

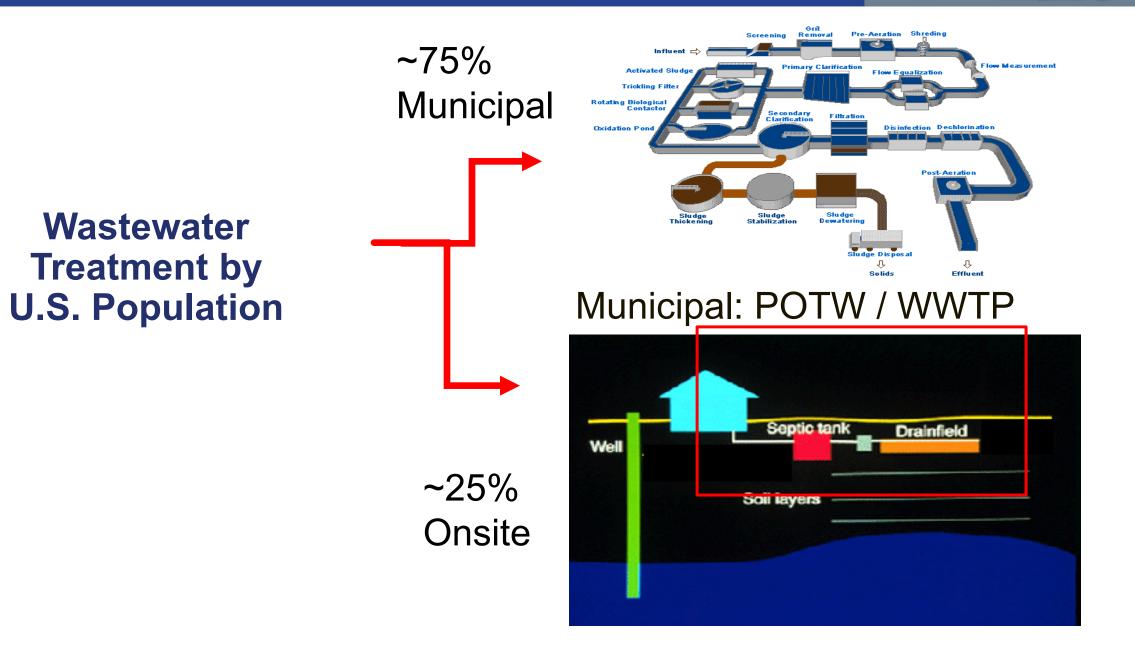
SEPA

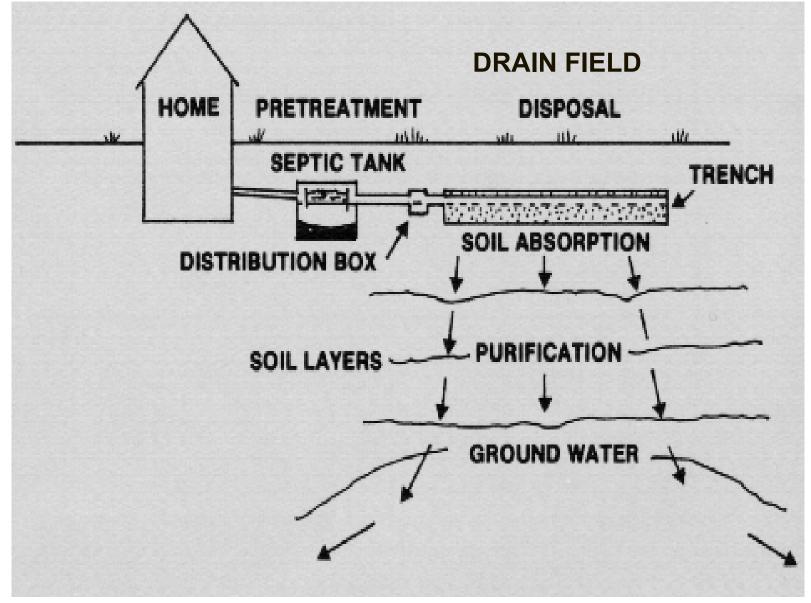
Innovative Technologies and Approaches to Address Decentralized Wastewater Infrastructure Challenges in the Alabama Black Belt

May 26, 2021, 1:00-3:00 p.m. ET

Decentralized Wastewater Webinar Series

Innovative Technologies and Approaches to Address Decentralized Wastewater Infrastructure Challenges in the Alabama Black Belt

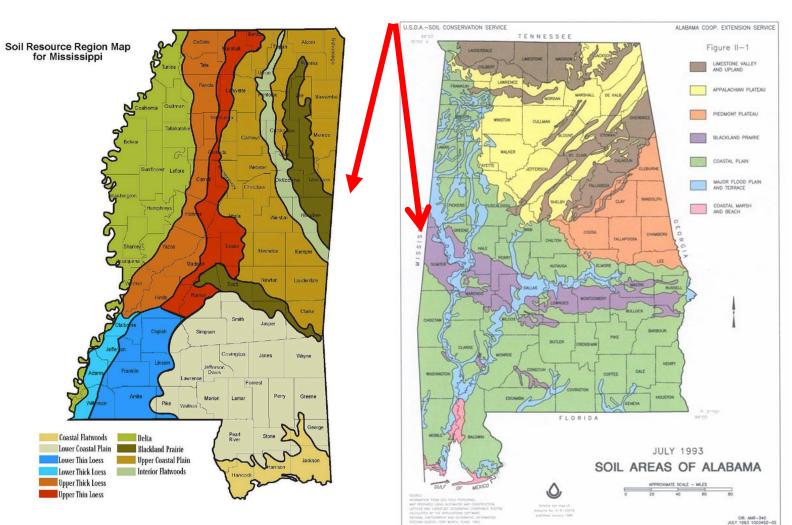

May 26, 2021, 1:00-3:00 p.m. ET


Part I: Background and Scope

Mark Elliott, Ph.D.

