

PEST
Model-Independent Parameter Estimation

Watermark Numerical Computing

Acknowledgements and Disclaimer

Acknowledgments
Some of the improvements made to PEST documented in this manual were carried out while
I was employed as a Research Scientist at the University of Idaho, Idaho Falls. Also, while I
occupied that position, I was able to devote a considerable amount of time to writing software
to expedite PEST’s usage in the calibration and predictive analysis of surface water models.
Much of this software is now part of the PEST Surface Water Utilities Suite.

I wish to publicly acknowledge my gratitude to the University of Idaho for providing me with
the time and resources necessary to carry out this important work.

Disclaimer
The user of this software accepts and uses it at his/her own risk.

The author does not make any expressed of implied warranty of any kind with regard to this
software. Nor shall the author be liable for incidental or consequential damages with or
arising out of the furnishing, use or performance of this software.

Preface

Preface to First Edition
This document describes the use of PEST, a model-independent parameter optimiser.

Nonlinear parameter estimation is not new. Many books and papers have been devoted to the
subject; subroutines are available in many of the well-known mathematical subroutine
libraries; many modelling packages from all fields of science include parameter estimation as
a processing option; most statistical and data-analysis packages allow curve-fitting to a user-
supplied data set. However in order to take advantage of the nonlinear parameter estimation
facilities offered by this software, you must either undertake a modelling task specific to a
particular package, you must alter the source code of your model so that it meets the interface
requirements of a certain optimisation subroutine, or you must re-cast your modelling
problem into a language specific to the package you are using.

While PEST has some similarities to existing nonlinear parameter estimation software (it
uses a powerful, yet robust, estimation technique that has been extensively tested on a wide
range of problem types), it has been designed according to a very different philosophy. What
is new about PEST is that it allows you to undertake parameter estimation and/or data
interpretation using a particular model, without the necessity of having to make any changes
to that model at all. Thus PEST adapts to an existing model, you don't need to adapt your
model to PEST. By wrapping PEST around your model, you can turn it into a non-linear
parameter estimator or sophisticated data interpretation package for the system which your
model simulates. The model can be simple or complex, home-made or bought, and written in
any programming language.

As far as I know, PEST is unique. Because of its versatility and its ability to meet the
modeller “where he or she is at”, rather than requiring the modeller to reformulate his/her
problem to suit the optimisation process, I believe that PEST will place the nonlinear
parameter estimation method into the hands of a wider range of people than has hitherto been
possible, and will allow its application to a wider range of problem types than ever before. I
sincerely hope that this will result in a significant enhancement in the use of computer
modelling in understanding processes and interpreting data in many fields of study.

However you should be aware that nonlinear parameter estimation can be as much of an art
as it is a science. PEST, or any other parameter estimator, can only be used to complement
your own efforts in understanding a system and inferring its parameters. It cannot act as a
substitute for discernment; it cannot extract more information from a dataset than the inherent
information content of that dataset. Furthermore, PEST will work differently with different
models. There are many adjustments which you can make to PEST to tune it to a specific
model, and you need to know what these adjustments are; often it is only by trial and error
that you can determine what are its best settings for a particular case. The fact that PEST’s
operation can be tuned in this manner is one of its strengths; however this strength can be
properly harnessed only if you are aware of what options are available to you.

So I urge you to take the time to understand the contents of this manual before using PEST to
interpret real-world data. In this way you will maximise your chances of using PEST
successfully. Experience has shown that for some difficult or “messy” models, the setting of
a single control variable can make the difference between PEST working for that model or

Preface

not. Once the correct settings have been determined, PEST can then be used with that model
forevermore, maybe saving you days, perhaps weeks, of model calibration time for each new
problem to which that model is applied. Hence a small time investment in understanding the
contents of this manual could yield excellent returns.

So “good luck” in your use of PEST; I hope that it provides a quantum leap in your ability to
calibrate models and interpret field and laboratory data.

John Doherty
February, 1994

Preface to Second Edition
Since the first version of PEST was released in early 1994 it has been used all over the world
by scientists and engineers working in many different fields, including biology, geophysics,
geotechnical, mechanical, aeronautical and chemical engineering, ground and surface water
hydrology and other fields. Through the use of PEST in model calibration and data
interpretation, many PEST users have been able to use their models to much greater
advantage than was possible when such tasks were attempted manually by trial and error
methods.

This second edition of the PEST manual coincides with the release of version 3.5 of PEST.
Some of the enhancements that were included in this new PEST have arisen out of my own
experience in the application of PEST to the calibration of large and complex models. Others
have been included at the suggestion of various PEST users, some of whom are applying
PEST in unique and interesting situations. For those already familiar with PEST a brief
summary of new features follows.

A version of PEST called “Parallel PEST” has been created. This allows PEST to run a
model on different machines across a PC network, thereby reducing overall optimisation time
enormously.

By popular demand, parameter, observation, parameter group and prior information names
can now be up to 8 characters in length. The previous limit of 4 characters per name was set
as a memory conservation strategy, a matter of diminishing concern as computing hardware
continues to improve.

Observations can now be collected into groups and the contribution made to the objective
function by each group reported through the optimisation process. This information is
extremely helpful in the assignment of weights to different measurement types.

PEST no longer ceases execution with an error message if a parameter has no effect on
observations; rather it simply holds the offending parameter at its initial value.

PEST can be asked to run a model only once and then terminate execution. In this way PEST
can be used simply for objective function calculation. Alternatively, it can be asked to run the
model only as many times as is necessary in order to calculate the parameter covariance

Preface

matrix and related statistics based on initial parameter estimates.

Two new programs have been added to the PEST suite. These are SENSAN, a model-
independent sensitivity analyser, and PARREP, a utility that facilitates the commencement of
a new PEST run using parameter values generated on a previous PEST run.

However by far the most important changes to PEST are the improved capabilities that it
offers for user intervention in the parameter estimation process. Every time that it calculates
the Jacobian matrix, PEST now stores it on file for possible later use. It records on another
file the overall sensitivity of each parameter, this being defined as the magnitude of the
vector comprising the column of the Jacobian matrix pertaining to that parameter divided by
the number of observations. Thus, at any stage of the optimisation process, sensitive and
insensitive parameters can be distinguished. It is the insensitive parameters that can cause
most problems in the calibration of complex models (especially where parameters are many
and correlation is high).

At any stage of the optimisation process a user can request that certain, troublesome,
parameters be held at their current values. Such parameters can be demarcated either
individually, or according to whether their sensitivity drops below a certain threshold in the
course of the parameter estimation process. Alternatively, a user can request that the x least
sensitive parameters within a certain group be held while the parameter upgrade vector is
calculated, where x is supplied by the user according to his/her knowledge and intuition with
regard to the current parameter estimation problem. As well as this, certain variables
controlling how the parameter upgrade vector is calculated can now be altered during a PEST
run.

Calculation of the parameter upgrade vector can now be repeated. Thus if a user thinks that
PEST could have done a better job of lowering the objective function during a certain
optimisation iteration, he/she can halt PEST execution, instruct PEST to hold certain
parameters at current values, and ask PEST to calculate the parameter upgrade vector again.
This can be done without the need to re-calculated the Jacobian matrix (the most time-
consuming part of PEST’s operations) because the latter is stored every time it is calculated
in anticipation of just such a request.

As an aid to identification of recalcitrant parameters, PEST now records the parameters that
underwent maximum factor and relative changes during any parameter upgrade event, these
often being the parameters that create problems.

It is important to note that even though PEST has changed somewhat and includes a number
of new and powerful features, file protocols used with previous versions of PEST are
identical to those used by the latest version of PEST, with one exception; this is the addition
of observation group data to the PEST control file. However the new version of PEST is able
to recognise a PEST control file written for an older PEST version, and will read it without
complaint, assigning a dummy group name to all observations.

PEST has stood the test of time. When it was initially released it offered entirely new
possibilities for model calibration and data interpretation. Slowly but surely the PEST user
base is expanding as more and more scientists and engineers are realising the benefits that
can be gained through the use of these possibilities. The latest version of PEST, which

Preface

includes Parallel PEST and the options for user intervention briefly outlined above, allows
the use of PEST to be extended to the calibration of large and complex models to which the
application of nonlinear parameter estimation techniques would have hitherto been
considered impossible. It is hoped that new and existing PEST users can apply PEST to new
and exciting problems as a result of these enhancements, and that they will be able to harness
the potential for more sophisticated and efficient use of models than ever before.

John Doherty
October, 1998

Preface to the Third Edition
Production of the third edition of the PEST manual coincides with the release of Version 4.01
of PEST, also known as PEST2000. The principal addition to PEST functionality
encapsulated in PEST2000 is the provision of predictive analysis capabilities to complement
PEST’s existing parameter estimation capabilities.

With the increasing use of nonlinear parameter estimation techniques in model calibration,
there is a growing realisation among modellers of the extent of nonuniqueness associated
with parameter values derived through the model calibration process. This realisation is
accompanied by a growing desire to examine the effect of parameter nonuniqueness on the
uncertainty of predictions made by calibrated models. The importance of quantifying
predictive uncertainty cannot be understated. It can be argued that model parameters are often
something of an abstraction, sometimes bearing only a passing resemblance to quantities that
can be measured or even observed in real-world systems. However the same is not true of
model predictions, for these are the reason why the model was built in the first place. If
model predictions are being relied upon to serve as a basis for sound environmental
management (as they often are), then an ability to quantify the uncertainty associated with
such predictions is as important as the ability to make such predictions in the first place.

The concept of a “prediction” can be broadened to describe PEST’s use in those fields where
parameter estimation is an end in itself. This is especially the case in the geophysical context
where PEST is used to infer earth properties from measurements made at the surface and/or
down a number of boreholes. In this case it would appear that model parameters (as
determined through the nonlinear parameter estimation process) are of overriding
importance, and indeed that the concept of a “model prediction” is inapplicable. However
this is not the case; in fact PEST’s predictive analysis capabilities have proved an extremely
useful addition to the exploration geophysicist’s arsenal. Use of PEST in predictive analysis
mode allows the geophysical data interpreter to ask (and have answered) such questions as
“is it possible that a hole drilled at a certain location will not intersect any conductive
material?”, or “what is the maximum possible depth extent of the conductor giving rise to
anomalous surficial measurements?”.

The term “predictive analysis” as used in this manual describes the task of calculating the
effect of parameter uncertainty, as estimated through the calibration process, on predictive
uncertainty. A number of methods have been documented for undertaking such an analysis,
for example Monte-Carlo methods and linear uncertainty propagation. However unlike most
other methods, the PEST predictive analysis algorithm relies on no assumptions concerning
the linearity of a model or the probability distribution associated with its parameters;

Preface

furthermore, notwithstanding the fact that calculation of model predictive uncertainty is a
numerically laborious procedure, PEST’s predictive analysis algorithm is less numerically
intensive than any other method of nonlinear predictive analysis.

It is hoped that the use of PEST’s predictive analyser will allow modellers from all fields of
science and engineering to make yet another quantum leap in the productive use of computer
simulation models in whatever field of study they are currently engaged.

John Doherty
October, 1999

Preface to the Fourth Edition
Production of the fourth edition of the PEST manual marks two important milestones in the
development of PEST. The first of these is the addition of advanced and powerful
regularisation functionality underpinning the release of version 5.0 of PEST, otherwise
known as PEST-ASP (“ASP” stands for “Advanced Spatial Parameterisation”). The second is
PEST’s change in status from that of a commercial product to that of a public domain
package.

Over the last few years the continued development of PEST has focussed on its ability to
work successfully with complex, highly-parameterised models. First there was PEST’s user-
intervention functionality, this allowing the user to hold troublesome parameters (normally
insensitive and/or highly correlated parameters) at their current values so that the parameter
estimation process could proceed without the damaging effects that these parameters have on
that process. The second was the incorporation of PEST’s nonlinear predictive analysis
functionality, this denoting a recognition of the fact that increased parameterisation normally
results in increased parameter nonuniqueness at the same time as any semblance of model
linearity rapidly fades from view. Now, with PEST-ASP, comes the advent of advanced
regularisation functionality. At the time of writing this preface PEST’s new regularisation
functionality has already proven itself enormously useful in the parameterisation of
heterogeneous two- and three-dimensional spatial model domains, especially when
accompanied by the use of flexible methods of spatial parameter definition such as “pilot
points” (see the PEST Ground Water Data Utility Suite). Use of PEST in “regularisation
mode” allows the modeller to estimate many more parameters than would otherwise be
possible. Thus, when working with spatial models, PEST is able to “find for itself” regions of
anomalous physical or hydraulic properties rather than requiring that such areas be delineated
in advance by the modeller using zones of piecewise parameter constancy. Furthermore, the
process is numerically very stable, avoiding the deleterious effects on this process of
parameter insensitivity or excessive correlation that often accompanies an attempt to estimate
too many parameters.

The decision to place PEST in the public domain was not taken lightly. However two factors
made the decision almost impossible to avoid. One of these was the advent of competing,
public domain software which, while not having anything like the functionality of PEST, is
nevertheless highly visible and has US government auspice. The other consideration was of a
more philanthropic nature. My instincts tell me that the biggest issue in environmental

Preface

modelling over the next decade will be that of predictive uncertainty analysis. PEST has a
substantial contribution to make in this regard. It is my hope that by making PEST freely
available to all modellers at zero cost, it will make an even more important contribution to
environmental management based on computer simulation of real-world systems than it
already has to date.

Other new features found in PEST-ASP that were not available in previous versions of PEST
include the following.

• All names pertaining to parameters, parameter groups, observations, observation
groups and prior information items can now be up to twelve characters in length.

• Prior information items must now be assigned to observation groups.

• Uncertainties in observations and prior information equations used in the inversion
process can now be expressed in terms of covariance matrices, rather than simply in
terms of weights.

• If derivatives of model outputs with respect to adjustable parameters can be calculated
by the model, rather than by PEST through the use of finite differences, then PEST
can use these derivatives if they are supplied to it through a file written by the model.

• Different commands can be used to run the model for different purposes for which the
model is used by PEST (viz. testing parameter upgrades, calculating derivatives with
respect to different parameters, etc).

• PEST can now send “messages” to a model, allowing the model to adjust certain
aspects of its behaviour depending on the purpose for which it is run by PEST.

• PEST stores the Jacobian matrix corresponding to the best set of parameters achieved
up to any stage of the parameter estimation process in a special binary file which is
updated as the parameter estimation process proceeds. A new utility program named
READJAC re-writes the Jacobian matrix in text format for user-inspection.

• PEST prints out a more comprehensive suite of information on composite parameter
sensitivities than was available in previous versions.

• A new utility named PAR2PAR has been added to the PEST suite. This is a
“parameter preprocessor” which allows the user to manipulate parameters according
to mathematical equations of arbitrary complexity before these parameters are
supplied to the model.

John Doherty
January, 2002

Preface

Bugs
In the unlikely event that you discover a bug in PEST, please report it to me, John Doherty, at
the following email address:-

jdoherty@gil.com.au

Table of Contents

Table of Contents
1. Introduction... 1-1

1.1 Installation... 1-1
1.2 The PEST Concept.. 1-1

1.2.1 A Model’s Data Requirements .. 1-1
1.2.2 The Role of PEST ... 1-2

1.3 What Pest Does ... 1-3
1.4 An Overview of PEST .. 1-4

1.4.1 Parameter Definition and Recognition.. 1-5
1.4.2 Observation Definition and Recognition... 1-6
1.4.3 The Parameter Estimation Algorithm ... 1-7
1.4.4 Predictive Analysis.. 1-9
1.4.5 Regularisation.. 1-10

1.5 How to Use PEST ... 1-11
1.5.1 The Two Versions of PEST .. 1-11
1.5.2 PEST Utilities.. 1-12
1.5.3 Parameter Preprocessing ... 1-13
1.5.4 Sensitivity Analysis... 1-13

1.6 This Manual .. 1-14
2. The PEST Algorithm .. 2-1

2.1 The Mathematics of PEST .. 2-1
2.1.1 Parameter Estimation for Linear Models .. 2-1
2.1.2 Observation Weights ... 2-4
2.1.3 The Use of Prior Information in the Parameter Estimation Process 2-5
2.1.4 Nonlinear Parameter Estimation ... 2-6
2.1.5 The Marquardt Parameter.. 2-8
2.1.6 Scaling... 2-9
2.1.7 Determining the Marquardt Lambda... 2-10
2.1.8 Optimum Length of the Parameter Upgrade Vector ... 2-10
2.1.9 Predictive Analysis.. 2-11
2.1.10 Regularisation.. 2-13
2.1.11 Use of an Observation Covariance Matrix.. 2-15
2.1.12 Goodness of Fit ... 2-18

2.2 PEST’s Implementation of the Method .. 2-18
2.2.1 Parameter Transformation... 2-19
2.2.2 Fixed and Tied Parameters.. 2-19
2.2.3 Upper and Lower Parameter Bounds .. 2-19
2.2.4 Scale and Offset .. 2-20
2.2.5 Parameter Change Limits .. 2-21
2.2.6 Damping of Parameter Changes.. 2-23

Table of Contents

2.2.7 Temporary Holding of Insensitive Parameters.. 2-24
2.2.8 Components of the Objective Function... 2-24
2.2.9 Termination Criteria.. 2-25
2.2.10 Operation in Predictive Analysis Mode .. 2-26
2.2.11 Operation in Regularisation Mode .. 2-26

2.3 The Calculation of Derivatives ... 2-27
2.3.1 Forward and Central Differences .. 2-27
2.3.2 Parameter Increments for Derivatives Calculation ... 2-28
2.3.3 How to Obtain Derivatives You Can Trust ... 2-31
2.3.4 Model-Calculated Derivatives .. 2-32

2.4 Bibliography.. 2-32
2.4.1 Literature Cited in the Text ... 2-32
2.4.2 Some Further Reading... 2-33

3. The Model-PEST Interface .. 3-1
3.1 PEST Input Files ... 3-1
3.2 Template Files... 3-1

3.2.1 Model Input Files .. 3-1
3.2.2 An Example... 3-2
3.2.3 The Parameter Delimiter ... 3-4
3.2.4 Parameter Names... 3-4
3.2.5 Setting the Parameter Space Width... 3-4
3.2.6 How PEST Fills a Parameter Space with a Number ... 3-6
3.2.7 Multiple Occurrences of the Same Parameter... 3-8
3.2.8 Preparing a Template File ... 3-9

3.3 Instruction Files... 3-9
3.3.1 Precision in Model Output Files ... 3-10
3.3.2 How PEST Reads a Model Output File .. 3-10
3.3.3 An Example Instruction File ... 3-11
3.3.4 The Marker Delimiter.. 3-13
3.3.5 Observation Names ... 3-13
3.3.6 The Instruction Set .. 3-13
3.3.7 Making an Instruction File .. 3-25

4. The PEST Control File .. 4-1
4.1 The Role of the PEST Control File ... 4-1
4.2 Construction Details.. 4-1

4.2.1 The Structure of the PEST Control File .. 4-1
4.2.2 Control Data .. 4-4
4.2.3 Parameter Groups.. 4-13
4.2.4 Parameter Data - First Part .. 4-16
4.2.5 Parameter Data - Second Part.. 4-19
4.2.6 Observation Groups... 4-20
4.2.7 Observation Data... 4-20

