of acute myocardial infarction and the 

preceding hourly PM2.5 concentrations in 5,793 confirmed cased of myocardial infarction through King 

County, Washington. In this case crossover study from 1988-1994, air pollution exposure levels averaged 

before onset of myocardial infarction were compared to a set of time-stratified referent exposures from 

the same day of the week in the month of the case event. The authors estimated that an associated risk 

of 1.01 (95% CI: 0.98-1.05) for myocardial infarction onset could be attributed to a 10 µg/m3 increase in 

PM 2.5 the hour before the MI onset. No increased risk was found in all cases with preexisting cardiac 

diseases with an odds ratio of 1.05 (95% CI: 0.95-1.16). Furthermore, stratification for hypertension, 

diabetes, and smoking status did not modify the association between PM2.5 and onset of myocardial 

infarction. 

Zanobetti et al., 2009 examined the relationship between daily PM2.5 levels and emergency hospital 

admissions for cardiovascular causes, myocardial infarction, congestive heart failure, respiratory 

disease, and diabetes among 26 U.S. communities from 2000-2003. The authors used meta-regression 

to examine how this association was modified by season- and community-specific PM2.5 composition 

while controlling for seasonal temperature as a substitute for ventilation. For a 10 µg/m3 increase in 2-

day averaged PM2.5, a 1.89% (95% CI: 1.34-2.45) increase in cardiovascular disease admissions, a 2.25% 

(95% CI: 1.10-3.42) increase in myocardial infarction admissions, a 1.85% (95% CI: 1.19-2.51) increase in 

congestive heart failure admissions, a 2.74% (95% CI: 1.30-4.20) increase in diabetes admissions, and a 

2.07% (95% CI: 1.20-2.95) increase in respiratory admissions were observed. The relationship between 

PM2.5 and cardiovascular admissions was significantly modified when the mass of PM2.5 was high in Br, 

Cr, Ni, and sodium ions, while mass high in As, Cr, Mn, organic carbon, Ni and sodium ions modified the 
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myocardial infarction relationship and mass high in As, organic carbon, and sulfate ions modified the 

diabetes admission rates. 

Zanobetti and Schwartz, 2006 analyzed hospital admissions through emergency department for MI (ICD-

9 code 410) and pneumonia (ICD-9 codes 480-487) for associations with fine particulate air pollution in 

the greater Boston area from 1995- 1999. The authors used a case-crossover analysis with control days 

matched on temperature. Significant associations were detected for PM2.5 with an 8.6% increase (95% 

CI: 1.2-15.4) in emergency myocardial infarction hospitalizations. The study looked at hospital 

admissions of AMI through the ER. Under the assumption that all heart attacks will end in 

hospitalization, we consider the endpoint as heart attack events to be consistent with other studies. In a 

single-pollutant model, the coefficient and standard error are estimated from the percent change in risk 

(8.65%) and 95% confidence interval (95% CI: 1.22-15.38%) for a 16.32 µg/m3 increase in daily 24-hour 

mean PM2.5 for an average of the 0- and 1-day lag (Zanobetti and Schwartz, 2006, Table 4). 

2.2.5.6 Stroke 

2.2.5.6.1 Available Epidemiologic Literature 

The 2019 PM ISA included three epidemiologic studies of stroke that met the minimum identification 

criteria (section 2.1.1).  

2.2.5.6.2 Identifying Suitable Studies for Use in Benefits Assessments 

One of the available epidemiologic studies was more recent, included a larger population, evaluated 

long-term exposure effects, and was more representative of the U.S. with regards to both geography 

and population attributes than the other two studies (Kloog et al., 2012). 

2.2.5.6.3 Studies and Risk Estimates Identified as Most Suitable for Use in Benefits Assessments 

Kloog et al., 2012 analyzed the effects of long- and short-term PM2.5 exposure on hospital admissions  

due to strokes with a new PM2.5 exposure model in New England (Connecticut, Maine, Massachusetts, 

New Hampshire, Rhode Island, and Vermont) from 2000 to 2006. We use this endpoint as a surrogate 

for PM2.5-attributable stroke incidence. Authors collected medical data from 67,678 adults aged 65 to 99 

in the U.S. Medicare program database from 2000 to 2006. They defined all respiratory, cardiovascular 

disease, stroke, and diabetes based on emergency department visits and primary discharge diagnosis 

records. Authors used a hybrid exposure technique comprised of daily PM2.5 concentration data from 

aerosol optical depth (AOD) measurements and ambient air monitors from the U.S. EPA and Interagency 

Monitoring of Protected Visual Improvements (IMPROVE). Authors also obtained land use regressions, 

meteorological data (National Climatic Data Center), and socioeconomic data (U.S. Census Bureau) 

matched to zip codes. Utilizing land use Poisson regression single-pollutant models, the authors found 

an 3.49% (95% CI: 0.09-5.18) increase in stroke incidence for a 10 µg/m3 increase in the 7-year mean 

PM2.5 concentrations. 

2.2.5.7 Respiratory Hospital Admissions 

After considering the relationships between specific and broad respiratory hospital admissions 

endpoints, the 2019 PM ISA stated that “recent studies further expand analyses with older adults, with 

multicity studies conducted in the U.S. providing evidence of consistent, positive associations between 

short-term PM2.5 exposure and respiratory-related diseases” ((U.S. EPA, 2019c, section 5.1.6). 
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The ISA noted that “it is often difficult to determine whether the associations observed indicate that 

PM2.5 may affect the spectrum of respiratory diseases or reflects the evidence supporting associations 

with specific respiratory diseases, such as asthma.” Taking this into consideration, hospital admissions 

for asthma exacerbation/symptoms, COPD, and respiratory infections were specifically called out in the 

short-term PM2.5 exposure biological plausibility diagram (section 2.2.1.2.1.2). 

2.2.5.7.1 Available Epidemiologic Literature 

Like the cardiovascular hospital admission/emergency department visit endpoints, several respiratory 

studies identified by the ISA combined the hospital admissions and emergency department endpoints. 

There was also a subset of studies that only considered emergency hospital admission, defined as 

hospital admissions that originated in the emergency department. As using either studies of emergency 

hospital admissions or combined emergency department and hospital admission studies would result in 

increased uncertainty around the economic estimate and/or with the baseline incidence data, we 

limited our pool of available studies to those specifically evaluating unplanned respiratory hospital 

admissions, of which there were 12 available studies. 

2.2.5.7.2 Identifying Suitable Studies for Use in Benefits Assessments 

Studies for this endpoint tended to focus on specific age groups, with approximately half focusing on 

older adults (>64) and none specifying ages 19-64. Importantly, studies varied widely by ICD codes, 

making pooling of two or more studies difficult. Considering the preferred criteria, two studies were 

identified, one of children and one of older adults, primarily due to the inclusion of diverse and large 

study locations. The single study of older adults is more informative than pooling it with other studies of 

the same population as it is more recent and includes exposure to lower PM2.5 concentration levels. 

2.2.5.7.3 Studies and Risk Estimates Identified as Most Suitable for Use in Benefits Assessments 

Bell et al., 2015 investigated the effects of short-term fine particulate matter (PM2.5) exposure on 

respiratory health (ICD-9 464-466, 480-487, 490-492, 493) in older adults (>64 years). Authors acquired 

data for 213 U.S. counties (1999-2010) from the Medicare Claims Inpatient Files for U.S. residents >65 

years of age. Authors chose variables including sex, age, county of residence, and cause of hospital 

admission, as determined by ICD-9 codes. Authors collected PM2.5 exposure data from county 

population-based ambient monitors from the US EPA Air Quality System and averaged for county and 

day. Data were present for 56.5% of study days due to the sampling schedule of the monitors. Bell et al., 

2015 utilized Bayesian hierarchal modeling to examine the links between PM2.5 and hospital admissions. 

They ran separate models for time lags (0-2 days) and season to determine if there were any estimated 

variation in health effects. The identified percent increase in risk of 0.25% (95% CI: 0.01-0.48) for an 

increase of 10 µg/m3 in same-day daily mean PM2.5 concentrations came from a single-pollutant model.  

Ostro et al., 2009 estimated the association between ambient PM2.5, EC, organic carbon (OC), NO3, and 

SO4 on hospital admissions for respiratory diseases in children ages 5 to 19. The study used the 

California Office of Statewide Health Planning and Development, Healthcare Quality and Analysis 

Division hospitalization data from six California counties for the 2000 to 2003 study period. Ostro et al., 

2009 classified hospital admissions into: all respiratory disease (ICD-9 codes 460-519), asthma (ICD-9 

code 493), acute bronchitis (ICD-9 code 466), and pneumonia (ICD-9 codes 480-486). They aggregated 

the hospital admission data to the county level to create a daily time series of admissions for each 

county. Authors took air quality measurements from the California Air Resources Board, which captured 

speciated 24-hour average pollutant measurements using a filter-based Met One Speciation Air 
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Sampling System. Meteorological measurements for average daily temperature and relative humidity 

came from the California Air Resources Board or the California Irrigation Management Information 

System. Authors analyzed data using a Poisson regression with time, day of the week, temperature, 

relative humidity, and pollutant as explanatory variables. Ostro et al., 2009 controlled for seasonality 

and time dependent effects by including a natural spline smoother for the daily time trend and 

meteorology. The identified percent increase in risk of excess risk of 4.1% (95% CI: 1.8-6.4) for a 14.6 

µg/m3 increase in daily mean PM2.5 concentrations, lagged by 3 days, came from a single-pollutant 

model.  

2.2.5.8 Respiratory Emergency Department Visits 

After considering the relationships between specific and broad respiratory emergency department visit 

endpoints, the 2019 PM ISA stated that “recent studies further expand analyses with older adults, with 

multicity studies conducted in the U.S. providing evidence of consistent, positive associations between 

short-term PM2.5 exposure and respiratory-related diseases” (U.S. EPA, 2019c, section 5.1.6). 

The ISA noted that “it is often difficult to determine whether the associations observed indicate that 

PM2.5 may affect the spectrum of respiratory diseases or reflects the evidence supporting associations 

with specific respiratory diseases, such as asthma.” Emergency department visits for asthma 

exacerbation/symptoms, COPD, and respiratory infections were specifically called out in the short-term 

PM2.5 exposure biological plausibility diagram (section 2.2.1.2.1.2). 

2.2.5.8.1 Available Epidemiologic Literature 

Like the cardiovascular hospital admission/emergency department visit endpoints, several respiratory 

studies identified by the ISA combined the hospital admissions and emergency department endpoints. 

As using the combined study endpoint would result in increased uncertainty around the economic 

estimate, we limited our pool of available studies to those specifically looking at respiratory emergency 

department visits for the main benefits assessment, of which there were 10 studies. 

2.2.5.8.2 Identifying Suitable Studies for Use in Benefits Assessments 

One study out of the 10 was more recent, provided greater geographic representation, and included all 

ages. 

2.2.5.8.3 Studies and Risk Estimates Identified as Most Suitable for Use in Benefits Assessments 

Krall et al., 2013 investigated the associations between short-term, source-specific (traffic and coal 

combustion) ambient PM2.5 exposure and emergency department visits for respiratory diseases in U.S. 

cities (Atlanta, GA, Birmingham, AL, St. Louis, MO, and Dallas, TX). Authors obtained medical data from 

hospital electronic billings for emergency department visits due to respiratory disease, identified using 

ICD-9 codes (460-465, 466, 477, 480-486, 491, 492, 493, 496, 786.07). Authors collected PM2.5 

concentrations from one ambient air monitor in each of the four cities and gathered meteorological 

data from the National Climactic Data Center. Krall et al., 2013 estimated source-specific PM2.5 using 

apportionment models, which separate PM2.5 sources based on chemical composition. This model also 

included data on gaseous pollutant concentrations from the Community Multiscale Air Quality (CMAQ) 

with Tracers model. Krall et al., 2013 used Poisson time series regression models to analyze associations 

between short-term PM2.5 exposure and emergency department visits for respiratory diseases. They 

then compared source-specific PM2.5 exposures across cities to estimate associations with the 

emergency department visit data. To limit confounders, the authors adjusted models for indicator 
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variables, meteorological variables, and long-term trends in emergency department visits. The identified 

relative risk estimates of 1.005 (95% CI: 1.000-1.010) for Atlanta, GA; 1.009 (95% CI: 1.003-1.015) for 

Birmingham, AL; 1.008 (95% CI: 1.002-1.014) for St. Louis, MO; and 1.012 (95% CI: 1.002-1.023) for 

Dallas, TX were calculated from a single-pollutant model for a 9.16 µg/m3 increase in daily mean PM2.5 

concentrations, lagged by 0 days. 

2.2.5.9 Asthma Onset 

The 2019 PM ISA stated that “longitudinal studies provide evidence of associations with asthma 

incidence in children” and found “evidence for a relationship between PM2.5 exposure and asthma 

prevalence in children and childhood wheeze” (U.S. EPA, 2019c). Additionally, asthma onset was called 

out as a key clinically relevant health endpoint in the biological plausibility pathways included in the ISA 

(section 2.2.1.2.1.2) (U.S. EPA, 2019c). 

2.2.5.9.1 Available Epidemiologic Literature 

The final 2019 PM ISA found that “recent studies of asthma in children supplement the limited number 

of studies reviewed in the 2009 PM ISA and provide evidence of an association between long-term PM2.5 

exposure and asthma development in children” (U.S. EPA, 2019c). There was also evidence of PM2.5-

attributable asthma onset in adults, but results were inconsistent across studies. As a result, asthma 

onset in adults is not included in our main benefits assessment. 

Five North American epidemiologic studies of asthma onset in children were identified in section 5.2 of 

the 2019 PM ISA (U.S. EPA, 2019c). Relevant information related to the identification criteria, including 

study location, population attributes, and study period, were extracted from the studies and is available 

in the corresponding Excel file. 

2.2.5.9.2 Identifying Suitable Studies for Use in Benefits Assessments 

Although the available asthma onset studies vary widely in all criteria considered, relevant study 

information was again used to identify the most nationally representative study or studies (see Excel 

file). Interestingly, three of the five studies were conducted in Canada.48 One study conducted in Canada 

evaluated a recent and extensive time series of air quality and health data; assigned exposures to 

populations using a combination of monitor and remote sensing data; validated the outcome measure; 

observed effects with relatively low (~10 µg/m3) PM2.5 concentrations, and included over 30-fold the 

number of participants as any other study. Other available literature was also more limited with regards 

to population demographic and geographic diversity.  

2.2.5.9.3 Study Identified as Most Suitable for Use in Benefits Assessments 

Tetreault et al., 2016 investigated the relationship between childhood asthma onset and long-term 

pollution exposure (PM2.5, NO2, O3) in Quebec, Canada. The authors obtained data from four medical-

 
48 Although several key studies identified in the 2019 PM ISA come from Europe, we excluded studies outside of 
North America. Studies taking place in Canada were retained, as there is considerable PM2.5 transport between 
Canada and the US (https://www.epa.gov/airmarkets/canada-united-states-transboundary-particulate-matter-
science-assessment-2013), ~90% of Canadians live within ~100 miles of the US border 
(https://www.cbc.ca/news/canada/by-the-numbers-1.801937), and ambient PM2.5 concentrations are similar in 
Canada and the US. Additionally, this endpoint is more related to health physiology then healthcare systems and 
Canada and the US have similar prevalence rates of asthma (https://ourworldindata.org/grapher/asthma-
prevalence). 
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administrative databases collectively known as Quebec Integrated Chronic Disease Surveillance System 

(QICDSS) between April 1, 1996 and March 31, 2011. The study defined the onset of asthma as a 

hospital discharged diagnosis of asthma or two reports of asthma from two separate physicians within a 

two-year period. The authors used Cox proportional hazard models to estimate the association between 

asthma onset and pollution exposure, controlling for demographics and socioeconomic status. Time-

varying exposure models assessed time-varying exposures to the three pollutants in question. Tetreault 

et al., 2016 showed that childhood asthma onset may be associated with exposure to PM2.5, NO2, and 

O3.  

The identified study presented 24 hazard ratios using various adjustment methods and included multiple 

sensitivity analyses, evaluating the effects by sex, urbanicity, and those who moved during the study 

period. More-adjusted risk estimates using a time-varying estimate of PM2.5 exposure and including the 

full cohort were identified over less-adjusted or striated estimates using exposure estimates at birth.  

The study identified as best characterizing risk across the U.S. was Tetreault et al., 2016, although the 

two older and demographic-limited U.S. studies were also identified as potentially informative.  

The risk estimate identified from Tetreault et al., 2016 for use in the main benefits estimates was a 

single-pollutant time-varying hazard ratio model of 1.33 (95% CI: 1.31-1.34) for a 6.53 µg/m3 

(interquartile range) increase in annual PM2.5 concentration at the residential address. 

As the physiology and etiology of lung development in children is similar in children 6-17, we apply the 

4-12 year age-striated effect estimate from Tetreault et al., 2016 to children ages 4-17 (Baena-Cagnani 

et al., 2007, Guerra et al., 2004, Ochs et al., 2004, Sparrow et al., 1991, Trivedi and Denton, 2019).  

2.2.5.10 Asthma Symptoms/Exacerbation 

The 2019 PM ISA stated that “evidence for effects on asthma exacerbation are generally more 

consistent than associations for other respiratory outcomes.” The ISA went on to note that “recent 

studies strengthen the relationship between asthma exacerbation in children and short-term PM2.5 

exposure, while, in adults, the relationship continues to be inconsistent.” 

2.2.5.10.1 Available Epidemiologic Literature 

Based on evidence provided by the 2019 PM ISA, available studies of asthma symptoms were limited to 

children, of which there were eight. 

2.2.5.10.2 Identifying Suitable Studies for Use in Benefits Assessments 

Due to the specificity required when evaluating this health endpoint, Individual studies of asthma 

exacerbation/symptoms tended to focus on relatively small cohorts of children of discrete ages in 

distinct locations, making pooling difficult. One study evaluated a directly monetizable outcome of 

albuterol inhaler use. Albuterol inhalers are separated from long-term asthma control medications and 

is considered a “rescue medication” by the Mayo Clinic, making it an informative endpoint when 

considering asthma symptoms.49 

2.2.5.10.3 Studies and Risk Estimates Identified as Most Suitable for Use in Benefits Assessments 

Rabinovitch et al., 2006 analyzed the relationship between short-term PM2.5 exposure and asthma 

exacerbation in children. The study followed children, ages 6 to 13 attending the Kunsberg School at the 

 
49 https://www.mayoclinic.org/diseases-conditions/asthma/in-depth/asthma-medications/art-20045557 
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National Jewish Medical Research Center with diagnosed asthma for two consecutive winters from 

2001-2003. Authors gave an electronic bronchodilator (albuterol) to the children to capture the 

frequency of use within a 24-hour period. The children also responded to three questions to determine 

if they may have an upper respiratory infection (URI), and urine samples were taken to measure urinary 

leukotriene E4 levels on select days. The authors collected hourly ambient PM2.5 levels from the Colorado 

Department of Health Air Pollution Control Division’s Tapered Element Oscillating Microbalance (TEOM) 

monitor, located 2.7 miles west of the school. Additionally, a Federal Reference Monitor (FRM) located 

next to the TEOM measured 24-hour PM2.5 levels. The authors obtained meteorological data from the 

Colorado Department of Health Air Pollution Control Division and the National Climatic Data Center. A 

Poisson regression modeled albuterol use as a function of the morning (12:00am to 11:00 am) maximum 

hourly PM2.5 level or the morning mean hourly PM2.5 level. The model used both the TEOM and FRM 

data, individually, incorporated four lag periods (0 to 2 days and 0- to 2-day average), and included 

several covariates: temperature, pressure, humidity, time trend, Friday indicator, and URI indicator. 

Rabinovitch et al., 2006 found that, although the PM2.5 pollution levels were well below the National 

Ambient Air Quality Standards, there is a consistent association between peak ambient PM2.5 levels and 

increased albuterol use in asthmatic children. The identified percent of use increase estimate of 1.2% 

(95% CI: -0.6-2.9) for a 6 µg/m3 increase in averaged daily mean PM2.5 concentration lagged by 0-, 1-, 

and 2-days came from a single-pollutant model. 

2.2.5.11 Allergic Rhinitis (Hay Fever/Respiratory Allergies)) 

The 2019 PM2.5 ISA stated that “recent studies evaluated associations between long-term exposure to 

PM2.5 and various allergic outcomes in a mix of large representative cohort and cross-sectional survey 

studies” finding “generally consistent evidence of an association between long-term PM2.5 exposure and 

allergic sensitization in single pollutant models” ((U.S. EPA, 2020a, section 5.2.4). Additionally, the ISA 

called out “allergic responses” in the biological plausibility diagram for long-term PM2.5-attributable 

respiratory effects (U.S. EPA, 2020a, section 2.2.1.2.1.2). Although cross sectional analyses do not 

establish a temporal sequence, they can be used to estimate benefits associated with changes in air 

quality.  

2.2.5.11.1 Available Epidemiologic Literature 

The 2019 PM ISA identified one epidemiologic study of long-term 2019 PM2.5 exposure and allergic 

rhinitis. 

2.2.5.11.2 Studies and Risk Estimates Identified as Most Suitable for Use in Benefits Assessments 

Parker et al., 2009 investigated the associations between long-term PM2.5 exposure and respiratory 

allergies in an unrestricted population of children (aged 3-17 years) sampled from the United States 

National Health Interview Survey. Authors obtained symptom data from participant parents, who 

reported respiratory allergies on annual surveys. Parker et al., 2009 placed all study participants 

reporting symptoms of respiratory allergies or hay fever into a combined rhinitis group. Parker et al., 

2009 then linked annual averages of SO2, NO2, PM2.5, and PM2.5-10 and warm season (May to September) 

O3 averages to participant’s addresses through ambient air pollution and meteorological data (O3, SO2, 

NO2, PM2.5, and PM10-2.5) collected from US EPA Air Quality System monitors. The authors adjusted 

models for survey year, poverty-level, race/ethnicity, age, family structure, insurance coverage, usual 

source of care, education of adult, urban-rural status, region, and median county-level income. Through 
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multi-pollutant, logistic regression models, an odds ratio of 1.29 (95% CI: 1.07-1.56) for a 10 µg/m3 

increase in PM2.5 concentrations and respiratory allergies was identified. 

2.2.5.12 Minor Restricted Activity Days 

No new epidemiologic studies of minor restricted activity days (MRADs) were identified in the 2019 PM 

ISA (U.S. EPA, 2019c). 

2.2.5.12.1 Studies and Risk Estimates Identified as Most Suitable for Use in Benefits Assessments 

Ostro and Rothschild, 1989 estimated the impact of PM2.5 and O3 on the incidence of minor restricted 

activity days (MRADs) and respiratory-related restricted activity days (RRADs) in a national sample of the 

adult working population, ages 18 to 65, living in metropolitan areas. The study population is based on 

the Health Interview Survey (HIS), conducted by the National Center for Health Statistics. In publications 

from this ongoing survey, non-elderly adult populations are generally reported as ages 18-64. From the 

study, it is not clear if the age range stops at or includes those aged 65. We apply the risk estimate 

function to individuals ages 18-64 for consistency with other studies estimating impacts to non-elderly 

adult populations. The annual national survey results used in this analysis were conducted in the period 

1976-1981, controlling for PM2.5, two-week average O3. 

2.2.5.13 Work Loss Days 

No new studies of work loss days (WLDs) were identified in the 2019 PM ISA (U.S. EPA, 2019c).  

2.2.5.13.1 Studies and Risk Estimates Identified as Most Suitable for Use in Benefits Assessments 

Ostro, 1987 estimated the impact of PM2.5 on the incidence of work-loss days (WLDs), restricted activity 

days (RADs), and respiratory-related RADs (RRADs) in a national sample of the adult working population, 

ages 18 to 65, living in metropolitan areas. The study population is based on the Health Interview Survey 

(HIS), conducted by the National Center for Health Statistics. The annual national survey results used in 

this analysis were conducted in 1976-1981. Ostro, 1987 reported that two-week average PM2.5 levels 

were significantly linked to work-loss days, RADs, and RRADs, however there was some year-to-year 

variability in the results. Separate coefficients were developed for each year in the analysis (1976-1981); 

these coefficients were pooled. The coefficient used in the concentration-response function presented 

here is a weighted average of the coefficients in Ostro, 1987, Table III, using the inverse of the variance 

as the weight. 

2.2.5.14 Lung Cancer  

The 2019 PM ISA determined that a “likely to be causal” relationship exists between long-term PM2.5 

exposure and cancer (U.S. EPA, 2019c), a change in the causality determination from the 2009 ISA (U.S. 

EPA, 2009). Specifically, the ISA found evidence of generally consistent positive associations between 

long-term PM2.5 exposure and lung cancer incidence.50 Additional details regarding potential pathways 

of disease development are summarized in the biological plausibility diagram provided by the ISA 

(section 2.2.1.2.1.3).  

For an outcome such as lung cancer, there is an expected time lag between changes in pollutant 

exposure in a given year and the reduction in lung cancer incidence, known as the latency period. The 

 
50 The ISA also found generally consistent positive associations between long-term PM2.5 exposure and lung cancer 
mortality, but as mortality impacts are included elsewhere (section 2.2.5.1), this endpoint focuses on non-fatal 
lung cancer incidence. 
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time between exposure and diagnosis can be quite long, on the order of years to decades. We discuss 

methods used to account for the latency period and other economic considerations relevant to this 

health endpoint in section 5.3.6. Importantly, we include this health endpoint to assess impacts of living 

with a lung cancer diagnosis, prior to disease resolution or death. 

2.2.5.14.1 Available Epidemiologic Literature 

We limited our pool of available studies to those of lung cancer incidence, excluding those assessing 

lung cancer mortality as that endpoint is included in the long-term exposure-attributable all-cause 

mortality endpoint (section 2.2.5.1.3.1). This resulted in four study options. 

2.2.5.14.2 Identifying Suitable Studies for Use in Benefits Assessments 

The four available studies varied in terms of population demographics included and country. Two of the 

four studies took place entirely in Canada. Of the two U.S.-based studies, one included all ages, sexes, 

and demographics and was restricted to non- and never-smokers, although it included some participants 

living in Canada. The identified study was most suitable as it took place in the U.S., included both males 

and females, and was restricted to non- and never-smokers (Gharibvand et al., 2017). 

2.2.5.14.3 Studies and Risk Estimates Identified as Most Suitable for Use in Benefits Assessments 

Gharibvand et al., 2017 evaluated whether positive associations exist between PM2.5 exposure and 

incidence of lung cancer in non-smokers among the Adventist Health and Smog Study-2 (AHSMOG-2), a 

group of health-conscious individuals of which 81% are never smokers. Authors collected ambient air 

pollution data (PM2.5 and O3) from the US EPA Air Quality system over two years (January 2000-

December 2001). Three a priori factors were added to the models as covariates: time spent outdoors, 

residence length, and moving distance during follow-up. Authors modeled the association between 

PM2.5 exposure and incidence of lung cancer using a Cox proportional hazards regression, with attained 

age as the time variable. The authors conducted both a single and a two-pollutant (PM2.5 and O3) 

analyses. The study concluded that each 10 µg/m3 increase in ambient PM2.5 concentrations was 

positively associated with increased lung cancer risks within the single-pollutant and two-pollutant 

multivariable models with O3. The identified hazard ratio of 1.46 (95% CI: 1.13-1.89) for each 10 µg/m3 

increase in mean monthly ambient PM2.5 concentrations came from a two-pollutant multivariable model 

with O3 (including a priori covariates). 

2.2.5.15 Alzheimer’s Disease 

Evidence connecting long-term PM2.5 exposure to nervous system effects led to the 2019 ISA concluding 

a “likely to be causal” relationship exists (U.S. EPA, 2019c) and various clinically relevant nervous system 

endpoints were called out in the biological plausibility section, including Alzheimer’s disease, Parkinson’s 

disease, autism spectral disorder, cognitive decline, and dementia (section 2.2.1.2.1.3). Regarding 

biological plausibility, the ISA stated that “neuroinflammation and neurodegeneration provide biological 

plausibility for epidemiologic results of increased hospital admissions or emergency department visits 

for Alzheimer’s and Parkinson’s disease.” 

There were over a dozen epidemiologic studies in the 2019 PM ISA evaluating cognitive-related 

outcomes (U.S. EPA, 2019c, sections 8.2.5-8.2.7). However, due to the nature of the endpoint, many of 

the outcomes were defined using scales and scores from cognitive tests. As we are currently unable to 

transfer that type of result into a clinically relevant population level outcome, we focused on the more 

clearly defined outcomes of Alzheimer’s disease and Parkinson’s Disease. These endpoints were also 
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specifically called out in the ISA, as “epidemiologic studies also provide evidence of cognitive 

impairment and Alzheimer’s and Parkinson’s disease in association with exposure to PM2.5“ ((U.S. EPA, 

2019c, section 8.2.6). 

2.2.5.15.1 Available Epidemiologic Literature 

One epidemiologic study of Alzheimer’s disease met our minimum required identification criteria 

(section 2.1.1). 

2.2.5.15.2 Studies and Risk Estimates Identified as Most Suitable for Use in Benefits Assessments 

Kioumourtzoglou et al., 2016 evaluated the potential impact of long-term PM2.5 exposure on first 

hospital admission for dementia, Alzheimer’s, or Parkinson’s diseases among Medicare beneficiaries (>= 

65 years old) in 50 cities in the northeastern U.S. (Connecticut, Delaware, Maine, Maryland, 

Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, Vermont, and 

Washington, D.C.). Authors retrieved medical data from the Center for Medicaid and Medicare from the 

years 1999-2010. The study followed enrollees as a cohort, which included annual follow-up records 

identifying the first hospital admissions for dementia (ICD-9 290), Alzheimer’s (ICD-9 331.0), Parkinson’s 

(ICD-9 332), and other cardiovascular comorbidities. With respect to Alzheimer’s disease, the study 

evaluated 9,817,806 Medicare enrollees and included 266,725 cause-specific hospital admissions 

indicating disease onset. Annual average PM2.5 concentrations were estimated for each city using data 

from the U.S. EPA Air Quality System database. Kioumourtzoglou et al., 2016 fit a time-varying Cox 

proportional hazards model for each city, using the city-wide annual PM2.5 concentrations as the time-

varying exposure of interest and a linear term for the calendar year. This eliminated the impact of PM2.5 

variation by city and any PM2.5 trends within cities. The model adjusted for cardiovascular comorbidities, 

and incorporated a counting process extension which created an observation for each year of follow-up 

per person. The results were then pooled across individuals and cities. A single-pollutant model was 

used to develop the identified hazard ratio of 1.15 (95% CI: 1.11-1.19) for a 1 µg/m3 increase in the 

average annual PM2.5 concentrations.  

2.2.5.16 Parkinson’s Disease 

Evidence connecting long-term PM2.5 exposure to nervous system effects led to the 2019 ISA concluding 

a “likely to be causal” relation exists (U.S. EPA, 2019c) and various clinically relevant nervous system 

endpoints were called out in the biological plausibility section, including Alzheimer’s disease, Parkinson’s 

disease, autism spectral disorder, cognitive decline, and dementia (section 2.2.1.2.1.3). Regarding 

biological plausibility, the ISA stated that “neuroinflammation and neurodegeneration provide biological 

plausibility for epidemiologic results of increased hospital admissions or emergency department visits 

for Alzheimer’s and Parkinson’s disease.” 

There were over a dozen epidemiologic studies in the 2019 PM ISA evaluating cognitive-related 

outcomes (U.S. EPA, 2019c, sections 8.2.5-8.2.7). However, due to the nature of the endpoint, many of 

the outcomes were defined using scales and scores from cognitive tests. As we are currently unable to 

transfer that type of result into a clinically relevant disease incidence, we focused on the more clearly 

defined outcomes of Alzheimer’s disease and Parkinson’s Disease. These endpoints were also specifically 

called out in the ISA, as “epidemiologic studies also provide evidence of cognitive impairment and 

Alzheimer’s and Parkinson’s disease in association with exposure to PM2.5“ ((U.S. EPA, 2019c, section 

8.2.6). 
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2.2.5.16.1 Available Epidemiologic Literature 

Three epidemiologic studies of Parkinson’s disease were identified in the 2019 PM ISA. All evaluated 

relatively low PM2.5 concentrations and included participants from multiple states, however there were 

differences with respect to the ages and sexes evaluated, number of overall participants, and exposure 

estimation technique. 

2.2.5.16.2 Identifying Suitable Studies for Use in Benefits Assessments 

The prospective study with the lowest mean PM2.5 concentrations and most recent timespan included 

over 14 times the number of participants as the other two studies combined. It was also the only study 

to include participants over the age of 71, which is relevant as Parkinson’s disease prevalence rises with 

age (Pringsheim et al., 2014). 

