

EPA Clean Water Act National Compliance Initiative Series

Flow Measurement

Presented Live: December 8, 2020

US EPA Office of Compliance Technical Assistance Webinar Series

Introduction: Peter Bahor, US EPA Office of Compliance (<u>bahor.peter@epa.gov</u>)

- Webinar series supports the national EPA and state initiative to reduce noncompliance among CWA-NPDES permitted facilities. Focus is on helping wastewater system operators return their facilities to compliance, and those interested in fine-tuning their systems.
- The webinar will be recorded for future viewing.
- A link to download a Certificate of Attendance will be emailed to attendees 24 hours after the webinar's conclusion.
- You will be in "listen only mode."
- Use the chat box to ask questions and to suggest other training ideas.
- Speakers do not necessarily reflect EPA positions or policy.
- We strive for continuous improvement. Please complete the post webinar survey.

Understanding Flow Measurement

Why is it important to have accurate flow at the effluent discharge?

Importance of Accurate Flow

- Permit requirement
- Provides data for mass loading calculations
- Critical for long-term planning and design
- Provides operating and performance data

Requirement

- "Flow measurement systems should be calibrated by an source at least once a year" (NPDES Permit).
- "The flow meter should record to an accuracy of ±10 percent of actual flow" (NPDES Permit).

Common Flow Devices:

1. Open Channel Systems

2. Closed Channel Systems

Venturi, Magnetic, Doppler

Flow Measurement Systems Components

• Primary Device

• Secondary Device

Flow Measurement System

Primary Device (Parshall Flume)

Secondary Device: (Flow sensor, Chart Recorder and Totalizer)

Open Channel Systems

• Flumes

Common flumes:

- Parshall Flume
- Palmer-Bowlus Flume
- H-Flume

• Weirs

Common weirs:

- Rectangular Weir
- V-notch Weir
- Trapezoidal (Cipoletti) Weir

USDI Water Measurement Manual (Cited Reference) ISCO Flow Measurement Handbook (Guidance)

www.usbr.gov/pmts/hydraulics_lab/pubs/wmm/cover.html

Parshall Flumes

- Very common in WTPPs
- Self-cleaning
- Operate under wide range of flows
- Simple to check for calibration