Table of Contents

4.2.8 Model Command Line... 4-21
4.2.9 Model Input/Output... 4-23
4.2.10 Prior Information... 4-24

4.3 Observation Covariances .. 4-27
4.3.1 Using an Observation Covariance Matrix Instead of Weights.......................... 4-27
4.3.2 Supplying the Observation Covariance Matrix to PEST 4-28
4.3.3 PEST Outputs .. 4-30

5. Running PEST ... 5-1
5.1 How to Run PEST... 5-1

5.1.1 Checking PEST’s Input Data .. 5-1
5.1.2 Versions of PEST .. 5-1

5.2 The PEST Run Record .. 5-2
5.2.1 An Example... 5-2
5.2.2 Echoing the Input Data Set.. 5-9
5.2.3 The Parameter Estimation Record... 5-9
5.2.4 Optimised Parameter Values and Confidence Intervals.................................... 5-12
5.2.5 Observations and Prior Information.. 5-13
5.2.6 Objective Function .. 5-13
5.2.7 Correlation Coefficient.. 5-13
5.2.8 Analysis of Residuals .. 5-13
5.2.9 The Parameter Covariance Matrix .. 5-14
5.2.10 The Correlation Coefficient Matrix... 5-14
5.2.11 The Normalised Eigenvector Matrix and the Eigenvalues 5-15

5.3 Other PEST Output Files .. 5-15
5.3.1 The Parameter Value File.. 5-15
5.3.2 The Parameter Sensitivity File .. 5-16
5.3.3 Observation Sensitivity File .. 5-19
5.3.4 The Residuals File... 5-20
5.3.5 The Matrix File.. 5-21
5.3.6 Other Files ... 5-21
5.3.7 PEST’s Screen Output... 5-22
5.3.8 Run-time Errors... 5-22

5.4 Stopping and Restarting PEST.. 5-23
5.4.1 Interrupting PEST Execution .. 5-23
5.4.2 Restarting PEST with the “/r” Switch ... 5-24
5.4.3 Restarting PEST with the “/j” Switch ... 5-25

5.5 If PEST Won't Optimise.. 5-25
5.5.1 General .. 5-25
5.5.2 Derivatives are not Calculated with Sufficient Precision 5-26
5.5.3 High Parameter Correlation .. 5-26
5.5.4 Inappropriate Parameter Transformation .. 5-27
5.5.5 Highly Nonlinear Problems... 5-28

Table of Contents

5.5.6 Discontinuous Problems.. 5-28
5.5.7 Parameter Change Limits Set Too Large or Too Small 5-28
5.5.8 Poor Choice of Initial Parameter Values... 5-29
5.5.9 Poor Choice of Initial Marquardt Lambda .. 5-29
5.5.10 Observations are Insensitive to Initial Parameter Values 5-30
5.5.11 Parameter Cannot be Written with Sufficient Precision 5-31
5.5.12 Incorrect Instructions .. 5-31
5.5.13 Upgrade Vector Dominated by Insensitive Parameters 5-31

5.6 User Intervention... 5-31
5.6.1 An Often-Encountered Cause of Aberrant PEST Behaviour 5-31
5.6.2 Fixing the Problem.. 5-32
5.6.3 The Parameter Hold File ... 5-32
5.6.4 Re-calculating the Parameter Upgrade Vector.. 5-35
5.6.5 Maximum Parameter Change.. 5-36

5.7 PEST Postprocessing .. 5-36
5.7.1 General .. 5-36
5.7.2 Parameter Values... 5-36
5.7.3 Parameter Statistics ... 5-36
5.7.4 Residuals ... 5-37
5.7.5 Over-Parameterisation... 5-39
5.7.6 Covariance Matrix for Best-Fit Parameters .. 5-39
5.7.7 Model Outputs based on Optimal Parameter Values .. 5-40

6. Predictive Analysis .. 6-1
6.1 The Concept .. 6-1

6.1.1 What Predictive Analysis Means .. 6-1
6.1.2 Some Solutions.. 6-3
6.1.3 The “Critical Point”... 6-3
6.1.4 Dual Calibration .. 6-6
6.1.5 Predictive Analysis Mode ... 6-7

6.2 Working with PEST in Predictive Analysis Mode ... 6-10
6.2.1 Structure of the PEST Control File ... 6-10
6.2.2 PEST Variables used for Predictive Analysis ... 6-12

6.3 An Example... 6-16
7. Regularisation .. 7-1

7.1 About Regularisation .. 7-1
7.1.1 General .. 7-1
7.1.2 Smoothing as a Regularisation Methodology ... 7-2
7.1.3 Theory ... 7-3

7.2 Implementation in PEST... 7-4
7.2.1 Regularisation Mode ... 7-4
7.2.2 The Observation Group “Regul”... 7-4

7.3 Preparing for a PEST Run in Regularisation Mode.. 7-5

Table of Contents

7.3.1 The PEST Control File - “Control Data” Section ... 7-5
7.3.2 The PEST Control File - Observation Groups .. 7-5
7.3.3 Control File - “Regularisation” Section .. 7-5
7.3.4 The Control Variable FRACPHIM ... 7-8

7.4 Working with PEST in Regularisation Mode ... 7-9
7.4.1 Run-Time Information .. 7-9
7.4.2 Composite Parameter Sensitivities.. 7-11
7.4.3 Post-Run Information.. 7-11

7.5 Other Considerations Related to Regularisation... 7-12
7.5.1 Using PEST in Two Different Modes ... 7-12
7.5.2 Initial Parameter Values .. 7-13

7.6 Two Examples of Regularisation.. 7-13
7.6.1 A Layered Half-Space... 7-13
7.6.2 A Heterogeneous Aquifer.. 7-15

8. Model-Calculated Derivatives ... 8-1
8.1 General .. 8-1
8.2 Externally-Supplied Derivatives ... 8-1

8.2.1 The External Derivatives File ... 8-1
8.2.2 File Management... 8-2
8.2.3 File Format .. 8-2
8.2.4 Derivatives Type ... 8-3
8.2.5 Use of Derivatives Information... 8-3
8.2.6 Tied Parameters... 8-4
8.2.7 Name of the Derivatives File .. 8-4
8.2.8 Predictive Analysis Mode ... 8-4
8.2.9 Parallel PEST .. 8-4

8.3 Sending a Message to the Model .. 8-4
8.4 Multiple Command Lines ... 8-6
8.5 External Derivatives and the PEST Control File .. 8-6

8.5.1 General .. 8-6
8.5.2 “Control Data” Section.. 8-6
8.5.3 “Parameter Data” Section.. 8-7
8.5.4 “Derivatives Command Line” Section.. 8-8
8.5.5 “Model Command Line” Section.. 8-9

8.6 An Example... 8-9
9. Parallel PEST... 9-1

9.1 Introduction... 9-1
9.1.1 General .. 9-1
9.1.2 Parallelisation of the Jacobian Matrix Calculation Process 9-1
9.1.3 Parallelisation of the Marquardt Lambda Testing Process 9-2
9.1.4 A Warning ... 9-3
9.1.5 Installing Parallel PEST .. 9-3

Table of Contents

9.2. How Parallel PEST Works... 9-3
9.2.1 Model Input and Output Files ... 9-3
9.2.2 The PEST Slave Program.. 9-4
9.2.3 Running the Model on Different Machines... 9-5
9.2.4 Communications between Parallel PEST and its Slaves..................................... 9-6
9.2.5 The Parallel PEST Run Management File .. 9-7
9.2.6 More on Partial Parallelisation of the Marquardt Lambda Testing Process 9-11

9.3. Using Parallel PEST... 9-12
9.3.1 Preparing for a Parallel PEST Run.. 9-12
9.3.2 Starting the Slaves... 9-12
9.3.3 Starting PEST.. 9-13
9.3.4 Re-Starting Parallel PEST... 9-13
9.3.5 Parallel PEST Errors ... 9-14
9.3.6 Losing Slaves .. 9-14
9.3.7 The Parallel PEST Run Management Record File.. 9-15
9.3.8 Running PSLAVE on the Same Machine as Parallel PEST 9-17
9.3.9 Running Parallel PEST on a Multi-Processor Machine.................................... 9-17
9.3.10 The Importance of the WAIT Variable ... 9-17
9.3.11 If PEST will not Respond.. 9-18
9.3.12 The Model ... 9-19

9.4 An Example... 9-19
9.5 Frequently Asked Questions ... 9-19

10. PEST Utilities .. 10-1
10.1 TEMPCHEK ... 10-1
10.2 INSCHEK ... 10-3
10.3 PESTCHEK... 10-4
10.4 PESTGEN ... 10-5
10.5 PARREP.. 10-8
10.6 JACWRIT ... 10-9
10.7 PAR2PAR ... 10-10

10.7.1 General .. 10-10
10.7.2 Using PAR2PAR... 10-12
10.7.3 Using PAR2PAR with PEST .. 10-16

11. SENSAN.. 11-1
11.1 Introduction... 11-1
11.2 SENSAN File Requirements... 11-2

11.2.1 General .. 11-2
11.2.2 Template Files ... 11-2
11.2.3 Instruction Files... 11-2
11.2.4 The Parameter Variation File .. 11-3
11.2.5 SENSAN Control File ... 11-4
11.2.6 Control Data .. 11-5

Table of Contents

11.2.7 SENSAN Files... 11-6
11.2.8 Model Command Line... 11-6
11.2.9 Model Input/Output... 11-7
11.2.10 Issuing a System Command from within SENSAN...................................... 11-7

11.3 SENSCHEK .. 11-8
11.3.1 About SENSCHEK ... 11-8
11.3.2 Running SENSCHEK.. 11-8

11.4 Running SENSAN .. 11-9
11.4.1 SENSAN Command Line ... 11-9
11.4.2 Interrupting SENSAN Execution .. 11-9

11.5 Files Written by SENSAN .. 11-9
11.5.1 SENSAN Output Files .. 11-9
11.5.2 Other Files used by SENSAN ... 11-10

11.6 Sensitivity of the Objective Function.. 11-11
11.7 SENSAN Error Checking and Run-Time Problems ... 11-12
11.8 An Example... 11-13

12. An Example ... 12-1
12.1 Parameter Estimation .. 12-1

12.1.1 Laboratory Data... 12-1
12.1.2 The Model ... 12-2
12.1.3 Preparing the Template File .. 12-5
12.1.4 Preparing the Instruction File.. 12-7
12.1.5 Preparing the PEST Control File... 12-8

12.2 Predictive Analysis ... 12-10
12.2.1 Obtaining the Model Prediction of Maximum Likelihood............................ 12-10
12.2.2 The Composite Model ... 12-11
12.2.3 The PEST Control File.. 12-13
12.2.4 Template and Instruction Files.. 12-14
12.2.5 Running PEST... 12-14

13. Frequently Asked Questions .. 13-1
13.1 PEST ... 13-1
13.2 Parallel PEST .. 13-1
13.3 PEST and Windows NT.. 13-3

Index ..

Introduction 1-1

1. Introduction

1.1 Installation

Installation instructions are provided on the printed sheet accompanying this manual; follow
these instructions to transfer PEST executable and support files to your machine’s hard disk.

Your autoexec.bat should be modified before you run PEST; the PEST directory must be
added to the PATH statement.

1.2 The PEST Concept

1.2.1 A Model’s Data Requirements

There is a mathematical model for just about everything. Computer programs have been
written to describe the flow of water in channels, the flow of electricity in conductors of
strange shape, the growth of plants, the population dynamics of ants, the distribution of stress
in the hulls of ships and on and on. Modelling programs generally require data of four main
types. These are:

• Fixed data. These data define the system; for example in a ground water model the
shape of the aquifer is fixed, as are the whereabouts of any extraction and injection
bores.

• Parameters. These are the properties of the system; parameters for a ground water
model include the hydraulic conductivity and storage capacity of the rocks through
which the water flows, while for a stress model parameters include the elastic
constants of the component materials. A model may have many parameters, each
pertaining to one particular attribute of the system which affects its response to an
input or excitation. In spatial models a particular system property may vary from
place to place; hence the parameter data needed by the model may include either
individual instances of that property for certain model subregions, or some numbers
which describe the manner in which the property is spatially distributed.

• Excitations. These are the quantities which “drive” the system, for example climatic
data in a plant growth model, and the source and location of electric current in
electromagnetic boundary-value problems. Like parameters, excitations may have
spatial dependence.

• Control data. These data provide settings for the numerical solution method by
which the system equations are solved. Examples are the specifications of a finite
element mesh, the convergence criteria for a preconditioned conjugate gradient matrix
equation solver, and so on.

The distinction between these different data types may not always be clear in a particular
case.

Introduction 1-2

The purpose of a mathematical model is to produce numbers. These numbers are the model’s
predictions of what a natural or man-made system will do under a certain excitation regime.
It is for the sake of these numbers that the model was built, be it a ten line program involving
a few additions and subtractions, or a complex numerical procedure for the solution of
coupled sets of nonlinear partial differential equations.

Where a model simulates reality it often happens that the model-user does not know what
reality is; in fact models are often used to infer reality by comparing the numbers that they
produce with numbers obtained from some kind of measurement. Thus if a model’s
parameter and/or excitation data are “tweaked”, or adjusted, until the model produces
numbers that compare well with those yielded by measurement, then perhaps it can be
assumed that the excitations or parameters so obtained have actually told us something which
we could not obtain by direct observation. Thus if a ground water model is able to reproduce
the variations in borehole water levels over time (a quantity which can be obtained by direct
observation), the hydraulic conductivity values that we assign to different parts of the model
domain in order to achieve this match may be correct; this is fortunate as it is often difficult
or expensive to measure rock hydraulic conductivities directly. Similarly, if the resistivities
and thicknesses that we assign to a layered half-space reproduce voltage/current ratios
measured at various electrode spacings on the surface of the half-space, then perhaps these
resistivities and thicknesses represent a facet of reality that it may not have been possible to
obtain by direct observation.

1.2.2 The Role of PEST

PEST is all about using existing models to infer aspects of reality that may not be amenable
to direct measurement. In general its uses fall into three broad categories. These are:

• Interpretation. In this case an experiment is set up specifically to infer some
property of a system, often by disturbing or exiting it in some way. A model is used to
relate the excitations and system properties to quantities that can actually be
measured. An interpretation method may then be based on the premise that if the
excitation is known it may be possible to estimate the system properties from the
measurement set. Alternatively, if system properties are known it may be possible to
use the model to infer something about the excitation by adjusting model input
excitation variables until model outcomes match measurements. (In some cases it may
even be possible to estimate both excitations and parameters.) A good deal of
geophysical software falls into this category, where sometimes very elegant
mathematical models are developed in order to infer aspects of the earth’s structure
from measurements that are confined either to the earth’s surface or to a handful of
boreholes.

• Calibration. If a natural or man-made system is subject to certain excitations, and
numbers representing these same excitations are supplied to a model for that system,
it may be possible to adjust the model’s parameters until the numbers which it
generates correspond well with certain measurements made of the system which it
simulates. If so, it may then be possible to conclude that the model will represent the
system’s behaviour adequately as the latter responds to other excitations as well -
excitations which we may not be prepared to give the system in practice. A model is
said to be “calibrated” when its parameters have been adjusted in this fashion.

Introduction 1-3

• Predictive Analysis. Once a parameter set has been determined for which model
behaviour matches system behaviour as well as possible, it is then reasonable to ask
whether another parameter set exists which also results in reasonable simulation by the
model of the system under study. If this is the case, an even more pertinent question is
whether predictions made by the model with the new parameter set are different.
Depending on the system under study and the type of model being used to study this
system, the ramifications of such differences may be extremely important.

The purpose of PEST (which is an acronym for Parameter ESTimation) is to assist in data
interpretation, model calibration and predictive analysis. Where model parameters and/or
excitations need to be adjusted until model-generated numbers fit a set of observations as
closely as possible then, provided certain continuity conditions are met (see the next section),
PEST should be able to do the job. PEST will adjust model parameters and/or excitations
until the fit between model outputs and laboratory or field observations is optimised in the
weighted least squares sense. Where parameter values inferred through this process are
nonunique, PEST will analyse the repercussions of this nonuniqueness on predictions made
by the model. The universal applicability of PEST lies in its ability to perform these tasks for
any model that reads its input data from one or a number of ASCII (ie. text) input files and
writes the outcomes of its calculations to one or more ASCII output files. Thus a model does
not have to be recast as a subroutine and recompiled before it can be used within a parameter
estimation process. PEST adapts to the model, the model does not need to adapt to PEST.

Thus PEST, as a nonlinear parameter estimator, can exist independently of any particular
model, yet can be used to estimate parameters and/or excitations, and carry out various
predictive analysis tasks, for a wide range of model types. Thus PEST can turn just about any
existing computer model, be it a home-made model based on an analytical solution to a
simple physical problem, a semi-empirical description of some natural process, or a
sophisticated numerical solver for a complex boundary-value problem, into a powerful
nonlinear parameter estimation package for the system which that model simulates.

1.3 What Pest Does

Models produce numbers. If there are field or laboratory measurements corresponding to
some of these numbers, PEST can adjust model parameter and/or excitation data in order that
the discrepancies between the pertinent model-generated numbers and the corresponding
measurements are reduced to a minimum. It does this by taking control of the model and
running it as many times as is necessary in order to determine this optimal set of parameters
and/or excitations. You, as the model user, must inform PEST of where the adjustable
parameters and excitations are to be found on the model input files. Once PEST is provided
with this information, it can rewrite these model input files using whatever parameters and
excitations are appropriate at any stage of the optimisation process. You must also teach
PEST how to identify those numbers on the model output files that correspond to
observations that you have made of the real world. Thus, each time it runs the model, PEST
is able to read those model outcomes which must be matched to field or laboratory
observations. After calculating the mismatch between the two sets of numbers, and
evaluating how best to correct that mismatch, it adjusts model input data and runs the model
again.

Introduction 1-4

For PEST to take control of an existing model in this fashion in order to optimise its
parameters and/or excitations, certain conditions must be met. These are as follows:

• While a model may read many input files, some of which may be binary and some of
which may be ASCII, the file or files containing those excitations and/or parameters
which PEST is required to adjust must be ASCII (ie. text) files.

• While a model may write many output files, some of which may be binary and some
of which may be ASCII, the file or files containing those model outcomes which
complement field or laboratory measurements must be ASCII (ie. text) files.

• The model must be capable of being run using a system command, and of requiring
no user intervention to run to completion (see below for further details).

• PEST uses a nonlinear estimation technique known as the Gauss-Marquardt-
Levenberg method. The strength of this method lies in the fact that it can generally
estimate parameters using fewer model runs than any other estimation method, a
definite bonus for large models whose run times may be considerable. However the
method requires that the dependence of model-generated observation counterparts on
adjustable parameters and/or excitations be continuously differentiable.

PEST must be provided with a set of input files containing the data which it needs in order to
effectively take control of a particular model. Specifications for these files will be described
later in the manual; their preparation is a relatively simple task. Amongst the data which must
be supplied to PEST is the name of the model of which it must take control. In the simplest
case, this may be the name of a single executable file, ie. a program that simulates a system
for which parameterisation or excitation estimation is required. In more complex cases the
name may pertain to a batch program which runs a number of executable programs in
succession. Thus output data from one model can feed another, or a model postprocessor may
extract pertinent model outputs from a lengthy binary file and place them into a smaller,
“tidy” file in ASCII format for easy PEST access.