2.2.5.16.3 Studies and Risk Estimates Identified as Most Suitable for Use in Benefits Assessments 

Kioumourtzoglou et al., 2016 evaluated the potential impact of long-term PM2.5 exposure on first 

hospital admission for dementia, Alzheimer’s, or Parkinson’s diseases among Medicare beneficiaries (>= 

65 years old) in 50 cities in the northeastern U.S. (Connecticut, Delaware, Maine, Maryland, 

Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, Vermont, and 

Washington, D.C.). Authors retrieved medical data from the Center for Medicaid and Medicare from the 

years 1999-2010. The study followed enrollees as a cohort, which included annual follow-up records 

identifying the first hospital admissions for dementia (ICD-9 290), Alzheimer’s (ICD-9 331.0), Parkinson’s 

(ICD-9 332), and other cardiovascular comorbidities. With respect to Parkinson’s disease, the study 

evaluated 9,817,806 Medicare enrollees and included 119,425 cause-specific hospital admissions 

indicating disease onset. Annual average PM2.5 concentrations were estimated for each city using data 

from the US EPA Air Quality System database. Kioumourtzoglou et al., 2016 fit a time-varying Cox 

proportional hazards model for each city, using the city-wide annual PM2.5 concentrations as the time-

varying exposure of interest and a linear term for the calendar year. This eliminated the impact of PM2.5 

variation by city and any PM2.5 trends within cities. The model adjusted for cardiovascular comorbidities, 

and incorporated a counting process extension which created an observation for each year of follow-up 

per person. The results were then pooled across individuals and cities. A single-pollutant model was 

used to develop the identified hazard ratio of 1.08 (1.04 – 1.12) for a 1 µg/m3 increase in the average 

annual PM2.5 concentrations. 

 O3  
The following sections of the 2020 O3 ISA correspond to health endpoints judged as having a “causal” or 

“likely causal” relationship with O3 exposure: 

• Appendix 3: Health Effects – Respiratory, 3.1 Short-Term Ozone Exposure;  

• Appendix 3: Health Effects – Respiratory, 3.2 Long-Term Ozone Exposure; 

• Appendix 5: Health Effects – Metabolic Effects, 5.1 Short-Term Ozone Exposure; 

• Appendix 6: Health Effects – Mortality, 6.1 Short-Term Ozone Exposure and Mortality; and 

• Appendix 6: Health Effects – Mortality, 6.2 Long-Term Ozone Exposure and Mortality.  

Following the approach to identifying available epidemiologic literature (section 2.2), we began with the 

1,678 studies cited by the 2020 O3 ISA. Of these, 130 morbidity studies evaluate health endpoints the 

2020 O3 ISA determined as having a “causal” or “likely causal” relationship with O3 exposure (sections 

2.2.1 and 2.2.2). 77 studies remained after the required minimum criteria were applied, and that 
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number decreased to 27 when broad hospital admissions and emergency department endpoints were 

identified.51 No studies of short-term O3 exposure metabolic effects meeting the minimum required 

criteria (section 2.1.1) were identified in the ISA. 

Table 7. O3 Study and Risk Estimate Identification Diagram 

O3 Endpoint and 
Exposure Duration 

Studies 
Available 

Studies 
Included 

Ages 
Risk 

Estimates 
Available 

Risk 
Estimates 
Included 

Respiratory Mortality 
(LT)  

4 1 Adults and older adults 2 1 

Respiratory Mortality 
(ST) 

6 2 
Children, adults, and 

older adults 

16 1 

120 1 

Respiratory Hospital 
Admissions (ST) 

3 1 Older adults 7 1 

Respiratory Emergency 
Department Visits (ST) 

7 1 
Children, adults, and 

older adults 
45 5 

Asthma Onset (LT)   4 1 Children 8 1 

Asthma Symptoms (ST) 4 1 Children 160 1 

Minor Restricted 
Activity Days 

NA 1 Adults NA 1 

Allergic Rhinitis 1 1 Children 5 1 

School Loss Days NA 2 Children 
NA 1 

NA 1 
NA- not applicable due to the absence of additional ISA evidence. Risk estimates identified in the 2015 Ozone NAAQS RIA will 

continue to be utilized. 

2.2.6.1 Respiratory Mortality 

We separate respiratory mortality impacts resulting from short- and long-term exposures for several 

reasons. Firstly, the biological pathways of short- and long-term O3-attributable health effects may differ 

in ways that affect the manner in which this endpoint is quantified (section 2.2.1.2.2.1). For example, 

some impacts of long-term exposure to O3 may be incremental to impacts attributable to short-term 

exposure. Conversely, some impacts associated with long-term exposure to O3 may include impacts 

attributable to short-term exposure. However, we lack the evidence to determine the extent to which 

these risks are mutually exclusive or overlapping. Secondly, the level of support for respiratory mortality 

effects of short- and long-term O3 exposures may differ. Therefore, we continue to include risk 

estimates of respiratory mortality from both short- and long-term exposures to present a range of 

health impact estimates.  

2.2.6.1.1 Respiratory Mortality Attributable to Short-Term Exposures 

The 2020 O3 ISA determined that there exists a “causal” relationship between short-term O3 exposure 

and respiratory outcomes (U.S. EPA, 2020a). The short-term exposure causality determination “was 

made on the basis of a strong body of evidence integrated across controlled human exposure, animal 

toxicological, and epidemiologic studies, in addition to established findings from previous [Air Quality 

 
51 This number may not be equal to the sum of available studies in Table 7 as individual studies may present risk 
estimates for multiple health endpoints. 
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Criteria Documents], demonstrating respiratory effects due to short-term exposure to ozone.” While the 

ISA found that “recent epidemiological evidence for respiratory mortality is limited, but there remains 

evidence of consistent, positive associations, specifically in the summer months” and “when  recent 

evidence is considered in the context of the larger number of studies evaluated in the 2013 Ozone ISA, 

there remains consistent evidence of an association between short-term ozone exposure and 

respiratory mortality.” Due to the strength of the ISA evidence relating short-term exposures to 

respiratory mortality, estimates of respiratory mortality impacts are included in the main benefits 

assessment of O3-attributable health impacts. 

Separately, 2020 ISA determined that the relationship between short-term O3 exposure and total 

mortality is “suggestive of, but not sufficient to infer, a causal relationship.” By comparison, the 2013 ISA 

identified this endpoint as “likely to be causal.” Evidence supporting a relationship between short-term 

O3 exposure and total mortality included consistent epidemiologic evidence from multiple high-quality 

studies at relevant ozone concentrations, some support for an independent O3 association, and 

biological plausibility from studies of respiratory morbidity. In contrast, uncertainties remain regarding 

geographic heterogeneity in O3 mortality associations and there is limited biological plausibility from 

studies of cardiovascular morbidity. Regarding the biological plausibility of cardiovascular effects, while 

animal toxicological studies provide evidence of cardiovascular effects, recent controlled human 

exposure studies do not provide evidence to support potential biological pathways. Additionally, there is 

a lack of coherence with epidemiologic studies of cardiovascular morbidity, specifically, cardiovascular-

related emergency department visits and hospital admissions, to support cardiovascular mortality. Due 

to limitations in ISA evidence relating short-term exposures to total mortality, estimates of all-cause 

mortality impacts will not be calculated when estimating benefits attributable to changes in O3 

exposure.  

2.2.6.1.1.1 Available Epidemiologic Literature 

There were six North American studies of short-term O3-attributable respiratory mortality identified in 

the 2020 O3 ISA, one of which was new to this review but took place entirely in Canada. Of the U.S.-

based studies, two were single-city. The other three studies were fairly equally geographically and 

demographically representative, although one was a meta-analysis. 

2.2.6.1.1.2 Identifying Suitable Studies for Use in Benefits Assessments 

Of the six studies of short-term O3-attributable respiratory mortality, all but one study period ended 

during or before the year 2000 and the individual study that extended into the 2000s was geographically 

limited to a single city. This list also included a meta-analysis and a study that took place entirely in 

Canada. Two U.S.-based, nationally representative studies were identified as best characterizing risk 

across the U.S. for this endpoint. 

2.2.6.1.1.3 Studies and Risk Estimates Identified as Most Suitable for Use in Benefits Assessments 

As Zanobetti and Schwartz, 2008 investigated the effects of short-term O3 exposure on mortality (all-

cause, cardiovascular, stroke, and respiratory) in an unrestricted population of children, adults, and 

older adults (aged 0-99 years), it remained the superior analysis of short-term O3-attributable 

respiratory mortality. Between 1998 and 2000, the authors collected mortality data from the National 

Center for Health Statistic in 48 cities across the United States. Along with eight-hour ozone 

concentrations and meteorological data obtained from US EPA’s Air Quality System Technology Transfer 

Network, the authors utilized a generalized linear model with quasi Poisson link functions to estimate 
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the effects of short-term ozone on respiratory mortality. The model adjusted for season, day of the 

week, and temperature. Since ozone concentrations vary between seasons, the authors decided to 

restrict their analysis to ozone warm season (June - August). The identified single-pollutant, warm 

season excess risk estimate of 0.83% (95% CI: 0.38-1.28%) for an increase of 10 ppb in DA8 O3 

concentrations over a summed lag structure of zero to three days.  

Katsouyanni et al., 2009 also used time series methods to examine the relationship between short-term 

O3 exposures and mortality across the U.S for all ages. The study utilized mortality data from the 

National Center for Health Statistics (www.cdc.gov/nchs) for years 1987 through 1996, excluding 

accidental deaths (i.e., International Classification of Diseases (ICD]-9 800). 90 U.S. cities with population 

sizes varying from about 250,000 to above 9 million with the largest populations were included. Daily 

number of deaths ranged from 5 to 198. All 90 cities had daily summer O3 measurements. Investigators 

conducted extensive simulation studies to test 1) the choice of the smoothing method and basic 

functions used to estimate the smooth function of time in the city-specific models, and 2) the number of 

degrees of freedom to be used in the smooth function of time. The investigators also evaluated whether 

each city should be assigned the same model specification or whether each city-specific model should 

depend on city-specific characteristics. For the former, the same degrees of freedom (ranging from 1 to 

20 df/year of data) were assigned to the smooth function of time for every city. The range was 

determined by choosing the minimum possible degrees of freedom per year up to a maximum degrees 

of freedom per year that essentially removed all variation in the data beyond time scales of one week. 

Also, the collective experience of the investigators indicated that using more than 20 df/year does not 

substantially affect the risk estimates. For the latter approach, the degrees of freedom for the smooth 

function of time were chosen separately for each city using a fit criterion, such as the Akaike Information 

Criterion (AIC), or by minimizing the partial autocorrelation function (PACF) of the residuals. 

Nonparametric methods underestimated the standard error of the air pollution regression coefficient, 

penalized splines gave relatively small bias, and PACF in combination with penalized splines performed 

relatively well in terms of bias. Therefore, the identified risk estimate was a summer-only penalized 

spline estimate of respiratory mortality of 0.73 (-0.39, 1.85) per 10 µg/m3 increase in O3 from distributed 

lag days was identified. 

The two risk estimates identified are not directly comparable to previous estimates of short-term 

exposure-related mortality as previous estimates were of nonaccidental mortality and current estimates 

are of respiratory mortality. 

2.2.6.1.2 Respiratory Mortality Attributable to Long-Term Exposures 

The 2020 O3 ISA determined that there exists a “likely to be causal” relationship between long-term O3 

exposure and respiratory outcomes ({U.S. EPA, 2020 #343. The overall “likely to be causal” 

determination for long-term exposures “was based on epidemiologic evidence of associations between 

long-term ozone exposure and asthma development, respiratory symptoms in children with asthma, and 

respiratory mortality.” More specifically, the ISA found that “there is strong coherence between animal 

toxicological studies of changes in lung morphology and epidemiologic studies reporting positive 

associations between long-term ozone exposure and new onset asthma, respiratory symptoms in 

children with asthma, and respiratory mortality” and the “several multicity studies and a multi-continent 

study reported associations between short-term increases in ozone concentrations and increases in 

respiratory mortality.” Overall, the 2020 O3 ISA concluded there was “some evidence that long-term 
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ozone exposure is associated with respiratory mortality, but the evidence is not consistent across 

studies.” Due to the strength of the ISA evidence relating long-term exposures to respiratory mortality, 

estimates of respiratory mortality impacts are included when estimating benefits attributable to 

changes in O3 exposure. 

2.2.6.1.2.1 Available Epidemiologic Literature 

There were four North American studies of long-term O3-attributable respiratory mortality identified in 

the 2020 O3 ISA, three of which were new to this review.52 All four studies evaluated either the ACS CSP-

II or the Canadian Census Health and Environment Cohort (CanCHEC) prospective cohorts, differing in 

study size, timespan, exposure estimation technique, and specific risk models analyzed.  

2.2.6.1.2.2 Identifying Suitable Studies for Use in Benefits Assessments 

Three of the four studies evaluating long-term O3-attributable respiratory mortality assessed the ACS 

CSP-II prospective cohort and the fourth evaluated the Canadian Census Health and Environment Cohort 

(CanCHEC) prospective cohort. Two of the three ACS CSP-II analyses were nationwide, with the third 

focusing on California. One of the two nationwide ACS CSP-II analyses included a longer and more recent 

study period, utilized hybrid exposure estimates, and included a larger number of participants. 

2.2.6.1.2.3 Studies and Risk Estimates Identified as Most Suitable for Use in Benefits Assessments 

{Turner, 2016 #544} examined the relationship between long-term O3 exposure (1982-2004) and 

mortality (all-cause, cause-specific) in American Cancer Society Cancer Prevention Study-II participants 

(aged 30-99 years). A hierarchal Bayesian space-time model based on National Air Monitoring Stations, 

State and Local Air Monitoring Stations, and Community Multi-Scale Air Quality model data estimated 

daily eight-hour maximum ozone concentrations at the participant’s address. The models considered 

meteorological data and levels of other ambient pollutants (PM2.5, both regional and near-source, and 

NO2). Turner et al., 2016 utilized Cox proportional hazard models adjusted a priori for individual, socio-

demographic, and ecological variables. The hazard ratio of 1.12 (1.08 – 1.16) from a multi-pollutant, all-

year model of respiratory mortality for a 10 ppb increase in the annual average of daily 8-hour maximum 

ozone concentrations was likely the most comprehensive risk estimate. This study also provided a warm-

season specific hazard ratio of 1.08 (1.06-1.11) per 10 ppb increase in seasonal average of daily 8-hour 

maximum O3 concentrations, which will be used when air quality surfaces are only available for the 

summer season. Notably, the study compared annual mortality with warm-season O3 exposures, so full-

year baseline incidence rates will be used with risk estimates from this study. 

The identified risk estimate of long-term exposure associated mortality is larger than the risk estimate 

used in previous benefits assessments (Jerrett et al., 2009), but differs in many aspects including study 

size, included study locations, and exposure estimation technique. 

2.2.6.2 Respiratory Hospital Admissions  

After considering the relationships between specific and broad respiratory hospital admission endpoints, 

the 2020 O3 ISA stated that “studies conducted in diverse locations with a variety of exposure 

assignment techniques continue to provide evidence of an association between ozone and both hospital 

 
52The 2020 O3 ISA identified five North American studies of long-term O3-attributable respiratory mortality, but as 
Weichenthal et al., 2016 examined the combined oxidant capacity of O3 and NO2, and not direct effects of O3 
alone, it did not meet required minimum criteria for consideration for inclusion in benefits assessments (section 
2.1.1). 



 

52 
 

admissions and emergency department visits for combined respiratory diseases” (U.S. EPA, 2020a, 

section 3.1.8). 

2.2.6.2.1 Available Epidemiologic Literature 

Three epidemiologic studies of respiratory hospital admission were identified in the 2020 O3 ISA, which 

varied considerably with respect to the timespans evaluated and study population locations (U.S. EPA, 

2020a).  

2.2.6.2.2 Identifying Suitable Studies for Use in Benefits Assessments 

The two older studies either included only Canadian participants or included U.S., Canadian, and some 

European participants. Therefore, we identified the most recent and only entirely U.S.-based study as 

best characterizing risk across the U.S. 

2.2.6.2.3 Studies and Risk Estimates Identified as Most Suitable for Use in Benefits Assessments 

Katsouyanni et al., 2009 used time series methods to examine the relationship between daily O3 

concentrations and hospital admissions in North America. For U.S. benefits estimation purposes, we 

focus on analyses performed using the U.S hospital admission datasets. These datasets included 14 cities 

with populations between 291,000 and 5,377,000 between 1987-1996 with city-wide MDA1 O3 

concentrations ranging from ~34-60 µg/m3. The authors used a first stage analysis protocol that used 

generalized linear models with either penalized or natural splines to adjust for seasonality, with varying 

degrees of freedom. The number of degrees of freedom were also chosen by minimizing the partial 

autocorrelation function of the model’s residuals. Model specification approach accounted for seasonal 

patterns, weekend and vacation effects, and epistemics of respiratory disease. Data were also analyzed 

to detect potential thresholds in the concentration-response relationships. The second stage analysis 

used pooling approaches and assessed potential effect modification by sociodemographic characteristic 

and indicators of the pollution mixture across study regions. The identified percent change in respiratory 

disease admission for those aged >64 was from a copollutant model including PM10 is 0.28 (-0.07, 0.62) 

per 10 µg/m3 increase in O3. 

2.2.6.3 Respiratory Emergency Department Visits 

After considering the relationships between specific and broad respiratory emergency department visit 

endpoints, the 2020 O3 ISA stated that “studies conducted in diverse locations with a variety of exposure 

assignment techniques continue to provide evidence of an association between ozone and both hospital 

admissions and emergency department visits for combined respiratory diseases” and “there is some 

evidence, previously characterized in the 2013 O3 ISA, that daily 8 hour max, 1 hour max, and daytime 

average O3 concentrations may be most strongly associated with respiratory emergency department 

visits” (U.S. EPA, 2020a, section 3.1.8). 

2.2.6.3.1 Available Epidemiologic Literature 

Seven U.S.-based studies of respiratory emergency department visits were identified in the 2020 O3 ISA 

(U.S. EPA, 2020a). As is common with hospital admission and emergency department health endpoints, 

the specific ICD codes varied across all studies, making pooling difficult. Most studies evaluated only a 

single city or state and took place in a similar time period, including the early 2000s.  
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2.2.6.3.2 Identifying Suitable Studies for Use in Benefits Assessments 

Available studies varied most widely by geographic area, exposure estimation method, population age 

range, and O3 season. While most studies focused on a specific city, state or region, one study included 

five different multi-county areas. In addition, it included a recent time period, all ages, current O3 

concentrations, and was one of only two studies based on hybrid exposure techniques.  

2.2.6.3.3 Studies and Risk Estimates Identified as Most Suitable for Use in Benefits Assessments 

Barry et al. (2018) investigated the effects of short-term ozone exposure on emergency department 

visits for respiratory disease (ICD-9 493, 786.07, 460-466, 477, 491, 492, 496, 480–486, 466.1, 466.11, 

466.19) in an unrestricted population of children, adults, and older adults (aged zero-99 years) within 

five cities (Atlanta, GA, Birmingham, AL, Dallas, TX, Pittsburgh, PA, and St. Louis, MO-IL) across the 

United States. Authors obtained individual-level health data from hospitals and hospital associations in 

each of the five cities. Models fusing air quality monitor data with Community Multi-Scale Air Quality 

modeled data at 12 x 12-km grids were used to estimate ozone exposure. Barry et al. (2018) assessed 

associations with short-term ozone exposure with daily eight-hour maximum ozone concentrations. The 

authors implemented Poisson log-linear models to estimate risk values with three day moving averages. 

They identified single-pollutant rate ratios of 1.03 (95% CI: 1.01-1.05) in Atlanta, GA, 1.03 (95% CI: 1.00-

1.06) in Birmingham, AL, 1.05 (95% CI: 1.02-1.07) in Dallas TX, 1.03 (95% CI: 1.01-1.05) in Pittsburgh, PA, 

and 1.02 (95% CI: 1.01-1.04) in St. Louis, MO-IL for an increase of 25 ppb in full-year  MDA8 O3 

concentrations (three day moving average). Results from individual cities are pooled.  

2.2.6.4 Asthma Onset 

The 2020 O3 ISA concluded that “recent epidemiologic studies provide generally consistent evidence for 

associations of long-term ozone exposure with the development of asthma in children” (U.S. EPA, 

2020a, section IS.4.3). The ISA also found that “recent animal toxicological studies demonstrate effects 

on airway development in rodents…and build on and expand the evidence for long-term ozone 

exposure-induced effects that may lead to asthma development” and asthma onset was called out as a 

key population level clinically relevant health endpoint in the biological plausibility pathways (section 

2.2.1.2.2.1, Figure 9). More specifically, the O3 ISA stated that a “limited number of recent epidemiologic 

studies provide generally consistent evidence that long-term ozone exposure is associated with the 

development of asthma in children” (U.S. EPA, 2020a, section 3.2.6). 

2.2.6.4.1 Available Epidemiologic Literature 

The 2020 O3 ISA identified children as the population in which this health effect was observed, so we 

began with the four ISA-identified studies of people <21 (U.S. EPA, 2020a).  

2.2.6.4.2 Identifying Suitable Studies for Use in Benefits Assessments 

Three studies evaluated prospective cohorts, two of which included more recent timespans and likely 

lower O3 concentrations. One of those studies took place entirely in Canada but included a substantially 

larger study size (>200 times larger) than the other. As the asthma onset endpoint is consistent between 

studies, pooling may be appropriate. 

2.2.6.4.3 Studies and Risk Estimates Identified as Most Suitable for Use in Benefits Assessments 

Tetreault et al., 2016 investigated the effects of long-term O3 exposure on asthma onset in children 

(aged zero-12 years) from Québec, Canada. The study followed participants from the Québec Integrated 

Chronic Disease Surveillance System open birth cohort between 1999 and 2011. The authors defined 
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new cases of asthma based on hospital discharge reports and physician diagnoses (two diagnoses within 

a two-year span). Monitor data (Canadian National Air Pollution Surveillance network) and land-use 

mixed effect models estimated warm season (June to August) O3 exposures. Authors assessed 

associations with asthma onset with both time of birth and time-varying exposure models and adjusted 

for year of birth, sex, and indices of social and material deprivation. Tetreault et al., 2016 used Cox 

proportional hazard models to observe associations between long-term O3 exposure and asthma onset 

in children. The identified single-pollutant, warm-season hazard ratio was 1.07 (95% CI: 1.06-1.08) for a 

3.26 ppb (interquartile range) increase in annual O3 concentrations.  

As the physiology and etiology of lung development in children is similar in children 6-17 (Baena-Cagnani 

et al., 2007, Guerra et al., 2004, Ochs et al., 2004, Sparrow et al., 1991, Trivedi and Denton, 2019), we 

apply the 4-12 year age-stratified effect estimate from Tetreault et al., 2016 to children ages 4-17.  

2.2.6.5 Asthma Symptoms 

Asthma symptoms/exacerbation is identified as a health effect of short-term O3 exposure (section 

2.2.1.2.2.1). Overall, the ISA found that “evidence from recent epidemiologic and experimental studies 

continues to support an association between ozone and asthma exacerbation” with 

“associations…observed across a range of ozone concentrations, and…consistent in models with 

measured or modeled concentrations” (U.S. EPA, 2020a, section 3.1.5.7). 

2.2.6.5.1 Available Epidemiologic Literature 

Four epidemiologic studies of asthma symptoms meeting our minimum criteria (section 2.1.1) were 

identified in the 2020 O3 ISA (U.S. EPA, 2020a). Most studies took place in the late nineties and very 

early 2000s, and although no study included >1000 participants, there was appreciable geographic 

representation. There were also differences regarding the ozone season. Only the oldest study 

specifically evaluated a warm season, although a more recent study did skew slightly toward warmer 

seasons, evaluating eight seasons over a four-year timespan (two Summers, three Springs, two Falls, and 

one Winter). 

2.2.6.5.2 Identifying Suitable Studies for Use in Benefits Assessments 

Two of the studies evaluated much higher O3 concentrations (~50 ppb vs 30 ppb). Of the two studies 

evaluating lower pollutant concentrations, one employed a prospective study design and clearly defined 

the specific asthma symptoms evaluated (e.g., wheeze).  

2.2.6.5.3 Studies and Risk Estimates Identified as Most Suitable for Use in Benefits Assessments 

Lewis et al., 2013 studied the effects of short-term O3 exposure on frequency of asthma symptoms in an 

asthmatic population of primarily lower-income, African American and Latino children (aged five-12 

years) in East and Southwest Detroit, MI. Authors obtained health and demographic data through 

questionnaires filled out by parents or guardians for 14 consecutive days in each studied season. 

Questionnaires highlighted participant’s asthma symptoms (cough, wheeze, shortness of breath, chest 

tightness), demographic information, medication use, and presence of second-hand smoke. The authors 

acquired maximum one-hour and maximum 8-hour O3 concentrations and meteorological data from two 

community-level monitors placed on East and Southwest Detroit, MI school rooftops. Lewis et al., 2013 

implemented a combination of generalized estimating equations and alternative logistic regression 

models to estimate the associations between short-term O3 exposure and rate of asthma symptoms. 

Models adjusted for age, sex, location (Eastside or Southwest), race, household income, smoker in the 
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home, season, and variables for companion home intervention study (control or intervention), time 

(pre- or post-intervention), and the interaction between intervention group status and time. Lewis et al., 

2013 observed positive associations between short-term O3 exposure and asthma symptoms, including 

the identified single-pollutant, all year odds ratios of 1.12 (95% CI: 0.99-1.25) for cough, 1.13 (95% CI: 

0.99-1.28) for wheeze, 1.20 (95% CI: 1.02-1.40) for chest tightness, and 1.07 (95% CI: 0.95-1.21) for 

shortness of breath, all for a 16 ppb (interquartile range) increase in 8-hour maximum O3 concentrations 

(five-day average lag).53 

2.2.6.6 Minor Restricted Activity Days 

No new epidemiologic studies of minor restricted activity days (MRADs) were identified in the 2020 O3 

ISA (U.S. EPA, 2020a). 

2.2.6.6.1 Studies and Risk Estimates Identified as Most Suitable for Use in Benefits Assessments 

Ostro and Rothschild, 1989 estimated the impact of PM2.5 and O3 on the incidence of minor restricted 

activity days (MRADs) and respiratory-related restricted activity days (RRADs) in a national sample of the 

adult working population, ages 18 to 65, living in metropolitan areas. The study population is based on 

the Health Interview Survey (HIS), conducted by the National Center for Health Statistics. In publications 

from this ongoing survey, non-elderly adult populations are generally reported as ages 18-64. From the 

study, it is not clear if the age range stops at or includes those aged 65. We apply the risk estimate 

function to individuals ages 18-64 for consistency with other studies estimating impacts to non-elderly 

adult populations. The annual national survey results used in this analysis were conducted in the period 

1976-1981, controlling for PM2.5, two-week average O3. 

2.2.6.7 Allergic Rhinitis (Hay Fever/Respiratory Allergies)) 

The 2020 O3 ISA stated that “cross-sectional epidemiologic studies provide generally consistent evidence 

that ozone concentrations are associated with hay fever/rhinitis” and included “allergic responses” in 

the biological plausibility diagram for long-term O3-attributal respiratory effects (U.S. EPA, 2020a, 

section 2.2.1.2.2.1). Although cross sectional analyses do not establish a temporal sequence, they can be 

used to estimate benefits associated with changes in air quality.  

2.2.6.7.1 Available Epidemiologic Literature 

The 2020 O3 ISA identified one epidemiologic study of long-term O3 exposure and allergic rhinitis. 

2.2.6.7.2 Studies and Risk Estimates Identified as Most Suitable for Use in Benefits Assessments 

Parker et al., 2009 investigated the associations between long-term O3 exposure and respiratory 

allergies in an unrestricted population of children (aged 3-17 years) sampled from the United States 

National Health Interview Survey. Authors obtained symptom data from participant parents, who 

reported respiratory allergies on annual surveys. Parker et al., 2009 placed all study participants 

reporting symptoms of respiratory allergies or hay fever into a combined rhinitis group. Parker et al., 

2009 linked annual averages of SO2, NO2, PM2.5, and PM2.5-10 and warm season (May to September) O3 

averages to participant’s addresses through ambient air pollution and meteorological data collected 

from US EPA Air Quality System monitors. The authors adjusted models for survey year, poverty-level, 

race/ethnicity, age, family structure, insurance coverage, usual source of care, education of adult, 

urban-rural status, region, and median county-level income. Through multi-pollutant, logistic regression 

 
53 Estimates were obtained from figures. Authors did not respond to requests for exact results. 
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models, the odds ratio of 1.18 (95% CI: 1.09-1.27) for a 10 ppb increase in 24-hour mean, warm season 

O3 and respiratory allergies was identified. 

2.2.6.8 School Loss Days 

No new studies of work loss days (WLDs) were identified in the 2020 O3 ISA (U.S. EPA, 2020a). 

2.2.6.8.1 Studies and Risk Estimates Identified as Most Suitable for Use in Benefits Assessments 

Gilliland et al., 2001 examined the association between air pollution and school absenteeism among 

fourth grade school children (aged nine to 10) in 12 southern Californian communities. The study was 

conducted from January through June 1996. The authors used school records to collect daily absence 

data and parental telephone interviews to identify causes. They defined illness- related absences as 

respiratory or non-respiratory. A respiratory illness was defined as an illness that included at least one of 

the following: runny nose/sneezing, sore throat, cough, earache, wheezing, or asthma attack. The 

authors used 15- and 30-day distributed lag models to quantify the association between O3 and incident 

school absences. O3 levels were positively associated with all school absence measures and significantly 

associated with all illness-related school absences (non-respiratory illness, respiratory illness, URI and 

LRI). The health impact function for ozone is based on the results of the single pollutant model.  

Gilliland et al., 2001 defines an incident absence as an absence that followed attendance on the 

previous day and the incidence rate as the number of incident absences on a given day over the 

population at risk for an absence on a given day (i.e. those children who were not absent on the 

previous day). Since school absences due to air pollution may last longer than one day, an estimate of 

the average duration of school absences could be used to calculate the total avoided school loss days 

from an estimate of avoided new absences. A simple ratio of the total absence rate divided by the new 

absence rate would provide an estimate of the average duration of school absences, which could be 

applied to the estimate of avoided new absences as follows:  

 

𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 =
𝑇𝑜𝑡𝑎𝑙𝐴𝑏𝑠𝑒𝑛𝑐𝑒𝑠

𝑁𝑒𝑤𝐴𝑏𝑠𝑒𝑛𝑐𝑒𝑠
 

 

∆𝑇𝑜𝑡𝑎𝑙𝐴𝑏𝑠𝑒𝑛𝑐𝑒𝑠 =  −[𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒𝑠 × (𝑒−𝛽×𝑂3 − 1)] × 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 × 𝑝𝑜𝑝 

 

Since the function is log-linear, the baseline incidence rate (in this case, the rate of new absences) is 

multiplied by duration, which reduces to the total school absence rate. Therefore, the same result would 

be obtained by using a single estimate of the total school absence rate in the risk estimate. Using this 

approach, we assume that the same relationship observed between pollutant and new school absences 

in the study would be observed for total absences on a given day. As a result, the total school absence 

rate is used in the function below. The derivation of this rate is described in the section on baseline 

incidence rate estimation.  

For all absences, the coefficient and standard error are based on a percent increase of 16.3 percent 

(95% CI -2.6 percent, 38.9 percent) associated with a 20 ppb increase in eight-hour average ozone 

concentration (2001, Table 6, p. 52).  
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A scaling factor is used to adjust for the number of school days in the ozone season. In the modeling 

program, the function is applied to every day in the ozone season (May 1 - September 30), however, in 

reality, school absences will be avoided only on school days. We assume that children are in school 

during weekdays for all of May, two weeks in June, one week in August, and all of September. This 

corresponds to approximately 2.75 months out of the five-month season, resulting in an estimate of 

39.3% of days (2.75/5*5/7). 

In addition, not all children are at-risk for a new school absence, as defined by the study. On average, 

5.5% of school children are absent from school on a given day (NCES, 1996, Table 42-1). Only those who 

are in school on the previous day are at risk for a new absence (1-0.055 = 94.5%). As a result, a factor of 

94.5% is used in the function to estimate the population of school children at-risk for a new absence.  

2.3 IDENTIFIED STUDY AND RISK ESTIMATES FOR BENEFITS ASSESSMENTS 
While we begin with studies identified in ISAs, the goals of an ISA differ greatly from those of benefits 

assessments. ISAs evaluate the overall state of the science and develop overarching conclusions relating 

exposure to health effects. This includes analyses of specific subgroups, such as people with pre-existing 

conditions, that may not be transferrable to the entire U.S. population. 