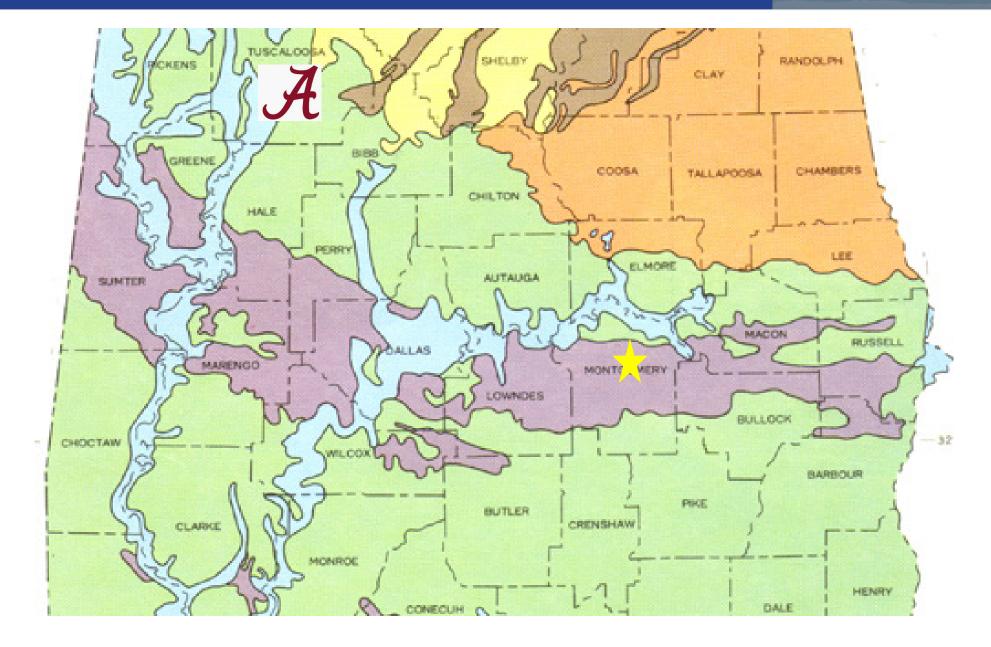
University of Alabama

Innovative Technologies and Approaches to Address Decentralized Wastewater Infrastructure Challenges


Source: Purdue Univ. Extension Service (Jones et al., 1990)

The Black Belt Region

"Prairie-like" Landscapes



Blackland Prairie Soil

LINES, SCS, NATIONAL CARTODRAPHY & GRI CENTER, FORT WORTH, TX, 1980

Innovative Technologies and Approaches to Address Decentralized Wastewater Infrastructure Challenges

Vertisol Soils "Blackland Prairie"

Vertisols are <u>clay-rich soils that shrink and swell with changes in moisture</u> <u>content.</u> During dry periods, the soil volume shrinks, and deep wide cracks form. The soil volume then expands as it wets, becoming basically impermeable.

Alabama Black Belt Demographics

County	Pop. Density	Median Household Income ¹	% of Pop. on	College Graduation ³	Median
	(per sq.mi.)		Disability ²	(% > <u>age</u> 25)	Age
Bullock	16.6	\$26,580	18.7	10.3	39.4
Dallas	40.8	\$26,602	19.5	13.8	38.8
Greene	13.0	\$26,504	27.9	10.0	42.2
Hale	23.2	\$33,315	20.4	14.0	40.5
Lowndes	14.4	\$30,675	20.4	12.3	41.6
Macon	31.1	\$28,518	17.8	20.0	38.6
Marengo	20.1	\$32,977	23.6	14.8	42.0
Perry	13.3	\$27,403	25.3	14.5	37.7
Russell	90.7	\$35,585	18.1	17.0	35.9
Sumter	14.4	\$25,413	20.6	18.1	36.5
Wilcox	12.4	\$24,035	17.7	11.3	40.3
Black Belt avg	26.4	\$28,873	20.9	14.2	39.4
AL avg	95.4	\$42,917	16.3	24.0	38.6
US avg	89.5	\$53,657	12.5	33.4	37.8

Table 1. Selected Demographics in Black Belt Counties

¹U.S. Census Bureau, 2014

²U.S. Census Bureau, 2015

³U.S. Census Bureau, 2017

Wastewater Infrastructure Lacking

- Low tax base
- Low population density (rural)
- Few cities and towns large enough to support traditional sewer
- And because of soils, most onsite systems (septic tanks and drain fields) do not work

Black Belt Counties

- Named for rich, dark topsoil
 - in many places underlain by impermeable shrink/swell clay (vertisol)
- Poverty limits alternatives
 - 25-40% of households below poverty line
- With no sewer access, poverty and unsuitable soil...

Impermeable soils, Poverty, High-cost Alternatives...we get $\rightarrow \rightarrow$ failures and straight pipes

Photos: acrecdc.com

Media Coverage/Anecdotal Evidence

ALABAMA HAS THE WORST POVERTY IN THE DEVELOPED WORLD, U.N. OFFICIAL SAYS

BY CARLOS BALLESTEROS ON 12/10/17 AT 10:21 AM

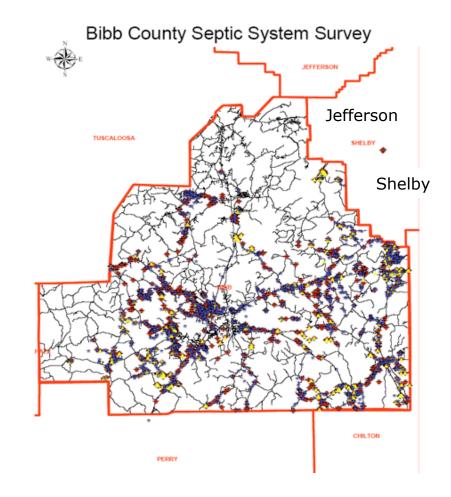
- UN report on Human Rights to Water and Sanitation 2011
- New York Times Sept. 26, 2016
- The Guardian Sept. 5, 2017
- UN visit and Newsweek article Dec. 10, 2017
- PBS News Hour July 7, 2018
- The New Yorker Nov. 20, 2020
- Washington Post Dec. 17, 2020

What we knew when we started investigating this issue:

- Overall wastewater management in the BB is lacking
- Few municipal sewer systems
- Many rural residents have no viable options
- Impacts a large percentage of Black Belt
- This lack of key infrastructure (sewer, proper wastewater management) limits economic development
- Many anecdotal reports but little on the scale of the problem

Unanswered Questions

- What is the scope of the onsite wastewater problem?
 - Geographic scope
 - Number of households
 - Volume of untreated wastewater
- What are the impacts?
 - On water quality
 - On public health



Evidence from one Alabama County

Bibb County Field Survey (White and Jones, 2006)

- ~4000 Rural homes (nonsewered)
- 15% straight pipe
- 50% total showed
 - Sewage on surface

Soil and poverty are not as bad in Bibb County as most Black Belt counties

Bibb County vs. Black Belt counties

Black Belt counties compared to Bibb Co.:

- More poverty (% of households below the poverty line, according to US Census Bureau):
 - Bibb Co. : 18.1%
 - Hale Co.: 26.6%
 - Wilcox Co.: 39.2%
- Much worse soil: Black Belt counties have much more impermeable clay

Therefore, straight pipe and failing septic likely to be even higher in Black Belt counties

Health Impacts?

Poor access and surveillance

- Poor access to primary care physicians (1 per 7000-10,000 population)
- Little surveillance for infectious diseases "of the 19th Century"

Last survey of sewage-associated helminth infection in Wilcox County

• 1/3 of children under-10 tested positive for one or more helminths (Badham, 1993)

Recently published data from Lowndes County

 More than 1/3 of adults with poor sanitation reportedly infected with hookworm (McKenna et al., 2017).

UAB/UNC and Baylor Univ. teams following up

Research Approach

Methods:

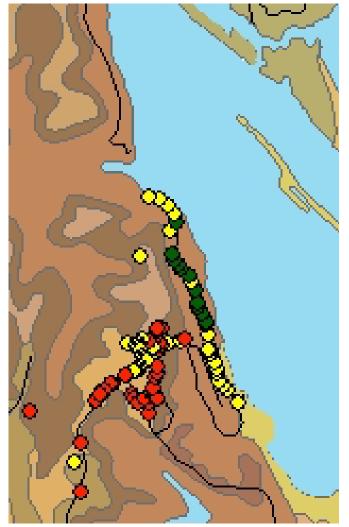
- Site-by-site inspections/surveys in Black Belt
- Data from local stakeholders (expert knowledge)
- Flow-routing
- Water sampling (microbiological and chemical)

Research Approach

Methods:

- Site-by-site inspections/surveys in Black Belt
- Data from local stakeholders (expert knowledge)
- Flow-routing
- Water sampling (microbiological and chemical)

Wilcox County Inspection Data


- 289 dwellings surveyed
- 104 houses, 185 mobile homes
- Representative of county demographics and soil
- 19 (6.6%) Health Dept.-permitted systems
- 270 (93.4%) without permitted systems
- 172 (60%) with straight pipe visible upon inspection
- 98 (34%) unpermitted, either some form of in-ground disposal or straight pipe buried/not visible

Data from Lynn and Robert Jones – Down to Earth, Inc.

Wilcox County Inspection Data

- Zoomed in on communities adjacent to Alabama River
- Desirable real estate on river
- Less desirable, informal community up hill

Data from Lynn and Robert Jones – Down to Earth, Inc.

Research Approach

Methods:

- Site-by-site inspections/surveys in Black Belt
- Data from local stakeholders (expert knowledge)
- Flow-routing
- Water sampling (microbiological and chemical)

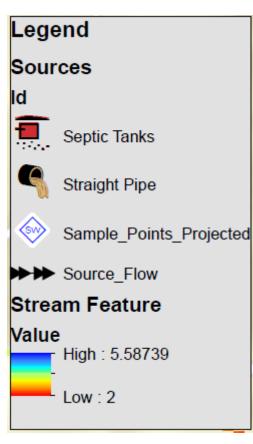
Newbern (Hale Co) – Preliminary Expert Knowledge Data

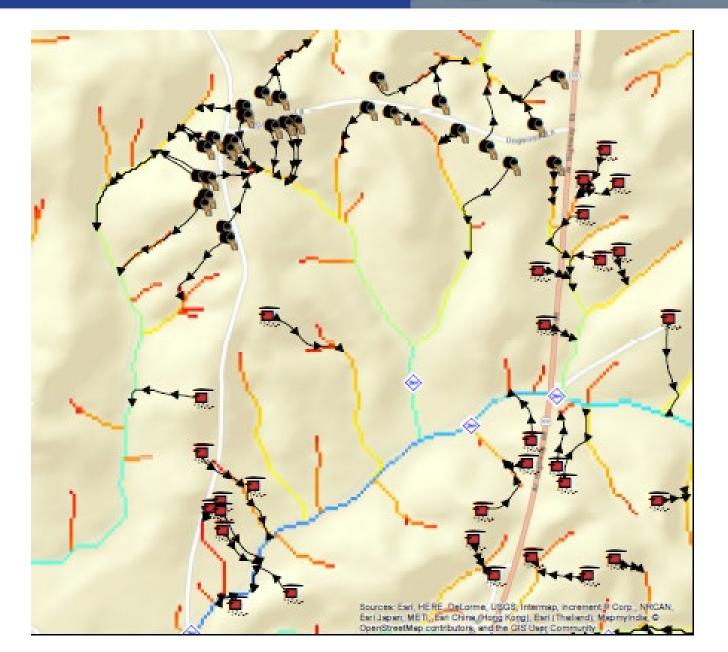
- Local experts
- Septic system installers
- Health dept. staff
- Newbern, AL (impermeable clay soil)