Models which receive their data directly from the user through keyboard entry and write their
results directly to the screen can also be used with PEST. Keyboard inputs can be typed
ahead of time into a file, and the model directed to look to this file for its input data using the
“<” symbol on the model command line; likewise model screen output can be redirected to a
file using the “>” symbol. PEST can then be instructed to alter parameters and/or excitations
on the input file and read numbers matching observations from the output file. Thus it can run
the model as many times as it needs to without any human intervention.

PEST can be used with models written in any programming language; they can be home-
made or bought. You do not need to have the source code or know much about the internal
workings of the model. Models can be small and fast, finishing execution in the blink of an
eye, or they can be large and slow, taking minutes or even hours to run; it does not matter to
PEST.

1.4 An Overview of PEST
PEST can be subdivided into three functionally separate components whose roles are:

Introduction 1-5

• parameter and/or excitation definition and recognition,

• observation definition and recognition, and

• the nonlinear estimation and predictive analysis algorithm.

Though the workings of PEST will be described in detail in later chapters, these three
components are discussed briefly so that you can become acquainted with PEST’s
capabilities.

1.4.1 Parameter Definition and Recognition

From this point on, the single word “parameter” is used to describe what has hitherto been
referred to as “parameters and/or excitations”.

Of the masses of data of all types that may reside on a model’s input files, those numbers
must be identified which PEST is free to alter and optimise. Fortunately, this is a simple
process which can be carried out using input file “templates”. If a model requires, for
example, five input files, and two of these contain parameters which PEST is free to adjust,
then a template file must be prepared for each of the two input files containing adjustable
parameters. To construct a template file, simply start with a model input file and replace each
space occupied by a parameter by a set of characters that both identify the parameter and
define its width on the input file. Then whenever PEST runs the model it copies the template
to the model input file, replacing each parameter space with a parameter value as it does so.

PEST template files can be constructed from model input files using any text editor. They can
be checked for syntactical correctness and consistency using the utility programs
PESTCHEK and TEMPCHEK.

An important point to note about template files is that a given parameter (identified by a
unique name of up to twelve characters in length) can be referenced once or many times. The
fact that it can be referenced many times may be very useful when working with large
numerical models. For example, a finite-difference model may be used to calculate the
electromagnetic fields within a half-space, the half-space being subdivided into a number of
zones of constant electrical conductivity. The model may need to be supplied with a large
two (or even three) dimensional array in which conductivity values are disposed in a manner
analogous to their disposition in the half-space. Each half-space zone is defined by that part
of the array containing elements of a particular value, this value providing the conductivity
pertaining to that zone. It may be these zone conductivity values that we wish to optimise.
Fortunately, creating a template for the model input file holding the array is a simple matter,
for each occurrence of a particular zone-defining number in the original input file can be
replaced by the parameter identifier specific to that zone. Hence every time PEST rewrites
the array, all array elements belonging to a certain zone will have the same value, specific to
that zone.

On a particular PEST run a parameter can remain fixed if desired. Thus, while the parameter
may be identified on a template file, PEST will not adjust its value from that which you
supply at the beginning of the parameter estimation process. Another feature is that one or a
number of parameters can be “tied” to a “parent” parameter. In this case, though all such tied

Introduction 1-6

parameters are identified on template files, only the parent parameter is actually optimised;
the tied parameters are simply varied with this parameter, maintaining a constant ratio to it.

PEST requires that upper and lower bounds be supplied for adjustable parameters (ie.
parameters which are neither fixed not tied); this information is vital to PEST, for it informs
PEST of the range of permissible values that a parameter can take. Many models produce
nonsensical results, or may incur a run-time error, if certain inputs transgress permissible
domains. For example, parameters such as electrical conductivity and solute concentration
should never be provided with negative values. Also, if a parameter occurs as a divisor
anywhere in the model’s code, it can never be zero.

For many models it has been found that if the logarithms of certain parameters are optimised,
rather than the parameters themselves, the rate of convergence to optimal parameter values
can be considerably hastened; PEST allows such logarithmic transformation of selected
parameters.

Often there is some information available from outside of the parameter estimation process
about what value a parameter should take. Alternatively, you may know that the sum or
difference of two or more parameters (or their product or quotient in the case of
logarithmically-transformed parameters) should assume a certain value. PEST allows you to
incorporate such prior information into the estimation process by increasing the value of the
objective function (ie. the sum of squared deviations between model and observations - see
the next section) in proportion to the extent to which these articles of prior information are
transgressed.

Finally, parameters adjusted by PEST can be scaled and offset with respect to the parameters
actually used by the model. Thus you may wish to subtract 273.15 from an absolute
temperature before writing that temperature to a model input file which requires Celcius
degrees; or you may wish to negate a model parameter which never becomes positive so that
it can be log-transformed by PEST for greater optimisation efficiency.

1.4.2 Observation Definition and Recognition

From this point onwards, those numbers on a model output file for which there are
corresponding “real-world” values to which they must be matched will be referred to simply
as “observations”. Of the masses of data produced by a model, only a handful of numbers
may actually be “observations”. For example, a population dynamics model may calculate
population figures on a daily basis, yet measurements may only have been taken every week.
In this case most of the model’s output data will be redundant from the point of view of
model calibration. Similarly, a model for the stress field surrounding an excavation may
calculate stress figures for each of the thousands of nodes of a finite-element mesh, through
the use of which the system differential equations are solved; however stress measurements
may be available at only a handful of points, viz. at the locations of specially-installed stress
sensors in the rocks surrounding the excavation. Again PEST must be able to identify a
handful of numbers (viz. stress values calculated at those points for which stress
measurements are available) out of the thousands that may be written to the model’s output
file.

In order to peruse a model output file and read the observation values calculated by the

Introduction 1-7

model, PEST must be provided with a set of instructions. Unfortunately, the template concept
used for model input files will not work for model output files as the latter may change from
run to run, depending on parameter values. However, if a person is capable of locating a
pertinent model output amongst the other data on a model output file, then so too is a
computer. As it turns out, the instruction set by which this can be achieved is relatively
simple, involving only a handful of basic directives.

PEST requires, then, that for each model output file which must be opened and perused for
observation values, an instruction file be provided detailing how to find those observations.
This instruction file can be prepared using any text editor. It can be checked for syntactical
correctness and consistency using the utility programs PESTCHEK and INSCHEK.

Once interfaced with a model, PEST’s role is to minimise the weighted sum of squared
differences between model-generated observation values and those actually measured in the
laboratory or field; this sum of weighted, squared, model-to-measurement discrepancies is
referred to as the “objective function”. The fact that these discrepancies can be weighted
makes some observations more important than others in determining the optimisation
outcome. Weights should be inversely proportional to the standard deviations of
observations, “trustworthy” observations having a greater weight than those which cannot be
trusted as much. Also, if observations are of different types (for example solute concentration
and solvent flow rates in a chemical process model) the weights assigned to the two
observation types should reflect the relative magnitudes of the numbers used to express the
two quantities; in this way the set of larger numbers will not dominate the parameter
estimation process just because the numbers are large. A particular observation can be
provided with a weight of zero if you do not wish it to affect the optimisation process at all.

Like parameters, you must provide each observation with a name of up to twelve characters
in length; PEST uses this name to provide you with information about that observation.

1.4.3 The Parameter Estimation Algorithm

The Gauss-Marquardt-Levenberg algorithm used by PEST is described in detail in the next
chapter. For linear models (ie. models for which observations are calculated from parameters
through a matrix equation with constant parameter coefficients), optimisation can be
achieved in one step. However for nonlinear problems (most models fall into this category),
parameter estimation is an iterative process. At the beginning of each iteration the
relationship between model parameters and model-generated observations is linearised by
formulating it as a Taylor expansion about the currently best parameter set; hence the
derivatives of all observations with respect to all parameters must be calculated. This
linearised problem is then solved for a better parameter set, and the new parameters tested by
running the model again. By comparing parameter changes and objective function
improvement achieved through the current iteration with those achieved in previous
iterations, PEST can tell whether it is worth undertaking another optimisation iteration; if so
the whole process is repeated.

At the beginning of a PEST run you must supply a set of initial parameter values; these are
the values that PEST uses at the start of its first optimisation iteration. For many problems
only five or six optimisation iterations will be required for model calibration or data
interpretation. In other cases convergence will be slow, requiring many more optimisation

Introduction 1-8

iterations. Often a proper choice of whether and what parameters should be logarithmically
transformed has a pronounced effect on optimisation efficiency; the transformation of some
parameters may turn a highly nonlinear problem into a reasonably linear one.

Derivatives of observations with respect to parameters are calculated using finite differences.
During every optimisation iteration the model is run once for each adjustable parameter, a
small user-supplied increment being added to the parameter value prior to the run. The
resulting observation changes are divided by this increment in order to calculate their
derivatives with respect to the parameter. This is repeated for each parameter. This technique
of derivatives calculation is referred to as the method of “forward differences”.

Derivatives calculated in this way are only approximate. If the increment is too large the
approximation will be poor; if the increment is too small roundoff errors will detract from
derivatives accuracy. Both of these effects will degrade optimisation performance. To combat
the problem of derivatives inaccuracy, PEST allows derivatives to be calculated using the
method of “central differences”. Using this method, two model runs are required to calculate
a set of observation derivatives with respect to any parameter. For the first run an increment
is added to the current parameter value, while for the second run the increment is subtracted.
Hence three observation-parameter pairs are used in the calculation of any derivative (the
third pair being the current parameter value and corresponding observation value). The
derivative is calculated either by (i) fitting a parabola to all three points, (ii) constructing a
best-fit straight line for the three points or (iii) by simply using finite differences on the outer
two points (its your choice).

It is normally best to commence an optimisation run using the more economical forward
difference method, allowing PEST to switch to central differences when the going gets tough.
PEST will make the switch automatically according to a criterion which you supply to it prior
to the commencement of the run.

PEST’s implementation of the Gauss-Marquardt-Levenberg method is extremely flexible;
many aspects of it can be varied to suite the problem at hand, allowing you to optimise
PEST’s performance for your particular model. How you do this is described later in this
manual. In the course of the estimation process PEST writes what it is doing to the screen; it
simultaneously writes a more detailed run record to a file. You can pause PEST execution at
any time to inspect its outputs in detail; when you have finished looking at these, PEST will
recommence execution exactly where it was interrupted. Alternatively, you can shut down
PEST completely at any stage. It can then be restarted later; you can direct it to recommence
execution either at the beginning of the optimisation iteration in which it was interrupted or at
that point within the current or previous iteration at which it last attempted to upgrade
parameter values.

As it calculates derivatives, PEST records the sensitivity of each parameter with respect to
the observation dataset to a file which is continuously available for inspection. If it is judged
that PEST’s performance is being inhibited by the behaviour of certain parameters (normally
the most insensitive ones) during the optimisation process, these parameters can be
temporarily held at their current values while PEST calculates a suitable upgrade for the rest
of the parameters. If desired, PEST can be requested to repeat its determination of the
parameter upgrade vector with further parameters held fixed. Certain variables governing the
operation of the Gauss-Marquardt-Levenberg method in determining the optimum upgrade

Introduction 1-9

vector can also be adjusted prior to repeating the calculation. Thus you can interact with
PEST, assisting it in its determination of optimum parameter values in difficult situations if
you so desire.

At the end of the parameter estimation process (the end being determined either by PEST or
by you) PEST writes a large amount of useful data to its run record file. PEST records the
optimised value of each adjustable parameter together with that parameter’s 95% confidence
interval. It tabulates the set of field measurements, their optimised model-calculated
counterparts, the difference between each pair, and certain functions of these differences.
(These are also recorded on a special file ready for immediate importation into a spreadsheet
for further processing.) Then it calculates and prints/displays three matrices, viz. the
parameter covariance matrix, the parameter correlation coefficient matrix and the matrix of
normalised eigenvectors of the covariance matrix.

1.4.4 Predictive Analysis

When used to calibrate a model (the traditional use of PEST), PEST is asked to minimise an
objective function comprised of the sum of weighted squared deviations between certain
model outcomes and their corresponding field-measured counterparts. When undertaking this
task, PEST is run in “parameter estimation mode”.

It is a sad fact of model usage that there are often many different sets of parameter values for
which the objective function is at its minimum or almost at its minimum. Thus there are
many different sets of parameters which could be considered to calibrate a model. A question
that then arises is: “if I use different sets of parameter values when using the model to make
predictions (all of these sets being considered to calibrate the model), will I get different
values for key model outcomes?”. This question can be answered by running PEST in
“predictive analysis mode”. To run PEST in predictive analysis mode the user informs PEST
of the objective function value below which the model can be considered to be calibrated;
this value is normally just slightly above the minimum objective function value as determined
in a previous PEST calibration run. A key model prediction is then identified on one of the
model output files; this may involve setting up a “dual model” (run by PEST through a batch
file) consisting of the model run under both calibration and predictive conditions. PEST is
then asked to find that parameter set which results in the maximum or minimum model
prediction while still calibrating the model. In doing this, PEST uses an iterative solution
procedure similar in many ways to that used for solution of the parameter estimation
problem. The key model prediction made with a parameter set calculated in this way defines
the upper or lower bound of the uncertainty interval associated with that prediction.

Most aspects of PEST usage in predictive analysis mode are identical to PEST’s usage in
parameter estimation mode. In particular, bounds can be placed on adjustable parameters, one
parameter can be tied to another, parameters can be logarithmically transformed for greater
problem linearity, troublesome parameters can be temporarily held while the parameter
upgrade vector is re-calculated, etc. However the end-point of the iterative solution process is
no longer a minimised objective function; it is a maximised or minimised prediction with the
objective function being as close as possible to that defining the acceptable limit for model
calibration.

Once a key model prediction has been identified, it is also possible to ask another important

Introduction 1-10

question of PEST. The question is, “ is it possible to find a parameter set for which the key
model prediction is a certain value while still maintaining the calibration objective function at
or below the acceptable calibration limit?” This is similar to the question that is answered by
running PEST in predictive analysis mode. However it differs slightly from that question in
that a maximum or minimum prediction is no longer being sought; rather the acceptability of
a certain prediction in terms of the model’s ability to satisfy calibration constraints is being
tested. Once again a “dual model” is required in which the model is run under both
calibration and predictive conditions. PEST answers the question by attempting to minimise a
new objective function which incorporates not just the differences between model-generated
and observed quantities under calibration conditions, but the difference between the key
prediction and the user-specified value of this prediction when the model is run under
predictive conditions. Thus PEST is run in its traditional parameter estimation mode with a
slightly altered objective function. When run in this manner, PEST’s run-time outputs are
adjusted such that information on the key model prediction is recorded, together with
information on all other aspects of the parameter estimation process.

1.4.5 Regularisation

In its broadest sense, “regularisation” is a term used to describe the process whereby a large
number of parameters can be simultaneously estimated without incurring the numerical
instability that normally accompanies parameter nonuniqueness. Numerical stability is
normally achieved through the provision of “supplementary information” to the parameter
estimation process. Such “supplementary information” often takes the form of preferred
values for parameters, or for relationships between parameters. Thus if, for a particular
parameter, the information content of the observation dataset is such that a unique value
cannot be estimated for that parameter on the basis of that dataset alone, uniqueness can
nevertheless be achieved by using the supplementary information provided for that parameter
through the regularisation process.

A problem that arises when using such supplementary information as part of a traditional
parameter estimation exercise is the determination of how much notice should be taken of
this information in comparison to the notice taken of the observation dataset against which
the model is being calibrated. If the supplementary information is given too much weight in
the parameter estimation process the observation dataset may be ignored. On the other hand,
if it is given too little weight, the stabilization potential of the supplementary dataset will not
be realized. When using PEST in “regularisation mode” PEST takes care of this problem, for
PEST calculates the relative weighting given to the two sets of information itself. In this way,
the supplementary information is used only to the extent necessary to ensure stability of the
parameter estimation process. Or, looked at another way, if the information content of the
calibration dataset is insufficient to provide unique estimation of certain parameters, then
PEST will automatically elevate the status of the supplementary information such that this
provides the grounds for unique estimation of those parameters.

PEST’s regularisation functionality is useful in many types of modelling – particularly where
many different parameters must be estimated for complex systems. It is particularly useful in
estimating values for parameters which describe the spatial distribution of some property
over a two- or three-dimensional model domain, for example a ground water or geophysical
model. The user is no longer required to subdivide the model domain into a small number of

Introduction 1-11

zones of piecewise parameter constancy. Rather, a large number of parameters can be used to
describe the distribution of the spatial property and PEST’s regularisation functionality can
be used to estimate values for these parameters. If supplementary information is provided in
the form of a “preferentially smooth system state”, then only enough heterogeneity will be
introduced to the system to guarantee a good fit between model outcomes and field data.
Furthermore, PEST will determine the locations of areas of anomalous property values itself.
This is normally a vastly superior method by which to infer the distribution of a spatial
parameter over a model domain than to estimate parameters associated with a pre-defined
zonation pattern.

PEST’s regularisation functionality can also be useful when calibrating a number of models
simultaneously (for example rainfall-runoff models in different watersheds). PEST can be
asked to preferentially estimate identical values for the same parameter types in the different
model domains. Differences in parameter values estimated through the regularised multi-
model calibration process will then be present because they must be present if all of the
models are to match their corresponding field measurements well.

1.5 How to Use PEST
The PEST suite is comprised of two versions of PEST and six utility programs for building
and checking PEST input files. A sensitivity analyser and a parameter preprocessor are also
supplied with PEST. All of these programs are command-line driven programs, ie. they can
be run from a command-line window by typing the name of the appropriate executable at the
screen prompt. Note, however, that they are all true WINDOWS executables.

A suite of utility programs is also available to enhance the use of PEST in certain modelling
contexts. See, for example, the PEST Ground Water and Surface Water Modelling Utilities.

1.5.1 The Two Versions of PEST

The two variants of PEST are the “single window” version of PEST and “Parallel PEST”.

In the single window version of PEST (which is run through the “pest” command), the model
shares the same window as PEST, with the result that screen output generated by the model is
interspersed with that generated by PEST (unless the former is re-directed to a nul file - see
later).

Parallel PEST (which is run through the “ppest” command) is able to run multiple instances
of a model in parallel, either in different command-line windows on the same machine, or on
different (networked) machines. By undertaking simultaneous model runs, enormous savings
in overall optimisation time can be made, particularly when calibrating large and complex
models. Preparation for a Parallel PEST run requires the creation of an extra input file; also a
slave program (PSLAVE) must be run on each machine on which Parallel PEST runs the
model.

PEST execution can be interrupted or stopped at any time. To do this, run one of the
programs PPAUSE, PUNPAUSE, PSTOP or PSTOPST to achieve the desired effect.

Introduction 1-12

1.5.2 PEST Utilities

PEST requires three types of input file. These are:

• template files, one for each model input file which PEST must write prior to a model
run,

• instruction files, one for each model output file which PEST must read after a model
run, and

• a PEST control file which “brings it all together”, supplying PEST with the names of
all template and instruction files together with the model input/output files to which
they pertain. It also provides PEST with the model name, parameter initial estimates,
field or laboratory measurements to which model outcomes must be matched, prior
parameter information, and a number of PEST variables which control the
implementation of the Gauss-Marquardt-Levenberg method.