In an effort to make our study and risk estimate identification process as transparent and reproducible 

as possible, we have explicitly stated the criteria used in our approach (section 1) as well as the available 

epidemiologic studies evaluated (section 2.2). However, even with such detailed information, expert 

judgment can be required if multiple estimates meet the required criteria, satisfy a similar number of 

preferred criteria, and are unable to be statistically aggregated into a single risk estimate (i.e., pooling).  

The two tables in this section provide information on the health endpoints and risk estimates identified 

for use in PM2.5 and O3 benefits estimation (Table 10 and Table 11) using the systematic approach 

described above (sections 2.1 and 2.2). 

 Health Endpoints 
These summary tables provided an overview of the PM2.5 and O3 health endpoints included in the main 
benefits analysis. They are the outcome of the systematic approach described above, which involved 
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consideration of recent ISA conclusions along with the availability of clinically relevant epidemiologic risk 
estimates (Table 8 and Table 9).  

2.3.1.1 PM2.5 

Table 8. Set of Health Endpoints for Main PM2.5 Benefits Assessments  

Endpoint Group Endpoint Type Specific Endpoint Exposure Ages 

Mortality Mortality All cause 
LT 

Adults and older adults 
(30-99 and 65-99 years) 

ST Infants (1-12 months) 

Cardiovascular 
Effects 

Hospital 
Admissions 

Cardiovascular 
Outcomes 

ST 
Older adults (65-99 
years) 

Emergency 
Department Visits 

Cardiovascular 
Outcomes 

ST 
Children, adults, and 
older adults (0-99 years) 

Incidence Acute Myocardial 
Infarction 

ST 
Adults and older adults 
(18-99 years) 

Strokea LT 
Older adults (65-99 
years) 

Cardiac Arresta ST 
Adults and older adults 
(0-99 years) 

Respiratory 
Effects 

Hospital 
Admissions 

Respiratory 
Outcomes 

ST 
Children and older 
adults (65-99 years) 

Emergency 
Department Visits 

Respiratory 
Outcomes 

ST 
Children, adults, and 
older adults (0-99 years) 

Incidence Asthma Onseta LT Children (0-17 years) 

Asthma Symptoms ST Children (6-17 years) 

Allergic Rhinitisa LT Children (3-17 years) 

Minor Restricted 
Activity Days 

NA 
Adults and older adults 
(18-64 years) 

Work Loss Days NA 
Adults and older adults 
(18-64 years) 

Cancer Incidence Lung Cancera LT 
Adults and older adults 
(30-99 years) 

Nervous System 
Effects Hospital 

Admissions 

Alzheimer’s Diseasea LT 
Older adults (65-99 
years) 

Parkinson’s Diseasea LT 
Older adults (65-99 
years) 

aNew health endpoint. 
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2.3.1.2 O3 

Table 9. Set of Health Endpoints for Main O3 Benefits Assessments  

Endpoint 
Group 

Endpoint Type Specific Endpoint Exposure Ages 

Mortality Mortality Respiratorya 

ST 
Children, adults, and older 
adults (0-99 years) 

LT 
Adults and older adults 
(30-99 years) 

Respiratory 
Effects 

Hospital Admissions 
Respiratory 
Outcomes 

ST Older adults (65-99 years) 

Emergency 
Department Visits 

Respiratory 
Outcomes 

ST 
Children, adults, and older 
adults (0-99 years) 

Incidence 

Asthma Onseta LT Children (0-17 years) 

Asthma Symptoms ST Children (5-17 years) 

Allergic Rhinitisa LT Children (3-17 years) 

Minor Restricted 
Activity Days 

ST 
Adults and older adults 
(18-64 years) 

School Loss Days 
ST Children (5-12 years) 

ST Children (9-10 years) 
aNew or updated health endpoint. 

 Risk Estimates 
This section presents the risk estimates identified for the main PM2.5 (section 2.3.2.1) and O3 (section 

2.3.2.2) benefits assessments. These lists reflect the application of the available epidemiologic literature 

(section 2.2) to the identification criteria (section 2.1).  

2.3.2.1 PM2.5 

Table 10. Set of Risk Estimates for Main PM2.5 Benefits Assessments  

Endpoint Study Information Ages 
Exposure 
Duration  

Beta Coefficient 
(SE)1 

Mortality 

Di et al., 2017b 
Older adults 
(65-99 years) 

LT β = 0.0070 (0.0001) 

Turner et al., 2016 
Adults (30-99 
years) 

LT β = 0.0058 (0.00096) 

Woodruff et al., 2008 
Infants (1-12 
months) 

LT β = 0.0056 (0.00454) 

Hospital 
Admissions, 
Cardiovascular 

Bell et al., 2015 —ICD 
410, omitting 410.x2; 
410-414; 426-427; 
428; 429; 430-438; 
and 440-448 

Older adults 
(65-99 years) 

ST β = 0.00065 (0.00009) 

Emergency 
Department 
Visits, 
Cardiovascular 

Ostro et al., 2016—
ICD 390-459 

Children older 
adults (0-99 
years) 

ST β = 0.00061 (0.00042) 
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Endpoint Study Information Ages 
Exposure 
Duration  

Beta Coefficient 
(SE)1 

Acute 
Myocardial 
Infarction 

Peters et al., 2001 
Adults and 
older adults 
(18-99 years) 

ST β = 0.02412 (0.00928) 

Pope III et al., 2006 
Sullivan et al., 2005 
Zanobetti et al., 2009 
Zanobetti and 
Schwartz, 2006 

Adults and 
older adults 
(18-99 years) 

ST 

β = 0.00481 (0.00199) 
β = 0.00198 (0.00224) 
β = 0.00225 (0.00059) 
β = 0.0053 (0.00221) 

Cardiac Arrest 
Ensor et al., 2013 
Rosenthal et al., 2008 
Silverman et al., 2010 

Adults and 
older adults 
(0-99 years) 

ST 
β = 0.00638 (0.00282)  
β = 0.00198 (0.00502) 
β = 0.00392 (0.00222) 

Stroke 
Kloog et al., 2012—
ICD 430-436 

Older adults 
(65-99 years) 

LT β = 0.00343 (0.00127) 

Hospital 
Admissions, 
Respiratory 

Bell et al., 2015—ICD 
490-492, 464-466, 
480-487, 493 

Older adults 
(65-99 years) 

ST β = 0.00025 (0.00012) 

Ostro et al., 2009—
ICD 460-519 

Children (0-18 
years) 

ST β = 0.00275 (0.00077) 

Emergency 
Department 
Visits, 
Respiratory 

Krall et al., 2013—
ICD 480-486, 491, 
492, 496, 460-465, 
466, 477, 493, 786.07 

Children, 
adults, and 
older adults 
(0-99 years) 

ST 

β = 0.00055 (0.00027) (GA) 
β = 0.00097 (0.00035) (AL) 
β = 0.00083 (0.00033) (MO) 
β = 0.00135 (0.00059) (TX) 

Asthma Onset Tetreault et al., 2016 
Children (0-17 
years) 

LT β = 0.04367 (0.00088) 

Allergic Rhinitis Parker et al., 2009 
Children (3-
17) 

LT β = 0.02546 (0.00962) 

Lung Cancer 
Gharibvand et al., 
2017 

Adults and 
older adults 
(>29 years) 

LT β = 0.03784 (0.01312) 

Alzheimer’s 
Disease 

Kioumourtzoglou et 
al., 2016—ICD 331.0 

Older adults 
(>64 years) 

LT β = 0.13976 (0.01775) 

Parkinson’s 
Disease 

Kioumourtzoglou et 
al., 2016—ICD 332 

Older adults 
(>64 years) 

LT β = 0.07696 (0.01891) 

Asthma 
Symptoms 

Rabinovitch et al., 
2006 

Children (6-17 
years) 

ST β = 0.00200 (0.00148) 

Minor 
Restricted 
Activity Days 

Ostro and Rothschild, 
1989 

Adults and 
older adults 
(18-64 years) 

N/A β = 0.00741 (0.0007) 

Work Loss Days Ostro, 1987 
Adults and 
older adults 
(18-64 years) 

N/A β = 0.0046 (0.00036) 

ST- short-term; LT- long-term, β- beta risk estimate; ICD- International Statistical Classification of Diseases 
Notes: Horizontal lines separating studies within an endpoint indicates that the studies are not intended to be pooled.  
1 Risk estimates have been mathematically converted to beta coefficients, which include the increment of pollutant change and 
allow for more direct comparisons of risk estimates within health endpoints. 
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2.3.2.2 O3 

Table 11. Set of Risk Estimates for Main O3 Benefits Assessments  

Endpoint 
Study 
Information 

Ages 
Exposure (Duration; 
Season; Metric) 

Beta Coefficient 
(SE)1 

Respiratory 
Mortality 

Zanobetti and 
Schwartz, 2008 

Children, 
adults, and 
older adults 
(0-99 years) 

ST; June-August; 
DA8 

β = 0.00083 (0.00023) 
(warm season) 

Katsouyanni et 
al., 2009 

Children, 
adults, and 
older adults 
(0-99 years) 

ST; April-September; 
MDA1 

β = 0.00073 (0.00057) 
(warm season) 

Turner et al., 
2016—ICD 460-
519  

Adults and 
older adults 
(30-99 years) 

LT; April-September; 
MDA8 

β = 0.007696 (0.00118) 
(warm season) 

Hospital 
Admissions, 
Respiratory 

Katsouyanni et 
al., 2009—ICD 
460–519 

Older adults 
(65-99 years) 

ST; April-September; 
MDA1 

 
β = 0.00028 (0.00018) 
(warm season) 

Emergency 
Department 
Visits, 
Respiratory 

Barry et al., 
2019—ICD 493, 
786.07, 460-
466, 477, 491, 
492, 496, 480–
486, 466.1, 
466.11, 466.19 

Children, 
adults, and 
older adults 
(0-99 years) 

ST; January-
December; MDA8 

β = 0.00118 (0.00040) 
(Atlanta, GA) 
β = 0.00118 (0.00059) 
(Birmingham, AL) 
β = 0.00195 (0.00049) 
(Dallas, TX) 
β = 0.00118 (0.00040) 
(Pittsburgh, PA)  
β = 0.00079 (0.00030) 
(St. Louis, MO-IL) 

Asthma Onset 
Tetreault et al., 
2016  
 

Children (0-
17 years) 

LT; June-August; 
MDA8 

β = 0.02075 (0.00146) 
(warm season) 

Asthma 
Symptoms 

Lewis et al., 
2013 

Children (5-
17 years) 

ST; January-
December; MDA8 

β = 0.00708 (0.00372) 
(Cough) 
β = 0.00764 (0.00410) 
(Wheeze) 
β = 0.01140 (0.00505) 
(Chest tightness) 
β = 0.00423 (0.00386) 
(Shortness of breath) 

Allergic Rhinitis 
Parker et al., 
2009 

Children (3-
17 years) 

LT; May-September; 
DA24 

β = 0.01655 (0.00390) 
(warm season) 

Minor Restricted 
Activity Days 

Ostro and 
Rothschild, 1989 
(MRADs) 

Adults and 
older adults 
(18-64 years) 

ST; April-September; 
MDA1 

β = 0.0022 (0.000658) 

School Loss Days 
Gilliland et al., 
2001 

Children (5-
17 years) 

ST; January-June; 
DA8 

β = 0.0078 (0.0044) 
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ST- short-term; LT- long-term, β- risk estimate (beta); ICD- International Statistical Classification of Diseases; DA8- daily 8-hour 
average; MDA8- maximum daily 8-hour average; MDA1- maximum daily 1-hour average; DA24- daily 24-hour average 
Notes: Horizontal lines separating studies within an endpoint indicates that the studies are not intended to be pooled 
1 Risk estimates have been mathematically converted to beta coefficients, which include the increment of pollutant change and 
allow for more direct comparisons risk estimates within health endpoints. 
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3 BASELINE INCIDENCE AND PREVALENCE ESTIMATES  

A baseline incidence rate is an estimate of the number of new cases in the assessment location over a 

specific timespan, typically one year. For example, in 2018 the mortality rate was 868 deaths per 

100,000 people in the U.S.54 The baseline incidence of the health effect is necessary to convert the 

relative risk of a health effect provided by epidemiologic studies into an estimated number of cases. To 

derive the total baseline incidence per year, this rate must be multiplied by the corresponding 

population. Continuing with the above example, there were 327 million people in the U.S. in 2018, 

leading to a total baseline incidence of 2.8 million deaths in that year. 

Prevalence rates are the proportion of the population experiencing a health endpoint at a point in time. 

This rate is important when estimating impacts of chronic illnesses, such as asthma, in order to exclude 

those already diagnosed from the population at risk. For example, if the prevalence of asthmatic 

children is 8%, only the remaining 92% are at risk of developing asthma. 

EPA develops either daily or annual baseline incidence and prevalence rates at the most geographically- 

and age-specific levels feasible for each health endpoint assessed. For many locations within the U.S., 

these data are available resolved at the county- or state-level, providing a better characterization of the 

geographic distribution of hospital and emergency department visits than the national rates. For this 

update, we focused on developing baseline incidence rates for new health endpoints. Detailed 

information on baseline incidence data developed previously can be found in Appendix D of the 

BenMAP-CE User Manual (U.S. EPA, 2018). Importantly, when applying either the daily or annual 

baseline incidence rates to a health impact estimate, the temporal scale over which the health endpoint 

was assessed within each study is taken into account. For example, if a long-term O3 exposure study 

associated annual deaths with warm-season exposures, full-year baseline incidence rates will be used 

when estimating benefits.55 

Table 12 summarizes the sources of baseline incidence rates and provides national average (where 

used) incidence rates for the endpoints included in the analysis. For both baseline incidence and 

prevalence data, we used age-stratified rates where available. We applied risk estimates to individual 

age groups and then sum them over the relevant age range to estimate total population benefits. In 

some cases we used a single national incidence rate, due to a lack of more spatially disaggregated data, 

time, or resources. In these cases, whenever possible we used national average rates, because these 

data are most applicable to a national assessment of benefits. For some studies, however, the only 

available incidence information comes from the studies themselves; in these cases, incidence in the 

study population is assumed to represent typical incidence at the national level.  

 
54 CDC WONDER mortality data; https://www.cdc.gov/nchs/fastats/deaths.htm. 
55 Turner et al., 2016 and Tetreault et al., 2016 risk estimates of long-term O3-attributable health impacts use full-
year baseline incidence rates, even though the exposure period is restricted to the warm season. As such, our 
baseline incidence rate estimates also reflect the full year for those health endpoints. 
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Table 12. Baseline Incidence Rates for Use in Impact Functions 

Endpoint Parameter Rates 

Value Source 

Mortality1 Daily or annual projected 
incidence to 2060 in 5-
year increments (0--99) 

Age-, cause-, race-, and 
county-stratified rates 

CDC WONDER (2012–
2014) 
U.S. Census Bureau, 
2012 

Hospitalizations2 Daily incidence rates for 
all ages 

Age-, 
region/state/county-, and 
cause- stratified rates 

2011-2014 HCUP data 
files and data 
requested from and 
supplied by individual 
states 

Emergency 
Department Visits2 

Daily emergency 
department visit incidence 
rates for all ages 

Age-, region-, state-, 
county-, and cause- 
stratified rates 

2011-2014 HCUP data 
files and data 
requested from and 
supplied by individual 
states 

Nonfatal Acute 
Myocardial 
Infarction 

Daily nonfatal AMI 
incidence rate per person 
aged 18-99 

Age-, region-, state-, and 
county- stratified rates 

AHRQ, 2016  

Asthma Symptoms Daily incidence among 
asthmatic children 
 
Wheeze (ages 5-12) 
Cough (ages 5-12) 
Shortness of breath (ages 
5-12) 
Albuterol use (ages 6-13) 

 
 
 
 
Age- and race- stratified 
rates 
 
 
2.2 puffs per day 

 
 
 
 
Ostro et al., 2001 
 
 
 
Rabinovitch et al., 
2006 

Asthma Onset Annual incidence  
0 - 4 
5 - 11 
12 - 17 

 
0.0234 
0.0111 
0.0044 

Winer et al., 2012 

Alzheimer’s 
Disease 

Daily incidence rates for 
all ages 

Age-, region-, state-, and 
county- stratified rates 
 

2011-2014 HCUP data 
files 

Parkinson’s Disease Annual incidence  
18 - 44 
45 - 64 
65 - 84 
85 - 99 

 
0.0000011 
0.0000366 
0.0002001 
0.0002483 

HCUPnet 

Allergic Rhinitis Respondents aged 3-17 
experiencing allergic 
rhinitis/hay fever 
symptoms within the year 
prior to the survey 

0.192 Parker et al., 2009 
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Endpoint Parameter Rates 

Value Source 

Cardiac Arrest Daily nonfatal incidence 
rates 
0 - 17 
18 - 39 
40 - 64 
65 - 99 

 
 
0.00000002 
0.00000009 
0.00000056 
0.00000133 

Ensor et al., 2013, 
Rosenthal et al., 2008, 
Silverman et al., 2010 

Lung Cancer Annual nonfatal incidence 
25 - 34 
35 - 44 
45 - 54 
55 - 64 
65 - 74 
75 - 84 
95 - 99 

 
 
0.000001746 
0.000014919 
0.000067463 
0.000208053 
0.000052370 
0.000576950 
0.000557130 

NCI, 2015 and 
Gharibvand et al., 
2017 

Stroke Annual nonfatal incidence 
in ages 65-99 

0.00446 Kloog et al., 2012 

Work Loss Days Daily incidence rate per 
person (18–64) 
Aged 18–24 
Aged 25–44 
Aged 45–64 

 
 
0.00540 
0.00678 
0.00492 

Adams et al., 1999, 
Table 41; U.S. Census 
Bureau (2000) 

School Loss Days Rate per person per year, 
assuming 180 school days 
per year 

9.9 Adams et al., 1999, 
Table 47 

Minor Restricted-
Activity Days 

Daily MRAD incidence rate 
per person (18-64) 

0.02137 Ostro and Rothschild, 
1989, p. 243 

CDC-Centers for Disease Control; NHS-National Health Interview Survey 
1Mortality rates are only available in 5-year increments. The Healthcare Cost and Utilization Program (HCUP) database contains 
individual level, state and regional-level hospital and emergency department discharges for a variety of International 
Classification of Diseases (ICD) codes (AHRQ, 2016).  
2Baseline incidence rates now include corrections from the states of Indiana and Montana. 

3.1 MORTALITY 
Baseline incidence rate estimates for mortality remain the same as they were for previous benefits 

assessments (U.S. EPA, 2018). However, information is provided below for reference. Notably, the 

Turner et al., 2016 analysis of long-term O3-attributable health impacts compares warm-season 

exposures to full-year baseline incidence rates. As such our baseline incidence rate estimates also reflect 

the full year. 
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 Mortality Data for 2012-2014   
We obtained county-level mortality and population data from 2012-2014 for 11 causes for the 

contiguous United States by downloading the data from the Centers for Disease Control (CDC) WONDER 

database.56  

Since the detailed mortality data obtained from CDC do not include population, we combined them with 

U.S. Census Bureau population estimates exported from BenMAP. We then generated age-, cause-, and 

county-specific mortality rates using the following formula:   

𝑅𝑖,𝑗,𝑘 =
𝐷𝑖,𝑗,𝑘(2012)+𝐷𝑖,𝑗,𝑘(2013)+𝐷𝑖,𝑗,𝑘(2014)

𝑃𝑖,𝑘(2012)+𝑃𝑖,𝑘(2013)+𝑃𝑖,𝑘(2014)
 

where Ri,j,k is the mortality rate for age group i, cause j, and county k; D is the death count; and P is the 

population. Additional details about the translation of the CDC WONDER data to age-, cause-, and 

county-specific mortality rates are provided in the BenMAP-CE User’s Manual (U.S. EPA, 2018). 

 

 

 
56 http://wonder.cdc.gov 
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Table 13.  National Mortality Rates (per 100 people per year) by Health Endpoint and Age Group, 2012-2014 

Mortality Category ICD-10 Codes Infant* 1-17 18-24 25-34 35-44 45-54 55-64 65-74 75-84 85+ 

Mortality, All 
Cause 

All 0.59396 0.01951 0.07804 0.10665 0.17264 0.40542 0.86162 1.79670 4.62837 13.58034 

Mortality, Non-
Accidental 

A00-R99 0.55495 0.00949 0.01874 0.04112 0.10876 0.33084 0.79395 1.73208 4.49595 13.20867 

Mortality, 
Respiratory 

J00-J98 0.01297 0.00102 0.00127 0.00253 0.00570 0.02013 0.06560 0.20585 0.57827 1.42362 

Mortality, Chronic 
Lung 

J40-J47, J67 0.00053 0.00032 0.00040 0.00074 0.00186 0.01033 0.04045 0.13873 0.36008 0.68593 

Mortality, Lung 
Cancer 

C34 0.00002 0.00001 0.00007 0.00033 0.00282 0.02378 0.07992 0.19701 0.32952 0.31820 

Mortality, Ischemic 
Heart Disease 

I20-I25 0.00033 0.00004 0.00039 0.00234 0.01242 0.04854 0.12174 0.25698 0.68000 2.27271 

Mortality, Cardio-
Pulmonary 

I00-I78, J10-J18, J40-J47, 
J67 

0.00539 0.00069 0.00099 0.00214 0.00502 0.01794 0.05877 0.18453 0.51055 1.26213 

Mortality, NCD + 
LRI 

** 0.18459 0.00618 0.01168 0.02751 0.08129 0.26214 0.63767 1.37694 3.44731 9.47467 

Mortality, Lower 
Respiratory 
Infection 

A48.1, A70, B97.4-B97.6, 
J09-J15.8, J16, J20-J21, 
P23.0-P23.4, U04 

0.00269 0.00618 0.01168 0.00030 0.00062 0.00112 0.00196 0.00300 0.00758 0.02693 

Mortality, Cerebro-
vascular 

G45-G46.8, I60-I63.9, 
I65-I66.9, I67.0-I67.3, 
I67.5-I67.6, I68.1-I68.2, 
I69.0-I69.3 

0.00116 0.00012 0.00034 0.00096 0.00314 0.00809 0.01455 0.02892 0.08553 0.20863 

Mortality, COPD J40-J44, J47 0.00048 0.00005 0.00004 0.00015 0.00102 0.00904 0.03888 0.13689 0.35661 0.67457 
*We estimate post-neonatal mortality (deaths after the first month) for infants because the health impact function (see Appendix E) estimates post-neonatal mortality.  
**For a full list of codes for non-communicable diseases (NCD) and lower respiratory infections (LRI), see the IHME GBD Code mapping: http://ghdx.healthdata.org/record/ihme-
data/gbd-2017-cause-icd-code-mappings.  
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 Mortality Rate Projections 2015-2060 
To estimate age- and county-specific mortality rates in years 2015 through 2060, we calculated annual 

adjustment factors, based on a series of Census Bureau projected national mortality rates (for all- cause 

mortality), to adjust the age-, county-, and cause-specific mortality rates calculated using 2012-2014 

data as described above. 57 We used the following procedure:   

For each age group, we obtained the series of projected national mortality rates from 2013 to 2050 (see 

the 2013 rate in Table 14) based on Census Bureau projected life tables.   

We then calculated, separately for each age group, the ratio of Census Bureau national mortality rate in 
year Y (Y = 2014, 2015, ..., 2060) to the 2013 rate, which is assumed to be representative of the 2012-
2014 data and used for the base “year.” These ratios are shown for selected years in Table 15.   

Finally, to estimate mortality rates in year Y (Y = 2015, 2020, ..., 2060) that are both age-group-specific 

and county-specific, we multiplied the county- and age-group-specific mortality rates for 2012-2014 by 

the appropriate ratio calculated in the previous step. For example, to estimate the projected mortality 

rate in 2015 among ages 18-24 in Wayne County, MI, we multiplied the mortality rate for ages 18-24 in 

Wayne County in 2012-2014 by the ratio of Census Bureau projected national mortality rate in 2015 for 

ages 18-24 to Census Bureau national mortality rate in 2013 for ages 18-24.  

Table 14. All-Cause Mortality Rate (per 100 people per year), by Source, Year, and Age Group 

Source and Year Infant 1-17 18-24 25-34 35-44 45-54 55-64 65-74 75-84 85+ 

Calculated CDC 2012-2014 0.5941 0.020 0.078 0.107 0.173 0.405 0.862 1.797 4.628 13.580 

Census Bureau 20132 0.654 0.029 0.088 0.102 0.183 0.387 0.930 2.292 5.409 13.091 
1The Census Bureau estimate is for all deaths in the first year of life. EPA benefits assessments uses post-neonatal mortality 
(deaths after the first month, i.e., 0.23 per 100 people) because the health impact function (see Appendix E) estimates post- 
neonatal mortality. For comparison purpose, we also calculated the rate for all deaths in the first year, which is 0.684 per 100 
people.   
2For a detailed description of the model, the assumptions, and the data used to create Census Bureau projections, see the 
working paper, “Methodology and Assumptions for the 2012 National Projections,” which is available on 
http://www.census.gov/population/projections/files/methodology/methodstatement12.pdf  

 
57 All-cause mortality projections are applied to each cause-specific mortality rate. 
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Table 15. Ratio of Future Year All-Cause Mortality Rate to 2013 Estimated All-Cause Mortality Rate, by 
Age Group 

Year Infant 1-17 18-24 25-34 35-44 45-54 55-64 65-74 75-84 85+ 

2015 0.93 0.93 0.96 1.02 0.96 0.96 1.01 1.02 1.03 1.00 

2020 0.94 0.94 0.98 1.04 0.97 0.98 1.02 1.03 1.03 1.00 

2025 0.85 0.81 0.74 0.80 0.75 0.77 0.85 0.91 0.93 0.97 

2030 0.81 0.75 0.66 0.70 0.67 0.69 0.78 0.86 0.89 0.92 

2035 0.76 0.70 0.58 0.62 0.60 0.62 0.71 0.81 0.87 0.87 

2040 0.73 0.65 0.51 0.53 0.53 0.56 0.64 0.76 0.84 0.86 

2045 0.70 0.60 0.45 0.46 0.46 0.50 0.58 0.71 0.80 0.86 

2050 0.67 0.56 0.39 0.40 0.40 0.44 0.53 0.66 0.77 0.87 

2055 0.64 0.52 0.34 0.35 0.35 0.39 0.48 0.62 0.73 0.88 

2060 0.61 0.48 0.30 0.30 0.31 0.34 0.43 0.58 0.70 0.87 

 Race-Stratified Incidence Rates 
To estimate race-stratified and age-stratified incidence rates at the county level, we downloaded all-

cause mortality data from 2007 to 2016 from the CDC WONDER mortality database.58 Race-stratified 

incidence rates were calculated for the following age groups: < 1 year, 1- 4 years, 5-14 years, 15-24 

years, 25-34 years, 35-44 years, 45-54 years, 55-64 years, 65-74 years, 75-84 years, and 85+ years. We 

stratified the data into two race categories, White and Non-White, and follow all methods outlined in 

section D.1.1 of the BenMAP-CE User Manual (U.S. EPA, 2018). To properly impute incidence rates for 

suppressed and unreliable counties, we downloaded data at the state, regional, and national scales. 

3.2 HOSPITALIZATIONS 
The approach for estimating hospitalization baseline incidence rates for new health endpoints is based 

on HCUP data, developed to match the granularity and timeframe of other hospitalization endpoints 

used in benefits assessments. New hospitalization endpoints are comprised of new sets of ICD-9 codes 

that correspond to newer studies evaluating air pollution-attributable hospitalizations. Detailed 

information is provided below and available in the BenMAP-CE User Manual (U.S. EPA, 2018). 

Hospitalization rates were calculated using data from the Healthcare Cost and Utilization Project (HCUP). 

HCUP is a family of health care databases developed through a Federal-State-Industry partnership and 

sponsored by the Agency for Healthcare Research and Quality (AHRQ). HCUP products include the State 

Inpatient Databases (SID), the State Emergency Department Databases (SEDD), the Nationwide Inpatient 

Sample (NIS), and the Nationwide Emergency Department Sample (NEDS).  

The level of hospitalization data available differs by state. While many states provide granular discharge-

level data, others may only provide county- or state level-data. Also, 14 states, mostly in the southeast, 

 
58 http://wonder.cdc.gov 
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do not provide data to HCUP. For these states, regional statistics from HCUPnet59 were used to estimate 

baseline hospitalization rates. 

HCUP categorizes hospital admissions in various ways. Hospitalization admission types used when 

reporting data to HCUP include emergency (admitted from the emergency department), urgent 

(admitted from another hospital), elective (admitted from another health facility, including long-term 

care), newborn (admitted for delivery), trauma (not used by all states), and other/missing/invalid. As 

PM2.5 and O3 exposure predominantly leads to cardiovascular and respiratory health effects, we provide 

some information on the proportion of these types of hospitalizations, based on an analysis of 

hospitalizations from the state of Florida in 2014. Florida was selected for this analysis as it was the most 

populated state providing details regarding hospital admission type.  

• Emergency hospital admissions comprise approximately 80% of cardiovascular and 85% of 

respiratory admissions 

• Urgent hospital admissions comprise approximately 10% of cardiovascular and 8% of respiratory 

admissions 

• Elective hospital admissions comprise approximately 10% of cardiovascular and 7% of 

respiratory admissions 

• Newborn hospital admissions comprise no cardiovascular and respiratory admissions 

• Trauma hospital admissions comprise approximately 0.1% of cardiovascular and respiratory 

admissions 

• Other/missing/invalid hospital admissions comprise no cardiovascular or respiratory admissions 

All hospital admission baseline incidence data used in this analysis (and input into BenMAP-CE) reflects 

total hospital admissions, due to time constraints limiting the ability to separate types (e.g., emergency, 

urgent, elective, etc) within HCUP data by various states and regions. However, the breakdown of 

hospital admission types generally reflects the types of health endpoints associated with air pollution 

exposures, with the majority of effects falling into the emergency and urgent types (e.g., heart or 

asthma attack) with a small subset potentially leading to elective hospital admissions (e.g., exacerbation 

of heart failure). 

Health endpoints in hospitalization studies are defined using different combinations of ICD codes 

corresponding to specific diagnoses. Some span large categories of diagnoses, such as all cardiovascular 

or all respiratory admissions, while others reflect specific conditions, including Alzheimer’s disease and 

Parkinson’s disease.60 For each ICD code combination, unique baseline incidence rates are developed. 

 
59 HCUPnet is a free, on-line query system based on data from HCUP. It provides access to summary statistics at the 
state, regional and national levels. 
60 Parkinson’s disease incidence rates were developed in a slightly different manner, due to time and resource 
limitations. We develop regional and age-specific incidence rates for Parkinson’s disease hospital admissions using 
the HCUPnet SID, which provides the total number of hospital visits in the U.S. by age group and region, 
separately. We first calculate the distribution of annual hospital visits across HCUPnet’s 6 age groups: less than 1, 1 
to 17, 18 to 44, 45 to 64, 65 to 84, and above 85 years old. Since Parkinson’s disease typically affects older adults, 
hospitalization counts are unavailable for the age groups below 18 years old. We apply the national age 
distribution to the regional hospitalization totals to estimate the annual number of hospital visits by region and 
age. We then divide the regional and age-specific counts by the regional and age-specific population and by 365 to 
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3.3 EMERGENCY DEPARTMENT VISITS 
As new studies evaluating air pollution-attributable emergency department utilizing new sets of ICD-9 

codes were identified for use in benefits assessment here, we developed corresponding new emergency 

department baseline incidence rates. Similar to hospitalization baseline incidence rates, the approach 

for estimating emergency department visit baseline incidence rates also utilizes HCUP data and remains 

the same as in previous benefits assessments, details for which can be found in the BenMAP-CE User 

Manual (U.S. EPA, 2018). Information is provided below for reference. 

Similar to hospitalization rates, the data source for emergency department/room visits is also HCUP, 

(i.e., SID, SEDD, and NEDS), states vary by level of data provided (i.e., discharge-, county-, state, and 

regional-level), and unique baseline incidence rates are generated for each health endpoint ICD code 

combination. 

3.4 HEALTH ENDPOINT ONSET/OCCURRENCE  
Baseline incidence estimates for health endpoint onset or occurrences are described below, listed in 

alphabetical order. Onset indicates the development of a health endpoint (e.g., asthma diagnosis), 

whereas occurrence refers to an instance of that health endpoint (e.g., asthma attack). 