Newbern (Hale Co) – Preliminary Expert Knowledge Data

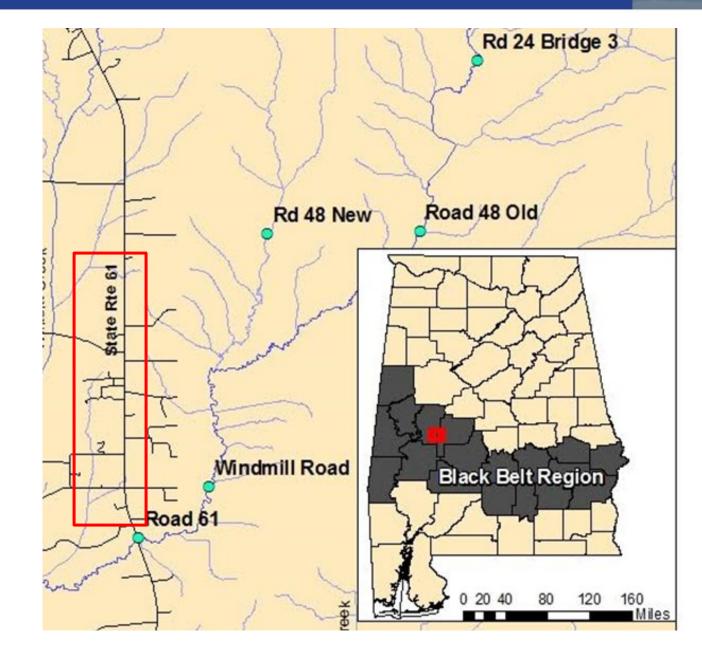
- Newbern, AL (impermeable clay soil)
- 10% with permitted systems
- 90% unpermitted
 - 40% have some field lines
 - 50% straight pipe
 - 30% solids settling (septic tank or 55-gal drum)
 - 20% no solids setting

Estimates by Tim Wenger of Cedar Ridge Excavating (work ongoing with other stakeholders)

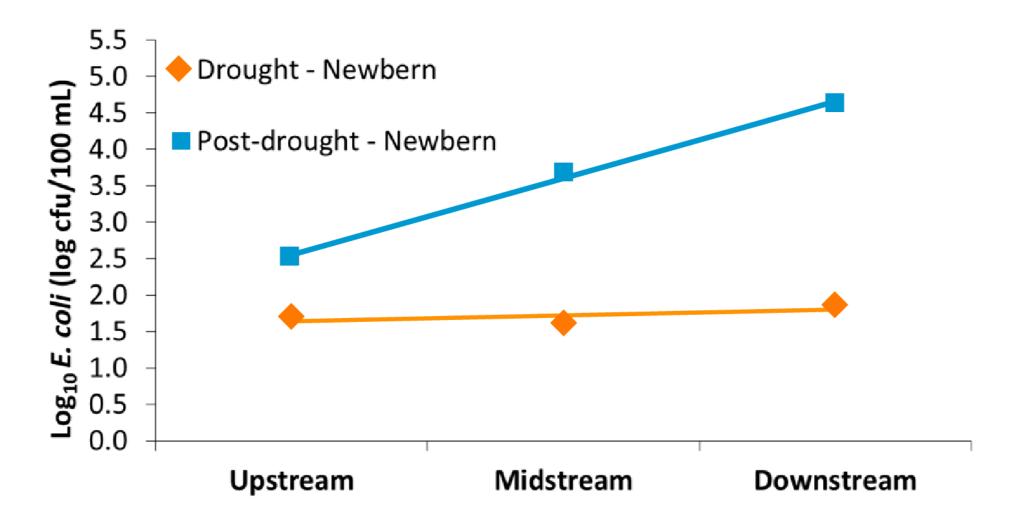

Research Approach


Methods:

- Site-by-site inspections/surveys in Black Belt
- Data from local stakeholders (expert knowledge)
- Flow-routing
- Water sampling (microbiological and chemical)


Innovative Technologies and Approaches to Address Decentralized Wastewater Infrastructure Challenges

Flow Routing



Innovative Technologies and Approaches to Address Decentralized Wastewater Infrastructure Challenges

Drought/Post-drought

From characterizing to addressing the problem

Our work has largely focused on:

- Defining the nature of the problem and its impacts
- Characterizing its geographic scope

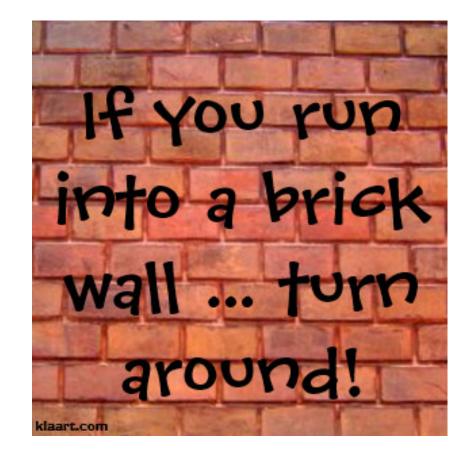
This continues, but we are shifting the major emphasis to addressing the problem:

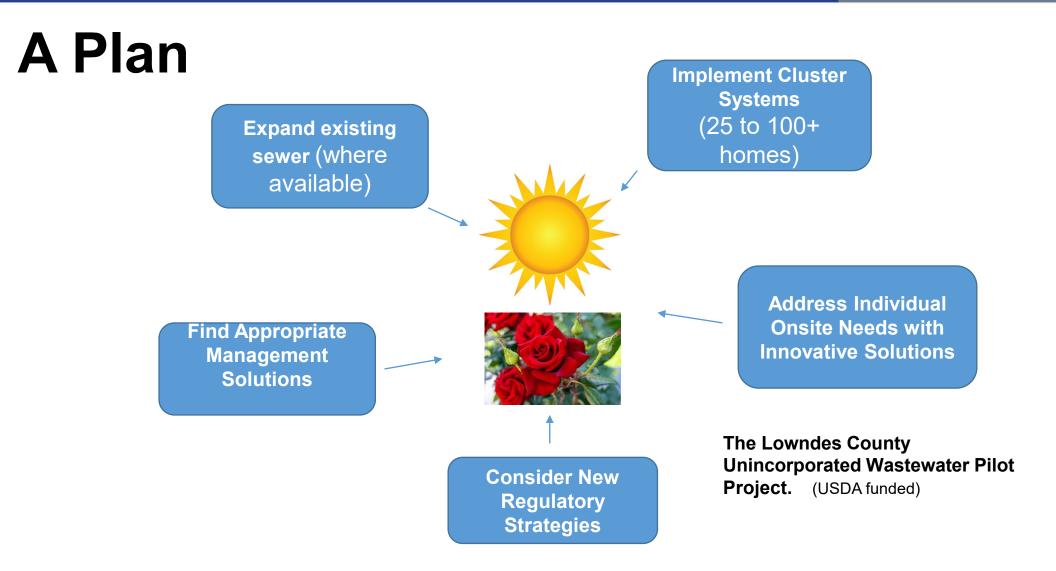
- Categorizing and defining the various barriers to wastewater solutions
- Developing solutions appropriate for each community
- Leveraging partnerships and resources to implement solutions

What do we do? Path Forward...