You must prepare the template and instruction files yourself. This can be easily done using a
text editor; full details are provided in Chapter 3 of this manual. After you have prepared a
template file, you can use program TEMPCHEK to check that it has no syntax errors.
Furthermore, if you supply TEMPCHEK with a set of parameter values, it will write a model
input file on the basis of the template file which you have just prepared. You can then run
your model, making sure that it reads the input file correctly. In this way you can be sure,
prior to running PEST, that PEST will write a model input file that satisfies your model’s
requirements.

INSCHEK does for instruction files what TEMPCHEK does for template files. INSCHEK
checks that an instruction file is syntactically correct and consistent. Then, if you wish,
INSCHEK will read a model output file using the directives contained in the instruction file,
listing the values of all observations cited in the instruction file as read from the model output
file. In this way you can be sure, prior to running PEST, that PEST will read a model output
file correctly.

Like template and instruction files, the PEST control file can be prepared using a text editor.
However it is generally easier to prepare it using program PESTGEN. PESTGEN generates a
PEST control file using parameter and observation names cited in template and instruction
files which have already been built. However, as it uses default values for all variables which
control PEST execution, you will probably need to make some changes to a PESTGEN-
generated PEST control file (usually not too many) in order to tune PEST to your current
problem.

After all PEST input files have been prepared (viz. the PEST control file and all template and
instruction files) you can use program PESTCHEK to check that the entire PEST input
dataset contained in these files is consistent and complete.

Once PEST has been run and an improved parameter set obtained, you may wish to build a
new PEST control file using the improved parameter estimates as initial estimates for another
run. This may occur if you wish to alter some facet of the model, add prior information, alter
a PEST variable or two, etc. prior to continuing with the optimisation process. Program
PARREP allows you to replace initial parameter values as recorded on a PEST control file

Introduction 1-13

with those recorded in a “parameter value file”, the latter (having been written by PEST)
containing the best parameter values achieved on the previous PEST run.

If you wish to generate a file containing the sensitivity of each model output for which there
is a corresponding field or laboratory measurement with respect to each adjustable parameter,
use the JACWRIT utility program. JACWRIT translates a binary file (written by PEST)
containing this useful information into ASCII format for easy user inspection.

Note that because PEST input files are simple text files, for which full construction details
are provided in this manual, they can be prepared by other software, for example by a text
editor or by a program that you may write yourself in order to automate PEST file generation
for a specific application. Thus, if you wish, you can integrate PEST into your modelling
suite so that model parameter estimation becomes as straightforward as modelling itself.

1.5.3 Parameter Preprocessing

Sometimes it is useful to undertake complex mathematical operations on model parameters
before actually providing them to the model. This can help the parameter estimation process
in a number of ways. For example, appropriate parameter transformation may render a model
more linear with respect to one or more of its parameters; in other circumstances the
calculation of “secondary parameters” (eg. monthly variation of a particular model input
type) from a smaller number of “primary parameters” which describe the seasonal variation
of the secondary parameter (eg. the mean, amplitude and phase of that parameter’s variation)
can bring stability to the parameter estimation process by allowing PEST to estimate a fewer
number of parameters while incorporating the user’s knowledge of the type of variation that
the parameter undergoes directly into the parameter estimation process. Parameter
transformations of this type (and many more) can be undertaken using the parameter
preprocessor PAR2PAR supplied with PEST. PAR2PAR requires a text input file (from
which a template file is easily prepared) describing the mathematical relationships (which can
be of arbitrary complexity) that exist between parameters. Like PEST, it then writes its
“secondary parameters” to a model input file using a template of that file. During the
calibration process undertaken by PEST, PAR2PAR is run just before the actual model
executable within a batch file comprising the “composite model”.

1.5.4 Sensitivity Analysis

SENSAN (which stands for “SENSitivity Analysis”) is a command-line program which
provides the capability to carry out multiple model runs without user intervention, using
different parameter values for each run. Thus a computer can be kept busy all night
undertaking successive model runs, with key model outputs from each run being recorded in
a format suitable for easy later analysis using a spreadsheet or other data processing package.
Any or all model output files for specific model runs can also be stored in their entirety under
separate names if desired.

SENSAN uses the same model interface protocol as PEST does, ie. parameter values are
supplied to a model through model input file templates, and key model-generated numbers
are read from model output files using an instruction set. In addition, a special “SENSAN
control file” must be built, informing SENSAN of the names of all template, instruction and
model input/output files, the model command line, and the parameter values that must be

Introduction 1-14

used for each model run.

SENSAN is accompanied by a checking program named SENSCHEK. The role and
operation of SENSCHEK are very similar to those of PESTCHEK, viz. it checks all
SENSAN input data to verify that it is consistent and correct. SENSCHEK reads a SENSAN
control file, as well as all template and instruction files cited therein. If any errors or
inconsistencies are detected, appropriate messages are written to the screen.

Note that SENSAN and SENSCHEK are both true WINDOWS executables.

1.6 This Manual
This introduction has provided an overview of the capabilities and components of PEST.
However to get the most out of PEST you should take the time to read this manual in its
entirety. Parameter estimation is a “tricky business” and will not work unless you know what
you are doing. If PEST does not appear to be able to calibrate your model or turn your model
into a powerful data interpretation package, the chances are that you are misusing it. Thus,
even though it may be heavy going, you should pay particular attention to Chapter 2 which
provides details of the PEST algorithm. As was explained above, PEST may need to be
“tuned” to your estimation or interpretation problem. All that it may take to achieve this is
the adjustment of a single optimisation control variable, the log-transformation of a single
parameter, or the setting of a single derivative increment. Unless you are aware of the
possibilities available to you for modifying PEST’s operation to suit your particular problem,
you may never use it to its full potential.

Chapter 3 discusses the interface between PEST and your model, describing how to make
PEST template and instruction files. Chapter 4 teaches you how to write a PEST control file
and discusses the effects that different control settings have on PEST’s performance. Chapter
5 tells you how to run PEST; it also discusses problems that may arise as PEST executes, and
how best to overcome them. Chapter 6 discusses predictive analysis while Chapter 7
discusses regularisation. Both or these aspects of parameterisation functionality are unique to
PEST (at the time of writing) and help to make PEST so universally useful in calibrating
models that simulate real-world systems.

Chapter 8 discusses an advanced aspect of PEST’s performance, viz. its ability to use
derivatives calculated by the model instead of calculating them itself through the process of
finite parameter differences. In most cases of PEST usage the modeller need not be too
familiar with the contents of this chapter, for it is only in special circumstances that PEST is
able to take advantage of the fact that the model is able to supply it with “externally-
calculated derivatives”.

Parallel PEST is described in Chapter 9, while Chapter 10 details the PEST utilities,
TEMPCHEK, INSCHEK, PESTCHEK, PESTGEN, PARREP, JACWRIT and PAR2PAR.

Chapter 11 discusses the sensitivity analyser SENSAN, together with its utility program
SENSCHEK. Chapter 12 presents an example of the use of PEST in solving a practical data-
interpretation problem. Chapter 13 answers some frequently asked questions.

The PEST Algorithm 2-1

2. The PEST Algorithm
This chapter discusses the mathematical foundations of the PEST nonlinear parameter
estimation algorithm and the means by which this theory has been implemented in the
construction of the powerful parameter optimiser which is PEST. However the discussion is
brief and no proofs are presented. The reader is referred to the limited bibliography at the end
of the chapter for a number of books which treat the subject in much greater detail.

2.1 The Mathematics of PEST

2.1.1 Parameter Estimation for Linear Models

Let us assume that a natural or man-made system can be described by the linear equation

Xb = c (2.1)

In equation 2.1 X is a m × n matrix, ie. it is a matrix with m rows and n columns. The
elements of X are constant and hence independent of the elements of b, a vector of order n
which, we assume, holds the system parameters. c is a vector of order m containing numbers
which describe the system’s response to a set of excitations embodied in the matrix X, and
for which we can obtain corresponding field or laboratory measurements by which to infer
the system parameters comprising b. (Note that for many problems to which PEST is
amenable, the system parameters may be contained in X and the excitations may comprise
the elements of b. Nevertheless, in the discussion which follows, it will be assumed for the
sake of simplicity that b holds the system parameters.)

The word “observations” will be used to describe the elements of the vector c even though c
is, in fact, generated by the model. This is because most models generate a wealth of data for
which we may have only a handful of corresponding field measurements on which to base
our estimates of the system properties. Hence, as we include in the vector c only those model
outcomes for which there are complementary laboratory or field measurements, it is
appropriate to distinguish them from the remainder of the model outcomes by referring to
them as the “model-generated observations”. The complementary set of field or laboratory
data is referred to as “measurements” or as “experimental observations” in the following
discussion.

Let it be assumed that the elements of X are all known. For most models these elements will
include the effects of such things as the system dimensions, physical, chemical or other
constants which are considered immutable, independent variables such as time and distance
etc. For example, equation 2.1 may represent the response of the system at different times,
where the response at time p is calculated using the equation

xp1 b1 + xp2 b2 + + xpn bn = cp (2.2)

where xpi is the element of X found at its p’th row and i’th column. As X has m rows, there
are m such equations, one for each of m different times. Hence for any p, at least one of the
xpi depends on time.

The PEST Algorithm 2-2

Suppose that m is greater than n, ie. we are capable of observing the system response (and
hence providing elements for the vector c) at more times than there are parameters in the
vector b. Common sense tells us that we should be able to use the elements of c to infer the
elements of b.

Unfortunately we cannot do this by recasting equation 2.1 as another matrix equation with b
on the right-hand side, as X is not a square matrix and hence not directly invertible. But you
may ask “Have we not made a rod for our own back by measuring the system response at
more times than there are parameter values, ie. elements of b?” If b was of the same order as
c, X would indeed be a square matrix and may well be invertible. If so, it is true that an
equation could be formulated which solves for the elements of b in terms of those of c.
However, what if we then made just one more measurement of the system at a time not
already represented in the n × n matrix X? We would now have n + 1 values of c; which n of
these would we use in solving for b? And what would we do if we obtained (as we probably
would) slightly different estimates for the components of b depending on which n of the n + 1
values of c we used in solving for b? The problem becomes even more acute if the
information redundancy is greater than one.

Actually, as intuition should readily inform us, redundancy of information is a bonus rather
than a problem, for it allows us to determine not just the elements of b, but some other
numbers which describe how well we can trust the elements of b. This “trustworthiness” is
based on the consistency with which the m experimental measurements satisfy the m
equations expressed by equation 2.1 when the n optimal parameter values are substituted for
the elements of b.

We define this optimal parameter set as that for which the sum of squared deviations between
model-generated observations and experimental observations is reduced to a minimum; the
smaller is this number (referred to as the “objective function”) the greater is the consistency
between model and observations and the greater is our confidence that the parameter set
determined on the basis of these observations is the correct one. Expressing this
mathematically, we wish to minimise Φ, where Φ is defined by the equation

Φ = (c - Xb)t(c - Xb), (2.3)

and c now contains the set of laboratory or field measurements; the “t” superscript indicates
the matrix transpose operation. It can be shown that the vector b which minimises Φ of
equation 2.3 is given by

b = (XtX)-1Xtc. (2.4)

Provided that the number of observations m equals or exceeds the number of parameters n,
the matrix equation 2.4 provides a unique solution to the parameter estimation problem.
Furthermore, as the matrix (XtX) is positive definite under these conditions, the solution is
relatively easy to obtain numerically.

The vector b expressed by equation 2.4 differs from b of equation 2.1 (the equation which
defines the system) in that the former is actually an estimate of the latter because c now
contains measured data. In fact, b of equation 2.4 is the “best linear unbiased” estimator of
the set of true system parameters appearing in equation 2.1. As an estimator, it is one

The PEST Algorithm 2-3

particular realisation of the n-dimensional random vector b calculated, through equation 2.4,
from the m-dimensional random vector c of experimental observations, of which the actual
observations are but one particular realisation. If σ2 represents the variance of each of the
elements of c (the elements of c being assumed to be independent of each other) then σ2 can
be calculated as

σ2 = Φ/(m - n) (2.5)

where (m - n), the difference between the number of observations and the number of
parameters to be estimated, represents the number of “degrees of freedom” of the parameter
estimation problem. Equation 2.5 shows that σ2 is directly proportional to the objective
function and thus varies inversely with the goodness of fit between experimental data and the
model-generated observations calculated on the basis of the optimal parameter set. It can
further be shown that C(b), the covariance matrix of b is given by

C(b) = σ2(XtX)-1 (2.6)

Notice that, even though the elements of c are assumed to be independent (so that the
covariance matrix of c contains only diagonal elements, all equal to σ2 in the present case),
C(b) is not necessarily a diagonal matrix. In fact, in many parameter estimation problems
parameters are strongly correlated, the estimation process being better able to estimate one or
a number of linear combinations of the parameters than the individual parameters themselves.
In such cases some parameter variances (parameter variances constitute the diagonal
elements of C(b)) may be large even though the objective function Φ is reasonably low. If
parameter correlation is extreme, the matrix (XtX) of equation 2.6 may become singular and
parameter estimation becomes impossible.

There are two matrices, both of which are derived from the parameter covariance matrix
C(b), which better demonstrate parameter correlation than C(b) itself. The first is the
correlation coefficient matrix whose elements ρij are calculated as

σσ

σ
ρ

jjii

ij

ij = (2.7)

where σij represents the element at the i’th row and j’th column of C(b). The diagonal
elements of the correlation coefficient matrix are always 1; off-diagonal elements range
between -1 and 1. The closer are these off-diagonal elements to 1 or -1, the more highly are
the respective parameters correlated.

The second useful matrix is comprised of columns containing the normalised eigenvectors of
the covariance matrix C(b). If each eigenvector is dominated by one element, individual
parameter values may be well resolved by the estimation process. However if predominance
within each eigenvector is shared between a number of elements (especially for those
eigenvectors whose eigenvalues are largest), the corresponding parameters are highly
correlated. See Section 5.2.11 for further details.

The PEST Algorithm 2-4

2.1.2 Observation Weights

The discussion so far presupposes that all observations carry equal weight in the parameter
estimation process. However this will not always be the case as some measurements may be
more prone to experimental error than others.

Another problem arises where observations are of more than one type. For example equation
2.1 may represent a plant growth model; you may have a set of biomass and soil moisture
content measurements which you would like to use to estimate some parameters for the
model. However the units for these two quantities are different (kg/ha and dimensionless
respectively); hence the numbers used to represent them may be of vastly different
magnitude. Under these circumstances the quantity represented by the larger numbers will
take undue precedence in the estimation process if the objective function is defined by
equation 2.3; this will be especially unfortunate if the quantity represented by the smaller
numbers is, in fact, measured with greater reliability than that represented by the larger
numbers.

This problem can be overcome if a weight is supplied with each observation; the larger the
weight pertaining to a particular observation the greater the contribution that the observation
makes to the objective function. If the observation weights are housed in an m-dimensional,
square, diagonal matrix Q whose i’th diagonal element qii is the square of the weight wi

attached to the i’th observation, equation 2.3 defining the objective function is modified as
follows:

Φ = (c - Xb)t Q(c - Xb) (2.8a)

or, to put it another way,

)rw(= 2
ii

m

=1i
∑Φ (2.8b)

where ri (the i’th residual) expresses the difference between the model outcome and the
actual field or laboratory measurement for the i’th observation. If observation weights are
correctly assigned, it can be shown that equation 2.8a is equivalent to

Φ = (c - Xb)t P-1(c - Xb) (2.9)

where

P (= Q-1) = C(c)/σ2 (2.10)

C(c) represents the covariance matrix of the m-dimensional observation random vector c of
which our measurement vector is a particular realisation. Because Q is a diagonal matrix, so
too is P, its elements being the reciprocals of the corresponding elements of Q. The
assumption of independence of the observations is maintained through insisting that Q (and
hence P) have diagonal elements only, the elements of Q being the squares of the observation
weights. These weights can now be seen as being inversely proportional to the standard
deviations of the field or laboratory measurements to which they pertain. (Note that the
weights as defined by equation 2.8 are actually the square roots of the weights as defined by

The PEST Algorithm 2-5

some other authors. However they are defined as such herein because it has been found that
users, when assigning weights to observations, find it easier to think in terms of standard
deviations than variances, especially when dealing with two or three different observation
types of vastly different magnitude.)

The quantity σ2 is known as the reference variance; if all observation weights are unity it
represents the variance of each experimental measurement. If the weights are not all unity the
measurement covariance matrix is determined from equation 2.10 with σ2 given by equation
2.5 and Φ given by equation 2.8.

With the inclusion of observation weights, equation 2.4 by which the system parameter
vector is estimated becomes

b = (XtQX)-1XtQc (2.11)

while equation 2.6 for the parameter covariance matrix becomes

C(b) =σ2(XtQX)-1 (2.12)

2.1.3 The Use of Prior Information in the Parameter Estimation Process

It often happens that we have some information concerning the parameters that we wish to
optimise, and that we obtained this information independently of the current experiment. This
information may be in the form of other, unrelated, estimates of some or all of the
parameters, or of relationships between parameters expressed in the form of equation 2.2. It is
often useful to include this information in the parameter estimation process both for the
philosophical reason that it is a shame to withhold it, and because this information may lend
stability to the process. The latter may be the case where parameters, as determined solely
from the current experiment, are highly correlated. This can lead to nonunique parameter
estimates because certain pairs or groups of parameters, if varied in concert in a certain linear
combination, may effect very little change in the objective function. In some cases this
nonuniqueness can even lead to numerical instability and failure of the estimation process.
However if something is known about at least one of the members of such a troublesome
parameter group, this information, if included in the estimation process, may remove the
nonuniqueness and provide stability.

Parameter estimates will also be nonunique if there are less observations then there are
parameters; equation 2.11 is not solvable under these conditions as the matrix XtQX is
singular. (Note that PEST will, nevertheless, calculate parameter estimates for reasons
discussed later in this chapter.) However the inclusion of prior information, being
mathematically equivalent to taking extra measurements, may alter the numerical
predominance of parameters over observations and thus provide the system with the ability to
supply a unique set of parameter estimates.

Prior information is included in the estimation algorithm by simply adding rows containing
this information to the matrix equation 2.1. This information must be of a suitable type to be
included in equation 2.1; both simple equality, and linear relationships of the type described
by equation 2.2 are acceptable. A weight must be included with each article of prior
information, this weight being inversely proportional to the standard deviation of the right

The PEST Algorithm 2-6

hand side of the prior information equation, the constant of proportionality being the same as
used for the observations comprising the other elements of the vector c of equation 2.1. In
practice, the user simply assigns the weights in accordance with the extent to which he/she
wishes each article of prior information to influence the parameter estimation process.

It is sometimes helpful to view the inclusion of prior parameter information in the estimation
process as the introduction of one or more “penalty functions”. The aim of the estimation
process is to lower the objective function defined by equation 2.8 to its minimum possible
value; this is done by adjusting parameter values until a set is found for which the objective
function can be lowered no further. If there is no prior information, the objective function is
defined solely in terms of the discrepancies between model outcomes and laboratory or field
measurements. However with the inclusion of prior information, minimising the discrepancy
between model calculations and experimental measurements is no longer the sole aim of the
parameter estimation process. To the extent that any article of prior information is not
satisfied, there is introduced into the objective function a “penalty” equal to the squared
discrepancy between what the right hand side of the prior information equation should be,
and what it actually is according to the current set of parameter values. This discrepancy is
multiplied by the squared weight pertaining to that article of prior information prior to
inclusion in the objective function.