 Acute Myocardial Infarctions (AMIs) 
Baseline incidence rate estimates for AMIs remain the same as they were for previous benefits 

assessments. However, detailed information is provided below for reference. 

The relationship between short-term particulate matter exposure and heart attacks was originally 

quantified in a case-crossover analysis by Peters et al., 2001 and supplemented with evidence found in 

more recent single and multi-city studies (Pope III et al., 2006, Sullivan et al., 2005). The population in 

the original study was identified from heart attack survivors in a medical clinic. Therefore, the applicable 

population to apply to the risk estimate is all individuals surviving a heart attack in a given year. Several 

data sources are available to estimate the number of heart attacks per year. For example, several cohort 

studies have reported estimates of heart attack incidence rates in the specific populations under study. 

However, these rates depend on the specific characteristics of the populations under study and may not 

be the best data to extrapolate nationally. The American Heart Association reports approximately 

785,000 new heart attacks per year (Roger et al., 2012). Exclusion of heart attack deaths reported by 

CDC Wonder yields approximately 575,000 nonfatal cases per year.   

An alternative approach to the estimation of heart attack rates is to use data from the Healthcare Cost 

and Utilization Project (HCUP), assuming that all heart attacks that are not instantly fatal will result in a 

hospitalization. Details about HCUP data are described in Section D.2 of the BenMAP-CE User Manual 

(U.S. EPA, 2018).  According to the 2014 HCUP data there were approximately 608,795 hospitalizations 

due to heart attacks (acute myocardial infarction: ICD-9 410, primary diagnosis). We estimated baseline 

rates based on HCUP data rather than extrapolating from cohort studies because HCUP is a national 

database with a larger sample size intended to provide reliable national estimates. The incidence rate 

calculation is also described in Section D.2 of the BenMAP-CE User Manual and the incidence rates for 

 
calculate the daily incidence rates. To generate county level incidence rates, we assume that each county has the 
same incidence rate as the region it falls within. 
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AMI hospitalization are presented in Table D-5. An alternative approach to the estimation of AMI rates is 

to use data from HCUP and assume that all AMIs that are not instantly fatal will result in a 

hospitalization. 

It is important to note that when calculating the incidence of nonfatal AMIs, the fraction of fatal heart 

attacks is subtracted to ensure that there is no double-counting with mortality estimates. Specifically, 

we apply an adjustment factor in the risk estimate to reflect the probability of surviving a heart attack. 

The adjustment factor comes from Rosamond et al., 1999, which reported that approximately 6% of 

male and 8% of female hospitalized AMI patients die within 28 days (either in or outside of the hospital). 

Therefore, we applied a factor of 0.93 to the estimated number of PM-related AMIs to exclude the 

number of cases that result in death within the first month. Note that we did not adjust for fatal AMIs in 

the incidence rate estimation, due to the way that the epidemiological studies are designed. Those 

studies consider total admissions for AMIs, which includes individuals living at the time the studies were 

conducted. We use the definition of AMI that matches the definition in the epidemiological studies. Age-

specific baseline incidence rates are  based on data from the Agency for Healthcare Research and 

Quality’s HCUP NIS database (AHRQ, 2016). We identified death rates for adults hospitalized with AMI 

stratified by age (e.g., 1.852% for ages 18-44, 2.8188% for ages 45-64, and 7.4339% for ages 65+). These 

rates show a clear downward trend over time between 1994 and 2009 for the average adult and thus 

replace the 93% survival rate previously applied across all age groups from Rosamond et al., 1999. 

 Asthma Onset and Symptoms 

3.4.2.1 Asthma Onset 

Baseline incidence rates for new asthma onset are estimated from Winer et al., 2012. Winer et al., 2012 

identify newly diagnosed asthma from the 2006-2008 Asthma Call-Back Survey (ACBS) and Behavioral 

Risk Factor Surveillance System (BRFSS) as individuals diagnosed by a doctor, or other health 

professional, within the 12 months prior to the surveys. Table 12 details the breakdown, by age, of the 

annual national incidence rates for asthma onset.  

For the set of endpoints affecting the asthmatic population, in addition to baseline incidence rates, 

prevalence rates of asthma in the population are needed to define the applicable population. We derive 

asthma prevalence data from the National Health Interview Survey (NHIS).61 For functions with age 

ranges that do not align with the ranges reported in the NHIS data table, we develop a weighted-

average prevalence rate for the age range, where the weights are the number of years that overlap with 

each NHIS age group. Table 16 provides the breakdown of the 2018 NHIS rates used to calculate the 

weighted averages. Table 17 details the resulting weighted averages by study and age group. Note that 

these reflect recent asthma prevalence and assume no change in prevalence rates in future years. 

 
61 https://www.cdc.gov/asthma/nhis/2018/data.htm and 
https://www.cdc.gov/asthma/most_recent_national_asthma_data.htm 
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Table 16. Asthma Prevalence Rates 

NHIS Age Group Asthma Prevalence Rate 

0 - 4 0.038 

5 - 11 0.081 

5 - 14 0.086 

12 - 17 0.099 

15 - 19 0.110 

20 - 24 0.081 

0 - 17 0.075 

 

Table 17. Weighted Average Asthma Prevalence by Study 

Endpoint Ages Author1 Pollutant 
Weighted 
Prevalence 

Asthma Onset 

0 – 4 Tetreault et al., 2016 PM2.5 0.0380 

5 - 17 Tetreault et al., 2016 PM2.5 0.0893 

0 - 17 Tetreault et al., 2016 O3 0.0750 

Asthma symptoms, albuterol use 6 - 13 Rabinovitch et al., 2006 PM2.5 0.0860 
1Prevalence rate derived for albuterol use must be loaded into BenMAP-CE as part of a separate incidence or 

prevalence dataset, unlike the remainder of the rates, which are embedded within the health impact functions. 

 

3.4.2.2 Albuterol Use 

We develop incidence rates for albuterol use from the rates presented in Rabinovitch et al., 2006, the 

same study from which the risk estimate was developed. As described in the ‘Recommended Set of 

Health Endpoints and Health Impact Functions’ section, Rabinovitch et al., 2006 analyzed the 

relationship between short-term PM2.5 exposure and asthma exacerbation in children ages 6 to 13 years 

old. The authors use an electronic inhaler to record the number of actuations (‘puffs’) for each 24-hour 

period and calculate an average albuterol use rate of 2.2 ‘puffs’ per child per day. 

As described in section 3.4.2.1, in addition to the baseline incidence rates, we apply a weighted-average 

asthma prevalence rate of 0.086, based on the 5-14 age group, using the NHIS prevalence data to 

identify the applicable population. 

3.4.2.3 Asthma Symptoms 

We develop incidence rates for asthma symptoms using the estimates presented in Lewis et al., 2013, 

the same study from which the concentration-response function was developed. As described in the 

‘Recommended Set of Health Endpoints and Health Impact Functions’ section, Lewis et al., 2013 studied 

the effects of short-term O3 exposure on frequency of asthma symptoms in an asthmatic population of 

children ages 5 to 12 years old. The authors estimate the incidence of each asthma symptom using the 

number of person-days where children reported experiencing the symptom divided by the total number 

of person-days monitored for that symptom. The percent of days monitored during which children 

experienced each symptom are calculated as 30.1% for cough, 19.4% for wheeze, 18.5% for shortness of 

breath, and 12.7% for chest tightness. Therefore, the national incidence rates of asthma symptoms are 

0.301 for cough, 0.194 for wheeze, 0.185 for shortness of breath, and 0.127 for chest tightness. 
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‘Prevalence rates for asthma symptoms remains the same as in previous benefits assessments 

(previously referred to as asthma exacerbation) (Table 16). 

 Allergic Rhinitis 
We develop prevalence rates for hay fever/rhinitis using the estimates presented in Parker et al., 2009, 

the same study from which the concentration-response function was developed. As described in the 

‘Recommended set of Health Endpoints and Health Impact Functions’ section, Parker et al., 2009 

investigates the associations between long-term ozone exposure and respiratory allergies in children 

ages 3 to 17 years old. The authors use prevalence data from the NHIS household interview survey and 

define allergic rhinitis as children with reported hay fever, respiratory allergy, or both within the 12 

months prior to the survey. Of the eligible population (72,279), 19.2% of respondents experience allergic 

rhinitis symptoms within the year prior to the survey, therefore, the national prevalence rate of hay 

allergic rhinitis is 0.192. 

 Lung Cancer 
We use the existent baseline incidence rate for lung cancer mortality in combination with the five-year 

lung cancer survival rate from NCI, 2015 to develop baseline incidence rates for non-fatal lung cancer. 

We first use the five-year lung cancer survival rate to calculate the total incidence of lung cancer (both 

fatal and non-fatal) from the baseline mortality rate using the following formula: baseline mortality rate 

/ (1 – five-year survival rate). We then calculate the incidence of non-fatal lung cancer as the difference 

between total lung cancer incidence and fatal lung cancer incidence (NCI, 2015). presents the baseline 

incidence of lung cancer mortality, the SEER five-year survival rate, the estimated total lung cancer 

incidence, and the estimated non-fatal lung cancer incidence rate by age group. 

Table 18. Lung Cancer Incidence Rates 

Age Group Annual Lung 
Cancer Mortality 

Incidence 
[A] 

Five-Year 
Survival Rate 

[B] 

Total Lung Cancer 
Incidence 

[C] =  
[A] / (1 - [B]) 

Non-fatal Lung 
Cancer Incidence 

[D] = 
[C] – [A] 

25-34 0.0000033 34.6% 0.0000050 0.00000175 

35-44 0.0000282 34.6% 0.0000431 0.00001492 

45-54 0.0002378 22.1% 0.0003053 0.00006746 

55-64 0.0007922 20.8% 0.0010003 0.00020805 

65-74 0.00019701 21.0% 0.0002494 0.00005237 

75-84 0.0032952 14.9% 0.0038722 0.00057695 

85+ 0.0031820 14.9% 0.0037391 0.00055713 

 

 Minor Restricted Activity Days (MRAD)   
The incidence estimate for this health endpoint remains the same as in previous benefits assessments. 

Ostro and Rothschild, 1989 (p. 243) provide an estimate of the annual incidence rate of MRADs per 

person of 7.8.   
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 School Loss Days 
Baseline incidence rate estimates for school loss days remain the same as they were for previous 

benefits assessments. However, detailed information is provided below for reference. 

We have two sources of information to use when estimating the baseline incidence rates of missed 

school days: the National Center for Education Statistics (NCES), which provided an estimate of all-cause 

school loss days, and the National Health Interview Survey (NHIS) (Adams et al., 1999, NCES, 1996, Table 

47), which has data on different categories of acute school loss days. Table 19 presents the estimated 

school loss day rates. Further detail is provided below on these rates.  

Table 19. School Loss Day Rates (per student per year) 

Type Northeast Midwest South West 

Respiratory illness-related absences 1.3 1.7 1.1 2.2 

Illness-related absences 2.4 2.6 2.6 3.7 

All-cause 9.9 9.9 9.9 9.9 
*Illness-related school loss day rates were based on data from the 1996 NHIS and an estimate of 180 school days per year, 

excluding school loss days due to injuries. All-cause school loss day rates were based on data from the NCES.  

3.4.6.1 All-Cause School Loss Day Rate   

Based on data from the U.S. Department of Education (1996, Table 42-1), the National Center for 

Education Statistics estimates that for the 1993-1994 school year, 5.5% of students are absent from 

school on a given day. This estimate is comparable to study-specific estimates from Chen et al., 2000 

and Ransom and Pope, 1992, which ranged from 4.5% to 5.1%.   

3.4.6.2 Illness-Related School Loss Day Rate   

The National Health Interview Survey (NHIS) has regional estimates of school loss days due to a variety 

of acute conditions (Adams et al., 1999). NHIS is a nationwide sample-based survey of the health of the 

noninstitutionalized, civilian population, conducted by NCHS. The survey collects data on acute 

conditions, prevalence of chronic conditions, episodes of injury, activity limitations, and self-reported 

health status. However, it does not provide an estimate of all-cause school loss days.   

In estimating illness-related school loss days, we started with school loss days due to acute problems 

(Adams et al., 1999, Table 47) and subtracted lost days due to injuries, in order to match the definition 

of the study used in the risk estimate to estimate illness-related school absences (Gilliland et al., 2001). 

We then divided by 180 school days per to estimate illness-related school absence rates per school day. 

Similarly, when estimating respiratory illness-related school loss days, we use data from Adams et al., 

1999, Table 47. Note that we estimated 180 school days in a year to calculate respiratory illness-related 

school absence rates per year.   

 Work Loss Days   
The incidence estimate for this health endpoint remains the same as in previous benefits assessments. 

The yearly work-loss-day incidence rate per 100 people is based on estimates from the 1996 National 

Health Interview Survey (Adams et al., 1999, Table 41). They reported a total annual work loss days of 

352 million for individuals ages 18 to 65. The total population of individuals of this age group in 1996 

(162 million) was obtained from (U.S. Census Bureau, 1998). The average annual rate of work loss days 
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per individual is 2.17. Using a similar approach, we calculated work-loss-day rates for ages 18-24, 25-44, 

and 45-64, respectively.   
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4 DEMOGRAPHIC INFORMATION 

Quantified and monetized human health impacts are calculated using information regarding the 

demographic characteristics of the population exposed to air pollution; these data include the age, sex, 

race/ethnicity and location of the population. We use population projections based on economic 

forecasting models developed by Woods and Poole, Inc. (Woods & Poole, 2015). The Woods and Poole 

(WP) database contains county-level projections of population by age, sex, and race out to 2050, relative 

to a baseline using the 2010 Census data. Projections in each county are determined simultaneously 

with every other county in the U.S to take into account patterns of economic growth and migration.  

The sum of growth in county-level populations is constrained to equal a previously determined 

national population growth, based on Bureau of Census estimates (Hollmann et al., 2000). According to 

WP, linking county-level growth projections together and constraining to a national-level total growth 

avoids potential errors introduced by forecasting each county independently. County projections are 

developed in a four-stage process: 

1. National-level variables such as income, employment, and populations are forecasted. 

2. Employment projections are made for 179 economic areas defined by the Bureau of Economic 

Analysis (U.S. BEA, 2004), using an “export-base” approach, which relies on linking industrial-

sector production of non-locally consumed production items, such as outputs from mining, 

agriculture, and manufacturing with the national economy. The export-based approach requires 

estimation of demand equations or calculation of historical growth rates for output and 

employment by sector. 

3. Population is projected for each economic area based on net migration rates derived from 

employment opportunities and following a cohort-component method based on fertility and 

mortality in each area. 

4. Employment and population projections are repeated for counties, using the economic region 

totals as bounds. The age, sex, and race distributions for each region or county are determined 

by aging the population by single year of age by sex and race for each year through 2050 based 

on historical rates of mortality, fertility, and migration. 
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5 HEALTH ENDPOINT VALUATION  

To directly compare benefits estimates associated with a rulemaking to cost estimates, the number of 

instances of each air pollution-attributable health impact must be converted to a monetary value. This 

requires a valuation estimate for each unique health endpoint, and potentially also discounting if the 

benefits are expected to accrue over more than a single year, as recommended by the U.S. EPA, 2014.  

As reductions in ambient concentrations of air pollution generally lower the risk of future adverse health 

effects by a small amount for a large population, the most appropriate economic measure is the ex ante 

(before the effect has occurred) willingness-to-pay (WTP) for changes in risk. WTP values are calculated 

by dividing the monetary value an individual is willing to pay for a specific risk reduction  by that change 

in risk.62 Using this approach, the size of the affected population is automatically taken into account by 

the number of incidences predicted by epidemiological studies applied to the relevant population.  

There are three primary components of the value to society of an individual’s avoidance of a non-fatal 

illness: 1) medical costs, 2) lost productivity, and 3) impacts on quality of life (i.e., “pain and suffering”). 

Estimates of individual WTP are conventionally thought to reflect all three of these components and are 

the preferred welfare valuation measure.63  However, WTP values are available for a very limited subset 

of health endpoints, such as mortality.64 

For health endpoints where WTP estimates are not available, such as hospital admissions, we instead 

use the cost of treating or mitigating the effect to estimate the economic value. Cost-of-illness (COI) 

estimates are generally considered to be a lower bound estimate of the true value of reducing the risk of 

a health effect because they reflect the direct expenditures related to treatment and in some cases 

costs such as associated productivity losses, but not the value of avoided pain and suffering (Berger et 

al., 1987, Harrington and Portney, 1987, U.S. EPA, 2014). Additionally, COI estimates require additional 

parsing of individual health endpoints. For example, a stroke may initially involve an emergency 

department visit and hospitalization, but will also likely include additional follow-up medical costs, such 

as doctor visits and medications. 

To prevent double counting of health impacts, when estimating monetary valuations, health endpoints 

are separated into the following non-overlapping categories: mortality (section 5.1), hospital 

admissions, emergency department visits (section 5.2), and health endpoint onset/occurrence (section 

5.3). 

EPA develops valuation estimates at the most age-refined level feasible for each health endpoint 

assessed. While we focused on identifying valuation estimates from peer-reviewed and published 

literature for new health endpoints, we were also able to update several valuation estimates for 

endpoints evaluated in previous benefits analyses, such as stroke, cardiac arrest, and AMIs. New 

hospitalizations and emergency department visits health endpoint valuations reflect specific ICD-9 codes 

 
62 For example, suppose a measure is able to reduce the risk of mortality from 2 in 10,000 to 1 in 10,000 (a 
reduction of 1 in 10,000). If individual WTP for this risk reduction is $100, then the WTP for an avoided statistical 
mortality amounts to $1 million ($100/0.0001 change in risk). 
63 WTP estimates may not fully account for medical costs or lost productivity if individuals assume some related 
costs would be borne by others (e.g., health insurance providers and employers). 
64 Economic theory also argues that WTP for most goods (such as environmental protection) will increase if real 
income increases. 
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evaluated by the epidemiologic study. New onset or follow-up/management health endpoints reflect 

WTP or COI valuation estimates that exclude death and initial emergency department and 

hospitalization costs.  

These COI measures represent an update to EPA’s previous method to producing COI estimates in three 

important respects (U.S. EPA, 2018):   

• Estimates are of the costs of medical treatment, rather than charges by medical providers. 

• Sampling parameters are used in survey data to express statistical uncertainty in mean cost 

estimates.  

• More recent data is being used to reflect current treatment and healthcare costs. 

When multiple valuation studies are available, the strengths and limitations of each study are 

considered, in a manner similar to that described for epidemiologic studies (section 2.1). The criteria for 

evaluation of these studies are listed in Table 20. In some cases, judgment is required to identify studies 

for valuation estimates when a similar number of preferred attributes are satisfied by multiple studies. 

Table 20. Cost of Illness Economic Study Identification Consideration Factors 

Criteriaa Prioritization Detail (In order of most to least preferred) 

Peer-Reviewed 
Research 

Peer-reviewed and published literature only 

Endpoint Definition 1. ICD codes align with the epidemiological study 
2. ICD codes overlap with the epidemiological study 

Population 
Attributes 

Prefer studies that match epidemiological study’s population (specifically by 
age) 

Study Period More recent data are preferred 

Measure of Costsb 1. Total payments 
2. Allowable charges 
3. Cost-adjusted charges 
4. Unadjusted charges 

Study Location 1. Nationwide coverage 
2. Multi-city and/or multi-state coverage 
3. Local study population 

Coverage of cost 
elements 

Studies that account for more cost elements (e.g., treatment settings) and 
longer time horizons are preferred 

Study Size Larger study size preferred 
a This table focuses on COI because WTP measures are not currently available for the health endpoints of interest. Had WTP 
estimates been available, additional criteria would be relevant. It also excludes valuation estimates of hospitalizations and 
emergency department visits, which are developed by EPA and described in the appendices to U.S. EPA, 2018. 
bOnukwugha et al., 2016 provides more information on these methods. 

 
We provide unit values for health endpoints (along with information on the distribution of the unit 

value) in Table 21. All values are in constant year 2015$, adjusted for growth in real income for WTP 

estimates out to 2024 using projections provided by Standard and Poor’s, which is discussed in further 

detail below.  Additional detail regarding the development of each health endpoint valuation is also 

provided below. 
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Table 21. Unit Values for Economic Valuation of Health Endpoints (2015$)1 

Health Endpoint Type Central Estimate 
of Value Per 
Statistical 
Incidence (2015$) 

Source 

Mortality Value of 
Statistical 
Life (VSL) 

3%: $7,800,000 
7%: $7,100,000 

Weibull distribution fitted to 26 published 
VSL estimates (5 contingent valuation and 21 
labor market studies). Underlying studies, 
distribution parameters, and other 
information are available in Appendix B of the 
EPA’s Guidelines for Preparing Economic 
Analyses (U.S. EPA, 2014). Adjusted for 
income growth appropriate to the year of 
analysis. 

Hospitalizations Medical 
costs and 
opportunity 
cost of time 

Varies by ICD 
codes, ranging 
between $7,700 
and $16,000 

HCUP data (details available in section 3.2) 

Emergency 
Department 
Visits 

Medical 
costs 

Varies by ICD 
codes, ranging 
between $600 
and $1,200 

HCUP data (details available in section 3.3) 

Nonfatal 
Myocardial 
Infarction (AMI)a 

3-year 
medical 
costsb 

3%: $49,000 
7%: $48,000 

O'Sullivan et al., 2011 

Asthma 
Symptom- 
Albuterol Usec 

Medical 
costs 

$0.35 per 
albuterol inhaler 
puff 

Average prescription costs derived from 
Epocrates.com and Goodrx.com accessed 
March 19, 2020  

Asthma 
Symptom- Chest 
Tightness, Cough, 
Shortness of 
Breath, or 
Wheeze 

WTP for 1 
symptom 
day 

$219 Dickie and Messman, 2004 

Asthma Onsetc Lifetime 
medical 
costs and 
lost 
productivity  

3%: $17,000 
7%: $10,000 

Belova et al., 2020 

Allergic Rhinitisc 1-year 
medical 
costs 

$600 Soni, 2008 

Cardiac Arrestc 3-year 
medical 
costs 

3%: $36,000 
7%: $35,000 

O'Sullivan et al., 2011 
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Lung Cancerc 5-year 
medical 
costs 

3%: $34,000 
7%: $33,000 

Kaye et al., 2018 

Strokec 1-year 
medical 
costsa 

$34,000 Mu et al., 2017 

Work Loss Days Median 
daily wage 

U.S. median: $150 IEc, 1993 

School Loss Days Lost 
productivity 
of parent 

$106 US Bureau of Labor Statistics, 2015 

Minor Restricted-
Activity Days 

Median 
WTP 

$70 IEc, 1993 

3%- three percent real discount rate; 7%- seven percent real discount rate (OMB, 2003); All estimates rounded to two 
significant figures. 
aValuation estimate has been updated to reflect recent literature. 
bExcludes initial emergency department and hospitalization costs, which are captured separately. 
cValuation estimate is for a new health endpoint. 

5.1 MORTALITY 
Following the advice of the SAB’s Environmental Economics Advisory Committee (SAB-EEAC), the EPA 

currently uses the value of statistical life (VSL) approach in calculating the core estimate of mortality 

benefits, because we believe this calculation provides the most reasonable single estimate of an 

individual’s willingness to trade money for reductions in mortality risk (Stavins, 2000). The VSL approach 

is a summary measure for the value of small changes in mortality risk experienced by a large number of 

people. 

 Value of a Statistical Life (VSL) 
The current undiscounted VSL used by EPA is $8.7 million (2015$), or $7.8 million (2015$) using a 3% 

discount rate and $7.1 million (2015$) using a 7% discount rate (U.S. EPA, 2014). This estimate is the 

mean of a distribution fitted to 26 VSL estimates that appear in the economics literature and that have 

been identified in the Section 812 Reports to Congress as “applicable to policy analysis” (U.S. EPA, 

2011a). It is a value EPA uses in RIAs as well as in the Section 812 Retrospective and Prospective 

Analyses of the Clean Air Act (U.S. EPA, 2011a).  

The VSL approach mirrors that of Viscusi, 1992 and uses the same criteria as in his review of value of 

statistical life studies. The $8.7 million estimate is consistent with the conclusions of Viscusi, 1992 

(updated to 2015$) that “most of the reasonable estimates of the value of life are clustered in the $5.2 

to $12.3 million range.” Five of the 26 studies are contingent valuation studies, which directly solicit 

WTP information from subjects; the rest are wage-risk studies, which base WTP estimates on estimates 

of the additional compensation demanded in the labor market for riskier jobs. Because this VSL-based 

unit value does not distinguish among people based on the age at their death or the quality of their 

lives, it can be applied to all deaths. Table 22 presents the central unit value from the 26 value of 

statistical life studies and their underlying distribution. 
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Table 22. Central Unit Value for VSL based on 26-value-of-life studies  

Basis for Estimate  
Age Range at 

Death 
Unit Value 

(VSL) (2015$) 
Distribution of 

Unit Value 

Parameters of 
Distribution 

Min Max P1 P2 

VSL, based on 26 
value of statistical life 
studies 

0 99 8,705,114 Weibull 9,648,168 1.509588 

5.2 HOSPITALIZATIONS AND EMERGENCY DEPARTMENT VISITS 
To value hospitalizations, emergency room visits we develop primary COI estimates using data from the 

Healthcare Cost and Utilization Project (HCUP). The 2016 National Inpatient Sample (NIS) and 

Nationwide Emergency Department Sample (NEDS) provide recent, nationally representative 

information on medical treatment in hospitals and emergency departments. In the case of hospital 

admissions, valuation estimates are calculated as a combination of medical costs and the opportunity 

cost of time spent at the hospital, measured by lost wages during the hospital stay. In the case of 

emergency department visits, valuation estimates include only the medical costs. These cost 

components are summarized in Table 23. 

Table 23. Hospitalization and Emergency Department Cost Elements by Endpoint 

Endpoint 
Medical Costs 

(Emergency Room) 
Medical Costs 

(Hospital) 
Lost Productivity 

Hospitalizations  ✓ ✓ 

Emergency department visits ✓   

Emergency hospitalizations ✓ ✓ ✓ 

 

The NIS and NEDS datasets include discharge-level observations. That is, each data point represents one 

individual being discharged from the hospital (NIS) or emergency department (NEDS). Because 

individuals are treated in these settings for a variety of reasons, we use medical billing codes to extract 

observations related to each health endpoint. The epidemiological studies described above provide ICD-

9 codes for each illness; however, recent HCUP datasets (including NIS and NEDS) use ICD-10 codes. 

Thus, we first crosswalk the relevant ICD-9 codes to associated ICD-10 codes using a mapping provided 

by the U.S. Centers for Disease Control.65 We then identify all discharges in the HCUP datasets with ICD-

10 codes that match to a study’s ICD-9 code(s).66 Because HCUP datasets often include multiple ICD-10 

codes for each discharge, we focus on the principal diagnosis (i.e., the first-listed ICD-10 code). Other 

key variables used from HCUP include total charges, cost-to-charge ratio (NIS), and length of stay (NIS).  

In the NIS dataset, we convert total charges (i.e., the amount billed to patients, employers, or insurance 

providers) into estimates of total costs (i.e., the final reimbursements for medical treatment). 

Unadjusted charges are not suitable for use in regulatory analysis because posted prices generally do 

 
65 General Equivalence Mapping Files, FY 2016 release of ICD-10-CM. https://www.cdc.gov/nchs/icd/icd10cm.htm. 
66 For emergency hospitalizations, we further restrict the sample to (1) hospitalizations designated as “emergency” 
and (2) emergency department visits that result in hospitalization. 
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not reflect actual medical costs due, in part, to negotiation between medical providers and payers (e.g., 

insurance companies). We assume that adjusted charges reflect the actual revenue the hospital receives 

and thus the actual cost of providing care. This conversion is completed using hospital-specific cost-to-

charge (CCR) ratios provided with NIS. Because CCRs are not available for NEDS, we apply average CCRs 

for each endpoint in NIS to the same set of ICD-10 codes in NEDS. 

For each health endpoint, mean estimates are calculated using estimation commands for survey data to 

account for the sampling design and sample discharge weights of the HCUP data. This results in 

estimates of mean costs and a 95% confidence interval, which represents uncertainty in our valuation 

estimates of medical costs. The resulting estimates are presented in Table 24. Confidence intervals for 

length of stay cannot be accounted for in the valuation methodology because the EPA’s current tool is 

only capable of reflecting uncertainty in one parameter.  
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Table 24. Medical Costs and Hospital Stay Data from the HCUP Database 

Endpoint Ages 
Epidemiologic 
Study Author 

ICD-9 
Codes 

Length of Stay in 
Days (95% CI)1 

Medical Costs 
(95% CI) (2015$)2 

HA, 
Respiratory-1 

0 - 99 Jones et al., 2015 491, 492, 
493, 496 

3.86 (3.82, 3.90) $7,676 ($7,574, 
$7,778) 

HA, 
Respiratory-2 

65 - 99 Bell et al., 2015 490-492, 
464-466, 
480-487, 
493 

4.66 (4.62, 4.69) $9,004 ($8,894, 
$9,113) 

HA, All 
Respiratory 

0 - 18 Ostro et al., 2009 460-519 3.50 (3.37, 3.62) $9,075 ($8,282, 
$9,868) 

HA, All Cardiac 
Outcomes 

0 - 99 Talbott et al., 2014 390-459 5.05 (5.00, 5.11) $16,045 ($15,721, 
$16,368) 

HA, 
Alzheimer’s 
Disease 

65 - 99 Kioumourtzoglou 
et al., 2016 

331.0 7.95 (7.70, 8.21) $10,696 ($10,400, 
$10,992) 

HA, Cardio-, 
Cerebro- and 
Peripheral 
Vascular 
Disease 

65 - 99 Bell et al., 2015 426-
427,428,4
30-438, 
410-414, 
429, 440-
448 

4.82 (4.78, 4.87) $14,665 ($14,434, 
$14,896) 

ED, Respiratory 0 - 99 Krall et al., 2013 480-486, 
491, 492, 
496, 460-
465, 466, 
477, 493, 
786.07 

- $875 ($826, $923) 

ED, All Cardiac 
Outcomes 

0 - 99 Ostro et al., 2016 390-459 - $1,161 ($1,112, 
$1,210) 

ED, Respiratory 0 - 99 Barry et al., 2019 480-486, 
491, 492, 
496, 460-
465, 466, 
477, 493, 
786.07 

- $875 ($826, $923) 

1Confidence intervals (CIs) associated with the length of hospital stay are presented for information only 
and are not used in analyses due to technical limitations. Importantly, the length of stay is a factor in the 
overall COI estimate. 
2Medical costs reflect the expenditures per treatment episode/event (e.g., per hospitalization) and 
confidence intervals (CIs) reflect the 95% CI around the population mean value and not that 95% of 
patients observe costs within these bounds. Does not include productivity losses. 
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5.3 HEALTH ENDPOINT ONSET/OCCURRENCE  
Monetary valuation estimates for health endpoint onset or occurrences are described below, listed in 

alphabetical order. Onset indicates the development of a health endpoint (e.g., asthma diagnosis), 

whereas occurrence refers to an instance of that health endpoint (e.g., asthma attack). 

 Acute Myocardial Infarctions (AMIs) 
Economic values for acute myocardial infarctions (AMIs, also known as heart attacks) have been 

updated to be derived from O'Sullivan et al., 2011, which estimate three-year medical costs associated 

with cardiovascular disease events among adults ages 35 and older in the U.S. The authors rely on 

administrative claims data from a large U.S. health plan and develop econometric models to estimate 

medical costs for 15 different cardiovascular events, including AMIs. The dataset includes over 20 million 

commercial and Medical Advantage members between 2002 and 2006. AMIs are identified using the 

ICD-9 code 410. The authors use propensity score matching to develop a control group with which to 

compare costs versus individuals that suffered AMIs. We exclude medical costs within the month of the 

event in an attempt avoid double counting hospitalization costs, which are captured separately in the 

hospitalization valuation endpoints. Over three years, the total medical costs, excluding hospitalization, 

are $49,758 (undiscounted, inflated to 2015$), or $48,796 using a 3% discount rate and $47,623 for a 7% 

discount rate (Table 25). Although this study analyzed costs associated with individuals ages 35 and 

older, we apply the total medical costs to all ages from zero to 99 since only a small portion (<10%) of 

annual AMI incidence occurs in the age range below 35. 

Table 25. Medical Costs for AMIs (2015$) 

Costs Cumulative Costs 
Annual Costs 

Undiscounted 3% Discount Rate1 7% Discount Rate1 

Month of Event* $43,523 $43,523 $43,523 $43,523 

Year 1 $70,629 $27,106 $27,106 $27,106 

Year 2 $82,591 $11,962 $11,614 $11,180 

Year 3 $93,281 $10,690 $10,076 $9,337 

Years 1-3 $93,281 $49,758 $48,796 $47,623 
1Uses end-of-year discounting. 