PLAN

	w i o		•	2.		R		C		Б		F		<u> </u>		6		н		ĸ		h	м		J		,	R Y		,	Y		¥		FREE-FLOW	CAPACITY		
	_	r	Ľ	•	3	~	•		Ľ	-				-			,	,	_	•		`			'				1	1		`					MINIMUM	MAXIMUM
	FT.	IN,	FT.	IN,	FT.	IN.	FT,	IN.	FT.	IN.	FT.	IN.	FT.	IN.	FT	' IN.	FT	IN.	FT.	IN.	F7.	IN.	FT	N.	FT.	IN	FΤ	IN.	FĨ	IN.	FT	IN.	FT. '	IN.	FT	IN.	SEC. – FT.	SECFT.
গ্র	0	و ا	1	25	0	9 <u>5</u> 2	1	2	0	3쁊	0	6 <u>5</u>	0	9 9	0	3	0	8	0	8	0	4	-	-	0	١ţ		-	-		0	iĝ	0	ł	0	÷	0.01,-	0.19
		5 ₁	1	4 ₁₆		Юž	1	4		516		8^{\downarrow}_{32}		6 to 10		4 <u>†</u>		10		10 <u>1</u>		1		-		<u> </u>		-	-			훕		ł		ł	.02	.47
		31	1	67	\$	ļ		6	L	7		10 7	12		. ·	6	1	0	I	÷ 32		1	- 1			24		-	-			Ι		ե		12	.03	1.13
	0	6	2	16	Ι	4 <u>5</u>	2	0	1	3÷	Т	3	2	0	I	0	2	0	-		0	3	1	0	0	4 <u>1</u>	2	ll¦		4	0	2	0	3	-		05	3,9
l	·	9	2	107	1	Пţ	2	10	1	3	1	10 3	2	6	T	0	Ι	6	-			3	1	0		4 <u>‡</u>	3	6 1	1	4		2		3	~		.09	8.9
	1	0	4	6	3	0	4	4 7	2	D	2	9ţ	3	0	2	0	3	0	-			3	1	3		9	4	103	1	8		2		3	-		.11	[6 .]
	I	6	4	9	3	2	4	7 <u>7</u>	2	6	3	43	3	0	2	0	3	0	-			3	1	3		9	5	6	1	8		2		3	-		. (5	24.6
١.	2	0	5	0	3	4	4	10 ⁷	3	0	3	11]	3	0	2	0	3	0	-			3	ł	3		9	6	T	I	8		2		3	-		.42	33.1
3	3	0	5	6	3	8	5	44	4	0	5	17	3	0	2	0	3	0	-			3	1	3		9	7	$3\frac{1}{2}$	1	8		2		3	-		.61	50.4
	4	0	6	0	4	0	5	10	5	0	6	4	3	0	2	0	3	0	-			3	1	6		9	8	10 3	2	0		2		3	-		1.3	67.9
	5	0	6	6	4	4	6	4 <u>1</u>	6	0	7	6	3	0	2	0	3	0				3	1	6		9	10	łŧ	2	0		2		3	-		1.6	85.6
	6	0	7	0	4	8	6	103	7	0	8	9	3	0	2	0	3	0				3	1	6		9		3 <u>‡</u>	2	0		2		3	-		2.6	103.5
	7	0	7	6	5	0	7	4 <u>†</u>	8	0	9		3	0	2	0	3	0	-			3	1	6		9	12	6	2	0		2		3	-		3.0	121,4
	8	0	8	0	5	4	7	10 <u>1</u>	9	0	11	1 ²	3	0	2	0	3	0	-			3	I	6		9	13	81	2	0		2		3	-		3.5	139.5
	(Ô	0	-		-6	0	14	0	12	0	15	74	4	0	3	0	6	0		[0	6	-		Ι	1 - 2	-		-		0	9	Ī	0	-		6	200
	12	0	-		6	8	16	0	14	8	18	4 ද ්	5	0	3	0	8	0	-			6	-		T	ιţ	-		-			9	1	0	-		8	350
	15	0	-		7	8	25	0	18	4	25	0	6	0	4	0	10	0	-			9	-		T	6	-		-			9	1	0	-		8	600
	20	0	-		9	4	25	0	24	0	30	0	7	0	6	0	12	0	-		t	0	-		2	3	-		-			9	1	0	-		10	1000
표	25	¢	-		11	0	25	0	29	4	35	0	7	0	6	٥	13	0	-		ł	0	-		2	3	-		-			9	١İ	0	-		15	1200
	30	0	-		12	8	26	0	34	8	40	4-	7	0	6	0	14	0	-		Т	0	-		2	3	-		-			9	Ι	0	-		15	1500
	40	0	-		16	0	27	0	45	4	50	9 <u>+</u>	7	0	6	0	16	0	-		Т	0	-		2	3	-		-			9	T	0	-		20	2000
	50	0	-		19	4	27	0	56	8	60	9Ę	7	0	6	0	20	0	-		Ι	0	-		2	3	-		-	,		9	Ι	0	-		25	3000
_	Ŀ	Tole	erai	nce	ÔN	thr	0at	wid	th (t (w	: 1/	64 İ	nch	; †01	ero	nce	0n	0lh	er i	dim	ensi	0ns	± ',	'32 i	nch		∛ Fi	тóm	U.S	6. D	epai	'tme	nt	of /	۱gri	cult	ure Soil Co	nservation
	``	side	W0	lls	of	hro)at	muş	st b)e p	700	liel	<u>or</u>	nd y	rert	ical										-	Çi	rçul	or	No.	84	,			-			
	Z	²¹ From Colorodo State University Technical Bulletin No. 61. ⁴¹ From Colorodo State University Bulletin No. 426-A												Co	юга	dð	Sic), 426-A																				

.

)

Į

4

When submergence is a problem

- 50 % for flumes 1, 2, and 3 inches wide
- 60 % for flumes 6 and 9 inches wide
- 70 % for flumes 1 to 8 feet wide
- 80 percent for flumes 8 to 50 feet wide

• At 95 % the flume is no longer useable

and the state of the second second

Figure 28.—Diagram for determining correction to be subtracted from free-discharge flow to obtain rate of submerged flow through Parshall flumes 1 to 8 feet wide. 103-D-875. (Courtesy U.S. Soil Conservation Service.)