2.1.4 Nonlinear Parameter Estimation

Most models are nonlinear, ie. the relationships between parameters and observations are not
of the type expressed by equations 2.1 and 2.2. Nonlinear models must be “linearised” in
order that the theory presented so far can be used in the estimation of their parameters.

Let the relationships between parameters and model-generated observations for a particular
model be represented by the function M which maps n-dimensional parameter space into m-
dimensional observation space. For reasons which will become apparent in a moment, we
require that this function be continuously differentiable with respect to all model parameters
for which estimates are sought. Suppose that for the set of parameters comprising the vector
b0 the corresponding set of model-calculated observations (generated using M) is c0, ie.

c0 = M(b0). (2.13)

Now to generate a set of observations c corresponding to a parameter vector b that differs
only slightly from b0, Taylor’s theorem tells us that the following relationship is
approximately correct, the approximation improving with proximity of b to b0:

c = c0 + J(b - b0) (2.14)

where J is the Jacobian matrix of M, ie. the matrix comprised of m rows (one for each
observation), the n elements of each row being the derivatives of one particular observation
with respect to each of the n parameters. To put it another way, Jij is the derivative of the i’th
observation with respect to the j’th parameter. Equation 2.14 is a linearisation of equation
2.13.

We now specify that we would like to derive a set of model parameters for which the model-
generated observations are as close as possible to our set of experimental observations in the

The PEST Algorithm 2-7

least squares sense, ie. we wish to determine a parameter set for which the objective function

Φ defined by

Φ = (c - c0 - J(b - b0))
tQ (c - c0 - J(b - b0)) (2.15)

is a minimum, where c in equation 2.15 now represents our experimental observation vector.
Comparing equation 2.15 with equation 2.8, it is apparent that the two are equivalent if c
from equation 2.8a is replace by (c - c0) of equation 2.15 and b from equation 2.8a is replaced
by (b - b0) from equation 2.15. Thus we can use the theory that has been presented so far for
linear parameter estimation to calculate the parameter upgrade vector (b - b0) on the basis of
the vector (c - c0) which defines the discrepancy between the model-calculated observations
c0 and their experimental counterparts c. Denoting u as the parameter upgrade vector,
equation 2.11 becomes

u = (JtQJ)-1JtQ(c - c0) (2.16)

and equation 2.12 for the parameter covariance matrix becomes

C(b) = σ2(JtQJ)-1 (2.17)

The linear equations represented by the matrix equation 2.16 are often referred to as the
“normal equations”. The matrix (JtQJ) is often referred to as the “normal matrix”.

Because equation 2.14 is only approximately correct, so too is equation 2.16; in other words,
the vector b defined by adding the parameter upgrade vector u of equation 2.16 to the current
parameter values b0 is not guaranteed to be that for which the objective function is at its
minimum. Hence the new set of parameters contained in b must then be used as a starting
point in determining a further parameter upgrade vector, and so on until, hopefully, we arrive
at the global Φ minimum. This process requires that an initial set of parameters b0 be
supplied to start off the optimisation process. The process of iterative convergence towards
the objective function minimum is represented diagrammatically for a two-parameter
problem in Figure 2.1.

It is an unfortunate fact in working with nonlinear problems, that a global minimum in the
objective function may be difficult to find. For some models the task is made no easier by the
fact that the objective function may even possess local minima, distinct from the global
minimum. Hence it is always a good idea to supply an initial parameter set b0 that you
consider to be a good approximation to the true parameter set. A suitable choice for the initial
parameter set can also reduce the number of iterations necessary to minimise the objective
function; for large models this can mean considerable savings in computer time. Also, the
inclusion of prior information into the objective function can change its structure in
parameter space, often making the global minimum easier to find (depending on what
weights are applied to the articles of prior information). Once again, this enhances
optimisation stability and may reduce the number of iterations required to determine the
optimal parameter set.

The PEST Algorithm 2-8

Parameter #1

P
a

ra
m

e
te

r
#

2

Contours of equal
objective function value

Initial parameter estimates

Figure 2.1 Iterative improvement of initial parameter values toward the global objective
function minimum.

2.1.5 The Marquardt Parameter

Equation 2.16 forms the basis of nonlinear weighted least squares parameter estimation. It
can be rewritten as

u = (JtQJ)-1JtQr (2.18)

where u is the parameter upgrade vector and r is the vector of residuals for the current
parameter set.

Let the gradient of the objective function Φ in parameter space be denoted by the vector g.
The i’th element of g is thus defined as

b
=g

i
i ∂

Φ∂
(2.19)

ie. by the partial derivative of the objective function with respect to the i’th parameter. The
parameter upgrade vector cannot be at an angle of greater than 90 degrees to the negative of
the gradient vector. If the angle between u and -g is greater than 90 degrees, u would have a
component along the positive direction of the gradient vector and movement along u would
thus cause the objective function to rise, which is the opposite of what we want. However, in
spite of the fact that -g defines the direction of steepest descent of Φ, it can be shown that u is
normally a far better parameter upgrade direction than -g, especially in situations where
parameters are highly correlated. In such situations, iteratively following the direction of
steepest descent leads to the phenomenon of “hemstitching” where the parameter set jumps
from side to side of a valley in Φ as parameters are upgraded on successive iterations;

The PEST Algorithm 2-9

convergence toward the global Φ minimum is then extremely slow. See Figure 2.2.

Parameter #1

P
a

ra
m

e
te

r
#

2

Contours of
equal objective
function value

Initial
parameter
estimates

Figure 2.2 The phenomenon of “hemstitching”.

Nevertheless, most parameter estimation problems benefit from adjusting u such that it is a
little closer to the direction of -g in the initial stages of the estimation process.
Mathematically, this can be achieved by including in equation 2.18 the so-called “Marquardt
parameter”, named after Marquardt (1963), though the use of this parameter was, in fact,
pioneered by Levenberg (1944). Equation 2.18 becomes

u = (JtQJ + αI)-1JtQr (2.20)

where α is the Marquardt parameter and I is the n × n identity matrix.

It can be shown that the gradient vector g can be expressed as

g = -2JtQr (2.21)

It follows from equations 2.20 and 2.21 that when α is very high the direction of u
approaches that of the negative of the gradient vector; when α is zero, equation 2.20 is
equivalent to equation 2.18. Thus for the initial optimisation iterations it is often beneficial
for α to assume a relatively high value, decreasing as the estimation process progresses and
the optimum value of Φ is approached. The manner in which PEST decides on a suitable
value for α for each iteration is discussed in Section 2.1.7.

2.1.6 Scaling

For many problems, especially those involving different types of observations and parameters
whose magnitudes may differ greatly, the elements of J can be vastly different in magnitude.

The PEST Algorithm 2-10

This can lead to roundoff errors as the upgrade vector is calculated through equation 2.20.
Fortunately, this can be circumvented to some extent through the use of a scaling matrix S.
Let S be a square, n × n matrix with diagonal elements only, the i’th diagonal element of S
being given by

Sii = (JtQJ)ii
-1/2 (2.22)

Introducing S into equation 2.20 the following equation can be obtained for S-1u:

S-1u = ((JS)tQJS + αStS)-1(JS)tQr (2.23)

It can be shown that although equation 2.23 is mathematically equivalent to equation 2.20 it
is numerically far superior.

If α is zero, the matrix (JS)tQJS + αStS has all its diagonal elements equal to unity. For a
non-zero α the diagonal elements of (JS)tQJS + αStS will be greater than unity, though in
general they will not be equal. Let the largest element of αStS be denoted as λ, referred to
henceforth as the “Marquardt lambda”. Then the largest diagonal element of the scaled
normal matrix (JS)tQJS + αStS of equation 2.23 will be 1 + λ.

2.1.7 Determining the Marquardt Lambda

PEST requires that the user supply an initial value for λ. During the first optimisation
iteration PEST solves equation 2.23 for the parameter upgrade vector u using that user-
supplied λ. It then upgrades the parameters, substitutes them into the model, and evaluates
the resulting objective function. PEST then tries another λ, lower by a user-supplied factor
than the initial λ. If Φ is lowered, λ is lowered yet again. However if Φ was raised by
reducing λ below the initial λ, then λ is raised above the initial lambda by the same user-
supplied factor, a new set of parameters is obtained through solution of equation 2.23, and a
new Φ is calculated. If Φ was lowered, λ is raised again. PEST uses a number of different
criteria to determine when to stop testing new λ’s and proceed to the next optimisation
iteration; see Section 4.2.2. Normally between one and four λ’s need to be tested in this
manner per optimisation iteration.

At the next iteration PEST repeats the procedure, using as its starting λ either the λ from the
previous iteration that provided the lowest Φ (if λ needed to be raised from its initial value to
achieve this Φ) or the previous iteration’s best λ reduced by the user-supplied factor. In most
cases this process results in an overall lowering of λ as the estimation process progresses.

Testing the effects of a few different λ’s in this manner requires that PEST undertake a few
extra model runs per optimisation iteration; however this process makes PEST very “robust”.
If the optimisation procedure appears to be “bogged”, the adjustments made to λ in this
fashion often result in the determination of a parameter upgrade vector that gets the process
moving again.

2.1.8 Optimum Length of the Parameter Upgrade Vector

Inclusion of the Marquardt parameter in equation 2.23 has the desired effect of rotating the
parameter upgrade vector u towards the negative of the gradient vector. However while the

The PEST Algorithm 2-11

direction of u may now be favourable, its magnitude may not be optimum.

Under the linearity assumption used in deriving all equations presented so far, it can be
shown that the optimal parameter adjustment vector is given by βu, where u is determined
using equation 2.23 and β is calculated as

)w(

w)c-c(

 =
2

ii

m

=1i

i
2
i0ii

m

=1i

γ

γ
β

∑

∑
(2.24)

where, once again, the vector c represents the experimental observations, c0 represents their
current model-calculated counterparts, wi is the weight pertaining to observation i, and γi is
given by

b

c
u =

j

0i

j

n

j=1
i

∂
∂

∑γ (2.25a)

ie.

γ = Ju (2.25b)

where J represents the Jacobian matrix once again. If b0 holds the current parameter set the
new, upgraded set is calculated using the equation

b = b0 + βu (2.26)

2.1.9 Predictive Analysis

Let X represent the action of a linear model under calibration conditions. Let b represent the
parameter vector for this model, while c is a vector of field or laboratory observations for
which there are model-generated counterparts. As is explained in Section 2.1.2, when
calibrating a model, it is PEST’s task to minimise an objective function defined as

Φ = (c – Xb)tQ(c – Xb)

where Q is the “cofactor matrix”, a diagonal matrix whose elements are the squares of
observation weights.

Let Z represent the same linear model under predictive conditions. Thus the action of the
model when used in predictive mode can be represented by the equation

d = d = Zb (2.27)

where d is a 1 × 1 vector (ie. a scalar, d) representing a single model outcome (ie. prediction).
Naturally, when run in predictive mode, the model operates on the same parameter vector as
that on which it operates in calibration mode, ie. b.

The PEST Algorithm 2-12

The aim of predictive analysis is to maximise (minimise) d while “keeping the model
calibrated”. d will be maximised (minimised) when the objective function associated with b
lies on the Φmin + δ contour. Φmin is the lowest achievable value of the objective function,
while δ is an acceptable increment to the objective function minimum such that the model
can be considered calibrated as long as the objective function is less than Φmin + δ; see the
discussion in Chapter 6 for further details. Thus the predictive analysis problem can be
formulated as follows:-

Find b such as to maximise (minimise)

Zb (2.28a)

subject to

(c – Xb)tQ(c – Xb) = Φ0 (2.28b)

where

Φ0 = Φmin + δ (2.28c)

It can be shown that the solution to this problem is

()

λ
−=

−

2
t1T Z
QcXQXXb (2.29a)

where λ is defined by the equation

()
() ZQXXZ

QcXQXXQXcQcc
1tt

t1ttt
0

2

2

1
−

−
+−Φ

=

λ

(2.29b)

Where predictive analysis is carried out for a nonlinear model the same equations are used.
However in this case X is replaced by the model Jacobian matrix J, and a parameter upgrade
vector is calculated instead of a solution vector. The solution process is then an iterative one
in which the true solution is approached by repeated calculation of an upgrade vector based
on repeated linearisation of the problem through determination of the Jacobian matrix. For
further details see Cooley and Vecchia (1987) and Vecchia and Cooley (1987).

Use of the Marquardt lambda in solving the nonlinear parameter estimation problem is
discussed above. Its use in solving the nonlinear predictive analysis problem is very similar.
As in the parameter estimation problem, PEST continually adjusts the Marquardt lambda
through the solution process such that its value is optimal at all stages of this process.

As a further numerical measure to solve the predictive analysis problem for a nonlinear
model, PEST undertakes a line search in the direction of the parameter upgrade vector to
determine the point at which this vector crosses the Φ0 contour. See Chapter 6 for further
details.

The PEST Algorithm 2-13

2.1.10 Regularisation

The theory which underpins PEST’s regularisation functionality bears some resemblance to
that which underpins its predictive analysis functionality. As is explained in Section 2.1.2,
when calibrating a model it is PEST’s task to minimise an objective function defined as

Φm = (c – Xb)tQm(c – Xb) (2.30a)

The “m” subscript introduced to the left side of equation 2.30, which is otherwise equivalent
to equation 2.8, denotes the fact that the objective function is comprised of the sum of
weighted squared differences between model outputs and field measurements (the “m” stands
for “measurement”). The vector c is comprised of field measurements, while the vector b is
comprised of the parameters which must be estimated. As has already been mentioned, Qm is
a diagonal matrix whose elements are the squares of measurement weights.

We wish to impose the requirement that a “regularisation objective function” Φr be also
minimised by the parameter set which is estimated by PEST. Φr is defined by the equation

Φr = (d – Zb)tQr(d – Zb) (2.30b)

where Qr is a diagonal matrix comprised of the squares of weights assigned to the various
“regularisation observations” which collectively comprise the vector d. The relationships by
which the model-generated counterparts to these “observations” are calculated from the
parameter values (constituting the vector b) are encapsulated in the matrix Z. (Note that if
these relationships are not linear, a linear approximation to them can be calculated by taking
derivatives with respect to parameters in the same way that the Jacobian matrix is calculated
as a linear approximation to the model function.) As an example, each row of the matrix Z
may be comprised of 0’s, except for two elements which are 1 and -1; the 1 and -1 elements
occur at those of its columns which pertain to two parameters whose difference is taken. The
“observed value” of this difference (ie. the element of the corresponding row of the vector d)
might be zero, indicating that PEST should minimise this parameter difference insofar as this
is possible while still allowing the model to fit the field data. If there are as many rows in the
matrix Z as there are parameters in the model domain, and if each such row represents a
single parameter difference, and if the “observed” difference is zero in each case, then
imposition of the regularisation criterion is the imposition of a “maximum homogeneity”
condition. There may, in fact, be more differences represented in the matrix Z than there are
parameters in the model domain. This may occur if, for example, differences are formed in
both the horizontal and vertical directions (or row and column directions) of a particular
model domain to ensure maximum parameter uniformity in both of these directions. Similar
matrices can be formed in order to impose a minimum curvature constraint or to implement
any other type of regularisation criteria that the user may wish to impose (see Chapter 7 for
more details).

When working in “regularisation mode”, PEST’s task is to minimise Φr while ensuring that

Φm is “suitably low”. Such a “suitably low” value will normally be slightly above the
minimum value for Φm that could have been achieved if regularisation conditions had not
been imposed. It is the user’s responsibility to select this value; it will be denoted as Φm

l (ie.
the “limiting measurement objective function”). It is this ability which PEST gives the user to
indicate in advance of the parameter estimation process the extent of model-to-measurement

The PEST Algorithm 2-14

misfit that is tolerable in order to attempt to satisfy imposed regularisation constraints on
parameter values that makes the regularisation methodology, as implemented by PEST, so
powerful. Thus the regularisation process must minimise Φr while enforcing the condition
that

 Φm ≤ Φm
l

or, in practice, that

Φm = Φm
l (2.31)

because a decrease in Φr will nearly always require an increase in Φm where parameter values
are close to optimum.

The constrained minimisation problem described above can be formulated as an
unconstrained minimisation problem through the use of a Lagrange multiplier γ. Thus, with
regularisation constraints imposed, the parameterisation problem consists in determining the
elements of the vector b (ie. the values of the adjustable parameters) which minimise the
“total” objective function Φt defined by the equation:

 Φt = Φr + γΦm (2.32)

while simultaneously finding the value for γ which causes equation 2.31 to be satisfied.

As was mentioned above, this problem is somewhat similar to the predictive analysis
problem discussed in the previous section in that one function is minimised (in this case the
regularisation objective function) while the objective function based on field or laboratory
measurements is held at some upper limit selected by the user below which the model is
deemed to be calibrated.

An inspection of equation 2.32 reveals that the regularisation problem can be viewed from a
slightly different angle. It can be formulated as a traditional nonlinear parameter estimation
problem which attempts to estimate the parameter set b that provides the best fit between a
set of observations and corresponding model outputs, with the observations consisting of
both “measurement observations” and “regularisation observations”. The Lagrange multiplier

γ can then be considered as a factor by which to multiply the weights pertaining to the
measurement observations in order to ensure that equation 2.31 is satisfied when the total
objective function Φt is minimised. Alternatively, if equation 2.32 is divided by γ, the
parameter estimation problem can also be seen as the problem of minimising Φ defined as

Φ = µΦt = µΦr + Φm (2.33)

where µ is the reciprocal of γ. With the objective function defined in this way, the reciprocal
of the Lagrange multiplier can be seen to be equivalent to a “regularisation weight factor”, ie.
the factor by which all “regularisation observations” are multiplied in formulation of the
overall objective function, now defined as Φ. Once again, the value of µ must be such that
equation 2.31 is satisfied.

When undertaking problem regularisation, PEST minimises the objective function Φ defined
by equation 2.33. During each optimisation iteration it calculates the regularisation weight

The PEST Algorithm 2-15

factor µ that results in equation 2.31 being satisfied. It does this using an iterative procedure
based on linearised model and regularisation conditions. Once µ has been determined, all
regularisation weights (ie. weights assigned by the user to the regularisation observations) are
multiplied by this factor; a parameter upgrade vector is then calculated in the normal way.
The problem is then linearised again (through calculation of a new Jacobian matrix) and the
process is repeated.

2.1.11 Use of an Observation Covariance Matrix

In the theory presented in Section 2.1.2, the squares of user-supplied observation weights
comprise the elements of the diagonal matrix Q (often referred to as the “cofactor matrix”).
The inverse of Q is proportional to the covariance matrix of the observations, the constant of
proportionality being the “reference variance”. Because Q is a diagonal matrix, so too is the
observation covariance matrix.