We supplement AMI medical costs with estimates of lost earnings using age-specific estimates from 

Cropper and Krupnick, 1990. Using a 3% discount rate, we estimated the following present discounted 

values in lost earnings over 5 years due to a heart attack: 0.219 times annual earnings for someone 

between the ages of 25 and 44, 3.534 times annual earnings for someone between the ages of 45 and 

54, and 1.245 times annual earnings for someone between the ages of 55 and 65. The corresponding 

age-specific estimates of lost earnings using a 7% discount rate are 0.203, 3.287, and 1.158 times annual 

earnings, respectively. Cropper and Krupnick, 1990 does not provide lost earnings estimates for 

populations under 25 or over 65. As such we do not include lost earnings in the cost estimates for these 

age groups. These costs, along with the total valuation estimates for AMIs, are presented in Table 26. 
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Table 26. Total Valuation Estimates for AMIs (2015$) 

Discount Rate 

Age Range 

Medical Cost Lost Earnings Multiplier Total Cost Min Max 

3% 

0 24 $48,796 0 $48,796 

25 44 $48,796 0.219 $48,796 + 0.219*earnings 

45 54 $48,796 3.534 $48,796+ 3.534*earnings 

55 65 $48,796 1.245 $48,796+ 1.245*earnings 

66 99 $48,796 0 $48,796 

7% 

0 24 $47,623 0 $47,623 

25 44 $47,623 0.203 $47,623+ 0.203*earnings 

45 54 $47,623 3.287 $47,623+ 3.287*earnings 

55 65 $47,623 1.158 $47,623+ 1.158*earnings 

66 99 $47,623 0 $47,623 

 

 Allergic Rhinitis (Hay Fever) 
Two potential valuation sources for allergic rhinitis were reviewed: Soni, 2008 and Bhattacharyya, 2011. 

Both studies utilize data from the Medical Expenditure Panel Survey (MEPS) and identify allergic rhinitis 

(also referred to as hay fever) using ICD-9 code 477. Each study analyzes medical expenditures for 

differing years, Soni, 2008 for the years 2000 and 2005, and Bhattacharyya, 2011 for the year 2007. Soni, 

2008 calculates the cost-of-illness for allergic rhinitis as the mean expenditures for ambulatory care, in-

patient services, and prescription medications per person. Bhattacharyya, 2011 calculates the 

incremental difference in annual healthcare expenditures for individuals with and without allergic 

rhinitis. Although Bhattacharyya, 2011 uses more recent data, the estimates are not specific to children. 

Therefore, we derived our COI estimates from the 2005 data presented by Soni, 2008, which are 

stratified by age group. The resulting COI for allergic rhinitis is $600 for ages zero to seventeen (2015$; 

Table 21). These COI estimates represent mean annual medical costs for patients with hay fever. Given 

that the health impact function for this endpoint relates to allergic rhinitis prevalence, these estimates 

are more applicable than values representing only first-year costs. 

 Asthma Onset 
Belova et al., 2020 estimated the lifetime cost of asthma using data from the 2002 to 2010 Medical 

Expenditure Panel Survey (MEPS). The authors identify all individuals with current asthma (9,409 out of 

158,867 respondents) using the ICD-9 code 493 in the MEPS Medical Conditions Files. Additionally, they 

identify the date of asthma onset for these individuals. Using the MEPS Medical Events files, which 

capture most types of medical expenditures (e.g., hospitalizations, emergency room visits, outpatient 

visits, prescriptions), Belova et al., 2020 estimated annual expenditures by asthma duration and age at 

onset. The annual healthcare costs for asthma—as measured by healthcare expenditures by all paying 

parties—vary from $700 to $1,800 for children and $800 to $2,200 for adults (2010$). They extrapolate 

these values to a lifetime cost stream for an incident chronic asthma case to generate present value 

estimates by onset age using discount rates of 3% and 7%. Additionally, the authors consider 

productivity impacts that capture 1) the probability of not being able to work due to health reasons, 2) 

the impact of asthma on occupational choice, and 3) impact of asthma on weekly earnings. 
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We adapt the Belova et al., 2020 estimates to align with the age groups 0 to 17, 4 to 21, and 35 to 99.67 

This calculation entails weighting the Belova et al., 2020 age groups by their relative prevalence and 

propagating the standard errors to derive new uncertainty bounds. The results are summarized in Table 

27. Confidence intervals are not provided for productivity losses to mirror the valuation functions in 

BenMAP-CE, which at present are only capable of reflecting uncertainty in one parameter (in this case, 

medical costs) (Table 21). 

Table 27. Age-adjusted Belova et al., 2020 Estimates of Lifetime Asthma Costs 

Age of asthma onset Discount rate Healthcare costs (2015$) Productivity Loss (2015$) 

0 – 17 3% $17,232 
($16,366, $18,097) 

$27,426 

0 – 17 7% $10,187 
($9,643, $10,730) 

$17,502 

 

 Asthma Symptoms/Exacerbation 

5.3.4.1 Albuterol Use 

As albuterol use is a new measure of PM2.5-attributable asthma symptoms, we developed a method for 

valuing this health endpoint. We estimate the economic value for albuterol use associated with asthma 

symptoms using prescription prices for albuterol inhalers. Epocrates and GoodRx provide cost and 

actuation information for four common types of albuterol inhalers in 2020 dollars.68,69 Both online 

resources utilize published price lists, purchases, claim records, and pharmaceutical data to provide 

clinical statistics. Epocrates and the FDA provide cost and actuation information for one additional, less 

common, albuterol inhaler.70 We divide the cost of inhalers by the actuations per inhaler to calculate an 

average cost per actuation across all inhaler types. We then adjust the values to 2015$ using the 

Consumer Price Index (CPI) for medical care. Since medical cost index data were unavailable for 2020 at 

the time of these calculations, we used the most recently available index (2019). The resulting value for 

asthma symptoms, albuterol use is $0.35 per actuation (2015$) (Table 21). 

5.3.4.2 Cough, Wheeze, Chest Tightness, and Shortness of Breath 

While the risk estimates for both PM2.5- and O3-attributable asthma symptoms were updated, the 

valuation estimates for cough, wheeze, chest tightness, and shortness of breath are still based on the 

previous method, using the Dickie and Messman, 2004 analysis of parents’ WTP to relieve asthma 

symptoms in children and adults. The authors derive the WTP estimates from an attribute-based, 

stated-choice question assessing preferences to avoid acute illness as part of a survey performed in 

Hattiesburg, Mississippi in 2000. Survey respondents are asked to identify whether they or their child 

have experienced the following asthma symptoms in the past year: cough with phlegm, shortness of 

breath with wheezing, chest pain on deep inspiration, and fever with muscle pain and fatigue. 

 
67 These age groups were selected based on the ages pertaining to the PM2.5-related health impact functions. 
These do not currently align directly with the ozone health impact functions for new onset asthma, but the 
valuation functions nonetheless cover the age ranges needed to value the ozone health impact functions. 
68 https://online.epocrates.com/drugs searched March 19th, 2020. 
69 https://www.goodrx.com/albuterol searched March 19th, 2020. 
70 https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/205636s006lbl.pdf 
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Respondents were then assigned one of sixteen illness profiles varying by symptom, symptom duration, 

in days, as well as discomfort level. Dickie and Messman, 2004 calculate the WTP for children ages zero 

to seventeen as $219, for one avoided mild symptom-day (2015$). The authors also provide WTP 

estimates by symptom, however, they represent six avoided symptom-days. Therefore, we apply the 

same WTP value, for one avoided mild symptom-day, to each asthma symptom endpoint (Table 21). 

 Cardiac Arrest 
The COI for cardiac arrests occurring outside of the hospital is derived from O'Sullivan et al., 2011, who 

estimate three-year medical costs associated with cardiovascular disease events among adults ages 35 

and older in the U.S. The authors rely on administrative claims data from a large U.S. health plan and 

develop econometric models to predict medical costs for 15 different cardiovascular events, including 

cardiac arrest, referred to as resuscitated cardiac arrest. The dataset includes over 20 million 

commercial and Medical Advantage members between 2002 and 2006. Cardiac arrests are identified 

using the ICD-9 code 427.5. The authors use propensity score matching to develop a control group with 

which to compare costs versus individuals that suffered cardiac arrest. Medical costs occurring within 

the month of the event were excluded to avoid double counting hospitalization costs, which are 

separately captured by the hospitalization valuation functions. Over three years, the total medical costs, 

excluding hospitalization, are $36,142 (undiscounted, inflated to 2015$), or $35,753 using a 3% discount 

rate and $35,282 for a 7% discount rate (Table 28 and Table 21). 

Table 28. Valuation Estimate for Cardiac Arrests (2015$) 

Costs Cumulative Costs 
Annual Costs 

Undiscounted 3% Discount Rate 7% Discount Rate 

Month of Event* $43,904 $43,904 $43,904 $43,904 

Year 1 $71,901 $27,997 $27,997 $27,997 

Year 2 $74,701 $2,800 $2,718 $2,617 

Year 3 $80,046 $5,345 $5,038 $4,668 

Years 1-3 $80,046 $36,142 $35,753 $35,282 

 

 Lung Cancer 
The unit value for non-fatal lung cancer incidence is derived from the direct medical costs of lung cancer 

treatment estimated by Kaye et al., 2018. This COI value incorporates only direct medical costs and not 

lost earnings associated with lung cancer incidence because the average age of lung cancer diagnosis is 

approximately 70 and it is assumed that those aged 65 and older are retired and thus have exited the 

labor market. Lung cancer treatment costs depend to a large extent on the phase of care, with costs in 

the initial year of treatment (e.g., $17,422 for males) far exceeding the continuing costs of treatment in 

subsequent years (e.g., $3,269 for males). We calculate costs over a five-year span, beginning with the 

initial onset which is occurs with a delay after exposure.  The specific lag periods between exposure and 

onset are discussed in Section 6.4.2. The initial year’s treatment cost is summed with four years of 

continuing annual costs discounted by 3% and 7%.   

Furthermore, Kaye et al., 2018 provides separate treatment cost estimates for men and women. The 

distribution of new lung cancer cases by sex in the United States from Siegel et al., 2019 is 
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approximately 51% male and 49% female. This distribution of new lung cancer cases was used to weight 

the sex-specific cost estimates from Kaye et al., 2018 to obtain a combined five-year cost estimate for 

both sexes. In order to adjust the cost estimate to 2015$ using a medical cost index, we assume that 

costs presented by Kaye et al., 2018 are in 2010$ as an approximate midpoint of the data years 2007-

2012. Altogether, the cost of non-fatal lung cancer incidence over a five-year period is estimated to be 

$33,809 using a 3% discount rate or $32,548 using a 7% discount rate (Table 21).  

For an outcome such as lung cancer, there is an expected time lag between changes in pollutant 

exposure in a given year and the total realization of health effect benefits, commonly referred to in 

regulatory analyses as the “cessation lag.” The time between exposure and diagnosis can be quite long, 

on the order of years to decades, to realize the full benefits of the air quality improvements. This latency 

period is important in order to properly discount the economic value of these health benefits.  

To estimate the latency period, we performed a literature search using the keywords “non-fatal lung 

cancer,” “lung cancer,” “PM2.5,” “latency,” and “incidence.” Five papers that estimate the risk of lung 

cancer incidence from PM2.5 exposure using a latency period were identified. The latency period length 

and country of the identified papers are summarized in Table 29. Based on estimates of lung cancer 

latency from the literature, 10 years was the most common latency period estimate found in the 

literature (i.e., the mode).   

Table 29. Latency Periods Used in Lung Cancer Risk Assessment Papers 

Study Latency Period (years) Location 

Gogna et al., 2019 5 Canada 

Bai et al., 2020 4; 10 Canada 

Kulhanova et al., 2018 10 France 

Coleman et al., 2020 10; 15 US 

Harrison et al., 2004 20 US 

 

To account for the latency period between air pollution reductions and avoided lung cancer diagnoses in 

our economic valuation estimates, we developed an age-at-diagnosis cessation lag distribution method 

based on an approach previously used to estimate avoided cases of kidney cancer in analyses of water 

quality rules (U.S. EPA, 2017). The method uses lung and bronchus cancer diagnosis age-distribution 

from the Surveillance, Epidemiology, and End Results Program (SEER). For this model, we assumed that 

the case reduction distribution would follow the age-pattern of cancer diagnosis between the age at 

which the exposure change occurs and 99 years. Table 30 shows an example case reduction distribution 

calculation for an exposure change experienced at 55. SEER estimates 92.2% of lung and bronchus 

cancer cases occur in individuals 55 years and older. Dividing the percentages in the remaining age bins 

by 92.2% (the percent of lung and bronchus cancer diagnoses between the age of exposure change and 

end of lifetime), we find that there is a 24% chance that the risk reductions for a 55-year-old occur 

between ages 55 and 64, a 37% chance that the case reductions occurs between ages 65 and 74, etc. For 

distributing avoided cases within an age bin, we assume an equal incidence distribution across years 

within each bin. 
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Table 30. Percent Lung and Bronchus Cancer Incidence by Age and Distribution of Risk Reduction by Age 

for an Exposure Change at 55 

Age 
Group 

Percent New Cases per Year by 
Age* 

Percent of New Cases Occurring at or After Age 
551 

0-20 0 NA 

20-34 0.2 NA 

35-44 0.9 NA 

45-54 6.6 NA 

55-64 21.8 24 

65-74 34.1 37 

75-84 26.6 29 

85-99 9.7 11 

55-99 92.2 100 
*May not sum to 100% due to rounding 
1Calulcated as the percentage in column 2 divided by 92.2%, where 92.2% is the percentage of lung and bronchus 

incidence between age 55 and 99. 

This and other potential cessation lag distribution models for lung cancer onset are described and 

compared in section 6.4.2.  

 Minor Restricted Activity Days (MRADs)  
Due to their definition, for the purposes of benefits estimation minor respiratory-restricted activity days 

(MRRAD) are assumed to constitute all MRADs (Ostro and Rothschild, 1989). While no peer-reviewed 

studies estimating WTP to avoid a MRRAD are available, a central estimate and upper and lower bounds 

of WTP to avoid a MRRAD were developed by IEc (IEc, 1993).71 When estimating benefits associated 

with an MRAD, we use a triangular distribution centered at the estimate.    

Any estimate of mean WTP to avoid a MRRAD (or any other type of restricted activity day other than 

Work Loss Day (WLD)) will be somewhat arbitrary because the endpoint itself is not precisely defined. 

Many different combinations of symptoms could presumably result in some minor or less minor 

restriction in activity. Krupnick and Cropper, 1992 argued that mild symptoms will not be sufficient to 

result in a MRRAD, so that WTP to avoid a MRRAD should exceed WTP to avoid any single mild 

symptom. A single severe symptom or a combination of symptoms could, however, be sufficient to 

restrict activity. Therefore, WTP to avoid a MRRAD should, these authors argue, not necessarily exceed 

WTP to avoid a single severe symptom or a combination of symptoms. The “severity” of a symptom, 

however, is similarly not precisely defined; moreover, one level of severity of a symptom could induce 

restriction of activity for one individual while not doing so for another. The same is true for any 

combination of symptoms.  

Given that there is inherently a substantial degree of arbitrariness in any point estimate of WTP to avoid 

a MRRAD (or other kinds of restricted activity days), the reasonable bounds on such an estimate must be 

 
71 IEc, 1993 derived this estimate of WTP to avoid a MRRAD using WTP estimates from Tolley et al., 1986 

for avoiding a three-symptom combination of coughing, throat congestion, and sinusitis. This estimate 

of WTP to avoid a MRRAD, so defined, is $69.58 in 2015$. 
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considered. By definition, a MRRAD does not result in loss of work. WTP to avoid a MRRAD should 

therefore be less than WTP to avoid a WLD. At the other extreme, WTP to avoid a MRRAD should exceed 

WTP to avoid a single mild symptom. The highest IEc midrange estimate of WTP to avoid a single 

symptom is $28.51 (2015$), for eye irritation. The point estimate of WTP to avoid a WLD in the benefit 

analysis is $110.62 (2015$). If all the single symptoms evaluated by the studies are not severe, then the 

estimate of WTP to avoid a MRRAD should be somewhere between $28.51 and $110.62. Because the IEc 

estimate of $69.58 (2015$) falls within this range (and acknowledging the degree of arbitrariness 

associated with any estimate within this range), we use the IEc estimate of $69.58 (2015$) (Table 21). 

 School Loss Days  
There is currently one unit value available in BenMAP for school loss days, based on (1) the probability 

that, if a school child stays home from school, a parent will have to stay home from work to care for the 

child, and (2) the value of the parent’s lost productivity. We first estimated the proportion of families 

with school-age children in which both parents work, and then valued a school loss day as the 

probability of a work loss day resulting from a school loss day (i.e., the proportion of households with 

school-age children in which both parents work) times a measure of lost wages.  

From the U.S. Bureau of Labor Statistics (2015) we obtained the rate of participation in the workforce of 

women with children under 18 years of age. We multiplied this rate (69.9%) by the estimated daily lost 

wage (if a mother must stay at home with a sick child), based on the median full-time weekly wage 

among women 25 and older in 2015.72 This median weekly wage is $759 (2015$).73 Dividing by five work 

days per week gives an estimated median daily wage of $152. The expected loss in wages due to a day 

of school absence in which the mother would have to stay home with her child is estimated as the 

probability that the mother is in the workforce times the daily wage she would lose if she missed a day = 

69.9% of $152, or $106. We currently have insufficient information to characterize the uncertainty 

surrounding this estimate.  

A unit value based on the approach described above is likely to understate the value of a school loss day 

in four ways. First, it omits WTP to avoid the symptoms/illness which resulted in the school absence. 

Second, it effectively gives zero value to school absences which do not result in a work loss day. Third, 

the approach may use a wage rate that is too low by assuming that men do not stay at home with sick 

children. Fourth, does not account for deleterious effects on student learning and subsequent utility or 

productivity. The unit value of $106 is therefore considered an “interim” value until such time as 

alternative means of estimating this unit value become available (Table 22).   

 Stroke 
Mu et al., 2017 estimates COI of non-fatal stroke incidence using direct medical costs incurred during 

initial hospitalization and the 360 days following hospital discharge. The study identifies individuals 

experiencing a first-time stroke using ICD-9 codes 434 and 436. The authors analyze medical claims from 

January 2006 to March 2015 utilizing the retrospective IMS LifeLink PharMetrics Plus database for 

individuals ages 18 to 65, and Medicare Advantage and Medicare Supplemental Claims for individuals 

above the age of 65. The authors present acute care and long-term care costs stratified by three 

 
72 Does not include benefits rate for lost work time. 
73 2015 median wages were the most recently available data at the time of update. However, many valuation 
estimates account for income growth, approximating 2020 wages. 
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discharge classifications: dead at discharge, discharged with disability, and discharged without disability. 

We estimate the average costs for non-fatal cases by weighting the costs for individuals discharged with 

disability and without disability by their prevalence (23 and 77 percent, respectively). The resulting COI 

for non-fatal stroke incidence is $33,962 (2015$) (Table 21). This value reflects one-year medical costs 

following stroke and does not include hospitalization costs, as these costs are separately captured by 

hospitalization valuation functions. We reviewed several studies that estimate longer-term medical 

costs (Goodwin et al., 2011, Lee et al., 2007, Luengo-Fernandez et al., 2012, Nicholson et al., 2016) and 

concluded that roughly three quarters of costs are incurred in first year after stroke occurrence.74 

 Work Loss Days (WLDs)  
Work loss days are valued at a day’s wage. BenMAP calculates county-specific median daily wages from 

county-specific annual wages by dividing by (52*5), on the theory that a worker’s vacation days are 

valued at the same daily rate as workdays. This estimate does not include benefits rate for lost work 

time. The resulting COI for work loss days varies by county, but has a median value of $150 (2015$) (IEc, 

1993).(Table 21). 

5.4 DEVELOPING INCOME GROWTH ADJUSTMENT FACTORS FOR HEALTH ENDPOINT 

ONSET/OCCURRENCE 
Chapter 4 of the BenMAP-CE User Manual provides instructions for formatting and adding income 

growth data (U.S. EPA, 2018). These values are used to adjust WTP estimates for growth in real income. 

As discussed in that chapter, evidence and theory suggest that WTP should increase as real income 

increases.  When reviewing the economic literature to develop income growth adjustment factors, it is 

important to have an economist assist. For an overview of valuation, see Chapter 7 of the BenMAP-CE 

User Manual, “Aggregating, Pooling, and Valuing”.  

Adjusting WTP to reflect growth in real income requires three steps:  

1. Identify relevant income elasticity estimates from the peer-reviewed literature. 

2. Calculate changes in future income. 

3. Calculate adjustments to WTP based on changes in future income and income 

elasticity estimates. 

1. Identifying income elasticity estimates  

Income elasticity estimates relate changes in demand for goods to changes in income. Positive income 

elasticity suggests that as income rises, demand for the good also rises. Negative income elasticity 

suggests that as income rises, demand for the good falls. We do not adjust COI estimates according to 

changes in income elasticity due to the fact that COI estimates the direct cost of a health outcome; 

instead we adjust this metric using inflation factors described above. We include income elasticity 

estimates specific to the type of health endpoint associated with the WTP estimate for three types of 

health effects: minor, severe and mortality. Minor health effects are those of short duration. Severe, or 

chronic, health effects are of longer duration. Consistent with economic theory, the peer reviewed 

 
74 We did not include the additional 25% of medical costs incurred after the first year post-stroke due to the lack of 
information on the timing of those additional costs. Without information on when they would be incurred we 
cannot appropriately discount the estimated medical costs. 
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literature indicates that income elasticity varies according to the severity of the health effect. A review 

of the literature revealed a range of income elasticity estimates that varied across the studies and 

according to the severity of health effect. Table 31 summarizes the income elasticity estimates for minor 

health effect, severe health effect and mortality. Here we have provided a lower, upper, and central 

elasticity estimate for each type of health endpoint.  

Table 31. Income Elasticity Estimates for Minor Health Effects, Severe Health Effects, and Mortality 

Health Endpoint Lower Bound Central Estimate Upper Bound 

Minor Health Effect 0.04 0.15 0.30 

Severe and Chronic 

Health Effects 
0.25 0.45 0.60 

Mortality 0.08 0.40 1.00 

 

2. Calculating changes in future income  

The next input to the WTP adjustment is annual changes in future income. The Congressional Budget 

Office’s (2016) ten-year projections of US Gross Domestic Product (GDP) are used to estimate changes in 

future income. Historical GDP data came from the U.S. Bureau of Commerce’s Bureau of Economic 

Analysis. GDP values were adjusted for inflation as needed using the Implicit Price Deflator annual index, 

published by the Economic Research Division of the Federal Reserve Bank of St. Louis. We divided the 

projected change in GDP by the Woods & Poole (2015) projected change in total US population to 

produce an estimate of the future GDP per capita.  

3. Calculating changes in WTP  

The income elasticity estimates from Table 31 and the estimated changes in future income may then be 

used to estimate changes in future WTP for each health endpoint. The adjustment formula follows four 

steps:  
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1) 

ε=

∆𝑊𝑇𝑃
𝑊𝑇𝑃

∆𝐼
𝐼

=
(𝑊𝑇𝑃2 − 𝑊𝑇𝑃1) × (𝐼2 + 𝐼1)

(𝐼2 − 𝐼1) × (𝑊𝑇𝑃2 + 𝑊𝑇𝑃1)
 

 

2) ε𝐼2𝑊𝑇𝑃2 +  ε𝐼2𝑊𝑇𝑃1 −  ε𝐼1𝑊𝑇𝑃2 − ε𝐼1𝑊𝑇𝑃1 = 𝐼2𝑊𝑇𝑃2 + 𝐼1𝑊𝑇𝑃2 − 𝐼2𝑊𝑇𝑃1 − 𝐼1𝑊𝑇𝑃1 

 

3) 𝑊𝑇𝑃2 × ( ε𝐼2 −  ε𝐼1 −  𝐼2 −  𝐼1) = 𝑊𝑇𝑃1 × ( ε𝐼1 −  ε𝐼2 −  𝐼1 −  𝐼2) 

 

4) 
𝑊𝑇𝑃2 = 𝑊𝑇𝑃1 ×

 ε𝐼1 −  ε𝐼2 − 𝐼1 − 𝐼2

 ε𝐼2 −  ε𝐼1 − 𝐼2 −  𝐼1
 

 

 

Table 32 summarizes the income-based WTP adjustments used within BenMAP-CE for minor health 

endpoints, severe health endpoints, and premature mortality. BenMAP-CE applies the “mid” income 

growth adjustment to the WTP for each corresponding health endpoint. The “low” and “upper” are 

provided for bounding the “mid” estimate. More information on the uncertainties associated with the 

choice of income elasticity is provided in section 6.4.3. 
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Table 32. Income-Based WTP Adjustments by Health Effect and Year 
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6 CHARACTERIZING UNCERTAINTY AND EVALUATING SENSITIVITY TO ALTERNATE 

ASSUMPTIONS 

Complex analyses such as the one presented in the final RIA for the Revised CSAPR Update rule use 

many estimated parameters and inputs. The approach for estimating PM2.5 and O3 benefits includes 

health effect risk estimates from epidemiologic studies, population data, population growth estimates, 

economic data for monetizing benefits, and assumptions regarding the future state of the world (i.e., 

on-the-books regulations). When the uncertainties from each stage of the analysis are compounded, 

even small uncertainties can have large effects on the total quantified benefits.  

After reviewing the EPA’s approach to quantifying benefits, the National Research Council (NRC) (2002, 

2008) highlighted the need to conduct rigorous quantitative analyses of uncertainty and to present 

benefits estimates to decision makers in ways that foster an appropriate appreciation of their inherent 

uncertainty. Since the publication of these reports, the EPA has continued improving its techniques for 

characterizing uncertainty in the estimated air pollution-attributable benefits.  

In light of these recommendations, we incorporate new quantitative and qualitative characterizations of 

uncertainty. Where possible, we quantitatively assess uncertainty in each input parameter (for example, 

we characterize statistical uncertainty by performing Monte Carlo simulations). We invest the time and 

resources in performing the most comprehensive uncertainty analyses for those input parameters that 

most greatly influence on the size of the estimated health impacts.75  

In some cases, this type of quantitative analysis is not possible due to lack of data, so we instead 

characterize the sensitivity of the results to alternative plausible input parameters. And, for some inputs 

into the benefits analysis, such as the air quality data, we lack the data to perform either a quantitative 

uncertainty analysis or sensitivity analysis.  

Sections 6.1 and 6.2 quantitatively describe the uncertainty associated with estimated PM2.5 and O3-

attributable incidence. Section 6.3 provides information on the sensitivity to more granular baseline 

incidence rates. Section 6.4 quantitatively discusses the influence of uncertainty in the economic 

valuation functions. Lastly, section 6.5 qualitatively discusses the various potential sources of 

uncertainty, sometimes including sources of uncertainty touched upon quantitatively. 

6.1 QUANTITATIVE CHARACTERIZATION OF PM2.5 UNCERTAINTY AND EVALUATING SENSITIVITY TO 

ALTERNATE PM2.5 ASSUMPTIONS 
Below we describe our approach for characterizing uncertainty in the estimated PM2.5-related effects. 

We start first with the role of Monte Carlo assessment in generating a quantitative distribution of 

results. We next describe how alternative risk estimates76 can be useful for assessing the sensitivity of 

 
75 Uncertainties that we expect will have the greatest influence on health impacts are 1) those associated with 
mortality impacts given the severity of the outcome and the associated economic valuation and 2) quantitative 
and qualitative uncertainty characteristics likely to most strongly impact the magnitude of bias. 
76 Alternate risk estimates are a means to quantitatively understand uncertainties around the main risk estimate. 
Alternate risk estimates are based on a different set of input parameters, which may come from the same study or 
different studies. Alternate risk estimates can be used to assess the sensitivity of the risk estimate to alternative 
assumptions and input parameters, such as modeling choices, populations, or statistical techniques. 
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the estimated PM2.5-related mortality and morbidity to plausible alternative input parameters; this gives 

insight to the influence of the functional form of the model or alternative epidemiologic approaches. 

Quantitative sensitivity analyses using alternative or additional risk estimates are included for the 

following PM2.5-attributable health endpoints: mortality in adults (section 6.1.1), asthma onset in 

children (section 6.1.3), cardiovascular hospital admissions (section 6.1.4), and respiratory hospital 

admissions (section 6.1.5).  

 Statistical Uncertainty Around the Risk Estimate (Monte-Carlo Assessment) 
For all endpoints analyzed, we use a Monte Carlo simulation in which we sample from the standard 

error associated with each risk estimate and present the resulting 2.5th and 97.5th percentile values from 

this distribution as a 95th percentile confidence interval around the estimated health impact and 

monetized health benefits. Monte Carlo methods are a well-established means of characterizing random 

sampling error associated with the risk estimates from epidemiological studies.  This approach randomly 

samples from a distribution of incidence and valuation estimates to characterize the effects of 

uncertainty in those inputs on output variables. The reported standard errors in the epidemiological 

studies determined the distributions for individual effect estimates for endpoints estimated using a 

single study. The confidence intervals around the monetized benefits incorporate the epidemiology 

standard errors as well as the distribution of the valuation function. These confidence intervals do not 

reflect other sources of uncertainty inherent within the estimates, such as baseline incidence rates, 

populations exposed, and transferability of the effect estimate to diverse locations. As a result, the 

reported confidence intervals and range of estimates give an incomplete picture about the overall 

uncertainty in the benefits estimates. 

 Adult All-Cause Mortality77 
Two studies of all-cause, long-term PM2.5 exposure and mortality were identified as best characterizing 

U.S. risk in adults, Di et al., 2017b and Turner et al., 2016. Additional information regarding the cohort 

concentration exposure distributions (section 6.1.2.1) and additional risk estimates potentially providing 

insight into the effect of various potential sources of uncertainty, such as different exposure estimation 

techniques (section 6.1.2.2), confounding by O3 (section 6.1.2.3), statistical regression techniques and 

methods to control for confounders (section 6.1.2.4), and effect modification by individual risk factors 

(section 6.1.6).  

6.1.2.1 Low Concentration Exposures 

Each epidemiological risk estimate is based on a distribution of air quality concentrations experienced by 

the original cohort population. As such, it is important to consider the relationship between the 

concentrations from which the mortality estimates are derived and the concentrations at which the 

estimates are subsequently applied in future policy scenarios in which concentrations are likely to be 

lower due to decreasing air pollution trends. When estimating health impacts, we are most confident in 

results estimated using projected air quality concentrations that closely align with those observed in the 

epidemiological study from which the risk estimate was obtained (i.e., we are less confident applying 

risk estimates to pollutant concentrations that do not match the original cohort due to changes in air 

pollutant concentrations over time). To address the potential mismatch between projected air quality 

 
77 As estimates of infant mortality incidence are relatively small, we do not perform quantitative uncertainty 
analyses for that health endpoint. 
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levels and those in the epidemiologic study, we include air quality information from the original 

epidemiologic studies where feasible.  

Additional information was requested from mortality study authors regarding the ambient 

concentrations used to estimate exposure of the original cohort.78 Study authors provided cohort 

specific PM2.5 concentration data at varying levels of detail. PM2.5 concentrations for the two long-term 

exposure epidemiologic cohort studies examining mortality, ACS CSP-II and Medicare are presented in 

Figure 13 (Di et al., 2017b, Turner et al., 2016). We also included the distribution of PM2.5 concentrations 

from a recent analysis of the CanCHEC cohort in order to compare to some of the lowest reported 

concentrations in North America (Crouse et al., 2015). Points reflect cohort specific PM2.5 concentration 

data, with connecting lines estimating missing data.  

 

 

Figure 13. Cumulative Percentile of PM2.5 Cohort Exposure from the ACS CSP-II, Medicare, and CanCHEC 
Cohorts 

As air pollution concentrations continue to decline an increasing fraction of the population will be 

exposed to PM2.5 concentrations at the lower end of the air quality distribution experienced by the study 

cohort. The distribution of PM2.5 concentrations for each of three large, long-term exposure cohorts are 

 
78 For morbidity studies, author-reported air quality information such as the average or mean, standard deviation, 
and maximum and minimum concentrations were collected and is available in the corresponding Study 
Information Table. 
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provided in Table 33. For comparison, the lowest reported PM2.5 concentrations from previous studies 

(Krewski et al., 2009, Lepeule et al., 2012) in which risk estimates were used to estimate all-cause 

mortality attributed to long-term PM2.5 exposure were 5.8 and 8.0 µg/m3, whereas the recent studies 

identified as best characterizing long-term PM2.5 exposure and the risk of all-cause mortality include 

PM2.5 concentrations below 3 µg/m3 (Di et al., 2017b, Turner et al., 2016). 