Communities and residents need help

- 1. Expand/upgrade existing municipal sewer systems
- 2. Appropriate onsite system tech, funding, ADPH
- 3. Identify clusters of homes decentralized collection/treatment
- 4. Identify cost-effective treatment technologies
- 5. Identify management entities
- 6. Explore viable financial models (capital and O&M)
- 7. Develop alternative regulatory strategies
- 8. Develop a "how-to" guide




Part II: Proposed Solutions

Kevin D. White, Ph.D., P.E. University of South Alabama

Obstacles in this Region

- Soils
- Population Density
- Poverty/Economics
- Technology
- Management Models (entities)
- Financial Models
- Community Guidance

Broad Path Forward...

Rural and Underserved Communities and Residents Need

Help – Public Health and Economic Development

1. Expand/upgrade existing municipal sewer systems

- Cost-effective collection and treatment upgrades
- Get more residents onto "managed sewer"

2. Individual onsite systems

- Affordable and functional options
- 3. Decentralized (cluster) infrastructure
 - Identify Rural clusters of homes (25 100+)
 - Cost effective collection, treatment, disposal/reuse

Broad Path Forward...

Continued

4. Identify Effective Management Models

• Rural Water, County, Multiple County, Electric Coops, etc.

5. Explore viable financial models

• Capital, O&M

6. Develop alternative regulatory strategies

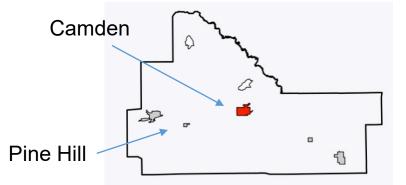
- General Permits, Special Permit Districts, etc.
- 7. Create a "how to" guide

Expand Existing Sewer

Small towns w/ sewer - typically 2 to 3 per county

- Most sewers run to the city limit & no further
- Connection fees \$\$

Wilcox County (pop. 10,685)

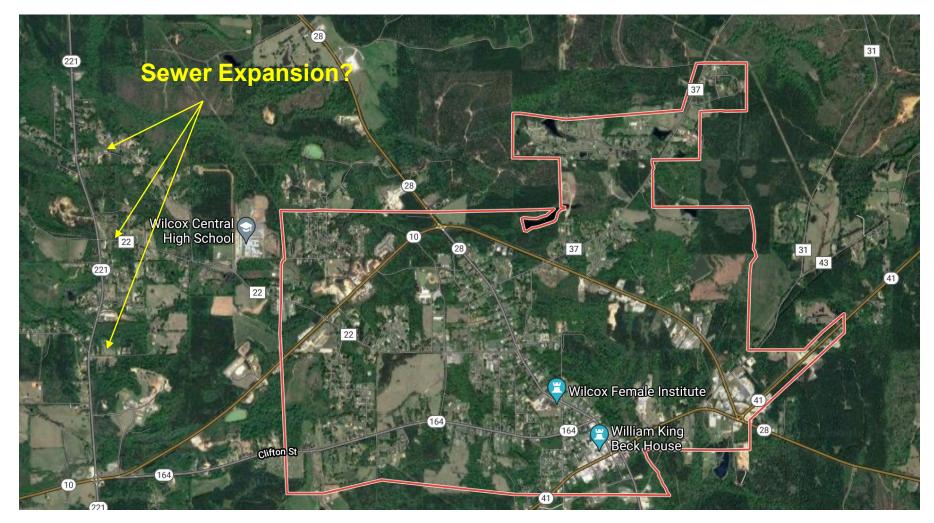

- 2 municipal sewer systems
- Camden (pop. 2177)
- Pine Hill (pop. 927)
- Current EPA project is identifying
 - possible municipal sewer expansions
 - (geographical extent and cost) &
 - treatment capacity in 5 targeted Black Belt counties

1. Single-home appropriate systems

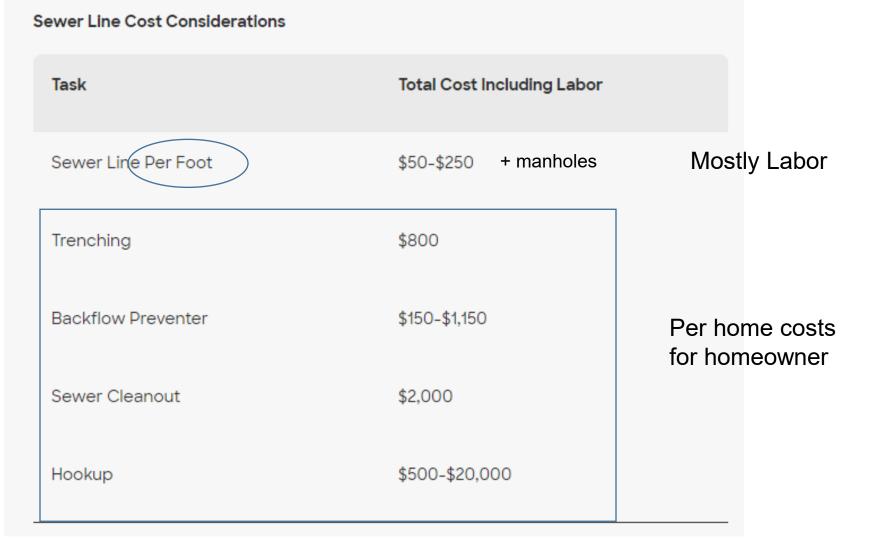
- Subsidies from USDA (ADPH pilot program in Lowndes Co)
- More comprehensive soil surveys to identify best soil?
- Pump effluent to another property with drain field?