The use of observation weights in calculating the objective function is based on the premise
that observations are independent, ie. that the “uncertainty” pertaining to any one observation
bears no relationship to the “uncertainty” pertaining to any other observation. In practice,
observation “uncertainty” in a calibration context is determined by the level of misfit
between these observations and corresponding model outputs, ie. by the model-to-
measurement residuals calculated at the end of the inversion process. If these residuals are
expected to be uncorrelated, then observation uncertainties can be expressed in terms of
individual observation weights. However if residuals are likely to show consistency over
space and/or time for certain observation types, then it may not be appropriate to assume
statistical independence for these observation types. In such cases it may be preferable to
describe the uncertainties associated with these observations using an observation covariance
matrix (or a matrix that is proportional to this matrix), rather than using a set of individual
observation weights.

The theory underpinning the use of observation weights presented in Section 2.1.2 is also
applicable to the use of an observation covariance matrix in place of individual observation
weights if the “cofactor matrix” Q is calculated as the inverse of a user-supplied observation
covariance matrix. Note however that, as was mentioned above, a user-supplied observation
covariance matrix can only be considered as proportional to the true observation covariance
matrix; the latter can be determined after the inversion process is complete by multiplying the
user-supplied covariance matrix by the reference variance determined through equation 2.5.
At any stage of the optimisation process the objective function is computed using equation
2.8a; this is equivalent to equation 2.8b when Q is a diagonal matrix whose elements are the
squares of observation weights.

Use of PEST’s regularisation functionality does not preclude use of a covariance matrix to
characterise either or both of measurement and regularisation observations. However when
PEST is used in this mode the covariance matrix supplied for the regularisation observations
must be separate from that supplied for the measurement observations. If a covariance matrix
is provided for the regularisation observations, PEST will calculate a “weight factor” by
which to multiply the “regularisation cofactor matrix” Qr (calculated by PEST as the inverse
of the user-supplied regularisation covariance matrix), in order to satisfy the goal of the
regularisation process, ie. that the measurement component of the objective function be no

The PEST Algorithm 2-16

greater than the user-supplied threshold value of Φm
l while minimising the regularisation

objective function Φr.

The remainder of this section describes the theory behind PEST’s accommodation of the use
of one or more observation covariance matrices in place of observation weights to
characterise the uncertainty associated with groups of measurements and/or prior information
equations. However, as the implementation of this theory within PEST takes place “behind
the scenes”, it is not essential to the use of PEST that this theory be fully understood.

Let c be a vector whose elements are stochastic variables, i.e. numbers with a random
component. For the purposes of the present discussion, consider that the elements of c are the
set of measurements to be used in the calibration process. Suppose that these measurements
are statistically dependent on each other, and thus that the uncertainties associated with them
must be represented by a covariance matrix rather than by a set of individual variances.
Suppose that the covariance matrix associated with the elements of the vector c is the matrix
C.

Because C is a covariance matrix, it must be positive definite (which means that it is also
symmetric). Let R be a matrix whose columns are comprised of the normalised eigenvectors
of C. It is easily shown that

Rt = R-1 (2.34)

ie. that the transpose of R is also its inverse. Now let us introduce another stochastic vector d,
calculable from the vector c using the relationship

d = Rtc (2.35)

It is easy to show that the covariance matrix of d (which will be named D) can be calculated
from the covariance matrix of c (ie. C) using the relationship

D = RtCR (2.36)

and that D is a diagonal matrix whose elements are equal to the eigenvalues of C. This is a
very important relationship, for it expresses the fact that through a simple rotational
transformation of the original stochastic vector c, another stochastic vector d can be obtained
whose elements are statistically independent. Hence if the “rotated” observation vector d is
used as a basis for parameter estimation instead of the original observation vector c, weights
can be used in the inversion equations instead of a covariance matrix.

Equation 2.11 describes how optimised parameter values (as encapsulated in the vector b) are
calculated from measurements (ie. the vector c) for a linear model. (For the sake of
simplicity, the present discussion is restricted to a linear model; the theory is easily extended
to a nonlinear model using the methodology presented above.) The equation (repeated from
equation 2.11) is

b = (XtQX)-1XtQc (2.37)

If the elements of the measurement vector c are not statistically independent, then the
cofactor matrix Q of equation 2.37 has non-diagonal elements and, as is explained above, is

The PEST Algorithm 2-17

proportional to the inverse of the covariance matrix of c.

It is not too difficult to show that the vector of optimised parameter values b can also be
calculated using the equation

b = (YtTY)-1YtTd (2.38)

where d is given by equation 2.35, and Y is calculated from the model matrix X using the
equation

Y = RtX (2.39)

The matrix T in equation 2.38 is related to the inverse of the matrix D (the covariance matrix
of d) by the same constant of proportionality that occurs in the relationship between the
matrix Q of equation 2.37 and the inverse of the matrix C (the covariance matrix of c).
Equation 2.38 thus demonstrates that the vector b can be calculated from the rotated
measurement vector d using exactly the same mathematics as that used to compute b from
the non-rotated measurement vector c, provided that the model matrix X is also rotated, and
that the cofactor matrix of d is used rather than the cofactor matrix of c. What is important
however is that, for the reasons outlined above, T is a diagonal matrix whose elements are
proportional to the inverse of the eigenvalues of C (and can thus be expressed as a set of
weights). Equation 2.38 (with appropriate modifications for use in the context of a nonlinear
model) is the one used by PEST to calculate optimised parameter values; however this is
transparent to the user.

The relationship between the parameter covariance matrix C(b) and the observation cofactor
matrix Q is expressed by equation 2.12, which is repeated below:-

C(b) =σ2(XtQX)-1 (2.40)

Recall that σ2 is the “reference variance”. Equation 2.40 is applicable whether weights or a
covariance matrix are used to specify observation uncertainties, ie. whether Q is a diagonal
matrix or not. It is easily shown that the parameter covariance matrix can also be calculated
from the rotated observation cofactor matrix T using the formula

C(b) =σ2(YtTY)-1 (2.41)

Recall that T is diagonal because rotation of the vector c to yield the vector d results in an
uncorrelated set of stochastic variables.

It can also be shown that calculation of the objective function using equation 2.8a is
equivalent to calculating it using the equation

Φ = (d - Yb)t T(d - Yb) (2.42)

Once again, calculations made using equation 2.42 are based on the use of a rotated
observation dataset, (ie. the vector d) complemented by a rotated model matrix vector (ie. the
matrix Y) and a rotated, diagonal, cofactor matrix T.

The PEST Algorithm 2-18

2.1.12 Goodness of Fit

When it is being used in parameter estimation mode, PEST aims to lower the objective
function as far as it can be lowered. When used in predictive analysis mode, PEST aims to
maximise or minimise a specified prediction while maintaining the model in a calibrated
state, ie. while ensuring that the objective function rises no higher than a specified level.
When working in regularisation mode PEST aims to maximise adherence to a certain
“regularisation condition” (by minimising a regularisation objective function) while ensuring
that the measurement objective function rises no higher than a specified level. In all of these
cases, the extent to which model outputs are in agreement with their field-measured
counterparts is apparent from the value of the objective function (or the “measurement
objective function” when working in regularisation mode).

Another measure of goodness of fit is provided by the correlation coefficient as defined in
Cooley and Naff (1990). Unlike the objective function, the correlation coefficient is
independent of the number of observations involved in the parameter estimation process, and
of the absolute levels of uncertainty associated with those observations. Hence use of this
measure of goodness of fit allows the results of different parameter estimation exercises to be
directly compared.

The correlation coefficient R is calculated as

()()
()() ()()[] 2/1∑∑

∑
−−−−

−−
=

ooiiooiiiiii

oioiii

mcwmcwmcwmcw

mcwmcw
R (2.43)

where:-

ci is the i’th observation value,

c0i is the model-generated counterpart to the i’th observation value,

m is the mean value of weighted observations,

mo is the mean of weighted model-generated counterparts to observations, and

wi is the weight associated with the i’th observation (or “rotated observation” if a
covariance matrix is used to specify observation uncertainty instead of
individual observation weights).

Generally R should be above 0.9 for the fit between model outputs and observations to be
acceptable (Hill, 1998).

2.2 PEST’s Implementation of the Method

So far, this chapter has discussed the theory behind PEST, viz. the method of weighted least
squares and its application to nonlinear parameter estimation and predictive analysis. The
remainder of this chapter discusses the ways in which the least squares method has been
implemented in PEST to provide a general, robust, parameter estimation and predictive
analysis package that is useable across a wide range of model types.

The PEST Algorithm 2-19

2.2.1 Parameter Transformation

PEST allows for the logarithmic transformation of some or all parameters. It often happens
that if PEST (or any other parameter estimation program) is asked to estimate the log of a
parameter, rather than the parameter itself, the process is much faster and more stable than it
would otherwise be; however sometimes the opposite can occur.

PEST requires that each parameter be designated, in the PEST control file, as untransformed,
log-transformed, fixed or tied; the latter two options will be discussed shortly. If a parameter
is log-transformed, any prior information pertaining to that parameter must pertain to the log
(to base 10) of that parameter. Also, elements of the covariance, correlation coefficient and
eigenvector matrices calculated by PEST pertaining to that parameter refer to the log of the
parameter rather than to the parameter itself. However PEST parameter estimates and
confidence intervals listed in the run record file refer to the actual parameter.

You should never ask PEST to logarithmically transform a parameter with a negative or zero
initial value, or a parameter that may become negative or zero in the course of the estimation
process. Hence a log-transformed parameter must be supplied with a positive lower bound
(see below).

PEST is informed if a parameter is log-transformed through the parameter variable
PARTRANS in the PEST control file; see Section 4.2.4. Note that more complex parameter
transformations can be undertaken using the parameter preprocessor PAR2PAR; see Section
10.7.

2.2.2 Fixed and Tied Parameters

A parameter can be identified in a template file (see Chapter 3) yet take no part in the
parameter estimation process. In this case it must be declared as “fixed” so that its value does
not vary from that assigned to it as its initial estimate in the PEST control file.

PEST allows one or more parameters to be tied (ie. linked) to a “parent” parameter. PEST
does not estimate a value for a tied parameter; rather it adjusts the parameter during the
estimation process such that it maintains the same ratio with its parent parameter as that
provided through the initial estimates of the respective parameters. Thus tied parameters
“piggyback” on their parent parameters. Note that a parameter cannot be tied to a parameter
which is either fixed, or tied to another parameter itself.

PEST is informed whether a parameter is fixed or tied through the parameter variable
PARTRANS in the PEST control file; see Section 4.2.4.

2.2.3 Upper and Lower Parameter Bounds

As well as supplying an initial estimate for each parameter, you are also required to supply
parameter upper and lower bounds. These bounds define the maximum and minimum values
which a parameter is allowed to assume during the optimisation process. They are provided
through the parameter variables PARLBND and PARUBND in the PEST control file.

It is important that upper and lower parameter bounds be chosen wisely. For many models

The PEST Algorithm 2-20

parameters can lie only within certain well-defined domains determined by the theory on
which the model is based. In such cases model-generated floating-point errors may result if
PEST is not prevented from adjusting a parameter to a value outside its allowed domain. For
example if, at some stage during a model run, the logarithm or square root of a particular
parameter is taken, then that parameter must be prevented from ever becoming negative (or
zero if the model takes the log of the parameter). If the reciprocal is taken of a parameter, the
parameter must never be zero.

In some cases, where a large number of parameters are being estimated based on a large
number of measurements, PEST may try to force a fit between model and measurements by
adjusting some parameters to extremely large or extremely small values (especially if the
measured values upon which the estimation process is based are not altogether consistent).
Such extremely large or small values may, depending on the model, result in floating point
errors or numerical convergence difficulties. Again, carefully chosen parameter bounds will
circumvent this problem.

If a parameter upgrade vector u is determined which would cause one or more parameters to
move beyond their bounds, PEST adjusts u such that this does not occur, placing such
parameters at their upper or lower bounds. On later iterations, special treatment is then
provided for parameters which are at their allowed limits. If the components of both the
upgrade vector and the negative of the gradient vector pertaining to a parameter at its upper
or lower limit are such as to take the parameter out of bounds, then the parameter is
temporarily frozen, and the parameter estimation problem reformulated with that parameter
fixed at its limit; hence the new upgrade vector will not result in any adjustment to that
parameter. If, after reformulation of the problem in this manner, there are parameters at their
limits for which the parameter upgrade vector still points outward, the negative of the
gradient vector pointing inward, then these parameters, too, are temporarily frozen. This
process continues until a parameter upgrade vector is calculated which either moves
parameters from their bounds back into the allowed parameter domain, or leaves them fixed.

The strength of this strategy is that it allows PEST to search along the boundaries of the
parameter domain for the smallest Φ to which it has access when the global minimum of Φ
lies outside of the parameter domain, beyond PEST’s reach.

At the beginning of each new optimisation iteration all temporarily-frozen parameters are
freed to allow them to move back inside the allowed parameter domain if solution of equation
2.23 deems this necessary. The stepwise, temporary freezing of parameters is then repeated
as described above.

2.2.4 Scale and Offset

For every parameter you must supply a scale and offset (variables SCALE and OFFSET in
the PEST control file). Before writing a parameter value to a model input file, PEST
multiplies this value by the scale and adds the offset.

The scale and offset variables can be very convenient in some situations. For example, in a
particular model a certain parameter may have a non-zero base level; you may wish to
redefine the parameter as the actual parameter minus this base level. Elevation may be such a
parameter. If a reference elevation is subtracted from the true, model-required elevation, the

The PEST Algorithm 2-21

result may be thickness; this may be a more “natural” parameter for PEST to optimise than
elevation. In particular it may make more sense to express a derivative increment (see
Section 2.3) as a fraction of thickness than as a fraction of elevation, to which an arbitrary
datum has been added. Also, the optimisation process may be better behaved if the thickness
parameter is log-transformed; again it would be surprising if the log-transformation of
elevation improved optimisation performance due to the arbitrary datum with respect to
which an elevation must be expressed. PEST can thus optimise thickness, converting this
thickness to elevation every time it writes a model input file by adding the reference
elevation stored as the parameter offset.

The scale variable is equally useful. A model parameter may be such that it can only take on
negative values; such a parameter cannot be log-transformed. However if a new parameter is
defined as the negative of the model-required parameter, PEST can optimise this new
parameter, log-transforming it if necessary to enhance optimisation efficiency. Just before it
writes the parameter to a model input file, PEST multiplies it by its SCALE variable (-1 in
this case) so that the model receives the parameter it expects.

If you do not wish a parameter to be scaled and offset, enter its scale as 1 and its offset as
zero.

It should be stressed that PEST is oblivious to a parameter’s scale and offset until the
moment it writes its value to a model input file. It is at this point (and only this point) that it
first multiplies by the scale and then adds the offset; the scale and offset take no other part in
the parameter estimation process. Note also that fixed and tied parameters must each be
supplied with a scale and offset, just like their adjustable (log-transformed and
untransformed) counterparts.

2.2.5 Parameter Change Limits

As has already been discussed, no parameter can be adjusted by PEST above its upper bound
or below its lower bound. However, there is a further limit on parameter changes, determined
by the amount by which a parameter is permitted to change in any one optimisation iteration.

If the model under PEST’s control exhibits reasonably linear behaviour, the updated
parameter set determined by equations 2.23, 2.24, and 2.26 will result in a lowering of the
objective function. However if the model is highly nonlinear, the parameter upgrade vector
βu may “overshoot” the objective function minimum, and the new value of Φ may actually
be worse than the old one. This is because equations 2.23 and 2.24 are based on a linearity
assumption which may not extend as far into parameter space from the current parameter
estimates as the magnitude of the upgrade vector which they predict.

To obviate the possibility of overshoot, it is good practice to place a reasonable limit on the
maximum change that any adjustable parameter is allowed to undergo in any one
optimisation iteration. Such limits may be of two types, viz. “relative” and “factor”. You
must inform PEST, through the parameter variable PARCHGLIM on the PEST control file,
which type of change limit applies to each adjustable parameter. Two other PEST input
variables, RELPARMAX and FACPARMAX, provide the maximum allowed relative and
factor changes for all relative-limited and factor-limited parameters, respectively. Values for
these variables are supplied at the beginning of the inversion process. They can also be

The PEST Algorithm 2-22

altered part of the way through a PEST run if desired; see Section 5.6. Note that log-
transformed parameters must be factor-limited.

Let f represent the user-defined maximum allowed parameter factor change for factor-limited
parameters (ie. FACPARMAX); f must be greater than unity. Then if b0 is the value of a
particular factor-limited parameter at the beginning of an optimisation iteration, the value b
of this same parameter at the beginning of the next optimisation iteration will lie between the
limits

b0/f ≤ b ≤ fb0 (2.44a)

if b0 is positive, and

fb0 ≤ b ≤ b0/f (2.44b)

if b0 is negative. Note that if a parameter is subject to factor-limited changes, it can never
change sign.

Let r represent the user-defined maximum allowed relative parameter change for all relative-
limited parameters (ie. RELPARMAX); r can be any positive number. Then if b0 is the value
of a particular relative-limited parameter at the beginning of an optimisation iteration, its
value b at the beginning of the next optimisation iteration will be such that

b - b0/b0 ≤ r (2.45)

In this case, unless r is less than or equal to unity, a parameter can, indeed, change sign.
However there may be a danger in using a relative limit for some types of parameters in that
if r is 1 or greater, b may fall to a minute fraction of b0 (or even to zero), without
transgressing the parameter change limit. For some types of parameters in some models this
will be fine; in other cases a parameter factor change of this magnitude may significantly
transgress model linearity limits.

In implementing the conditions set by equations 2.44 and 2.45, PEST limits the magnitude of
the parameter upgrade vector βu such that neither of these equations is violated. Naturally, if
only one type of parameter change limit is featured in a current PEST run (ie. parameters are
all factor-limited or are all relative-limited) only the pertinent one of these equations will
need to be obeyed.

If, in the course of an optimisation run, PEST assigns to a parameter a value which is very
small in comparison with its initial value, then either of equations 2.44 or 2.45 may place an
undue restriction on subsequent parameter adjustments. Thus if b0 for one parameter is very
small, the changes to all parameters may be set intolerably small so that equation 2.44 or
equation 2.45 is obeyed for this one parameter. To circumvent this problem, PEST provides
another input variable, FACORIG, which allows the user to limit the effect that an unduly
low parameter value can have in this regard. If the absolute value of a parameter is less than
FACORIG times its initial absolute value and PEST wishes to adjust that parameter such that
its absolute value will increase, then FACORIG times its initial value is substituted into
equation 2.44 and the denominator of equation 2.45 for the parameter’s current value b0. A
suitable value for FACORIG varies from case to case, though 0.001 is often appropriate.

The PEST Algorithm 2-23

Note, however, that FACORIG is not used to adjust change limits for log-transformed
parameters. For more information on FACORIG see Section 4.2.2.

It should be noted that problems such as those described above incurred by parameters with
low absolute values can also be prevented from occurring by providing such parameters with
a suitable OFFSET value, accompanied by appropriate lower/upper bounds that prevent them
from being assigned such troublesome values.

2.2.6 Damping of Parameter Changes

Parameter over-adjustment and any resulting oscillatory behaviour of the parameter
estimation process is further mitigated by the “damping” of potentially oscillatory parameter
changes. The method used by PEST is based on a technique described by Cooley (1983) and
used by Hill (1992). To see how it works, suppose that a parameter upgrade vector βu has
just been determined using equations 2.23, 2.24 and 2.26. Suppose, further, that this upgrade
vector causes no parameter values to exceed their bounds, and that all parameter changes are
within factor and relative limits.