Table 33. Low Concentration PM2.5 Exposures from the ACS CSP-II, Medicare, and CanCHEC Cohorts 

Cohort 
Percentile of Cohort Exposure (µg/m3) 

0.0% 1.0% 1.5% 2.0% 2.5% 3.0% 3.5% 4.0% 4.5% 5.0% 10.0% 

ACS CSP-II 2.8 5.8 
 

6.3 6.5 6.6 
 

7.0 
 

7.4 
 

Medicare 0.0 5.5 5.9 6.1 6.3 6.5 6.7 6.8 6.9 7.1 7.9 

CanCHEC  0.0 3.2 
 

3.5 3.6 
    

4.0 4.7 

 

We note that PM2.5 concentrations reported in cohort studies are not equivalent to NAAQS design 

values (DVs). Information relating PM2.5 concentrations from cohort studies discussed within this section 

to PM2.5 DVs can be found in section 3.2 of the 2020 PM PA (U.S. EPA, 2020c). 

6.1.2.2 Estimating and Assigning Exposures in Epidemiology Studies 

New developments in exposure assessment, including hybrid spatiotemporal models that incorporate 

satellite observations of AOD, land use variables, surface monitoring data from monitors, and chemical 

transport models, have led to improvements in the spatial resolution and extent of pollutant 

concentration surfaces. After reviewing the current state of exposure science, the 2019 PM ISA stated 

that “a number of studies demonstrate that the positive associations observed between long-term PM2.5 

exposure and mortality are robust to different methods of assigning exposure” and the 2020 O3 ISA 

articulated that “hybrid methods have produced lower error predictions of ozone concentration 

compared with spatiotemporal models using land use and other geospatial data alone but may be 

subject to overfitting given the many different sources of data incorporated into the hybrid framework.” 

Although these advancements may reduce bias and uncertainty in risk estimates, the accuracy of hybrid 

exposure estimates can be difficult to confirm in areas lacking monitors. On the other hand, studies 

using monitor data as the only exposure information have increasing exposure uncertainty the farther 

people live from the monitor site. 

Di et al., 2017a provided PM2.5-attributable mortality risk estimates based on either a hybrid exposure 

estimation approach combining photochemical air quality modeling with ground-level monitoring data 

or only on monitoring data. Comparing these two estimates aids in understanding how sensitive long-

term, all-cause estimates of PM2.5-attributable mortality are to exposure estimation method.  A 

comparison of the risk estimates using either the hybrid or monitor-based exposure estimates is 

available in Table 34. The italicized risk estimate was identified for use in the main PM2.5 benefits 

assessment. 
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Table 34. Di et al., 2017a PM2.5-Attributable Mortality Risk Estimates per 10 µg/m3 from Different 
Exposure Estimation Techniques 

Exposure Technique Risk Estimate 

Hybrid Exposure Estimate 1.073 (1.071, 1.075) 

Monitor-Based Exposure Estimate 1.061 (1.059, 1.063) 

 

Turner et al., 2016 and Pope et al., 2015 analyzed the same ACS CSP-II population over the same time 

period but used different hybrid exposure estimation techniques. Turner et al., 2016 used the 

hierarchical Bayesian space–time model (HBM) approach, which combines ambient measurement data 

with gridded estimates from the CMAQ photochemical model. Pope et al., 2015 used a land use 

regression model with Bayesian Maximum Entropy kriging of residuals (LURBME). Sensitivity of the risk 

estimate to the exposure estimation technique is available in Table 35, including the estimate identified 

for the main benefits assessment in italics. 

Table 35. PM2.5-Attributable ACS CSP-II Mortality Risk Estimates per 10 µg/m3 from Different Exposure 
Estimation Techniques  

Exposure Technique Risk Estimate 

HBM 1.06 (1.04-1.08) 

LURBME 1.07 (1.06–1.09) 

 

6.1.2.3 Confounding by O3 

When considering the relationship between pollutant exposure and health effects, it can be informative 

to consider whether risk estimates are subjected to confounding when including other pollutants in 

copollutant models, especially when health impacts of more than two highly correlated pollutants are 

being estimated concurrently.79 Regarding long-term exposures, the 2019 PM ISA concluded that 

“positive associations observed between long-term PM2.5 exposure and total mortality remain relatively 

unchanged after adjustment for O3, NO2, and PM10−2.5” 

Both Turner et al., 2016 and Di et al., 2017a provided single-pollutant and two-pollutant (including O3 as 

a copollutant) PM2.5-attributable mortality risk estimates. Although the 2019 PM ISA found that, in 

general, PM2.5 risk estimates were relatively unchanged to the inclusion of O3 in copollutant models, a 

comparison of risk estimates that either do or do not include O3 as a copollutant is included to clarify 

this potential sensitivity with respect to all-cause PM2.5-attributable mortality. Differences in the 

magnitude of risk estimates including or excluding O3 as a copollutant are provided in Table 36. Italicized 

risk estimates were identified for use in the main benefits assessment. 

Table 36. Single- and Two-Pollutant (Including O3 as a Copollutant) PM2.5-Attributable Mortality Risk 
Estimates per 10 µg/m3 

 Turner et al., 2016 Di et al., 2017a 

Two-Pollutant 1.06 (1.04-1.08) 1.073 (1.071, 1.075) 

Single-Pollutant 1.06 (1.04-1.08) 1.084 (1.081, 1.086) 

 
79 Modeling more than two correlated pollutants can be problematic due to collinearity issues. 
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6.1.2.4 Statistical Technique 

Di et al., 2017a provided mortality risk estimates using two different statistical methods to adjust for 

covariates, potentially providing insight into model uncertainties associated with statistical regression 

techniques. A comparison of the risk estimates using either the generalized estimating equation (GEE) 

approach, which the authors identified as the main analysis, or the mixed-effects model (COXME) can be 

found in Table 37. 

Table 37. Di et al., 2017a PM2.5-Attributable Mortality Risk Estimates per 10 µg/m3 from Different 
Statistical Techniques  

Statistical Technique Risk Estimate 

GEE 1.073 (1.071, 1.075) 

COXME 1.081 (1.078, 1.083) 

 

 Asthma Onset in Children 
For a number of health endpoints we identified plausible alternative risk estimates to characterize the 

sensitivity of the main risk estimate to alternative assumptions and/or input parameters. Below we 

detail: 1) the endpoints for which we considered alternative risk estimates; and 2) the studies from 

which we drew the alternative risk estimates. This type of sensitivity assessment is also performed for 

other PM2.5 and O3 health endpoints in sections 6.1.4, 6.1.5, and 6.2.4. 

The study identified as best characterizing risk for this health endpoint took place in Canada (Tetreault 

et al., 2016). Even though comparatively Tetreault et al., 2016 was preferred in all identification criteria 

to other available studies (e.g., study size, exposure estimation technique, study period, etc.) other than 

location, we thought it useful to include the available U.S.-based risk estimates as uncertainty analyses. 

An overall comparison of the main risk estimate and 95% confidence interval from Tetreault et al., 2016 

and the alternative risk estimates and confidence intervals from McConnell et al., 2010 and Nishimura et 

al., 2013 can be found in Table 38. Details about the two studies providing alternate risk estimates is 

below. 
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Table 38. Potential Sensitivity of Estimated Instances of Asthma Onset  

 

Two of the five ISA-identified studies of asthma onset took place in the U.S. (McConnell et al., 2010, 

Nishimura et al., 2013). McConnell et al., 2010 examined the association between long-term traffic-

related air pollution (PM2.5, PM10, O3, and NO2) exposure and incident asthma in children. The authors 

collected data for three years from a cohort of 2,497 kindergarten and first-grade children aged 4-9 who 

entered the Southern California Children’s Health Study without asthma or wheeze. McConnell et al., 

2010 defined new-onset asthma as physician-diagnosed asthma reported by parents on a yearly 

questionnaire. While the primary focus of the study was traffic-related air pollution from local vehicle 

emissions, the authors also utilized ambient air pollution exposure data from central site monitors in 

each of the 13 communities in the Southern California Children’s Health Study. The authors used a 

multilevel Cox proportional hazards model to estimate the association between ambient air pollution 

exposure and new-onset asthma, controlling for race/ethnicity, secondhand smoke exposure, and pets 

in the home. The identified hazard ratio of 1.66 (95% CI: 0.91-3.05) for a 17.4 µg/m3 (range of exposure 

in the 13 communities) increase in annual average PM2.5 exposure came from a single pollutant model. 

The other study, Nishimura et al., 2013, investigated the relationship between long-term early-life 

pollution exposure (PM2.5, PM10, O3, NO2 , and SO2) and asthma onset in 3,343 Latino and African 

American children in five urban areas (Chicago, IL; Bronx, NY; Houston, TX; San Francisco, CA; Puerto 

Rico). The authors obtained data from the Genes–environments and Admixture in Latino Americans 

(GALA II) Study and the Study of African Americans, Asthma, Genes and Environments (SAGE II). GALA II 

and SAGE II are case-control studies that enrolled children with and without asthma. The studies defined 

case subjects as children with physician-diagnosed asthma plus two or more symptoms of coughing, 

wheezing, or shortness of breath in the two years before study enrollment while control subjects were 

children with no reported history of asthma, lung disease, or chronic illness, and no reported symptoms 

of coughing, wheezing, or shortness of breath in the two years before study enrollment. The authors 

estimated annual average pollution exposures during the first year of life as well as the first three years 

of life from self-reported residential histories by calculating inverse distance-squared weighted averages 

Potential Source of 
Uncertainty 

Potential Insights Gained from Quantitative Uncertainty Analyzes2 

Application of Risk Estimates 
to Other Locations and 
Populations 

Tetreault et al., 2016 included only Canadians whereas Nishimura et 
al., 2013 included five U.S. urban areas and McConnell et al., 2010 was 
restricted to southern CA 

Study Size 
Tetreault et al., 2016 included the largest study size, approximately 
twenty-five times the size of either Nishimura et al., 2013 or 
McConnell et al., 2010 

Study Period 
Tetreault et al., 2016 evaluated the most recent health study period 
(1996-2011) compared to 2002-2006 for McConnell et al., 2010 and 
1986-2005 for Nishimura et al., 2013 

Exposure Estimate 
Tetreault et al., 2016 used hybrid exposure estimates whereas sever 
states, whereas Nishimura et al., 2013 and McConnell et al., 2010 used 
monitor-based estimates 

Statistical Technique 
Tetreault et al., 2016 and McConnell et al., 2010 use time-varying and 
multilevel Cox proportional hazard models, respectively, whereas 
Nishimura et al., 2013 uses logistical regression models 
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from the four closest U.S. EPA Air Quality System monitoring stations within 50 km. The authors first 

used regional- and study-specific logistic regression models to estimate the association between asthma 

diagnosis and pollution exposure, controlling for demographics and socioeconomic status and 

subsequently combined the regression coefficients into a multi-region estimate using a random-effects 

meta-analysis. The identified odds ratio of 1.03 (95% CI: 0.90-1.18) for a 1 µg/m3 increase in average 

annual PM2.5 levels at the residential address during the first year of life came from a single pollutant 

model. Beta effect coefficients from the main (italicized) and sensitivity analyses are available in Table 

39.  

Table 39. Beta Coefficients and Standard Errors (SE) from Studies of Examining Long-term PM2.5 
Exposure and New Onset Asthma in Children  

Study Age Range Beta Coefficient (SE) 

Tetreault et al., 2016 0-17 0.044 (0.0009) 

McConnell et al., 2010 4-17 0.029 (0.017) 

Nishimura et al., 2013 7-21 0.030 (0.069) 

 

 Cardiovascular Hospital Admissions 
Bell et al., 2015 was identified as best characterizing risk across the U.S. for benefits assessment 

purposes as it included the largest study size, most recent time period, and a nationally representative 

geographic area. However, it was restricted to ages >64 and based exposure estimates solely on 

monitoring data. There was also another large study of PM2.5-attributable cardiovascular hospital 

admission impacts that included all ages and incorporated hybrid exposure estimation techniques 

(Talbott et al., 2014). Differences in the age ranges and ICD-9 codes prevented pooling of the two 

estimates but comparing the two estimates could provide insights into uncertainties associated with 

epidemiologic estimates of this health endpoint (Table 40). Therefore, we include a risk estimate of 

cardiovascular hospital admission impacts from long-term PM2.5 exposure from Talbott et al., 2014 as a 

sensitivity analysis of this health endpoint (Table 41). Please note that Talbott et al., 2014 provides 

individual risk estimates for each state, which will be pooled into a single estimate to compare with Bell 

et al., 2015. 

Talbott et al., 2014 assessed daily PM2.5 concentrations and hospitalizations for cardiovascular disease in 

Florida, Massachusetts, New Hampshire, New Jersey, New Mexico, New York, and Washington from 

2001 to 2008. The authors gathered hospital discharge data from each state’s respective data stewards. 

Talbott et al., 2014 conducted a time-stratified case crossover study using hospitalization data for all 

cardiovascular diseases (ICD-9 390-459) and for several specific cardiovascular diseases within the ICD-9 

390-459 range. Authors used a downscaling Bayesian space-time modeling approach to combine air 

monitoring data and air gridded numerical outputs from CMAQ to predict daily PM2.5 concentrations. 

The authors gathered meteorological data from the Centers for Disease Control (CDC) Wonder North 

America Land Data Assimilation System Daily Air Temperatures and Heat Index. Risk estimates were 

presented for a 10 µg/m3 increase in PM2.5 for each state and season across three single-day lags (0, 1, 

and 2) and a three-day lag average (0-2) by diagnosis. All-year risk estimates were identified over 

season-specific estimates and estimates of multiday average lag period were identified over single-day 
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lag estimates.80 The seven state-specific risk estimates identified as sensitivity analyses were pooled 

using the random or fixed effects algorithm in BenMAP-CE.81 The seven risk estimates reflect a mix of 

positive and negative values. State-specific risk estimates identified from Talbott et al., 2014  come from 

a two-pollutant multivariable model including O3 of ICD-9 codes 390-459: 1.005 (95% CI: 0.998-1.012) 

for Massachusetts; 1.011 (95% CI: 1.007-1.016) for New Jersey; 1.011 (95% CI: 0.973-1.050) for New 

Mexico; and 1.011 (95% CI: 1.008-1.014) for New York. Each odds ratio is for a 10 µg/m3 increase in the 

averaged daily mean PM2.5 concentration 0-, 1-, and 2-day lags (Talbott et al., 2014, Table 3). Beta effect 

coefficients from the main (italicized) and sensitivity analyses are available in Table 41. 

Table 40. Potential Sensitivity of Estimated Cardiovascular Hospital Admissions  

 

Table 41. PM2.5-Attributable Cardiovascular Hospital Admissions Beta Estimates 

Study Beta Coefficient (SE) 

Bell et al., 
2015 

0.00065 (0.00009) 

Talbott et al., 
2014, MA 

MA: 0.00050 (0.00035), NJ: 0.00109 (0.0002), NM: 0.00109 (0.0019), NY: 0.00109 
(0.00015), FL: -0.00040 (0.0003), NH: -0.00121 (0.0012) , WA: -0.00090 (0.0005) 

 

 Respiratory Hospital Admissions 
Similar to cardiovascular hospital admissions, there was an estimate of PM2.5-attributable respiratory 

hospital admissions that included all ages and utilized a hybrid exposure estimation approach, but was 

geographically limited, in this case to a single state. However, we thought it useful to include this 

estimate as a sensitivity analysis due to the contrasts between it and the italicized main benefits 

estimates (Table 42 and Table 43). As compared to PM2.5-attributable mortality and cardiovascular 

hospital admission impact estimates, there may be greater uncertainty associated with estimates of 

PM2.5-attributable respiratory hospital admissions (Table 43). 

 
80 Lag period preference identification criteria is more fully described in 2019 PM ISA Appendix Table A-1. 
81 Random or fixed effects pooling is a method to combine two or more distributions into a single new distribution, 
allowing for the possibilities that either 1) a single true underlying relationship exists between the component 
distributions, and that differences among estimated parameters are the result of sampling error, or 2) the 
estimated parameter from different studies may in fact be estimates of different parameters, rather than just 
different estimates of a single underlying parameter, and weights for the pooling are generated via inverse 
variance weighting, thus giving more weight to the studies that exhibit lower variance and less weight to the input 
distributions with higher variance.  

Potential Source of Uncertainty 
Potential Insights Gained from Quantitative Uncertainty 

Analyzes 

Application of Risk Estimates to 
Other Locations and Populations 

Talbott et al., 2014 included all ages whereas Bell et al., 2015 
was restricted to ages >64 

Confounding by Individual Risk 
Factors (Location) 

Talbott et al., 2014 was restricted to seven states, Bell et al., 
2015 included all states 

Confounding by Other Pollutants Talbott et al., 2014 included the copollutant O3 

Exposure Estimate 
Talbott et al., 2014 used hybrid exposure estimates whereas 
sever states, Bell et al., 2015 used monitor-based estimates 
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Jones et al., 2015 encompassed all ages, races, and ethnicities with a case-crossover analysis in New 

York state, using 24-hour average PM2.5 concentrations from CMAQ and meteorological data from the 

National Climactic Data Center. The authors assessed hospital discharge data from the New York State 

Department of Health State Planning and Research Cooperative System through principle diagnosis 

categorized by ICD-9 code (chronic bronchitis (ICD-9 491), emphysema (ICD-9 492), asthma (ICD-9 493), 

and chronic airway obstruction (ICD-9 496)). Authors used a single pollutant conditional logistic 

regression model to analyze the respiratory hospital admission and PM2.5 chemical constituent data over 

time and by season. The authors calculated hazard ratios using SAS (version 9.2) with 95% confidence 

intervals from the regression models. The estimate best characterizing U.S. risk comes from the 4-day 

lag all-year PM2.5 estimate in Figure 2a: 1.006 (1.004-1.009). Please note, this risk estimate was derived 

from the figure, as the exact numbers were not provided in the paper and the authors did not respond 

to our request. 

Table 42. Potential Respiratory Hospital Admission Sensitivity Insights 

 

Table 43. PM2.5-Attributable Respiratory Hospital Admissions Beta Risk Estimates 

Study Age Range Beta Coefficient (SE) 

Bell et al., 2015 65-99 0.00025 (0.0001) 

Ostro et al., 2016 0-18 0.00275 (0.0008) 

Jones et al., 2015 0-99 0.00080 (0.0002) 

 

6.1.5.1 Emergency Hospital Admissions (EHAs) 

Interestingly, a substantial subset of the ISA-identified recent epidemiologic literature evaluating 

respiratory hospitalizations restricted analyses to emergency hospital admissions (EHAs), defined as 

hospitalizations admitted from the emergency department (section 3.2). Due to time and resource 

requirements, we were unable to develop county-level baseline incidence data for EHAs, in addition to 

total hospital admissions. However, as we were interested in how estimates of EHAs compared to total, 

we include a risk estimate of respiratory EHAs from Zanobetti et al., 2009 using national baseline 

incidence data. Though the EHA estimate came from a smaller and older study then the main analysis 

respiratory hospital admission study, the EHA estimate is nearly an order of magnitude larger than the 

risk estimate included in the main estimate (italicized). 

Potential Source of Uncertainty 
Potential Insights Gained from Quantitative Uncertainty 

Analyzes2 

Application of Risk Estimates to Other 
Locations and Populations 

Jones et al., 2015 included all ages whereas Bell et al., 2015 
was restricted to ages >64 

Confounding by Individual Risk Factors 
(Location) 

Jones et al., 2015 was restricted to a single state, Bell et al., 
2015 included all states 

Exposure Estimate 
Jones et al., 2015 used hybrid exposure estimates, whereas 
Bell et al., 2015 used monitor-based estimates 
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Table 44. Comparison of the PM2.5-Attributable Respiratory Hospital Admissions Beta Risk Estimate to 
the EHA Respiratory Estimate 

Study Beta Coefficient (SE) 

Bell et al., 2015 0.00025 (0.0001) 

Zanobetti et al., 2009 0.00204 (0.0004) 

 

 Effect Modification of Health Impacts in At-Risk Populations82 
ISAs typically include an assessment of the weight of evidence demonstrating that certain 

subpopulations experience increased mortality or morbidity risks from air pollutant exposure compared 

to other groups. This is also known as effect modification and occurs when the measure of an effect 

changes across levels of a variable other than PM2.5 exposure. The 2019 PM ISA examined toxicological, 

controlled human exposures, and epidemiologic literature considering whether certain populations and 

lifestages might be at increased risk of air pollutant-related health effects (U.S. EPA, 2019c). 

The ISAs categorize relationships between exposure and effect modification for various population and 

lifestages into the following four groups: 

• Adequate evidence: There is substantial, consistent evidence within a discipline to conclude that 

a factor results in a population or lifestage being at increased risk of air pollutant-related health 

effect(s) relative to some reference population or lifestage. Where applicable, this evidence 

includes coherence across disciplines. Evidence includes multiple high-quality studies. 

• Suggestive evidence: The collective evidence suggests that a factor results in a population or 

lifestage being at increased risk of air pollutant-related health effect(s) relative to some 

reference population or lifestage, but the evidence is limited due to some inconsistency within a 

discipline or, where applicable, a lack of coherence across disciplines. 

• Inadequate evidence: The collective evidence is inadequate to conclude whether a factor results 

in a population or lifestage being at increased risk of air pollutant-related health effect(s) 

relative to some reference population or lifestage. The available studies are of insufficient 

quantity, quality, consistency, and/or statistical power to permit a conclusion to be drawn. 

• Evidence of no effect: There is substantial, consistent evidence within a discipline to conclude 

that a factor does not result in a population or lifestage being at increased risk of air pollutant-

related health effect(s) relative to some reference population or lifestage. Where applicable, the 

evidence includes coherence across disciplines. Evidence includes multiple high-quality studies. 

Presenting PM2.5-attributable benefit estimates striated by the value of another covariate can provide 

insight into risk within various population subgroups. To accomplish this, we reviewed relevant chapters 

from the 2019 PM ISA in order to compile and assess studies cited in support of the Agency’s 

determinations, focusing on studies referenced in Table 12-3 for population characteristics with either 

“adequate evidence” (i.e., substantial, consistent evidence) or “suggestive evidence” (i.e., limited 

 
82 Analyses of effect modification will not be included in the main analyses, so as to avoid the possibility of double-
counting impacts. This potential uncertainty could also be described as the effect modification of individual risk 
factors. 
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evidence due to inconsistency or a lack of coherence in research) of increased risk (sections 6.1.6.1 and 

6.1.6.2) (U.S. EPA, 2019c). The factors with “adequate evidence” for PM2.5 are lifestage (children) and 

race (nonwhite populations), while the factors with “suggestive evidence” are pre-existing disease 

(cardiovascular disease, respiratory disease, and obesity), genetic factors (variant genotypes), low 

socioeconomic status, and smoking. 

6.1.6.1 Study and Risk Estimate Identification Criteria for Populations At-Risk for PM2.5 Exposures 

We identified all studies in the related section of ISA Chapter 12 for each at-risk factor listed above, 

resulting in a set of 123 studies for at-risk populations. This collection includes the following number of 

studies, with some studies duplicated for multiple endpoints. 

• 8 studies for lifestage (children),  

• 25 studies for race (nonwhite populations),  

• 67 studies for pre-existing disease across disease types,  

• 18 studies for genetic factors, 25 studies for socioeconomic status, and  

• 14 studies for smoking.  

We then focused our review on the risk factors with “adequate evidence”, due to stronger supporting 

evidence as well as because they could be evaluated using currently available data. We extracted study 

information from all studies with “adequate evidence” and applied initial screening criteria to identify 

peer-reviewed, epidemiological studies focused on PM2.5 conducted in the US or Canada. We also 

documented the mortality and/or morbidity health endpoints included in each study, focusing on all-

cause mortality and respiratory morbidity endpoints. We then evaluated the group of remaining studies 

based on additional identification criteria built off the criteria for the primary analysis, described in 

Table 45.  

Table 45. PM2.5 At-Risk Study Identification Criteria 

Criterion Notes 

Peer-Review Peer-reviewed research exclusively 

Study design Epidemiological study 

PM2.5 Study PM2.5 exposure rather than other PM10 or other sizes 

Study Location US or Canada 

Study Duration Long-term studies preferred 

Population Attributes 
Presents risk estimates for clearly defined at-risk groups for which data 
currently exist in BenMAP-CE 

Causal or Likely Causal 
Health Effects 

Adequate evidence for at-risk groups in ISA 

Economically Valuable 
Health Effects 

Health endpoints for which economic values have been or could 
reasonably be developed 

Baseline Incidence Data Must be able to identify baseline incidence data for subpopulations 

 

6.1.6.2 All-Cause Mortality 

For the mortality endpoint, seven all-cause mortality studies for the nonwhite population met our 

criteria. No mortality studies for the child at-risk group met the initial screening criteria. Of the seven 

studies of nonwhite populations, three were short-term exposure studies relating daily PM2.5 exposure 
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and daily deaths and four were long-term exposure studies relating annual PM2.5 exposure and annual 

mortality. Consistent with the main benefits assessment, we focused on the following four long-term 

studies as long-term exposure studies may include some effects of short-term exposures (section 

2.2.5.1): Di et al., 2017b, Kioumourtzoglou et al., 2016, Parker et al., 2018, and Wang et al., 2017.  

We evaluated specific details of risk estimates provided by each study to determine if sufficient 

information exists for use in a quantitative sensitivity analysis. Of the studies, only Di et al., 2017b 

provided sufficient information to apply risk models quantifying increased risks to nonwhite groups, 

including non-Hispanic white, Black, Asian, Native American, and Hispanic-white populations. Additional 

detail on the study can be found in section 2.2.5.1.3.1.2 or in the associated Study Information Table.  

We applied similar criteria to morbidity endpoints for the child and nonwhite at-risk groups. No studies 

cited for the child subgroup met our criteria for inclusion, and one endpoint, emergency room visits for 

asthma, was chosen for quantification for the nonwhite populations at-risk factor group. The study we 

chose to evaluate was Alhanti et al., 2016, which presents risk information for white and pooled 

nonwhite populations disaggregated into five age groups.  

We developed BenMAP-ready Health Impact Functions for each at-risk group described by Di et al., 

2017b and Alhanti et al., 2016, summarized in Table 46.  

Table 46. Identified PM2.5 At-Risk Beta Coefficients and Standard Errors 

At-Risk Factor Endpoint Study Subgroup 
Beta Coefficient 
(SE) 

Race, nonwhite 
populations 

Morality, All Cause 
Di et al., 
2017b 

Non-Hispanic 
White 

0.0061 (0.0001) 

Hispanic White 0.0110 (0.0008) 

Black 0.0189 (0.0004) 

Asian 0.0092 (0.0010) 

Native 
American 

0.0095 (0.0019) 

Race, nonwhite 
populations 

Emergency Room 
Visits, Asthma 

Alhanti et al., 
2016 

White, age 0-4 0.0025 (0.0019) 

Nonwhite, age 
0-4 

0.0037 (0.0012) 

White, age 5-18 0.0025 (0.0016) 

Nonwhite, age 
5-18 

0.0049 (0.0012) 
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6.2 QUANTITATIVE CHARACTERIZATION OF O3 UNCERTAINTIES AND EVALUATING SENSITIVITY TO 

ALTERNATE O3 ASSUMPTIONS 

 Statistical Uncertainty Around the Risk Estimate (Monte-Carlo Assessment) 
For all endpoints analyzed, we use a Monte Carlo simulation in which we sample from the standard 

error associated with each risk estimate and present the resulting 2.5th and 97.5th percentile values from 

this distribution as a 95th percentile confidence interval around the estimated health impact and 

monetized health benefits. Monte Carlo methods are a well-established means of characterizing random 

sampling error associated with the risk estimates from epidemiologic studies. This approach randomly 

samples from a distribution of incidence and valuation estimates to characterize the effects of 

uncertainty on output variables. The reported standard errors in the epidemiologic studies determined 

the distributions for individual effect estimates for endpoints estimated using a single study. For 

endpoints estimated using a pooled estimate of multiple studies, the confidence intervals reflect both 

the standard errors and the variance across studies. The confidence intervals around the monetized 

benefits incorporate the standard errors from the epidemiologic risk estimate as well as the distribution 

of the valuation function. These confidence intervals do not reflect other sources of uncertainty 

inherent within the estimates, such as baseline incidence rates, populations exposed and transferability 

of the effect estimate to diverse locations. As a result, the reported confidence intervals and range of 

estimates give an incomplete picture about the overall uncertainty in the benefits estimates. 

 Respiratory Mortality 

6.2.2.1.1 Confounding by PM2.5 

When considering the relationship between pollutant exposure and health impacts, it can be 

informative to consider whether risk estimates are changed when other pollutants are included in 

copollutant models, especially when health impacts of multiple pollutants are being estimated 

concurrently. While no conclusions were formed regarding the impact of copollutant confounding on 

long-term exposure-related respiratory mortality, the 2020 O3 ISA found that “positive associations 

observed between long term O3 exposure and total mortality remain relatively unchanged after 

adjustment for PM2.5 and NO2.” 

Turner et al., 2016 provided single- and multipollutant (including PM2.5 as a copollutant) O3-attributable 

respiratory mortality risk estimates. A comparison of risk estimates that either do or do not include 

PM2.5 as a copollutant is included to clarify this potential sensitivity with respect to O3-attributable 

respiratory mortality. Differences in the magnitude of risk estimates including or excluding PM2.5 as a 

copollutant are provided in Table 47. 

Table 47. Single- and Two-Pollutant (Including PM2.5 as a Copollutant) Long-Term O3-Attributable 
Respiratory Mortality Risk Estimates per 10 ppb 

Study Single-Pollutant  Multipollutant 

Turner et al., 2016 1.14 (1.10-1.18) 1.12 (1.08-1.16) 
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6.2.2.2 Short-Term O3 Exposures 

6.2.2.2.1 Potential Threshold Analysis 

The 2020 final O3 ISA evaluated a number of studies examining the shape of the concentration-response 

relationship for short-term O3 exposure and total/nonaccidental mortality, which we use to inform the 

long-term O3-attributable respiratory mortality relationship. The ozone ISA found that “studies that used 

different statistical approaches and ozone averaging times (i.e., 24 hour avg and 8 hour max) provide 

evidence of a linear concentration-response relationship, with less certainty in the shape of the curve at 

lower concentrations [i.e., …30 ppb for 8 hour max], [although] an examination of whether a threshold 

exists in the ozone mortality concentration-response relationship provided no evidence of a 

concentration below which mortality effects do not occur when examining 5 μg/m3 (~2.55 ppb) 

increments across the range of 1 hour max concentrations reported in the U.S. and Canadian cities 

included in [a large cohort].” As the Zanobetti and Schwartz, 2008 risk estimate uses the MDA8 metric, it 

can be used to quantitatively assess the effect of an O3 threshold at 30 ppb would have on benefits 

estimates. For context, approximately 3.7% of the contiguous U.S. population is projected to reside in 

areas where MDA8 O3 concentrations are annually below 30 ppb in 2024 (U.S. EPA, 2020b). Clinical 

evidence provides little indication that adverse effects occur at extremely low levels in most individuals. 

Epidemiologic evidence is qualitatively discussed further in section 6.5.14.2. 

6.2.2.2.2 Confounding by PM 

Regarding short-term exposures, the 2020 O3 ISA found that “the few recent multicity studies that 

examined potential copollutant confounding provide evidence supporting that O3 mortality risk 

estimates are relatively unchanged or slightly attenuated, but remain positive, in copollutant models 

with PM2.5, PM10, and NO2.”  

Katsouyanni et al., 2009 provided single- and two-pollutant (including PM10 as a copollutant) short-term 

O3-attributable respiratory mortality risk estimates for a subset of 15 of the 86 cities analyzed. A 

comparison of risk estimates that either do or do not include PM10 as a copollutant is included to clarify 

this potential sensitivity with respect to O3-attributable respiratory mortality. Differences in the 

magnitude of risk estimates including or excluding PM2.5 as a copollutant are provided in Table 48. 

Please note, as distributed lag risk estimates were not provided for the two-pollutant analyses, in 

additional to the inclusion of PM2.5 as a copollutant and the number of cities analyzed, there is a 

difference in the lag duration between the estimates in Table 48. 