2. Clustered, decentralized collection and treatment

- Remote monitoring, components decreasing in price
- Economies of scale



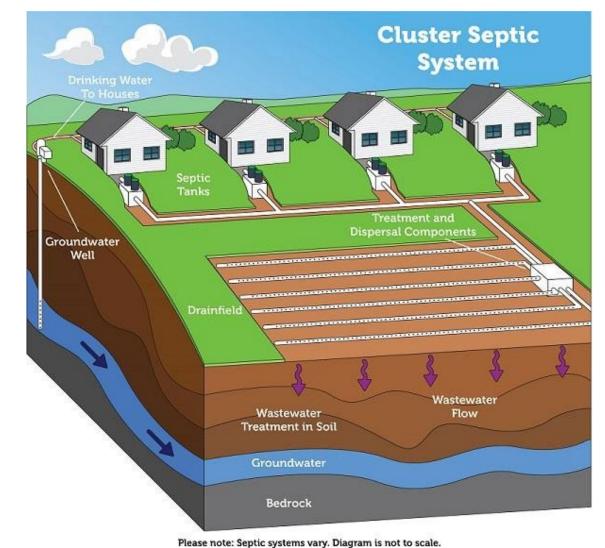
Innovative Technologies and Approaches to Address Decentralized Wastewater Infrastructure Challenges


Expand Existing Sewer (cont.)

Camden

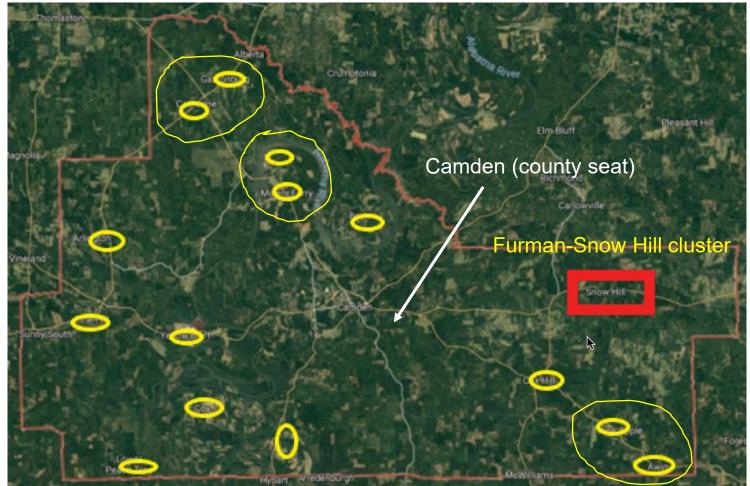
Innovative Technologies and Approaches to Address Decentralized Wastewater Infrastructure Challenges

Expanding/Connecting to Sewer



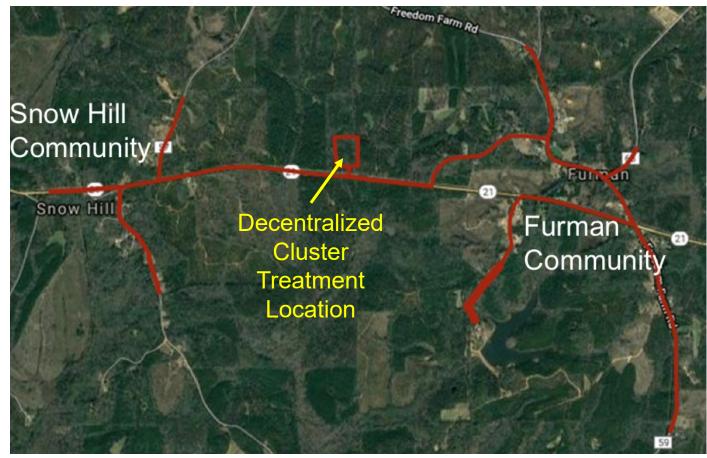
Decentralized Clustered Systems

Source: EPA


Need to find cost-effective collection, treatment, disposal/reuse, and management

- Remote monitoring
- Multiple systems
 - in each of several counties
- Economies of Scale

Decentralized Clusters


Wilcox County Alabama (15 possible clusters of 30+ homes)

Decentralized Clusters

Furman-Snow Hill Communities

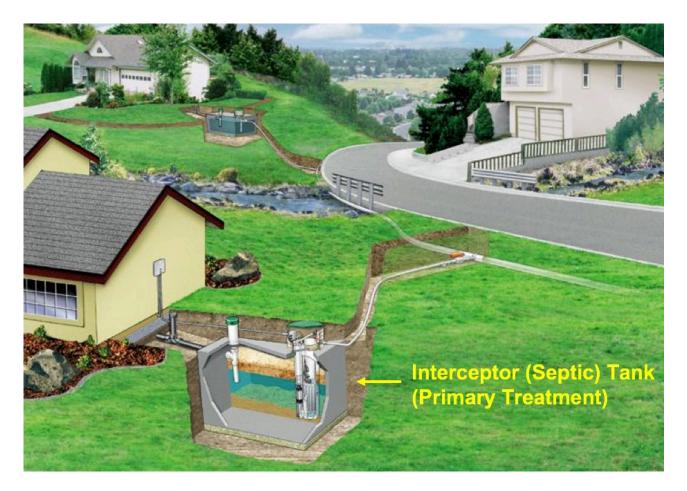
~75 homes in two small communities (19,000 gpd)

Decentralized Cluster - Options

Collection

- Gravity? BOD 250-450 mg/L, TSS 250-500 mg/L
- Pressure (grinder pumps)? BOD 250-450 mg/L, TSS 250-500 mg/L
- STEP? BOD 120-150 mg/L, TSS 20-40 mg/L

STEP Costs: \$340,000 - \$510,000 materials/installation for 50,000 gpd (200 homes) **Gravity Costs**: \$2,182,000 - \$3,273,000 **Pressure Costs**: \$344,000 - \$516,000


With STEP, get small diameter sewer lines, minimal solids handling

more (& better?) treatment options

Cluster System Approach

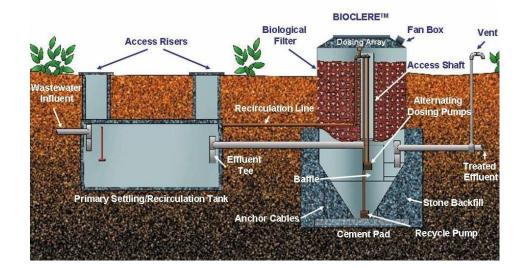
STEP (Septic Tank Effluent Pump)

- Each home/business has a septic tank (primary treatment)
- Liquids-only enter 2-inch line and flow to treatment unit

Orenco Systems, Inc.