For relative-limited parameters, let the parameter undergoing the proposed relative change of
greatest magnitude be parameter i; let its proposed relative change be pi. For factor-limited
parameters which are not log-transformed, define qj for parameter j as

qj = βuj /(fbj - bj) if uj and bj have the same sign, and
(2.46)

qj = βuj /(bj - bj /f) if uj and bj have the opposite sign

where bj is the current value for the j’th parameter and f is the maximum allowed factor
change for all factor-limited parameters. Let the parameter for which the absolute value of q
is greatest be parameter l, and let q for this parameter be ql . Finally, let the log-transformed
parameter for which the absolute value of βu is greatest be parameter k, and let the element
of βu pertaining to this parameter be βuk. Let i0, l0, k0, p0i, q0l and β0u0k define these same
quantities for the previous iteration except that, for the previous iteration, they are defined in
terms of actual parameter changes rather than proposed ones. Now define s1, s2 and s3 such
that

s1 = pi /p0i if i = i0;
s1 = 0 otherwise, (2.47a)

s2 = ql /q0l if l = l0;
s2 = 0 otherwise, and (2.47b)

s3 = βuk /β0u0k if k = k0;
s3 = 0 otherwise. (2.47c)

Let s be the minimum of s1, s2 and s3 and define ρ as:

ρ = (3 + s)/(3 + s) if s ≥ -1 (2.48a)
ρ = 1/(2s) otherwise. (2.48b)

Then oscillatory behaviour of the parameter estimation process can be mitigated by defining
a new parameter upgrade vector v by

The PEST Algorithm 2-24

v = ρβu (2.49)

2.2.7 Temporary Holding of Insensitive Parameters

The possibility of a parameter estimation process running smoothly and efficiently decreases
with the number of parameters being estimated. In highly parameterised problems some
parameters are likely to be relatively insensitive in comparison with other parameters. As a
result of their insensitivity, PEST may decide that large changes are required for their values
if they are to make any contribution to reducing the objective function. However, as is
explained in Section 2.2.5, limits are set on parameter changes. These limits are enforced in
such a way that the magnitude (but not the direction) of the parameter upgrade vector is
reduced (if necessary) such that no parameter transgresses these limits. The necessity for such
limits has already been discussed.

If a parameter is particularly insensitive, it may dominate the parameter upgrade vector, ie.
the magnitude of the change calculated by PEST for this parameter may be far greater than
that calculated for any other parameter. When its change has been relative- or factor-limited
in accordance with the user-supplied settings for RELPARMAX or FACPARMAX (and the
magnitude of the parameter upgrade vector has thus been considerably reduced), other
parameters (including far more sensitive ones) may not change much at all, with the result
that at the end of the optimisation iteration the objective function may have been lowered
very little. The same process may then be repeated on the next iteration on account of the
same, or another, insensitive parameter. The result may be that convergence takes place
intolerably slowly (or not at all), with a huge wastage of model runs.

This phenomenon can be avoided by temporarily holding troublesome parameters at their
current value for an iteration or two. Such parameters are then not involved in the calculation
of the parameter upgrade vector and hence do not get the chance to have an adverse impact
on it. Offending parameters can be identified as those undergoing the maximum relative- or
factor-limited changes during a particular optimisation iteration where this maximum change
is equal to RELPARMAX or FACPARMAX, or as those parameters whose current
sensitivity is very low, PEST recording information by which to make this assessment every
time it calculates the Jacobian matrix.

PEST records the “composite sensitivity” of each parameter (ie. the magnitude of the column
of the Jacobian matrix pertaining to that parameter modulated by the weight attached to each
observation divided by the number of observations, or Vii/m where Vii is the inverse of Sii

defined in equation 2.22 and m is the number of observations - see equation 5.1), to a
“parameter sensitivity file”, this file being updated during every optimisation iteration. Those
parameters with the lowest sensitivities are the most likely to cause trouble and hence the
most likely candidates for being temporarily held if the parameter estimation process
proceeds too slowly as a result of one or more parameters encountering their relative or factor
limits, thus restricting alterations made to other parameters to ineffectual levels. See Section
5.6 for further details.

2.2.8 Components of the Objective Function

As has already been discussed, the objective function is calculated as the squared sum of
weighted residuals (including prior information). If is often of interest to know what

The PEST Algorithm 2-25

contribution certain observations, or groups of observations, make to the objective function.
This is possible through the use of “observation groups”. Each observation, and each item of
prior information, must be assigned to a group; the number and names of such groups are
specified by the user.

The ability to calculate the contribution made by individual observations, or groups of
observations to the objective function is useful in situations where the user wishes that
different types of information contribute an approximately equal amount to the value of the
objective function. This ensures that no observation groupings are either “drowned” by other
information, or dominate the inversion process.

2.2.9 Termination Criteria

PEST updates parameters using equations derived on the basis of a linearity assumption
which is not met if the model is nonlinear. Nevertheless, by iteratively updating the
parameters in accordance with these equations as many times as is necessary, an optimal
parameter set will mostly be obtained in the end. When working in parameter estimation
mode the optimal set of parameters is that set for which the objective function is at its
minimum.

PEST uses a number of different criteria to determine when to halt this iterative process. Note
that only one of them (zero-valued objective function) is a guarantee that the objective
function minimum has been obtained. In difficult circumstances, any of the other termination
criteria could be satisfied when the objective function is well above its minimum and
parameters are far from optimal. Nevertheless, in most cases these termination criteria do,
indeed, signify convergence of the adjustable parameters to their optimal values. In any case,
PEST has to stop executing sometime and each of the termination criteria described in this
section provide as good a reason to stop as any. If these criteria are properly set through user-
provided PEST input variables, you can be reasonably assured that when PEST terminates
the parameter estimation process, either the optimal parameter set has been found or further
PEST execution will not find it.

There are two indicators that either the objective function is at, or very close to, its minimum,
or that further PEST execution is unlikely to get it there. The first is the behaviour of the
objective function itself. If it has been reduced very little, or not at all, over a number of
successive iterations, the time has come to cease execution. The exact criteria determining
this kind of termination are set through PEST input variables PHIREDSTP, NPHISTP and
NPHINORED. If the lowest NPHISTP Φ’s achieved in all iterations carried out to date are
within a distance of PHIREDSTP of each other relative to the lowest Φ achieved so far, or if
NPHINORED iterations have elapsed since the lowest Φ was achieved, then PEST execution
will cease.

The second indicator of either convergence to the objective function minimum, or of the
unlikelihood of achieving it, is the behaviour of the adjustable parameters. If successive
iterations are effecting little change in parameter values, there is probably little to gain in
continuing with PEST execution. Input variables RELPARSTP and NRELPAR set the exact
criterion; if the largest relative parameter change over the last NRELPAR iterations has been
RELPARSTP or less, PEST will not proceed to the next iteration.

The PEST Algorithm 2-26

The input variable NOPTMAX sets an upper limit on the number of optimisation iterations
which PEST carries out. PEST will terminate execution after NOPTMAX iterations, no
matter what the current status of the objective function or of the parameter values.

Other termination criteria are set internally. As has already been mentioned, PEST will
terminate the optimisation process if it calculates a parameter set for which the objective
function is zero. Also, if the gradient of the objective function with respect to all parameters
is zero, or if a zero-valued parameter upgrade vector is determined, or if all parameters are
simultaneously at their limits and the parameter upgrade vector points out of bounds, PEST
will take its deliberations no further (unless it is currently calculating derivatives using
forward differences and the option to use central differences is available to it, in which case it
will switch to the use of central differences for greater derivatives accuracy before moving on
to the next iteration – see Section 2.3).

2.2.10 Operation in Predictive Analysis Mode

Most aspects of PEST’s operation when undertaking predictive analysis are identical to its
operation when undertaking parameter estimation, including the use of parameter bounds,
relative and factor change limits, switching to the use of three-point derivatives calculation,
prior information, the linking and fixing of parameters, the holding of parameters,
logarithmic transformation, etc. All termination criteria that are used in parameter estimation
mode also apply to PEST’s use in predictive analysis mode. However, as discussed in Section
6.2.2, a number of extra termination criteria, applicable only to this mode of operation, are
available.

As is explained in Section 6.1.5, if the initial parameter estimates supplied to PEST at the
commencement of a predictive analysis run are a long way from optimum (ie. the initial
objective function is far above Φ0 of equation 2.28), PEST will work in parameter estimation
mode until it is able to “sniff” the Φ0 contour. The transition to predictive analysis mode as it
approaches this contour is a gradual one, unseen by the user.

2.2.11 Operation in Regularisation Mode

Within each optimisation iteration PEST’s task when working in regularisation mode is
identical to its task when working in parameter estimation mode, ie. it must minimise an
objective function using a linearised version of the model encapsulated in a Jacobian matrix.
However just before calculating the parameter upgrade vector, PEST calculates the
appropriate “regularisation weight factor” to use for that iteration. This is the factor by which
all of the weights pertaining to regularisation information are multiplied (in accordance with
equation 2.33) prior to formulating the overall objective function whose task it is for PEST to
minimise on that iteration. As parameters shift and the Jacobian matrix changes (an outcome
of the nonlinear nature of most models), the regularisation weight factor also changes. Hence
it needs to be re-calculated during every optimisation iteration.

Use of PEST in regularisation mode is fully described in Chapter 7 of this manual. As is
discussed in that Chapter, the user is required to supply a few extra control variables to
govern PEST’s operation in this mode. One of these is the “target measurement objective
function” (ie. Φm

l of equation 2.31). Other variables govern the procedure by which µ of
equation 2.33 is calculated, and allow slight changes to be made to the criteria that govern

The PEST Algorithm 2-27

termination of a PEST run.

2.3 The Calculation of Derivatives

2.3.1 Forward and Central Differences

The ability to calculate the derivatives of all observations with respect to all adjustable
parameters is fundamental to the Gauss-Marquardt-Levenberg method of parameter
estimation; these derivatives are stored as the elements of the Jacobian matrix. Because PEST
is independent of any model of which it takes control, it cannot calculate these derivatives
using formulae specific to the model. Hence it must evaluate the derivatives itself using
model-generated observations calculated on the basis of incrementally varied parameter
values. (Note, however, that there may be occasions where a model can calculate derivatives
of its outputs with respect to its adjustable parameters itself. If this is the case PEST can
make direct use of these derivatives if they can be provided to it in the correct format. This is
further described in Section 8 of this manual. Most of the discussion in the remainder of this
Chapter assumes that PEST must calculate parameter derivatives itself.)

Accuracy in derivatives calculation is fundamental to PEST’s success in optimising
parameters. Experience has shown that the most common cause of PEST’s failure to find the
global minimum of the objective function in parameter space is the presence of roundoff
errors incurred in the calculation of derivatives. Fortunately, on most occasions, this problem
can be circumvented by a wise choice of those input variables which determine how PEST
evaluates derivatives for a particular model.

The PEST input variables affecting derivatives calculation pertain to parameter “groups”. In
the PEST control file, each parameter must be assigned to such a parameter group. The
assignment of derivative variables to groups, rather than to individual parameters, introduces
savings in memory and complexity. Furthermore, in many instances, parameters naturally fall
into one or more categories; for example if the domain of a two- or three-dimensional spatial
model is subdivided into zones of constant parameter value, and the parameters pertaining to
all of these zones are being estimated, parameters of the same type for each such zone would
normally belong to the same group. However, if you wish to treat each parameter differently
as far as derivatives calculation is concerned, this can be achieved by assigning each
parameter to a group of its own.

The simplest way to calculate derivatives is through the method of forward differences. To
calculate derivatives in this manner, PEST varies each parameter in turn by adding an
increment to its current value (unless the current parameter value is at its upper bound, in
which case PEST subtracts the increment), runs the model, reads the altered, model-
generated observations and then approximates the derivative of each observation with respect
to the incrementally-varied parameter as the observation increment divided by the parameter
value increment. (For log-transformed parameters this quotient is then multiplied by the
current parameter value.) Hence if derivatives with respect to all parameters are calculated
by the method of forward differences, the filling of the Jacobian matrix requires that a
number of model runs be carried out equal to the number of adjustable parameters; as the
Jacobian matrix must be re-calculated for every optimisation iteration, each optimisation
iteration requires at least as many model runs as there are adjustable parameters (plus at least

The PEST Algorithm 2-28

another one to test parameter upgrades). The calculation of derivatives is by far the most
time-consuming part of PEST’s parameter estimation procedure.

If the parameter increment is properly chosen (see below), this method can work well.
However it is often found that as the objective function minimum is approached, attainment
of this minimum requires that parameters be calculated with greater accuracy than that
afforded by the method of forward differences. Thus PEST also allows for derivatives to be
calculated using three parameter values and corresponding observation values rather than
two, as are used in the method of forward differences. Experience shows that derivatives
calculated on this basis are accurate enough for most occasions provided, once again, that
parameter increments are chosen wisely. As three-point derivative calculations are normally
carried out by first adding an increment to a current parameter value and then subtracting an
increment, the method is referred to herein as the “central” method of derivatives
calculation. Note that if a parameter value is at its upper bound, the parameter increment is
subtracted once and then twice, the model being run each time; if it is at its lower bound the
increment is added once and then twice.

PEST uses one of three methods to calculate central derivatives. In the first or “outside
points” method, the two outer parameter values (ie. that for which an increment has been
added and that for which an increment has been subtracted) are used in the same finite-
difference type of calculation as is used in the forward difference method. This method yields
more accurate derivative values than the forward difference method because the (unused)
current parameter value is at the centre of the finite difference interval (except where the
parameter is at its upper or lower bound). The second method is to define a parabola through
the three parameter-observation pairs and to calculate the derivative of this parabola with
respect to the incrementally-varied parameter at the current value of that parameter. This
method, referred to as the “parabolic” method, can yield very accurate derivatives if model-
calculated observation values can be read from the model output file with sufficient
precision. The third method is to use the least-squares principal to define a straight line of
best fit through the three parameter-observation pairs and to take the derivative as the slope
of this line. This method may work best where model-calculated observations cannot be read
from the model output file with great precision, because of either deficiencies in the model’s
numerical solution method, or because the model writes numbers to its output file using a
limited number of significant figures.

If the central method of derivatives calculation is used for all parameters, each optimisation
iteration requires that at least twice as many model runs be carried out than there are
adjustable parameters. If the central method is used for some parameters and the forward
method for others, the number of model runs will lie somewhere between the number of
adjustable parameters and twice the number of adjustable parameters

2.3.2 Parameter Increments for Derivatives Calculation

Because of the importance of reliable derivatives calculation, PEST provides considerable
flexibility in the way parameter increments are chosen. Mathematically, a parameter
increment should be as small as possible so that the finite-difference method (or one of its
three-point variants) provides a good approximation to the derivative in a theoretical sense
(remember that the derivative is defined as the limit of the finite difference as the increment
approaches zero). However, if the increment is made too small, accuracy of derivatives

The PEST Algorithm 2-29

calculation will suffer because of the effect of roundoff errors as two, possibly large, numbers
are subtracted to yield a much smaller number. In most cases intuition and experience,
backed up by trial and error, will be your best guide in reconciling these conflicting demands
on increment size.

There are three PEST input variables, viz. INCTYP, DERINC and DERINCLB by which you
can set the manner in which increments are calculated for the members of a particular
parameter group. INCTYP determines the type of increment to use, for which there are three
options, viz. “absolute”, “relative” and “rel_to_max”. If the increment type for a parameter
group is “absolute”, the increment used for all parameters in the group is supplied as the
input variable DERINC; this increment is added (and subtracted for central derivatives
calculation) directly to a particular group member when calculating derivatives with respect
to that parameter. However if the increment type is “relative”, DERINC is multiplied by the
current absolute value of a parameter in order to determine the increment for that parameter.
In this way the parameter increment is adjusted upwards and downwards as the parameter
itself is adjusted upwards and downwards; this may have the effect of maintaining
significance in the difference between model outcomes calculated on the basis of the
incrementally varied parameter. If the increment type for a group is “rel_to_max”, the
increment for all members of that group is calculated as DERINC times the absolute value of
the group member of currently greatest absolute value. This can be a useful means by which
to calculate increments for parameters whose values can vary widely, including down to zero.
The “relative” aspect of the “rel_to_max” option may maintain model outcome difference
significance as described above; however, because the increment is calculated as a fraction of
the maximum absolute value occurring within a group, rather than as a fraction of each
parameter, an individual parameter can attain near-zero values without its increment
simultaneously dropping to zero.

A further measure to protect against the occurrence of near-zero increments for “relative” and
“rel_to_max” increment types is provided through the PEST group input variable
DERINCLB. This variable contains a standby absolute increment which can be used in place
of the “relative” or “rel_to_max” increment if the increment calculated for a particular
parameter using either of these latter methods falls below the absolute increment value
contained in DERINCLB.

The group input variable FORCEN determines whether derivatives for the parameters of a
particular group are calculated using the forward-difference method, the central-difference
method or both; FORCEN can be designated as “always_2”, “always_3” or “switch”. If it is
supplied as “always_2”, derivatives calculation is through forward differences for all
parameters within the group throughout the estimation process; if it is “always_3”, central
(ie. three-point) derivatives will be used for the entirety of the estimation process. However if
it is “switch”, PEST will commence the optimisation process using forward differences for
all members of the group, and switch to using central differences on the first occasion that the
relative reduction in the objective function between optimisation iterations is less than the
value contained in the PEST input variable PHIREDSWH.

Two group input variables pertain specifically to the calculation of derivatives using the
central method, viz. variables DERINCMUL and DERMTHD. The latter variable must be
one of “outside_pts”, “parabolic” or “best_fit”; this determines the method of central
derivatives calculation to be used by PEST, the three options having already been discussed.

The PEST Algorithm 2-30

The variable DERINCMUL contains the increment multiplier; this is the value by which
DERINC is multiplied when it is used to evaluate increments for any of the three central
derivatives methods. Sometimes it is useful to employ larger increments for central
derivatives calculation than for forward derivatives calculation, especially where the model
output dependence on parameter values is “bumpy” (see the next section). Use of the higher-
order interpolation scheme provided by the parabolic method may allow you to place
parameter values, and hence model-generated observation values, farther apart for the
calculation of derivatives; this may have the effect of increasing the degree of significance of
the resulting differences involved in the derivative calculation. However if the increment is
raised too high, derivative precision must ultimately fall. Note that through DERINCMUL
you can also reduce the increment used for central derivatives calculation if you wish.

For increments calculated using the “relative” and “rel_to_max” methods, the variable
DERINCLB has the same role in central derivatives calculation as it does in forward
derivatives calculation, viz. to place a lower limit on the increment absolute value. Note,
however, that DERINCLB is not multiplied by DERINCMUL when derivatives are
calculated using the central method.

If a parameter is log-transformed then it is wise that its increment be calculated using the
“relative” method, though PEST does not insist on this.

As PEST reads the data contained in its input control file, it will object if a parameter
increment (either read directly as “absolute” or calculated from initial parameter values as
“relative” or “rel_to_max”) exceeds the range of values allowed for that parameter (as
defined by the parameter’s upper and lower bounds) divided by 3.2, as the increment is then
too large compared with the width of the parameter domain. However should this eventuality
arise later in the course of the estimation process (as may happen if certain parameter values
grow large and increments calculated from them as “relative” or “rel_to_max” then exceed
the parameter domain width divided by 3.2) PEST will automatically adjust the increment so
that parameter limits are not transgressed as the increment is added and/or subtracted from
the current parameter value for the calculation of derivatives.