Table 48. Single- and Two-Pollutant (Including PM1o as a Copollutant) Short-Term O3 Exposure O3-
Attributable Excess Premature Respiratory Mortality Risk Estimates per 10 ppb 

Study Single-Pollutant  Two-Pollutant 

Katsouyanni et al., 2009 0.77% (0.17%, 1.37%) 0.99% (-0.33%, 2.31%) 

 

 All-Cause Mortality 
When estimating air pollutant-attributable health impacts, EPA focuses on endpoints for which the 

underlying scientific evidence is strongest. That is, when evaluating evidence across scientific disciplines 

(i.e., clinical, animal toxicological, and epidemiologic) there is often consistency of effects within a 

discipline, coherence of effects across disciplines, and evidence of biological plausibility. Such an 

approach gives us greater confidence in the relationship between exposure and health outcome. For 
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criteria pollutants, EPA typically relies upon the causality determinations in the latest ISA or equivalent, 

which are made using a weight-of evidence approach. Generally, to estimate the pollutant-attributable 

human health benefits in which we are most confident, we at least assess health effects identified as 

having a ‘causal’ or ‘likely to be causal’ relationship with the pollutant of interest in the most recently 

published ISA. This is not to imply there may not be benefits associated with endpoints having a 

“suggestive of, but not sufficient to infer, a causal relationship,” but rather that there is greater 

uncertainty in these potential benefits. 

Because of the significance of the endpoint, we include a limited quantitative sensitivity analysis of total 

mortality associated with long-term O3 exposure. While the 2020 O3 ISA concluded that evidence was 

“suggestive of, but not sufficient to infer,” a causal relationship between long-term exposures and total 

mortality, the reduction of this risk is likely still valuable to society. As such, for this sensitivity 

discussion, we include risk estimates of long-term, all-cause O3-attributable total mortality from the two 

studies used to estimate PM2.5-attributable mortality risk (Table 49). Please note these long-term, all-

cause risk estimates include respiratory mortality estimates and should not be added to the respiratory 

mortality estimates. 

Table 49. Long-Term O3-Attributable Total Mortality Risk Estimates per 10 ppb 

Study Risk Estimate (per 10 
ppb increase in O3) 

Risk Estimate Details 

Turner et al., 2016 1.02 (1.01-1.03)  Fully adjusted HBM multipollutant estimate from Table 
E9, ages 35-99 

Di et al., 2017b 1.011 (1.010, 1.012) GEE two-pollutant main analysis estimate from Table 2, 
ages 65-99 

 

 Asthma Onset in Children 
The study identified as best characterizing risk for asthma onset in children was conducted in Canada 

(Tetreault et al., 2016). Even though comparatively Tetreault et al., 2016 was preferred in identification 

criteria to other available studies (e.g., study size, exposure estimation technique, etc.) other than 

location and study period, we thought it useful to include the largest and most recent U.S.-based risk 

estimates as a sensitivity analysis. An overall comparison of the main risk estimate from Tetreault et al., 

2016 and the alternative risk estimates from Garcia et al., 2019 can be found in Table 50. Details about 

the study providing an alternate risk estimate is below. 
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Table 50. Potential Sensitivity of Estimated Instances of Asthma Onset  

 

Three of the four ISA-identified studies of long-term O3-attributable asthma onset took place in the U.S., 

although only one included a study period more recent than 2005 (Garcia et al., 2019). Garcia et al., 

2019 examined the associations between long-term ozone exposure and asthma onset in children (aged 

nine-18 years) with no history of asthma in Southern California. The authors followed three waves of 

participants from the Children's Health Study for eight years between 1993 and 2014. Garcia et al., 2019 

obtained health and demographic data from parents, guardians, or participants, who completed 

questionnaires annually. In order to calculate annual mean, community-level ozone exposure, the 

authors acquired daily eight-hour mean O3 concentrations through ambient air pollution monitors. 

Multi-level Poisson regression models with one-year lag showed no statistically significant associations 

between long-term O3 exposure and asthma onset in children. Models adjusted for demographic 

variables as well as factors pertaining to family medical history, environmental factors, and near-

roadway pollution. 

The magnitudes of main and alternate risk estimates of long-term O3 exposure and asthma onset in 

children provided in Table 51. 

Table 51. Long-Term O3-Attributable Asthma Beta Coefficients 

Study Beta Coefficient Age Range 

Tetreault et al., 2016 0.020754 0-17 

Garcia et al., 2019 0.01695 9-18 

 

Potential Source of Uncertainty 
Potential Insights Gained from Quantitative Uncertainty 

Analyses2 

Application of Risk Estimates to 
Other Locations and Populations 

Tetreault et al., 2016 included only Canadians whereas Garcia et 
al., 2019 was restricted to southern CA 

Study Size 
Tetreault et al., 2016 included the largest study size, 
approximately twenty-five times the size of Garcia et al., 2019 

Study Period 
Garcia et al., 2019 evaluated a more recent and longer health 
study period (1993-2014) compared to 2002-2011 for Tetreault et 
al., 2016 

Exposure Estimate 
Tetreault et al., 2016 used hybrid exposure estimates whereas 
sever states, whereas Garcia et al., 2019 used monitor-based 
estimates 

Statistical Technique 
Tetreault et al., 2016 used time-varying Cox proportional hazard 
models, whereas Garcia et al., 2019 uses Poisson log-linear 
regression models 



 

113 
 

 Understanding the Effect Modification of Health Impacts in At-Risk Populations83 
Effect modification was also investigated with regard to O3 exposures. We reviewed relevant chapters 

from 2020 O3 ISA and used a similar methods to that described for PM2.5 to compile and assess studies 

cited in support of the Agency’s determinations (section 6.1.6). As the 2020 O3 ISA only presents an 

evaluation of at-risk groups in summary form and extensively references the findings from the 2013 O3 

ISA, we focused on the detailed chapter from that previous document in identifying the at-risk factors 

and studies to review (U.S. EPA, 2013).Factors with “adequate evidence” are genetic factors, asthma, 

children, older adults, diet, and outdoor workers. Factors with “suggestive evidence” are sex, SES, and 

obesity. Considering feasibility and our review criteria, we focused on studies addressing increased risks 

based on age in the adequate evidence group and note that some health functions already applied in 

the primary analysis focus on asthmatic subpopulations. We also elected to include illustrative 

calculations for some risk factors with “suggestive evidence”, specifically those for sex. 

6.2.5.1 Study and Risk Estimate Identification Criteria for Populations At-Risk for O3 Exposures 

We compiled epidemiologic studies from the related section of Chapter 8 of the 2013 O3 ISA for the 

following at-risk factors, excluding all other study types (e.g. toxicological studies), for a total of 28 

studies. This collection includes the following number of studies, with some studies duplicated for 

multiple endpoints. 

• 9 studies for children,  

• 10 studies for older adults, and  

• 18 studies for sex 

We excluded the genetic factors population from our analysis, as we do not currently have the capability 

to estimate health impacts among variant genotypes. We excluded diet, outdoor workers, and obesity 

for similar reasons, as we have no representative dataset for use in analysis with these risk factors. 

Effects on asthmatics were not included in this analysis because we currently lack highly resolved spatial 

data on asthma prevalence, in part because effects on asthmatic populations are included in the main 

analysis.84 We also excluded the SES group as the studies associated with the SES group for O3 were 

associated with other methodological challenges. We coded the identified studies into a spreadsheet 

and applied the initial screening criteria described previously. We collected information on mortality 

and/or morbidity endpoints assessed in each study and focused on all-cause mortality and respiratory 

morbidity endpoints. The remaining studies were evaluated based on the additional identification 

criteria described in Table 52.  

 
83 Analyses of effect modification will not be included in the main analyses, so as to avoid the possibility of double-
counting impacts. This potential uncertainty could also be described as the effect modification of individual risk 
factors. 
84 Effects on asthmatics using national level prevalence estimates are estimated in the main analysis. 
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Table 52. O3 At-Risk Study Identification Criteria 

Criterion Notes 

Peer-Review Peer-reviewed research exclusively 

Study Design Epidemiologic study 

Ozone Study Research on ozone exposure is used 

Study Location U.S. or Canada 

Population Attributes 
Presents risk estimates for clearly defined at-risk groups for which data 
currently exist in BenMAP-CE 

Exposure Duration Both short- and long-term exposure studies  

Causal or Likely Causal 
Health Effects 

Adequate or suggestive evidence for at-risk groups in ISA 

Economically Valuable 
Health Effects 

Health endpoints for which economic values have been or could 
reasonably be developed 

Baseline Incidence Data Must be able to identify baseline incidence data for subpopulations 

Season All year exposure or warm season exposure 

Ozone Exposure Metrics MDA8, or able to be converted to MDA8 

Lag Structure 
Choose model that most clearly represents the relationship between 
ozone exposure and the physiologic changes for the health endpoint 

 

6.2.5.2 Total Mortality 

Regarding the health endpoint of mortality, three studies for older adults met our criteria: Medina-

Ramon and Schwartz, 2008, Zanobetti and Schwartz, 2008, and Katsouyanni et al., 2009. All three 

studies provided sufficient details to apply risk model information for short-term all-cause mortality 

among adult age groups.85  There were no mortality studies for the child at-risk group in either the 2013 

or 2020 O3 ISAs (U.S. EPA, 2013, U.S. EPA, 2020a). For the at-risk population stratified by sex, two studies 

met our initial criteria: Medina-Ramon and Schwartz, 2008, which evaluated short-term O3 exposure and 

all-cause mortality, and Jerrett et al., 2009, which evaluated long-term O3 exposure and respiratory 

mortality. Both studies provided sufficient data to apply risk model information to male and female 

subpopulations. We developed health impact functions for these studies. 

The O3-mortality risk estimates for at-risk subpopulations reported in Medina-Ramon and Schwartz, 

2008 required additional modification in order to use those results to develop health impact functions.  

The authors presented excess risk estimates for each subpopulation as the additional percent change in 

mortality for persons who have the condition, compared to persons without the condition. For our 

populations of interest, these subgroups were persons age 65 or older compared to those younger than 

65, and females relative to males. However, they did not report the risk estimate for these comparison 

groups, so in order to estimate the total excess risk for each exposed at-risk group, we needed to first 

back-calculate the excess risk for the comparison group without the factor of interest. We accomplished 

this by assuming that the authors’ overall reported excess risk for the full sample of 0.65% (95% 

confidence interval = 0.38% to 0.93%) could be expressed as a weighted average of the unreported 

excess risk (“x”) and the full excess risk for the at-risk group, which would be expressed as the sum of x 

 
85 Calculations required to apply risk model information from Medina-Ramon and Schwartz, 2008 are described in 
the following paragraph. 
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and the reported excess risk from Medina-Ramon and Schwartz, 2008 Table 2, where the weights are 

calculated using the total and at-risk group sample sizes in Table 1 of that paper. For example, to 

calculate the total excess risks for the females in the sample, we used the following equation: 

 

ERTotal =  
ERMale(PopMale) + ER𝐹𝑒𝑚𝑎𝑙𝑒(PopFemale)

PopTotal
  

where ERTotal is the full sample excess risk of 0.65%; ERFemale is the excess risk of ozone exposures for 

females; ERMale is the excess risk of ozone exposures for males; PopTotal is the total sample population; 

and PopFemale and PopMale are the size of the female and male subsets of the sample population, 

respectively. We also know from Table 2 of that paper that: 

ERFemale =  ERMale + 0.58 % 

Substituting and using the available information from Medina-Ramon and Schwartz, 2008 Tables 1 and 

2, we can solve for ERMale and then ERFemale:  

 

0.65% =  
ERMale(1,365,937) + (0.58% + ERMale)(1,363,703)

2,729,640
 

 

ERMale = 0.36 % 

and 

ERFemale =  0.36% + 0.58% = 0.94% 

 

We then used the full excess risk value for the female subpopulation to derive a health impact function 

for ozone-related mortality for females. 

6.2.5.3 Respiratory Morbidity  

We applied the same identification criteria described in section 6.2.5.1 to respiratory morbidity 

endpoints for the child and sex at-risk groups. Three studies for children met our criteria for inclusion: 

Mar and Koenig, 2009, Paulu and Smith, 2008, and Villeneuve et al., 2007. Each study evaluated 

emergency room visits for asthma and provided sufficient risk model information stratified by age. No 

studies cited for the older adult population met our criteria for inclusion. Three studies for sex met our 

identification criteria: Paulu and Smith, 2008, Cakmak et al., 2006, and Lin et al., 2005. These studies 

evaluated emergency room visits for asthma, all respiratory hospital admissions, and hospital 

admissions for lower respiratory infection, respectively. Each study provided sufficient risk model 

information for male and female subpopulations. We developed health impact functions for all studies 

identified above. All the at-risk studies we identified are summarized in Table 53. 
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Table 53. Identified O3 At-Risk Beta Coefficients and Standard Errors 

At-Risk 
Factor 

Endpoint Study Subgroup 
Beta 
Coefficient 
(SE)1 

Lifestage, 
older adults 

Mortality, All Cause 
Medina-Ramon and Schwartz, 
2008 and Zanobetti and 
Schwartz, 2008 

Age 0-64 
-0.0001 
(0.0001) 

Age 65+ 
0.0010 
(0.0002) 

Lifestage, 
older adults 

Mortality, All Cause Katsouyanni et al., 2009 
Age 0-74 

0.0008 
(0.0002) 

Age 75+ 
0.0007 
(0.0003) 

Lifestage, 
older adults 

Mortality, All Cause Zanobetti and Schwartz, 2008 

Age 0-20 
0.0001 
(0.0003) 

Age 21-
30 

0.0001 
(0.0004) 

Age 31-
40 

0.0001 
(0.0002) 

Age 41-
50 

0.0001 
(0.0002) 

Age 51-
60 

0.0005 
(0.0002) 

Age 61-
70 

0.0004 
(0.0001) 

Age 71-
80 

0.0005 
(0.0001) 

Age 81+ 
0.0003 
(0.0001) 

Sex Mortality, All Cause 
Medina-Ramon and Schwartz, 
2008 and Zanobetti and 
Schwartz, 2008 

Female 
0.0009 
(0.0002) 

Male 
0.0004 
(0.00004) 

Sex Mortality, Respiratory Jerrett et al., 2009 
Female 

0.0044 
(0.0011) 

Male 
0.0011 
(0.0014) 

Lifestage, 
children 

Emergency Room 
Visits, Asthma 

Mar and Koenig, 2009 
Age 0-17 

0.0104 
(0.0044) 

Age 18+ 
0.0039 
(0.0027) 

Lifestage, 
children 

Emergency Room 
Visits, Asthma 

Paulu and Smith, 2008 
Age 2-14 

0.0104 
(0.0050) 

Age 15-
34 

0.0148 
(0.0035) 

Lifestage, 
children 

Emergency Room 
Visits, Asthma 

Villeneuve et al., 2007 Age 2-4 
0.0032 
(0.0033) 
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Age 5-14 
0.0073 
(0.0024) 

Age 15-
44 

0.0058 
(0.0018) 

Age 45-
64 

0.0063 
(0.0033) 

Age 65-
74 

0.0073 
(0.0055) 

Age 75+ 
-0.0006 
(0.0067) 

Sex 
Emergency Room 
Visits, Asthma 

Paulu and Smith, 2008 
Female 

0.0113 
(0.0027) 

Male 
0.0104 
(0.0032) 

Sex 
Hospital Admissions, All 
Respiratory 

Cakmak et al., 2006 
Female 

0.0013 
(0.0004) 

Male 
0.0017 
(0.0003) 

Sex 
Hospital Admissions, 
Lower Respiratory 
Infection 

Lin et al., 2005 
Female 

0.0087 
(0.0060) 

Male 
0.0040 
(0.0052) 

1 Beta coefficients and SEs in this table have been converted to MDA8 for comparability 

6.3 QUANTITATIVE CHARACTERIZATION OF BASELINE INCIDENCE RATE UNCERTAINTIES 
When available from HCUP, we incorporate county-level hospital admissions and emergency 

department visit baseline incidence data. Comparisons of the county-level data (box and whisker plot) to 

the national-level data (red circles) are available in Figure 14.  

Figure 14. Example County-Level and National-Level Emergency Department Visit and Hospital 

Admission Baseline Incidence Data 

 

We performed several quality assurance checks to ensure the incidence rates accurately reflect 

observed health outcomes in the underlying counties. These checks included: 

• Examining data inputs to ensure the endpoints reflect the specified set of ICD codes from the 

epidemiological studies; 

• Reviewing data processing scripts to ensure all calculations implement the intended procedures, as 

documented in the BenMAP-CE User Manual (U.S. EPA, 2018); 

• Re-processing existing incidence rates in BenMAP-CE's “Other Incidence (2014)” to confirm that 

changes to data processing to incorporate new endpoints have no or minimal impact on incidence 

rate data for existing endpoints from BenMAP-CE's 2017 data update; 
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• Comparing the relative magnitude of related endpoints to ensure that incidence rates for broader 

endpoints (e.g., HA, All Respiratory) are greater than incidence rates for endpoints with a narrower 

set of ICD codes (e.g., HA, Asthma); 

• Comparing national baseline incidence counts when using county-level incidence rates and nation-

level incidence rates to ensure that, in aggregate, the two datasets produce similar results;86 and 

• Examining the geographic distribution of incidence rates to ensure no counties, states, or regions, 

are characterized by anomalously low or high incidence. 

We identified no systematic errors or bias in the raw data or data processing steps. The main source of 

uncertainty in these data is related to imputation of rates where county data for specific endpoints were 

suppressed due to statistical reliability or privacy concerns. The state or regional rates used to substitute 

for these suppressed values may under- or over-estimate individual county rates.     

6.4 QUANTITATIVE CHARACTERIZATION OF ECONOMIC VALUATION ESTIMATE UNCERTAINTIES  

 Mortality Cessation Lag 
Following advice from the Health Effects Subcommittee of EPA’s independent Science Advisory Board 

(SAB-HES), the agency typically assumes that some amount of time lapses between when air pollution is 

reduced and when PM-attributable mortality is reduced fully. Within the context of benefits analyses, 

this term is often referred to as “cessation lag.” The duration of this lag affects how changes in PM-

attributable mortality associated with long-term (i.e., years-long) exposure are valued. Economic theory 

suggests that the value of these future impacts should be discounted. The primary analysis included in 

recent RIAs assumes that this lag is distributed over a 20-year period, with 30% of deaths reduced in 

year 0, 50% occur in years 1-5, and the remaining 20% occur in years 6-20. This approach is generally 

support by SAB recommendations (Cameron, 2001, Cameron, 2004, Hammitt and Bailar, 2010). 

Based on SAB requests and recommendations, we previously performed several quantitative 

uncertainty analyses with the goal of better understanding potential impacts of different cessation lag 

distribution assumptions (U.S. EPA, 2012b). Although it was determined that certain extreme lag 

structure assumptions may substantially impact monetized benefits, potentially increasing or decreasing 

monetized impacts by up to 25%, for most reasonable distributed lag model structures, differences in 

the specific shape of the lag function had relatively small impacts on overall PM2.5 benefits estimates.  

We do not know how long-term O3 exposure-related respiratory deaths are distributed over time. 

Hence, when discounting the value of O3-attributable deaths we use two lag structures originally 

developed for PM2.5 (the 20-year segmented lag used for PM2.5 and an assumption of zero lag) as 

sensitivity analyses. 

 Lung Cancer Cessation Lag 
For a given health effect attributable to air pollution exposure, EPA reports the number of avoided cases 

associated with the estimated pollutant reduction in a specified year. However, for some health effects, 

there is an expected time lag between changes in pollutant exposure in a given year and the total 

realization of health effect benefits, commonly referred to in regulatory analyses as the “cessation lag” 

 
86 Aggregated county-level baseline incidence counts for all hospitalization and emergency department visit 
endpoints included in the main benefits estimates were within 10% of the national baseline incidence counts. 
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(section 6.4.1). For an outcome such as lung cancer, where the time between exposure and diagnosis 

can be quite long, it may take decades to realize the full benefits of the air quality improvements. 

Properly estimating the time course over which lung cancer health benefits are realized is critical for 

proper discounting of the economic value of these health benefits.  

Following guidance from EPA’s Science Advisory Board (Ostro, 2004, EPA RIAs have applied a 20-year 

distributed cessation lag model to estimate the temporal distribution of reductions in mortality risks, 

including fatal lung cancer cases. In the 20-year distributed lag model, 30 percent of the total mortality 

risk reductions occur in the first year following the exposure reduction, 50 percent are distributed 

evenly among years two through five, and the remaining 20 percent are distributed evenly among years 

six through 20. This structure reflects mortality risks from a variety of causes, with the mortality risk 

reductions occurring later representing mortality risks from lung cancer. 

For non-fatal cancer incidence, we considered a similar cessation lag approach based on estimates of 

the lung cancer “latency period,” or the time that passes between exposure and diagnosis, when 

diseases processes may be occurring undetected and not yet resulting in observable symptoms. Based 

on findings in the 2019 PM ISA, EPA has recently developed a health impact function based on 

Gharibvand et al., 2017 for non-fatal lung cancer incidence. To support the new non-fatal lung cancer 

risk estimate, we applied an age-at-diagnosis cessation lag distribution for the main analysis as it 

accounts for age-specific latency period, instead of assuming a single latency duration. However, other 

potentially applicable distribution models are available that also take into account the latency between 

exposure and lung cancer diagnosis, such as the adapted 20-year distribution (section 6.4.2.1) and the 

latency-based triangular distribution (section 6.4.2.2). All potential lag cessation distributions, including 

the traditional 20-year lag distribution, are compared in section 6.4.2.3. 

6.4.2.1 Adapted 20-Year Distribution 

We adapted the 20-year distributed lag model applied to VSL estimates in previous EPA RIAs using the 

estimated 10-year latency period. Following the latency period, the adapted 20-year model has zero 

cancer case reductions in years one through five and an even distribution of case reductions in years six 

through 20, resulting in scaling factors of 0.71 for a 3% discount rate or 0.46 for a 7% discount rate. 

6.4.2.2 Latency-Based Triangular Distribution 

A continuous probability distribution shaped like a triangle may better assess lung cancer lag cessation. 

Triangular distribution based on a search of lung cancer latency periods from the peer-reviewed 

literature. Using the most common latency period of 10-years observed in the literature (Table 29), we 

estimated a triangular distribution that spans from five to 20 years, with the peak of the distribution at 

ten years, the most common latency period estimate found in the literature (i.e., the mode).  We 

identified a triangular distribution to reflect the uncertainty of latency period duration found in the 

literature, given the limited amount of information available to establish the shape and form of an 

uncertainty distribution. We used the cumulative probability function for this distribution to estimate 

the incremental annual number of cases likely to be diagnosed year to year by subtracting the 

cumulative probability from the previous year from the cumulative probability of the current year. We 

then used the resulting percentages to create a cessation lag model, allocating cases avoided in the 

years following an exposure change according to the corresponding yearly percentages. 
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6.4.2.3 Comparison of Lung Cancer Lag Cessation Distribution Models 

The effect of each potential cessation lag distribution model was converted into scaling factors (Table 

54). The scaling factors of the adjusted 20-year lag distribution estimate falls between that of the 

traditional cessation lag and the triangular distribution lag estimates. Also, the adjusted cessation lag 

distribution underestimates as compared to the age-at-diagnosis distribution. 

Table 54. Scaling Factors for Various Lung Cancer Lag Cessation Distribution Models 

Discount Rate Age Range Scaling Factor Lag Cessation Distribution Model 

3% 65-99 0.668980939 Traditional VSL cessation lag, 3% DR 

7% 65-99 0.398456232 Traditional VSL cessation lag, 7% DR 

3% 30-99 0.70711338 Adjusted 20-Year Distributed Lag Adjustment Factor 

7% 30-99 0.463225599 Adjusted 20-Year Distributed Lag Adjustment Factor 

3% 30-99 0.72192703 Triangular Adjustment Factor 

7% 30-99 0.480176715 Triangular Adjustment Factor 

3% 30-34 0.350285148 SEER Age-Distribution Adjustment Factor 

3% 35-44 0.427591186 SEER Age-Distribution Adjustment Factor 

3% 45-54 0.553445022 SEER Age-Distribution Adjustment Factor 

3% 55-64 0.675599356 SEER Age-Distribution Adjustment Factor 

3% 65-74 0.775053763 SEER Age-Distribution Adjustment Factor 

3% 75-84 0.843760064 SEER Age-Distribution Adjustment Factor 

3% 85-99 0.916741635 SEER Age-Distribution Adjustment Factor 

7% 30-34 0.108397669 SEER Age-Distribution Adjustment Factor 

7% 35-44 0.168901798 SEER Age-Distribution Adjustment Factor 

7% 45-54 0.294643444 SEER Age-Distribution Adjustment Factor 

7% 55-64 0.445786107 SEER Age-Distribution Adjustment Factor 

7% 65-74 0.590393871 SEER Age-Distribution Adjustment Factor 

7% 75-84 0.702750875 SEER Age-Distribution Adjustment Factor 

7% 85-99 0.82379138 SEER Age-Distribution Adjustment Factor 

 

Using the lung cancer incidence risk estimates and a hypothetical scenario, we compared the three 

potential lung cancer cessation lag models. The annual reduction in cancer cases was estimated from 

zero to 100 years after the exposure change. For the triangular and adjusted 20-year distributed lag, all 

annual reductions occur within 20 years after exposure change and for the age of diagnosis distribution, 

all annual reductions fall within 67 years after exposure change (Figure 15) with 90% occurring by year 

26.  
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Figure 15. Lung Cancer Cases Cessation Lag Distribution by Model 

 
 

A potential limitation of the triangular distribution and adjusted 20-year distributed lag is that the same 

latency period is used for all ages. For an exposure change experienced at 30, both the triangular 

distribution and adjusted 20-year distributed lag estimate that reductions occur between ages 35 and 

50. However, SEER data indicates that less than 5% of lung and bronchus cancer diagnoses occur during 

this period. Conversely, for an exposure change experienced at 90, the reductions are realized from ages 

95 to 110 (greater than life expectancy).  

A limitation of the age-of-diagnosis distribution methods is that the highest reductions occur in the first 

five years for the age-of-diagnosis distribution and not all ages display latency periods (Figure 15). The 

factor used in this method estimates the time pattern of benefits based on the percentage of cancer 

incidence remaining in the life and results in older age bins without latency periods (Figure 16). While an 

age-dependent latency period may more accurately reflect the diagnosis data, the age-of-diagnosis 

distribution method may overestimate case reductions in earlier years by assuming all reduced cases for 

a change in exposure at later ages are realized by the end of life (age 99). At the same time, some cases 

are delayed by two to five decades, beyond latency values reported in the literature for lung cancer.  
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Figure 16. Lung Cancer Cases Reduction Distribution 

 

 Income Elasticity of Willingness to Pay 
The degree to which one’s WTP to reduce the risk of adverse effects changes in proportion to future 

changes in income is uncertain. We previously evaluated the potential impact of this factor on the 

monetized benefits in a sensitivity analysis (U.S. EPA, 2012b). Results are available below. 

Our estimates of monetized benefits account for growth in real gross domestic product per capita by 

adjusting the WTP for individual endpoints based on the central estimate of the adjustment factor for 

each of the categories (minor health effects, severe and chronic health effects, mortality, and visibility). 
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We previously examined how sensitive the estimate of total benefits is to alternative estimates of the 

income elasticities. Table 55 lists the ranges of elasticity values used to calculate the income adjustment 

factors, while Table 56 lists the ranges of corresponding adjustment factors. The results of this 

sensitivity analysis, giving the monetized benefit subtotals for the four benefit categories, are presented 

in Table 57. 

Table 55. Ranges of Elasticity Values Used to Account for Projected Real Income Growtha 

Benefit Category Lower Sensitivity Bound Upper Sensitivity Bound 

Minor Health Effect 0.04 0.30 

Mortality 0.08 1.00 
aDerivation of these ranges can be found in Kleckner and Neumann, 1999. COI estimates are assigned an 

adjustment factor of 1.0.  

Table 56. Ranges of Adjustment Factors Used to Account for Projected Real Income Growtha 

Benefit Category Lower Sensitivity Bound Upper Sensitivity Bound 

Minor Health Effect 1.018 1.147 

Mortality 1.037 1.591 
aBased on elasticity values reported in Table 55, U.S. Census population projections, and projections of real GDP 

per capita. 

Table 57. Sensitivity of Monetized Benefits to Alternative Income Elasticitiesa 

Benefit Category 

Benefits Incremental to Baseline (Millions of 2006$) 

Lower Sensitivity Bound Upper Sensitivity Bound 

Minor Health Effect $30 $31  

Mortalityb  $3,600  $3,800  
aAll estimates rounded to two significant digits. 

bUsing mortality effect estimate from Krewski et al., 2000 and 3% discount rate. Results using Laden et 

al. (2006) or a 7% discount rate would show the same proportional range. 

Consistent with the impact of mortality on total benefits, the adjustment factor for mortality has the 

largest impact on total benefits. The value of mortality in 2020 ranges from 96% to 108% of the main 

estimate based on the lower and upper sensitivity bounds on the income adjustment factor. The effect 

on the value of minor health effects is much less pronounced, ranging from 86% to 133% of the main 

estimate for minor effects. 

 Statistical Estimates of VSL 
EPA relies on published peer-reviewed studies to provide statistical estimates of the value of avoided 

statistical mortality risk (VSL).  These studies provide a range of differ estimates due to varying study 

design and different statistical samples.  EPA uses a distribution of values fit to the studies’ estimates as 

described in Section 5.1.1 and Table 22.  

 Alzheimer’s Disease and Parkinson’s Disease Onset Lifetime Costs 
The epidemiologic study from with the risk estimates for Alzheimer’s and Parkinson’s disease were 

identified used time to first hospital admission as the health endpoint readout. As the authors note that 

this is not necessarily indicative of disease onset, we only include valuation estimates of associated 
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hospital admissions costs in the main benefits assessment. However, we include information here 

regarding how the benefits estimates would increase if the first hospital admission were used as a 

surrogate for disease onset.87 

6.4.5.1 Alzheimer’s Disease 

Potential valuation sources of Alzheimer’s disease lifetime medical costs were available from the 

Alzheimer's Association, 2020 report and Jutkowitz et al., 2017. Using Alzheimer's Association, 2020, we 

first developed an estimate of incremental annual medical expenses for Medicare beneficiaries living 

with Alzheimer’s Disease (Table 58). Then, using the estimated life expectancy duration of 5 year from 

Jutkowitz et al., 2017, 3% and 7% discounted costs were extrapolated (Table 59). We note that the 

average/median age of Alzheimer’s disease diagnosis/onset is after the age of 65, at which we assume 

retirement, so any potential lost wages are not included in this valuation estimate. Lifetime medical 

costs, excluding hospitalization, are estimated at $156,920 using a 3% discount rate or $145,946 using a 

7% discount rate in 2015$ Alzheimer's Association, 2020.  

Table 58. Annual Alzheimer’s Disease Valuation Estimate Calculation 

Service Beneficiaries with Alzheimer’s 
Disease or Other Dementia 

Beneficiaries without 
Alzheimer’s Disease or Other 
Dementia 

Inpatient hospital $11,465 $3,703 

Medical provider $5,762 $3,589 

Skilled nursing facility $7,213 $493 

Nursing home $16,523 $800 

Hospice $2,126 $161 

Home health care $2,661 $386 

Prescription Medications $3,481 $2,986 

Annual Medical Expenses ($2019) $49,231 $12,118 

Annual Medical Expenses ($2015) $44,128 $10,862 

Incremental Annual Medical 
Expenses for Medicare 
beneficiaries with AD ($2015) 

$33,266  

 

Table 59. Lifetime Alzheimer’s Disease Valuation Estimate Calculation (2015$) 

Year 3% Discount Rate 7% Discount Rate 

0 $33,266 $33,266 

1 $32,297 $31,090 

2 $31,357 $29,056 

3 $30,443 $27,155 

4 $29,557 $25,379 

Total Lifetime Costs $156,920 $145,946 

 
87 Baseline incidence and prevalence data would need to be updated to estimate impacts of disease onset.  
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Jutkowitz et al., 2017 provided information needed to separately develop a lifetime Alzheimer’s Disease 

cost estimate with a 3% discount rate, but not with a 7% discount rate (Table 60. Additional Lifetime 

Alzheimer’s Disease Valuation Estimate Calculation with a 3% Discount Rate (2015$)). As the 3% 

discount rate estimate of $156,920 from Alzheimer's Association, 2020 is fairly similar to the lifetime 3% 

discount rate estimate of $184,500 from Jutkowitz et al., 2017, we have additional confidence in the 

validity of the Alzheimer's Association, 2020 estimates (Table 21). 