Cluster System - Options

Treatment (depends on effluent fate & cost)

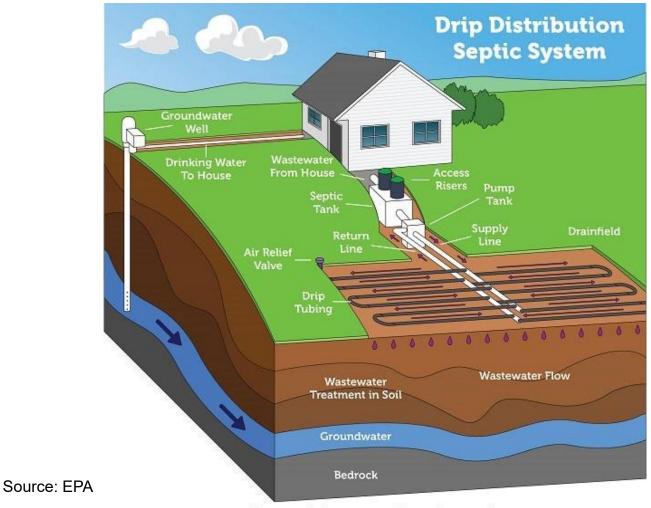

•	Pond/Wetlands				
•	Recirc Media Filters			w/ Capital	w/ Capital Recovery &
•	Aerated Systems	Life Cycle Costs	Operation per hh/mo.	Recovery. per hh/mo	30% overhead. per hh/mo.
•	MBRs				
•	Etc.	Aerated-Attached Growth	\$20	\$28	\$36
		Recirc Media Attached Growth	\$16 - \$20	\$22 - \$28	\$28 - \$37
		Constructed Wetland	\$14	\$17	\$22
Characteristics		Membrane Bioreactor	\$31	\$42	\$55

- Modular
- Simple to operate (remotely?)
- Low O&M costs

Cluster System - Options

Treatment

- Modular
- Simple Operation
- Low O&M Costs



Cluster System - Options

Disposal/Reuse

- Drip Irrigation
- Spray Irrigation
- Stream Disposal
- Reuse
 - Timberland
 - Hayfields
 - Plant nurseries

Please note: Septic systems vary. Diagram is not to scale.

Management Models

Can large, existing utilities manage small, rural, decentralized wastewater systems?

- Public vs. Private?
- Community Level Mgt?
- County Level Mgt?
- Multiple County?
- Large, existing, municipal
 - wastewater utilities?
- Rural water providers?
- Electric Coops?
- Solid Waste Managing Entities?

Management Entity	Description	Example	
Public Water/Wastewater Utility	A large, established, centralized utility	MAWSS, MWWSSB, Daphne Utilities	
	branches out and manages smaller,		
	decentralized systems.		
Private Management Company	A private utility manager is hired to	ADENUS, Alabama Wastewater	
	oversee operations and maintenance of		
	decentralized facilities.		
Electric/Gas Utility	An electric or gas provider expands their	Alabama Power, Rural Electric Cooperatives	
	services to provide decentralized		
	wastewater management.		
Waste Collection	Where composting toilets are used, the	Waste Management	
	homeowner pays a monthly fee to have		
	the waste cassettes picked up.		

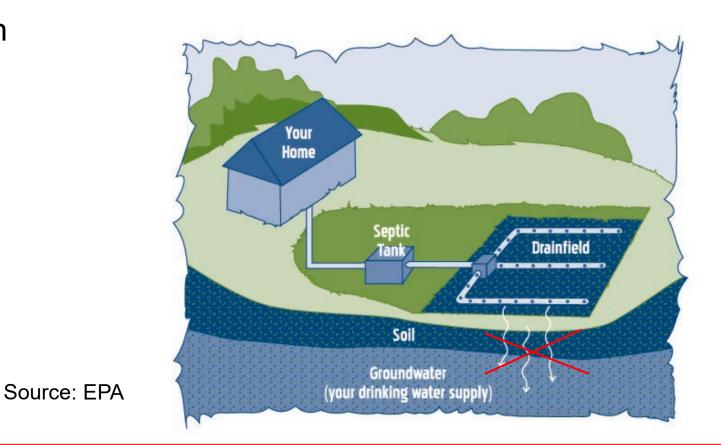
Regulation and Permitting

- Health Dept vs State EPA
- In-ground vs. surface
- Flow demarcations
- Spray Irrigation
- State Revolving Loan Funds, USDA, CDBGs ???

Reuse --irrigation

- Silviculture
- Hay, Plant nurseries

Local ordinances to require sewer connection


Special Permit District? (clay soil related)

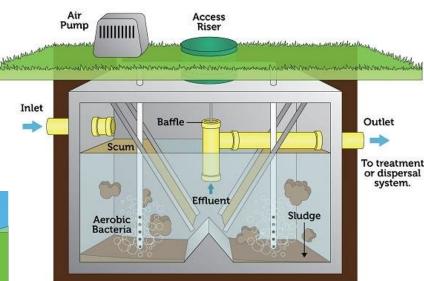
• General Permits (Louisiana, Ohio, etc.)

Onsite Options

Conventional in-ground disposal does not work

Perc rates >240 min/in

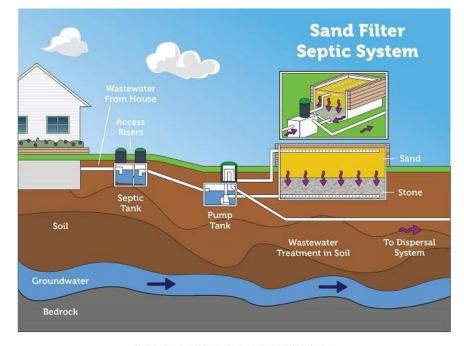
Onsite Options: Drainfield Mounds


Very large and costly for this population (\$6000 - \$10,000+)

Source: EPA

Please note: Septic systems vary. Diagram is not to scale.