Requirements for Parshall Flumes:

•The approach channel should be straight and uniform

Parshall Flume

Head Measurement: Parshall Flumes

- TOP VIEW -

**Also see attached table (4-1A)

Throat width measurement of a Parshall Flume

Measurement of the "2/3 A" location

The flume should be level and the sidewalls vertical.

Parshall Flume

12-9: 3 ft. Parshall Flume Discharge Table

Formulas: $CFS = 12.00H^{1.566}$ GPS = CFS x 7.481 GPM = CFS x 448.8 MGD = CFS x 0.6463

Head Feet	CFS	GPS	GPM	MGD	Head Feet	CFS	GPS	GPM	MGD
0.01	0.0089	0.0662	3.974	0.0057	0.51	4.181	31.27	1876	2.702
0.02	0.0262	0 1961	11.77	0.0169	0.52	4.310	32.24	1934	2.785
0.03	0.0495	0.3701	22.20	0.0320	0.53	4.440	33.22	1993	2.870
0.04	0.0776	0.5807	34.84	0.0502	0.54	4.572	34.20	2052	2.955
0.05	0.1101	0.8236	49.41	0.0712	0.55	4.705	35.20	2112	3.041
0.06	0.1465	1.096	65.74	0.0947	0.56	4.840	36.21	2172	3.128
0.07	0.1865	1.395	83.69	0.1205	0.57	4.976	37.23	2233	3.216
0.08	0.2298	1.719	103.2	0.1485	0.58	5.113	38.25	2295	3.305
0.09	0.2764	2.068	124.0	0.1786	0.59	5.252	39.29	2357	3.394
0.10	0.3260	2.439	146.3	0.2107	0.60	5.392	40.34	2420	3.485
0.11	0.3784	2.831	169.8	0.2446	0.61	5.534	41.40	2483	3.576
0.12	0.4337	3.244	194.6	0.2803	0.62	5.676	42.46	2548	3.669
0.13	0.4916	3.678	220.6	0.3177	0.63	5.820	43.54	2612	3.762
0.14	0.5521	4.130	247.8	0.3568	0.64	5.966	44.63	2677	3.856
0.15	0.6151	4.602	276.1	0.3975	0.65	6.112	45.73	2743	3.950
0.16	0.6805	5.091	305.4	0.4398	0.66	6.260	46.83	2810	4.046
0.17	10.7483	5.598	335.8	0.4836	0.67	6409	47.05	2877	4 142

Common Flume Deficiencies

Turbulent Flow Conditions

Turbulent Flow Conditions

•Grating creates an obstruction, making flow measurements inaccurate.

What's wrong with this system?

Palmer-Bowlus Flumes

- Often used in manholes and temporary installations
- Easy to install in existing conduits
- Check that location and determination of head is correct

•Stormwater outfall contains debris and sediment in channel floor of H-flume

Weirs

- One of the most common open channel flow devices
- Simple to install and inexpensive
- Simple to check for calibration

Standard Weir Specifications

Requirements for Sharp Crested Weirs (continued)

 Weir crest should be 1/8-inch thick or less, or chamfered at 45 degrees so that the water springs free of the weir

Weir Plate

DEFICIENCIES WITH WEIRS

What's wrong?

Broad-crested Weir Formula

• Q = cLH1.5

- -Q = cubic feet/second
- -L = length of crest (feet)
- -H = Head (feet)
- -C = Coefficient

ISCO 4210

Operation

- To move between option use the left right arrows
- To make a selection use the green "Enter/Program Step" button
- To enter a value type it in using the key pad.

Program

Level

Units of measure used are "FT" (not shown)

Flow Rate

Flow Measurement Type

Primary Measurement Device

Type of Weir

Weir Angle

Maximum Head

 This number can be typed directly in from the key pad

Corresponding Flow Rate

Current Water Level

Determine height of water and type in

Closed Channel Systems

- Common closed channel devices:
- Venturi Meters

Magnetic Flow Meters

• Doppler Flow Meters

Venturi Meters

Cross-section of a Venturi Meter

Venturi meter in operation
Magnetic Flow Meter

Doppler Flow Meter

Ultrasonic / Transit Time

General Requirements: Closed Channel Systems

• Full pipe flow conditions

 Straight length of pipe for 5 to 20 diameters

Calibrated annually