Table 60. Additional Lifetime Alzheimer’s Disease Valuation Estimate Calculation with a 3% Discount 

Rate (2015$) 

Service Base-Case (83-year-old 
incident dementia case) 

Counterfactual 
Dementia Free 

Incremental Increase 
in Lifetime Costs 

Value of informal caregiving $135,300  $2,460  $132,840  

Out-of-pocket expenditures $89,840  $64,720  $25,120  

Medicaid expenditures $44,090  $37,450  $6,640  

Medicare expenditures $52,540  $32,650  $19,890  

Total value $321,780  $137,280  $184,500  

 

6.4.5.2 Parkinson’s Disease 

Yang et al., 2020 provided estimates of lifetime costs, including direct, indirect, and non-medical costs. 

Using Yang et al., 2020, we first developed an annual estimate of excess costs associated with living with 

Parkinson’s Disease for one year (Table 61). Then, using the estimated life expectancy duration of 14.6 

years from De Pablo-Fernandez et al., 2017, the 3% and 7% discounted costs were extrapolated (Table 

62). Lifetime medical costs are estimated at $567,285 using a 3% discount rate or $445,792 using a 7% 

discount rate in 2015$ (Table 21). 
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Table 61. Annual Parkinson’s Disease Valuation Estimate Calculation 

Service Excess Cost per 
Person with 
Parkinson’s Disease 

Description  

Direct Medical Costs  

 Non-acute institutional care $6,888 Quantify excess healthcare cost of 
each person with Parkinson’s 
Disease compared with 10 matched 
individuals without Parkinson’s 
Disease 

 Hospital inpatient $6,932 

 Outpatient $5,308 

 Physician office $1,182 

 Durable medical equipment $140 

 Prescription medication $3,988 

Direct Medical Costs Subtotal $24,438 

Indirect Medical Costs 

    Paid daily non-medical care $3,709 Home caretakes/long-term care 
facilities 

    Home modification $2,151 
 

    Motor vehicle modification $897 
 

    Other expenses $508 
 

Indirect Medical Costs Subtotal $7,265 
 

    Non-Medical Costs 

    Reduced employment $2,579 Reduced labor market participation 
due to early retirement 

    Absenteeism $4,869 Lost work days 

    Presenteeism $2,841 Lost work productivity at work 

    Social productivity loss in volunteer  
    work 

$997 

    Supplemental security income (SSI) $541 SS disability supplemental income 

    Social security disability insurance  
    (SSDI) 

$1,617 

    Other disability income $2,431 Includes other disability income 
sources such as VA disability, gov't 
employee disability, & state 
disability insurance or personal 
disability insurance payments  

Non-Medical Costs Subtotal $18,293 
 

Annual Medical Expenses ($2017) $47,578 
 

Annual Medical Expenses ($2015) $44,718 
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Table 62. Lifetime Parkinson’s Disease Valuation Estimate Calculation 

Year 3% Discount Rate 7% Discount Rate 

0 $44,718 $44,718 

1 $43,416 $41,793 

2 $42,151 $39,059 

3 $40,924 $36,503 

4 $39,732 $34,115 

5 $38,574 $31,883 

6 $37,451 $29,798 

7 $36,360 $27,848 

8 $35,301 $26,026 

9 $34,273 $24,324 

10 $33,275 $22,732 

11 $32,305 $21,245 

12 $31,364 $19,855 

13 $30,451 $18,556 

14 $29,564 $17,343 

14.6 $17,427 $9,992 

Total Lifetime Costs (14.6 yr survival) $567,285 $445,792 

6.5 QUALITATIVE CHARACTERIZATION OF UNCERTAINTIES 
There are several uncertainties we are unable to fully or partially quantitatively assess, but qualitatively 

discuss below, in alphabetical order.  

 Applying Risk Estimates to Locations and Populations not Specified in the Epidemiologic 

Study 
EPA regulatory actions often affect portions of the country and populations that differ from those 

considered in the epidemiologic studies providing the risk estimates. EPA commonly transfers risk 

estimates from one location or population to another, following a procedure called benefits transfer, a 

potential source of uncertainty. When available, risk estimates based on nationwide studies reflecting 

the overall population demographics of U.S. residents will be used when estimating health benefits. 

Epidemiologic studies exploring the relationship between air pollution and the risk of mortality often 

consider populations whose characteristics are broadly representative of the U.S. (e.g., Medicare-based 

estimates will be applied to those >64). By contrast, epidemiologic studies examining morbidity 

outcomes may focus on population subsets, such as those residing in specific geographic regions, a 

single sex, or selected races/ethnicities. In this context, two or more epidemiologic studies may report 

risk estimates that, when pooled, can better characterize risks experienced by U.S. populations. 

However, in some cases it may be scientifically inappropriate to pool risk estimates—for example, a 

nationwide analysis of populations ages 65-99 and a less-geographically diverse analysis of populations 

ages 0-99. In a situation such as this, the estimate best characterizing risk in the U.S. will be included in 

the main benefits assessment and the others will be included in quantitative sensitivity analyses 

(sections 6.1 and 6.1.6). 



 

128 
 

 Causality Determination 
When estimating air pollutant-attributable health impacts, EPA focuses on endpoints for which the 

underlying scientific evidence is strongest. This approach is based on evaluating evidence across 

scientific disciplines (i.e., clinical, animal toxicological, and epidemiologic) with regard to consistency of 

effects within a discipline, coherence of effects across disciplines, and evidence of biological plausibility. 

Such an approach gives us greater confidence in the relationship between exposure and health 

outcome. For criteria pollutants, EPA typically relies upon the causality determinations in the latest ISA 

or equivalent, which are made using a weight-of evidence approach. These causality determinations are, 

however, made for categories of health effects and not for specific endpoints. Thus, the extent to which 

the relationship exists for the specific endpoint and the exposure circumstances of interest in a benefits 

assessment is a source of uncertainty.  

An expert elicitation sponsored by EPA to characterize the uncertainty in the relationship between PM2.5 

and mortality, including causal uncertainty, was released in 2006 and reviewed by the Advisory Council 

on Clean Air Compliance (Hammitt, 2008, IEc, 2006). Although the 12 expert-defined concentration-

response functions provide useful information on the sensitivity of the health benefits estimates, 

additional epidemiology literature which addresses some of the weaknesses identified by the expert 

elicitation has since become available, such as improved exposure estimation techniques and the use of 

cohorts more representative of the U.S population. For these reasons we do not include the expert-

derived results as a sensitivity analysis here but consider it as qualitative support for the relationship 

between long-term PM2.5 exposures and all-cause mortality impacts. 

Causal inference is another method of establishing a causal connection that evaluates associations 

under changing conditions. The 2019 PM ISA stated that “overall, the results of these causal inference 

studies contribute to the body of epidemiologic evidence that informs the causal relationship between 

long-term (one month to years) PM2.5 exposure and total mortality (U.S. EPA, 2019c). Observing 

consistent results for this relationship across studies using different analytic techniques (i.e., difference-

in-difference approach) increases our confidence in the relationship.” 

 Estimating and Assigning Exposures in Epidemiology Studies 
New developments in exposure assessment, including hybrid spatiotemporal models that incorporate 

satellite observations of aerial optical density, land use variables, surface monitoring data from 

monitors, and chemical transport models, have led to improvements in the spatial resolution extent of 

pollutant concentration surfaces. After reviewing the current state of exposure science, the 2019 PM ISA 

stated that “a number of studies demonstrate that the positive associations observed between long-

term PM2.5 exposure and mortality are robust to different methods of assigning exposure” and the 2020 

O3 ISA articulated that “hybrid methods have produced lower error predictions of ozone concentration 

compared with spatiotemporal models using land use and other geospatial data alone but may be 

subject to overfitting given the many different sources of data incorporated into the hybrid framework.” 

Although these advancements may reduce bias and uncertainty in risk estimates, the accuracy of hybrid 

exposure estimates is difficult to confirm in areas lacking monitors. On the other hand, studies using 

monitor data as the only exposure information have increasing exposure uncertainty the farther people 

live from the monitor site. 
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Uncertainties related to PM2.5 and O3 exposure estimation vary. For example, the PM2.5 HBM method 

had Pearson R’s ranging from 0.91 to 0.94 when applied across the U.S. at a 36-km resolution, 

depending on the geoimputation approach of the CMAQ data (U.S. EPA, 2019c). The evaluation of the 

O3 HBM method has been relatively limited. However, overall conclusions regarding long-term O3 

exposure estimates that include fixed-site monitor measurements are that “the true effect of long-term 

exposure to ambient ozone may be underestimated or overestimated by the model” and  that it “is 

much more common for the effect estimate to be underestimated, and the bias is typically small in 

magnitude” (U.S. EPA, 2020a). 

 Differential Toxicity of PM2.5 According to Chemical Composition  
PM2.5 is a heterogenous mixture of solid and liquid particles suspended in air and can vary with regards 

to size, composition, and source. The 2020 PM ISA found that “across exposure durations and health 

effects categories…many PM2.5 components and sources are associated with many health effects, and 

the evidence does not indicate that any one source or component is consistently more strongly related 

to health effects than PM2.5 mass;” although, it was also noted that “most studies that examine PM 

sources and components focused on PM2.5” (U.S. EPA, 2019c). 

Since the 2019 PM ISA concluded that “recent studies continue to demonstrate that no individual PM2.5 

component or source is a better predictor of mortality than PM2.5 mass” and “many PM2.5 components 

and sources are associated with many health effects and that the evidence does not indicate that any 

one source or component is consistently more strongly related with health effects than PM2.5 mass” we 

continue to assume that all fine particles, regardless of their chemical composition, are equally potent in 

causing mortality and do not quantitatively assess uncertainties related to potential differences in PM2.5 

toxicity or composition. A qualitative discussion of this uncertainty as it relates to respiratory effects, 

cardiovascular effects, and mortality can be found in section 1.5.4 of the 2019 PM ISA (U.S. EPA, 2019c). 

 Different Long-Term Exposure Windows 

The delay between changes in exposure and changes in health is an empirical challenge in estimating 

potential health effects associated with air pollution exposure. For example, if health impacts of high 

pollutant exposures have a long latency, risk estimates attributing to lower pollutant concentrations 

experienced more recently may be biased away from the null. However, the 2019 PM ISA states that 

“new evidence from recent studies continues to support the previous conclusion that health benefits 

from reducing air pollution could be expected with a few years of intervention” (U.S. EPA, 2019c). This 

issue is likely less relevant to O3 exposure-attributable mortality, as those studies often have very 

similar, if not overlapping, health and air quality data. 

 Discounting Future Benefit Estimates 
Discounting reflects that people prefer benefits presently more than in the future. When appropriately 

applied, discounting can allow for the direct comparison of future benefits to costs. However, there are 

potential uncertainties associated with discounting future benefit estimates. EPA bounds discounted 

benefits and costs using an estimate of the consumption rate of interest and a rate of return on private 

capital given that the share of capital that is displaced by a regulation is unknown. OMB currently 

recommends, and EPA uses, a real consumption rate of discount of 3% and a real rate of 7% for the 

opportunity cost of private capital based on prior empirical estimates (OMB, 2003). These values are 
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estimates and therefore introduce uncertainty. Additional detail on discounting can be found in the EPA 

Guidelines for Preparing Economic Analyses (U.S. EPA, 2014). 

 Statistical Estimates of WTP  
EPA relies on published peer-reviewed studies to provide statistical estimates of the value of avoided 

pain and suffering (WTP).  While most of these studies provide estimates of the uncertainty due to 

statistical sampling, there are other important sources of error.  First, the statistical models used to 

produce these estimates may be incorrect, termed modeling error.  Second, the statistical samples used 

to produce these estimates may be selectively chosen and unlike the population of interest, leading to 

selection error.  Third, WTP values are unavailable for many health endpoints of interest. Assigning a 

value of zero is clearly incorrect, but the EPA has no basis on which to assign other values.  

 Confounding by Individual Risk Factors 
Interindividual variability in both physiological responses and exposures to ambient air pollution can 

affect the size of reported risk estimates in epidemiologic studies. Well-designed epidemiology studies 

account for individual risk factors as covariates in their models88, and so all else being equal we identify 

risk estimates adjusted to control for the most covariates that could reasonably impact the risk 

estimate. However, confounding by individual risk factors remains a potential source of uncertainty as 

additional relevant covariates may exist that are not included as covariates in epidemiological risk 

estimates used for health benefits assessment. Unfortunately, we are currently unable to quantitively 

assess this area of uncertainty but will include qualitative discussions when possible. 

 Confounding by Other Pollutants 
When considering the relationship between pollutant exposure and health impacts, it can be 

informative to consider whether risk estimates are changed when other pollutants are included in 

copollutant models, especially when health impacts of multiple pollutants are being estimated 

concurrently. Regarding long-term exposures, the 2019 PM ISA concluded that “positive associations 

observed between long-term PM2.5 exposure and total mortality remain relatively unchanged after 

adjustment for…NO2 and PM10−2.5” and the 2020 O3 ISA found that “positive associations observed 

between long term O3 exposure and total mortality remain relatively unchanged after adjustment 

for…NO2.” However, confounding due to the effects of copollutants other than O3 and PM2.5 are a 

potential source of uncertainty. 

 Risk Attributable to Long-Term and Short-Term Exposures 
Long- and short-term exposures may follow similar or divergent biological pathways. When pathways 

are similar, estimates of impacts from long-term exposures may include short-term impacts and vice-

versa. However, if pathways diverge, long- and short-term impacts may be the sum, or even greater 

than the sum, of the two exposure duration impacts. As there is little research directly comparing long- 

and short-term effects, we are currently unable to quantitatively assess this area of uncertainty for 

either PM2.5- or O3-attributable health effects. 

 
88 Common covariates include education level, marital status, body mass index, cigarette smoking, diet, 
occupational exposures, income, percentage of minority, unemployment, and poverty. 
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 Heterogeneity of Risk Estimates 
Epidemiologic studies often differ according to study design, geographic locations, age groups, 

population attributes, study size, methods for estimating exposure, range of pollutant concentrations, 

time periods, study sizes, and follow-up durations. These differences in turn influence the magnitude 

and standard error of study-reported risk estimates. The diversity of identified risk estimates could 

reflect either the variability across the populations studied or uncertainty around the risk estimates. 

Importantly, heterogeneous risk estimates are not necessarily indicative of bias, but could also result 

from variability of the underlying input parameters.  

 O3 Metrics89 
O3 exposure metrics used to develop risk estimates can take many forms, though the most widely used 

metrics are the maximum daily 8-hour average (MDA8), daily average 24-hour (DA24), daily average 8-hr 

from 10AM to 6PM (DA8), and maximum daily 1-hour average (MDA1) metrics.  

Historically, if epidemiologic studies developed risk estimates based on O3 metrics other than MDA8, 

EPA would adapt the risk estimates based on average conversion ratios to be appropriate for use with 

air quality surfaces projected in the MDA8 metric (Anderson and Bell, 2010). This approach brings with it 

uncertainties associated with the simplifying assumptions used to develop the conversion ratios. In most 

cases, the day to day variation in different metrics (e.g., DA24 vs MDA8) is highly correlated. As such, the 

relationships between health impacts and different ozone metrics will also be highly correlated. 

However, when we apply risk estimates derived from time series results to evaluate the impacts of a 

specific policy scenario, we focus most on the shift in the overall distribution of O3 concentrations over 

an entire season, instead of on the day to day variation in O3 levels. Because specific policy scenarios 

might result in different temporal distributions of ozone concentrations than was observed in the 

monitored ozone data used in the studies, it is important to choose an O3 metric that is best suited to 

capturing changes in O3 that are likely to occur during hours where populations are likely to be exposed. 

6.5.12.1 Converting O3 Risk Estimate Exposure Metrics 

When epidemiologic risk estimates are developed using non-MDA8 O3 exposure metrics, EPA has 

typically converted the beta risk estimates into MDA8 metrics, which brings in a potential source of 

uncertainty (Anderson and Bell, 2010). We discuss uncertainties associated with converting various 

common O3 exposure metrics into the MDA8 metric below. 

6.5.12.1.1 DA24 to MDA8 

Currently, air quality projections using the MDA24 metric are unavailable, so a conversion factor from 

Anderson and Bell, 2010 is used in order to apply these risk estimates to MDA8 air quality surface 

projections. We multiply the beta risk estimate by the inverse of the median summer ratio of MDA8 to 

DA24 mean O3 concentrations (i.e., 1 / 1.53 = 0.6536) for studies assessing summer O3 exposure or by 

the inverse of the fixed effects average ratio of MDA8 to DA24 mean O3 concentrations (i.e., 1 / 1.53 = 

0.6536) for studies assessing all-year O3 exposure. We note that Anderson and Bell, 2010 included a 

range of ratios from 1.23-1.83. 

 
89 PM2.5 exposure metrics are not discussed here as the vast majority are based on daily 24-hour average 
concentrations and annual exposures are often estimated using daily 24-hour average concentrations. Importantly, 
this potential source of uncertainty is not likely to have a large effect on overall PM2.5 benefits estimates results. 
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6.5.12.1.2 DA8 to MDA8 

A comparison of the MDA8 and DA8 metrics using 20 years of O3 monitoring data (2000-2019) for the 

entire contiguous U.S. resulted in a very high rate of correlation (Figure 17). The correlation was based 

on a simple linear regression with zero intercept, meaning that if the MDA8 is 0, then the DA8 mean 

must also be zero. The green line is the regression line and the light gray line represents a 1:1 

relationship. Please note, the MDA8 cannot exceed the DA8 and the high density of the ~7 million points 

shown in the graph cluster near the 1:1 line. In fact, the MDA8 and DA8 metrics are identical 

approximately 30% of the time and differ by 2 ppb or less about 80% of the time. Based on this 

comparison, the conversion factor from DA8 to MDA8 is 0.97.  

Figure 17. Correlation of MDA8 and DA8 O3 Exposures Between 2000-2019 (R=0.986) 

 

 

6.5.12.1.3 MDA1 to MDA8 

Due to time and resource limitations, air quality projections using the MDA1 metric are also unavailable 

for the Revised CSAPR Update final rulemaking, so a conversion factor from Anderson and Bell, 2010 is 

used in order to apply these risk estimates to MDA8 air quality surface projections. We multiply the beta 

risk estimate by the median summer ratio of MDA1 to MDA8 O3 concentrations (i.e., 1.13) for studies 

assessing summer O3 exposure or by the fixed effects average ratio of MDA1 to MDA8 O3 concentrations 

(i.e., 1.14) for studies assessing all-year O3 exposure. We note that Anderson and Bell, 2010 included a 

range of ratios from 1.08-1.26. 



 

133 
 

 O3 Season 
Studies of O3 vary with regards to O3 season, limiting analyses to various definitions of summer (e.g., 

April-September, May-September or June-August) and exposures over the full calendar year. These 

differences can reflect state-specific, EPA-defined O3 seasons or another seasonal definition chosen by 

the study author.  O3 exposure estimates are arguably more accurate during the summer when 

concentrations are typically higher and more monitors are operational. In addition, respiratory effects 

associated with short-term exposures are commonly limited to the warm season and therefore reflect 

the incidence that occurs during the 5- or 6-month O3 season (U.S. EPA, 2020d). Recently, there are an 

increased number of long-term analyses of O3-attributable health impacts over the full calendar year 

using hybrid modeling techniques and where O3 monitoring data is collected for the entire year. These 

studies likely represent a more complete estimate of O3-attributable health impacts. 

While epidemiologic studies assessing all-year O3 exposures would likely present more comprehensive 

estimates of health impacts, hybrid O3 surface projections for baseline and policy rulemaking scenarios 

are not currently available.90 As such, we identified epidemiologic studies and associated risk estimates 

that evaluated associations between exposures and warm season effects when available. There was 

some variability amongst the warm season definitions within the list of studies identified in this update 

(e.g., April-September and June-August), although only the respiratory emergency department and 

asthma symptom risk estimate was based on full year O3 exposures (Barry et al., 2019, Lewis et al., 

2013). It should be noted that the exposures for asthma symptoms among the identified studies were 

not evenly distributed across all the seasons (I.e. three in Spring, two in Summer, two in Fall, and one in 

Winter).91 

There is some variability regarding the definition of the warm season amongst epidemiologic studies 

included in the ISAs and the main risk estimates identified here for O3 benefits estimates. When there is 

a substantial difference, such as the June-August warm season assessed by Zanobetti and Schwartz, 

2008, we develop season-specific air quality projections, when feasible. However, many studies begin 

the 5-7 month warm season in either April or May and conclude the season in September or October. 

Since projected full year hybrid O3 surfaces are currently not available, epidemiologic risk estimates will 

be applied to the air quality projection most closely matching the exposure season in the study (e.g., 

April-September exposures will be applied to May-September air quality projections). We expect this 

seasonal mismatch will only have a limited effect on the magnitude of related health incidence.  

 Shape of the Concentration-Response Relationship 

6.5.14.1 PM2.5 

An important consideration when characterizing uncertainty is whether the concentration-response 

relationship is linear across the full concentration range that is encountered, or if there are 

concentration ranges where there are departures from linearity. Overall, evidence from the 2019 PM 

 
90 The paucity of O3 monitoring data in winter months potentially complicates the development of full year 
projected O3 surfaces, which would need to be subject to comprehensive evaluation prior to use in EPA RIAs.  
91 When risk estimates based on full-year, long-term O3 exposures are applied to warm season air quality 
projections, the resulting benefits assessment may underestimate impacts, due to a shorter timespan for impacts 
to accrue. When risk estimates based on full-year, short-term O3 exposures are applied to warm season air quality 
projections, the resulting benefits assessment may also underestimate impacts, as short-term O3 exposure effects 
are typically larger during the warm season (U.S. EPA, 2020a). 
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ISA continues to “support a linear, no-threshold concentration-response relationship for long-term 

exposure to PM2.5 and total (nonaccidental) mortality, especially at lower ambient PM2.5 concentrations, 

with confidence in some studies in the range of 5−8 μg/m3” and “there is less certainty in the shape of 

the concentration-response curve at mean annual PM2.5 concentrations generally below 8 μg/m3, 

although some studies characterize the concentration-response relationship with certainty down to 4 

μg/m3” (U.S. EPA, 2019c).  

Although ten large cohort studies of long-term PM2.5-attributable mortality observed linear, no-

threshold concentration-response relationships, three Canadian studies presented evidence of 

deviations from linearity down to the lowest concentration evaluated. Two studies found evidence of a 

supralinear relationship at lower concentrations, although only one was statistically significant. And a 

single study found that the best fit for the long-term PM2.5 mortality relationship was in a threshold 

model with a threshold at 11 μg/m3. 

There are several potential explanations for these results, one of which is that studies may be unable to 

adequately evaluate the relationship at low levels without sufficient population exposure at those levels. 

Consistent with that hypothesis, the single statistically significant study finding evidence of 

supralinearity did have one of the lowest mean PM2.5 concentrations, at 6.3 μg/m3. Another possible 

explanation with support from the 2019 ISA is that the shape of the concentration-response relationship 

could differ by health outcome.  

Although there were no evaluations of the shape of the long-term PM2.5-attributable respiratory 

mortality relationship in the 2019 PM ISA, there were several studies of the relationship between long-

term PM2.5exposure and cardiovascular disease. When considering long-term PM2.5-attributable 

cardiovascular mortality, again most results “continue to support a linear, no-threshold 

relationship…especially at lower ambient concentrations of PM2.5…[with] a number of the 

concentration-response analyses include concentration ranges ≤12 μg/m3.” As with total mortality, a 

few studies found that risk was greater at lower concentrations, although the deviation from linearity 

was not statistically significant. The only evidence of nonlinearity in the long-term PM2.5-attributable 

cardiovascular mortality relationship came from two studies by the same group, which included 

exposure from cigarette smoking. They observed that the concentration-response relationship was 

much steeper at lower PM2.5 concentrations, such as those due to ambient air pollution, than at the 

higher concentrations associated with cigarette smoking. 

There were a small number of studies of the relationship between long-term PM2.5 exposure and 

cardiovascular morbidity endpoints in the 2019 PM ISA. A study of hypertension and another of ischemic 

heart disease incidence found no deviations from linearity. Two studies of coronary artery calcification 

found evidence of deviations from linearity, but the direction of the results was inconsistent. One study 

found evidence of sublinearity at higher concentrations while the other found evidence of supralinearity 

at both high and low concentrations. 

The shape of the relationships between PM2.5 exposure and health effects may also include a threshold, 

or PM2.5 exposure concentration below which human health is not adversely impacted. Although 

evidence does not currently support the existence of a measurable PM2.5 exposure population-level 

threshold, prior higher concentration exposures with longer latency periods could make thresholds 

difficult to detect. However, the 2019 PM ISA states that “new evidence from recent studies continues 
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to support the previous conclusion that health benefits from reducing air pollution could be expected 

with a few years of intervention,” reducing the likelihood of this potential source of uncertainty. 

Based on the evidence and lack of nonlinear relationships between long-term PM2.5 exposure and health 

impacts, we continue to assume a linear, no-threshold relationship and do not quantitatively assess 

uncertainties related to the shape of the concentration-response relationships 

6.5.14.2 O3 

The 2020 final O3 ISA evaluated a number of studies examining the shape of the concentration-response 

relationship for long term O3 exposure and mortality using various different statistical techniques, 

including linear models and restricted cubic splines, which we use to inform the long-term O3-

attributable respiratory mortality relationship (U.S. EPA, 2020a). The ISA concluded that: 

Generally linear, no-threshold relationships exist down to 35−40 ppb, although the results were 

not entirely consistent. Some studies observed a sublinear relationship, indicating larger changes 

in risk for higher O3 concentrations compared with lower O3 concentrations. Several studies also 

included threshold analyses and support the possibility of a threshold near 35 to 40 ppb. (U.S. 

EPA, 2020a, section 6.2.7) 

The ozone ISA also found that: 

Recent multicity studies continue to support a linear [concentration-response] relationship with 

no evidence of a threshold between short term ozone exposure and mortality over the range of 

ozone concentrations typically observed in the U.S. Studies that used different statistical 

approaches and ozone averaging times (i.e., 24 hour avg and 8 hour max) provide evidence of a 

linear concentration-response relationship, with less certainty in the shape of the curve at lower 

concentrations [i.e., 40 ppb for 24 hour avg and 30 ppb for 8 hour max]. An examination of 

whether a threshold exists in the ozone mortality concentration-response relationship provided 

no evidence of a concentration below which mortality effects do not occur when examining 5 

μg/m3 (~2.55 ppb) increments across the range of 1 hour max concentrations reported in the U.S. 

and Canadian cities included in [a large cohort]. (U.S. EPA, 2020a, section 6.1.8) 

Collectively, these results continue to support the conclusion of the 2006 Ozone Air Quality Criteria 

Document that “if a population threshold level exists in ozone health effects, it is likely near the lower 

limit of ambient ozone concentrations in the U.S.” and this we assume linear, no-threshold relationships 

exist between ozone and health impacts in the main benefits estimate. 

In addition, the studies identified as best characterizing respiratory mortality exposures did not provide 

threshold models or find evidence supporting a threshold associated with warm-season effects. Turner 

et al., 2016 did find “some evidence that a threshold model improved model fit for respiratory mortality 

at 35 ppb (P = 0.002) compared with a linear model using year-round but not summertime O3 (HR per 10 

ppb using threshold O3 indicator at 35 ppb for respiratory mortality, 1.17; 95% CI, 1.11–1.22).” However, 

as we are currently unable to obtain all year air quality projections, we are unable to quantitatively 

assess this year-round-specific uncertainty associated with long-term O3 exposures. 
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 Short-Term Lag Structure92 
Epidemiologic analyses of short-term exposures often present results as health outcomes occurring a 

certain time period, or lag days, after exposure. Although there are means of aggregating outcomes that 

do not occur simultaneously, such as distributed or multi-day lags, there is a possibility that the full 

impact may not be captured by discrete lag periods in short-term study results. Although uncertainty 

remains as to whether short-term health impacts are fully captured by discrete lag durations, potentially 

biasing results toward the null, we are currently unable perform quantitative uncertainty analyses 

regarding this source of uncertainty. 

6.5.15.1 PM2.5 

The 2019 final PM ISA states that “a number of recent studies conducted systematic evaluations of the 

lag structure of associations for the [short-term] PM2.5 [exposure]-mortality relationship by examining 

either multiday lags or a series of single-day lags, and these studies continue to support an immediate 

effect (i.e., lag 0-1 days) of short-term PM2.5 exposures on mortality.” With respect to morbidity effects, 

the ISA found that “while recent studies provided evidence of associations in the range of 0-5 days for 

respiratory effects, there was evidence of an immediate effect for cardiovascular effects and mortality 

(i.e., 0-1 days) with some initial evidence of associations occurring over longer exposure durations (e.g., 

0-4 days).” 

6.5.15.2 O3 

The 2020 final O3 ISA found that “for respiratory health effects, when examining more overt effects, 

such as respiratory related hospital admissions and ED visits (i.e., asthma, COPD, and all respiratory 

outcomes), epidemiologic studies reported strongest associations occurring within the 1st few days of 

exposure (i.e., in the range of 0 to 3 days).”  

 Statistical Technique/Model Used to Quantify Risks in Epidemiologic Study 
Multiple statistical techniques are used in epidemiological analyses, including the Cox proportional 

hazards model and the Poisson survival analysis.  

6.5.16.1 PM2.5 

The 2019 PM ISA compared the use of various statistical techniques, spatial random effects, and fixed93 

effect models (U.S. EPA, 2019c). The ISA found that “results from well-studied, highly regarded cohorts 

help to reduce uncertainties that the observed associations between long-term PM2.5 exposure and 

mortality could be due to the statistical techniques employed or model specification.”   

6.5.16.2 O3 

The 2020 O3 ISA found that “studies used a number of different statistical techniques to evaluate the 

shape of the [long-term exposure] concentration-response function, including linear models and 

restricted cubic splines, and generally observed linear, no-threshold relationships down to 35−40 ppb, 

although the results are not entirely consistent” (U.S. EPA, 2020a). 

 
92 The 2019 PM ISAs includes Table A-1 in its appendix, which describes the lag hierarchy preferences followed 
when identifying risk estimates for benefits assessment. 
93 Assumes that there is a single true concentration-response relationship and therefore a single true value for the 
risk estimate parameter that applies everywhere. 
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 Temperature and Weather 
Temperature and weather may impact observed associations between air pollution exposure and health 

effects in epidemiologic studies, especially in short-term exposure studies. Although a few studies 

attempt to disentangle the influence of temperature and/or weather, there is insufficient information 

available to perform quantitative assessments of uncertainty. 

6.5.17.1 PM2.5 

The PM ISA included a number of studies that assessed whether statistical models adequately account 

for temporal trends and weather covariates. The ISA found that: 

Across studies that evaluated model specification, [short-term] PM2.5-mortality, associations 

remained positive, although in some cases were attenuated, when using different approaches to 

account for temporal trends or weather covariates. Seasonal analyses continue to provide 

evidence that associations are larger in magnitude during warmer months, but it remains 

unclear whether copollutants confound the associations observed. In addition to seasonal 

analyses, some studies also examined whether temperature modifies the [short-term] PM2.5-

mortality relationship. Initial evidence indicates that the PM2.5-mortality association may be 

larger in magnitude at lower and higher temperatures, but this observation has not been 

substantiated by studies conducted in the U.S. (U.S. EPA, 2019c, section 11.1.12)  

6.5.17.2 O3 

Temperature and weather can also impact epidemiologic results, especially in short-term exposure 

analyses. While there is limited evidence of differential O3 mortality associations by season, the 2020 O3 

ISA determined that the most extensive analyses conducted by recent studies examined whether 

temperature (i.e., long-term average temperatures or the distribution of mean daily temperatures) 

modifies the O3 mortality association. Analyses focusing on temperature indicate that locations with 

lower long-term average temperature have higher O3 mortality risk estimates, which is also reflected by 

the observed difference in risk estimates between northern and southern U.S. cities in a single study. 

However, as long term average temperature may be a surrogate for air conditioning prevalence and 

studies that examined either the joint or stratified effects of O3 and temperature on mortality provided 

evidence of O3 mortality associations that are larger in magnitude at temperature extremes, we do not 

plan on including quantitative uncertainty analyses for the effect of temperature on ozone effects. 

 Unquantified Impacts 
As with all estimates of benefits, due to the lack of complete data, not all human health impacts 

attributable PM2.5 and O3 can be identified and quantified. EPA acknowledges the existence of 

unquantified impacts, such as subclinical health endpoints (e.g., hypertension, inflammation, changes in 

lung/heart function, etc.) or pollutant-attributable clinical endpoints not evaluated in epidemiologic 

studies. 
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