Onsite Options: Advanced

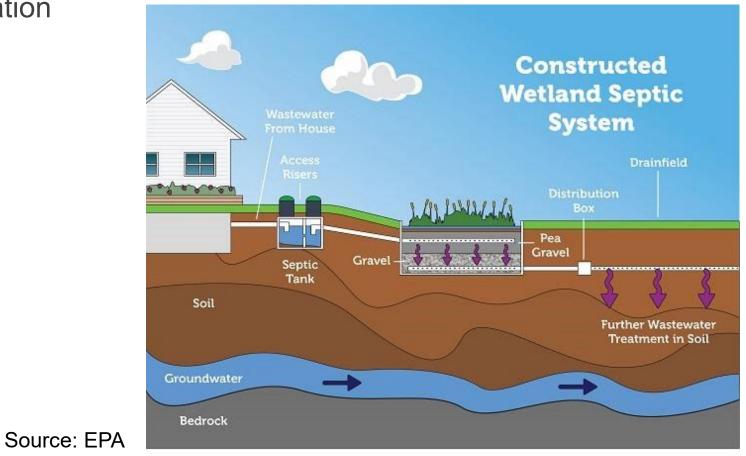


Aerobic Treatment Unit

Please note: The Aerobic Treatment Unit can vary in components and design

Expensive and Require Maintenance

Source: EPA

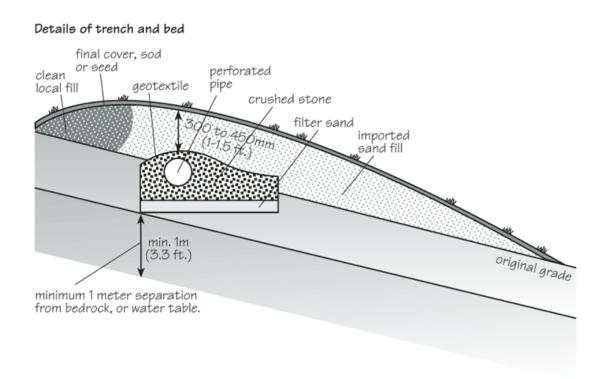


Please note: Septic systems vary. Diagram is not to scale.

Please note: Septic systems vary. Diagram is not to scale.

Onsite Options: Wetland Systems

Typically require infiltration


Please note: Septic systems vary. Diagram is not to scale.

Onsite -- Black-Gray Water Separation

- Potential black-water separation (40 gpd vs 250 gpd)
- Wetlands-sand/gravel mound
- Black Water Septic Tank
 - 400 gallons or less
- Black Water Wetland Treatment
 - 6' x 14' area, HRT 8 days
- Spray irrigation of gray water
 - New 2020 option in AL
 - < 500 gpd (no NPDES permit)

Onsite -- Lateral Flow Sand Filter

Sand mound-type system

Uses capillary action to move water up and out for evapotranspiration

Several Ongoing Collaborative Activities

- Formed Consortium for Alabama Rural Water and Wastewater
 - Universities, ADPH, ADEM, USDA, Gov. office, Congressional
 - Offices, trade associations, private companies, community organizations
- UNLEASH Hack Sanitation in Black Belt Alabama
 - Unleash.org June 5 and June 12online
- Lowndes County Unincorporated Wastewater Pilot Project
 - Icuwp.org
 - ADPH with USDA funding
 - Repair/install 100+ failing onsite systems

Part III: Challenges Encountered: The Lowndes County Unincorporated Wastewater Program (LCUWP) Lowndes County, Alabama

Sherry Bradley, M.P.A., Director

Alabama Department of Public Health

Bureau of Environmental Services

Background

- Regulatory Bureau
- December 2017 UN representative visited rural Lowndes County ("I think it's very uncommon in the first world...")
- New State Health Officer
- Prior meetings futile

2018 Meetings and Donations

 First Meeting, January 12, 2018 – 5 Lowndes County citizens attended

Congresswoman Terri Sewell Meeting

- Introduced bills for wastewater disposal
- USDA Water and Waste Disposal Grant Application
- USDA Conditions:
 - 75% 25% Grant
 - Do not compete with municipalities
 - Local legislation needed Lowndes Co. Commissioners
 - Buy-in by homeowners \$500 or \$1000 /\$20.00 per month
 - Sewer Board Utility Attempts with Lowndes Water Authority

Bureau of Environmental Service

- Maintenance for LCUWP AWOB Enforcement
- June 19, 2019, LCUWP Sewer Board created
- Engineer Firm Land Surveyors
- Complexity of the USDA application 2 1/2 years
- Budget Expert (100 homes 175 homes)
- One (1) person donated funds for LCUWP
- December 2020 met 25% match (\$695,749.00)

Back-End Concerns

- Residents not wanting to change from straight-piping
- No donations from Lowndes Co political leaders
- Heir property/Lots too small $-\frac{1}{2}$ acre for engineered design systems
- Homes located on wrong property line
- Onsite system cost more than the dwelling
- Make-shift systems that keep sewage off the ground
- Impersonators of the LCHD
- \$20 payment Can't pay
- Some don't want the Program to succeed
- LCUWP Administrative cost needed Attorney/Clerk/Insurance/etc

Straight Pipe 3'Deep – Child Hazard

Property Line Issues

Innovative Technologies and Approaches to Address Decentralized Wastewater Infrastructure Challenges

Gray Water Positive Outlet

Water Table Contamination

Innovative Technologies and Approaches to Address Decentralized Wastewater Infrastructure Challenges

Onsite System is more expensive than the dwelling

Two days after a rain (Impermeable Soil)

Innovative Technologies and Approaches to Address Decentralized Wastewater Infrastructure Challenges

Homemade Sewage Treatment – 55 Gallon Drum Illegal Installations/Repairs

Results - Black Water Surfaces

Questions?