When choosing an increment for a parameter, care must be taken to ensure that the parameter
can be written to the model input file with sufficient precision to distinguish an incremented
parameter value from one which has not been incremented. Thus, for example, if a model
input file template is such that a particular parameter value must be written to a space which
is four characters wide, and if the increment type for that parameter is “absolute” and the
increment value is 0.0001 while the current parameter value is .01, it will not be possible to
discriminate between the parameter with and without its increment added. To rectify this
situation, you should either increase the parameter field width in the template file (making
sure that the model can still read the parameter) or increase the increment to a value whereby
the incremented parameter is distinguishable from the non-incremented parameter in a field
width of only four characters.

It should be pointed out that PEST writes a parameter value to a model input file with the
maximum possible precision, given the parameter field width provided in the pertinent
template file. Also, for the purposes of derivatives calculation, PEST adjusts a parameter
increment to be exactly equal to the difference between a current parameter value and the
incremented value of that parameter as represented (possibly with limited precision) in the

The PEST Algorithm 2-31

model input file, as read by the model.

2.3.3 How to Obtain Derivatives You Can Trust

Reliability of derivatives calculation can suffer if the model which you are trying to
parameterise does not write its outcomes to its output file using many significant figures. If
you have any control over the precision with which a model writes its output data, you should
request that the maximum possible precision of representation be used. Although PEST will
happily attempt an optimisation on the basis of limited-precision model-generated
observations, its ability to find an objective function minimum decreases as the precision of
these model-generated observations decreases. Furthermore, the greater the number of
parameters which you are simultaneously trying to estimate, the greater will be the
deleterious effects of limited precision of model output.

If a model is comprised of multiple sub-model executables run by PEST through a batch file,
then you should also ensure that numbers are transferred between these various sub-models
with maximum precision. Thus every sub-model comprising the composite model should
record numbers to those of its output files which are read by other sub-models with maximum
numerical precision.

Many models calculate their outcomes using one or a combination of numerical
approximations to differential equations, for example the finite-difference method, finite-
element method, boundary element method etc. Problems which are continuous in space
and/or time are approximated by discrete representations of the same problem in order that
the partial differential equation(s) describing the original problem can be cast as a matrix
equation of high order. The matrix equation is often solved by an iterative technique (for
example preconditioned conjugate gradient, alternating direction implicit etc.) in which the
solution vector is successively approximated, the approximation being fine-tuned until it is
judged that “convergence” has been attained. Most such iterative matrix solution schemes
judge that the solution is acceptable when no element of the solution vector varies by more
than a user-specified tolerance between successive iterations. If this threshold is set too large,
model precision is reduced. If it is set too small, solution convergence may not be attainable;
in any case, the smaller it is set, the greater will be the model computation time.

If a numerical model of this type is to be used with PEST, it is essential that any variables
governing the numerical solution procedure be set in favour of precision over time. Although
the model run-time may be much greater as a result, it would be false economy to give
reduced computation time precedence over output precision. Accurate derivatives calculation
depends on accurate calculation of model outcomes. If PEST is trying to estimate model
parameters on the basis of imprecise model-generated observations, derivatives calculation
will suffer, and with it PEST’s chances of finding the optimal parameter set. Even if PEST is
still able to find the optimal parameter set (which it often will), it may require more
optimisation iterations to do so, resulting in a greater overall number of model runs,
removing any advantages gained in reducing the time required for a single model run.

Even after you have instructed the model to write to its output file with as much precision as
possible, and you have adjusted the model’s solution settings for greatest precision, model-
generated observations may still be “granular” in that the relationship between these
observations and the model parameters may be “bumpy” rather than continuous. In this case

The PEST Algorithm 2-32

it may be wise to set parameter increments larger than you normally would. If a parameter
increment is set too small PEST may calculate a local, erroneous “bump” derivative rather
than a derivative that reflects an observation’s true dependence on a parameter’s value. While
use of a large increment incurs penalties due to poor representation of the derivative by a
finite difference (especially for highly nonlinear models), this can be mitigated by the use of
one of the central methods of derivatives calculation available in PEST, particularly the
parabolic and best-fit methods. Due to its second order representation of the observation-
parameter relationship, the parabolic method can generate reliable derivatives even for large
parameter increments. However, if model outcomes are really bumpy, the best-fit method
may be more accurate. Trial and error will determine the best method for the occasion.

2.3.4 Model-Calculated Derivatives

As has been discussed above, the calculation of derivatives by finite differences is both time-
consuming and numerically intensive. If a model can calculate derivatives of its outputs with
respect to its adjustable parameters itself, use of these derivatives is normally extremely
beneficial to the parameter estimation process. This is a result of the greater accuracy with
which a model can normally calculate its own derivatives (especially if these are calculated
using analytical equations), and the likelihood that a model can undertake such calculations
comparatively quickly through modification of the calculations that it undertakes in the
normal simulation process. Hence, if they are available, model-calculated derivatives should
be used by PEST in preference to finite-difference based derivatives.

Chapter 8 of this manual describes the mechanism by which PEST can receive derivatives
calculated internally by a model. In summary, this kind of model-PEST interaction requires
that the model generate a file in which these derivatives are recorded. Because the calculation
of derivatives by the model may place an extra computational burden on the model’s
shoulders, it is sometimes necessary that the model be run in a slightly different manner when
calculating derivatives from that in which it is run when undertaking normal simulation. This
can be accommodated through the use of multiple model command lines and through “PEST-
to-model messaging”. See Chapter 8 for a discussion of both of these.

As is also described in Chapter 8 there will be some situations (especially those involving
calibration and predictive analysis for complex models) in which it is possible for a model to
calculate some of its derivatives but not others. In cases such as this, PEST can accept those
derivatives from the model which the model is capable of calculating, while computing the
remaining derivatives itself by the traditional method of finite differences.

2.4 Bibliography

2.4.1 Literature Cited in the Text

Cooley, R.L., 1983. Some new procedures for numerical solution of variably saturated flow
problems. Water Resources Research, v19, no. 5, p1271-1285.

Cooley, R.L. and Naff, R.L., 1990. Regression modeling of ground-water flow: U.S.
Geological Survey Techniques in Water-Resources Investigations, book 3, chap B4, 232p.

The PEST Algorithm 2-33

Cooley, R.L. and Vecchia, A.V., 1987. Calculation of nonlinear confidence and prediction
intervals for ground-water flow models. Water Resources Bulletin. Vol. 23, No. 4, pp581-
599.

Hill, M. C., 1992. A Computer Program (MODFLOWP) for Estimating Parameters of a
Transient, Three-Dimensional, Ground-Water Flow Model using Nonlinear Regression. U. S.
Geological Survey Open-File Report 91-484.

Hill, M.C., 1998. Methods and Guidelines for Effective Model Calibration. U.S. Geological
Survey Water-Resources Investigations Report 98-4005.

Marquardt, D. W., 1963. An algorithm for least-squares estimation of nonlinear parameters.
Journal of the Society of Industrial and Applied Mathematics, v11, no. 2, p431-441.

Levenberg, K., 1944. A method for the solution of certain non-linear problems in least
squares. Q. Appl. Math., v. 2, p164-168.

Vecchia, A.V. and Cooley, R.L., 1987. Simultaneous confidence and prediction intervals for
nonlinear regression models with application to a ground water flow model. Water Resources
Research, vol. 23, no. 7, pp1237-1250.

2.4.2 Some Further Reading

Bard, Jonathon, 1974. Nonlinear parameter estimation. Academic Press, NY. 341p.

Koch, K., 1988. Parameter Estimation and Hypothesis Testing in Linear Models. Springer-
Verlag, Berlin. 377p.

Mikhail, E. M., 1976. Observations and Least Squares. IEP, NY. 497p.

Nash, J. C. and Walker-Smith, M., 1987. Nonlinear Parameter Estimation; an Integrated
System in Basic. Marcel Dekker Inc., Monticello, NY. 493p.

The Model-PEST Interface 3-1

3. The Model-PEST Interface

3.1 PEST Input Files

PEST requires three types of input file. These are:

• template files, one for each model input file on which parameters are identified,

• instruction files, one for each model output file on which model-generated
observations are identified, and

• an input control file, supplying PEST with the names of all template and instruction
files, the names of the corresponding model input and output files, the problem size,
control variables, initial parameter values, measurement values and weights, etc.

This chapter describes the first two of these file types in detail; the PEST control file is
discussed in Chapter 4. Template files and instruction files can be written using a general-
purpose text editor following the specifications set out in this chapter. Once built, they can be
checked for correctness and consistency using the utility programs TEMPCHEK, INSCHEK
and PESTCHEK; these programs are described in Chapter 10 of this manual.

Note that in this and other chapters of this manual, the word “observations” is used to denote
those particular model outcomes for which there are corresponding laboratory or field data.
For clarity, these numbers are often referred to as “model-generated observations” to
distinguish them from their laboratory- or field-acquired counterparts which are referred to as
“measurements” or “laboratory or field observations”.

3.2 Template Files

3.2.1 Model Input Files

Whenever PEST runs a model, as it must do many times in the course of the optimisation
process, it must first write parameter values to the model input files which hold them.
Whether the model is being run to calculate the objective function arising from user-supplied
initial parameter values, to test a parameter upgrade, or to calculate the derivatives of
observations with respect to a particular parameter, PEST provides a set of parameter values
which it wants the model to use for that particular run. The only way that the model can
access these values is to read them from its input file(s).

Some models read some or all of their data from the terminal, the user being required to
supply these data items in response to model prompts. This can also be done through a file. If
you write to a file the responses which you would normally supply to a model through the
terminal, you can “redirect” these responses to the model using the “<” symbol on the model
command line. Thus if your model is run using the command “model”, and you type your
responses in advance to the file file.inp, then you (and PEST) can run the model without
having to supply terminal input using the command

The Model-PEST Interface 3-2

model < file.inp

If file.inp contains parameters which PEST must optimise, a template can be built for it as if
it were any other model input file.

A model may read many input files; however a template is needed only for those input files
which contain parameters requiring optimisation. PEST does not need to know about any of
the other model input files.

PEST can only write parameters to ASCII (ie. text) input files. If a model requires a binary
input file, you must write a program which translates data written to an ASCII file to binary
form. The translator program, and then the model, can be run in sequence by listing them in a
batch file which PEST runs as the model. The ASCII input file to the translator program will
then become a model input file, for which a template is required.

A model input file can be of any length. However PEST insists that it be no more than 2000
characters in width. The same applies to template files. It is suggested that template files be
provided with the extension “.tpl” in order to distinguish them from other types of file.

3.2.2 An Example

A template file receives its name from the fact that it is simply a replica of a model input file
except that the space occupied by each parameter in the latter file is replaced by a sequence
of characters which identify the space as belonging to that parameter.

Consider the model input file shown in Example 3.1; this file supplies data to a program
which computes the “apparent resistivity” on the surface of a layered half-space for different
surface electrode configurations. Suppose that we wish to use this program (ie. model) to
estimate the properties for each of three half-space layers from apparent resistivity data
collected on the surface of the half-space. The parameters for which we want estimates are
the resistivity and thickness of the upper two layers and the resistivity of the third (its
thickness is infinite). A suitable template file appears in Example 3.2.

The Model-PEST Interface 3-3

MODEL INPUT FILE
3, 19 no. of layers, no. of spacings
1.0, 1.0 resistivity, thickness: layer 1
40.0, 20.0 resistivity, thickness: layer 2
5.0 resistivity: layer 3
1.0 electrode spacings
1.47
2.15
3.16
4.64
6.81
10.0
14.9
21.5
31.6
46.4
68.1
100
149
215
316
464
681
1000

Example 3.1 A model input file.

ptf #
MODEL INPUT FILE
3, 19 no. of layers, no. of spacings
#res1 #,#t1 # resistivity, thickness: layer 1
#res2 #,#t2 # resistivity, thickness: layer 2
#res3 # resistivity: layer 3
1.0 electrode spacings
1.47
2.15
3.16
4.64
6.81
10.0
14.9
21.5
31.6
46.4
68.1
100
149
215
316
464
681
1000

Example 3.2 A template file.

The Model-PEST Interface 3-4

3.2.3 The Parameter Delimiter

As Example 3.2 shows, the first line of a template file must contain the letters “ptf” followed
by a space, followed by a single character (“ptf” stands for “PEST template file”). The
character following the space is the “parameter delimiter”. In a template file, a “parameter
space” is identified as the set of characters between and including a pair of parameter
delimiters. When PEST writes a model input file based on a template file, it replaces all
characters between and including these parameter delimiters by a number representing the
current value of the parameter that owns the space; that parameter is identified by name
within the parameter space, between the parameter delimiters.

You must choose the parameter delimiter yourself; however your choice is restricted in that
the characters [a-z], [A-Z] and [0-9] are invalid. The parameter delimiter character must
appear nowhere within the template file except in its capacity as a parameter delimiter, for
whenever PEST encounters that character in a template file it assumes that it is defining a
parameter space.

3.2.4 Parameter Names

All parameters are referenced by name. Parameter references are required both in template
files (where the locations of parameters on model input files are identified) and on the PEST
control file (where parameter initial values, lower and upper bounds and other information
are provided). Parameter names can be from one to twelve characters in length, any
characters being legal except for the space character and the parameter delimiter character.
Parameter names are case-insensitive.

Each parameter space is defined by two parameter delimiters; the name of the parameter to
which the space belongs must be written between the two delimiters.

If a model input file is such that the space available for writing a certain parameter is limited,
the parameter name may need to be considerably less than twelve characters long in order
that both the name and the left and right delimiters can be written within the limited space
available. The minimum allowable parameter space width is thus three characters, one
character for each of the left and right delimiters and one for the parameter name.

3.2.5 Setting the Parameter Space Width

In general, the wider is a parameter space (up to a certain limit - see below), the better PEST
likes it, for numbers can be represented with greater precision in wider spaces than they can
be in narrower spaces. However, unlike the case of model-generated observations where
maximum precision is crucial to obtaining useable derivatives, PEST can adjust to limited
precision in the representation of parameters on model input files, as long as enough
precision is employed such that a parameter value can be distinguished from the value of that
same parameter incremented for derivatives calculation. Hence, beyond a certain number of
characters, the exact number depending on the parameter value and the size and type of
parameter increment employed, extra precision is not critical. Nevertheless, it is good
practice to endow parameter values with as much precision as the model is capable of reading
them with, so that they can be provided to the model with the same precision with which
PEST calculates them.

The Model-PEST Interface 3-5

Generally models read numbers from the terminal or from an input file in either of two ways,
viz. from specified fields, or as a sequence of numbers, each of which may be of any length;
in FORTRAN the latter method is often referred to as “free field” input. If the model uses the
former method, then somewhere within the model program the format (ie. field specification)
for data entry is defined for every number which must be read in this fashion.

The FORTRAN code of Example 3.3 directs a program to read five real numbers. The first
three are read using a format specifier, whereas the last two are read in free field fashion.

The relevant part of the input file may be as illustrated in Example 3.4.

Notice how no whitespace or comma is needed between numbers which are read using a field
specifier. The format statement labelled “100” in Example 3.3 directs that variable A be read
from the first 10 positions on the line, that variable B be read from the next 10 positions, and
that variable C be read from the 10 positions thereafter. When the program reads any of these
numbers it is unconcerned as to what characters lie outside of the field on which its attention
is currently focussed. However the numbers to be read into variables D and E must be
separated by whitespace or a comma in order that the program knows where one number ends
and the next number begins.

Suppose all of variables A to E are model parameters, and that PEST has been assigned the
task of optimising them. For convenience we provide the same names for these parameters as
are used by the model code (this, of course, will not normally be the case). The template
fragment corresponding to Example 3.4 may then be as set out in Example 3.5. Notice how
the parameter space for each of parameters A, B and C is 10 characters wide, and that the
parameter spaces abut each other in accordance with the expectations of the model as defined
through the format specifier of Example 3.3. If the parameter space for any of these
parameters were greater than 10 characters in width, then PEST, when it replaces each
parameter space by the current parameter value, would construct a model input file which
would be incorrectly read by the model. (You could have designed parameter spaces less than
10 characters wide if you wished, as long as you placed enough whitespace between each
parameter space in order that the number which will replace each such space when PEST
writes the model input file falls within the field expected by the model. However, defining
the parameter spaces in this way would achieve nothing as there would be no advantage in

using less than the full 10 characters allowed by the model.)

READ(20,100) A,B,C
100 FORMAT(3F10.0)

READ(20,*) D,E

Example 3.3 Formatted and free field input.

 6.32 1.42E-05123.456789
34.567, 1.2E17

Example 3.4 Numbers read using the code of Example 3.3

A ## B ## C
D #, # E

Example 3.5 Fragment of a template file corresponding to Example 3.4

The Model-PEST Interface 3-6

Parameters D and E are treated very differently to parameters A, B and C. As Example 3.3
shows, the model simply expects two numbers in succession. If the spaces for parameters D
and E appearing in Example 3.5 are replaced by two numbers (each will be 13 characters
long) the model’s requirement for two numbers in succession separated by whitespace or a
comma will have been satisfied, as will PEST’s preference for maximum precision.

Comparing Examples 3.4 and 3.5, it is obvious that the spaces for parameters D and E on the
template file are greater than the spaces occupied by the corresponding numbers on the model
input file from which the template file was constructed; the same applies for the parameter
spaces defined in Example 3.2 pertaining to the model input file of Example 3.1. In most
cases of template file construction, a model input file will be used as the starting point. In
such a file, numbers read using free field input will often be written with trailing zeros
omitted. In constructing the template file you should recognise which numbers are read using
free field input and expand the parameter space (to the right) accordingly beyond the original
number, making sure to leave whitespace or a comma between successive spaces, or between
a parameter space and a neighbouring character or number.

Similarly, numbers read through field-specifying format statements may not occupy the full
field width in a model input file from which a template file is being constructed (eg. variable
A in Example 3.4). In such a case you should, again, expand the parameter space beyond the
extent of the number (normally to the left of the number only) until the space coincides with
the field defined in the format specifier with which the model reads the number. (If you are
not sure of this field because the model manual does not inform you of it or you do not have
the model’s source code, you will often, nevertheless, be able to make a pretty good guess as
to what the field width is. As long as the parameter space you define does not transgress the
bounds of the format-specified field, and the space is wide enough to allow discrimination
between a parameter value and an incrementally-varied parameter value, this is good
enough.)

3.2.6 How PEST Fills a Parameter Space with a Number

PEST writes as many significant figures to a parameter space as it can. It does this so that
even if a parameter space must be small in order to satisfy the input field requirements of a
model, there is still every chance that a parameter value can be distinguished from its
incrementally-varied counterpart so as to allow proper derivatives calculation with respect to
that parameter. Also, as has already been discussed, even though PEST adjusts its internal
representation of a parameter value to the precision with which the model can read it so that
PEST and the model are using the same number, in general more precision is better.

Two user-supplied control variables, PRECIS and DPOINT affect the manner in which PEST
writes a parameter value to a parameter space. Both of these variables are provided to PEST
through the PEST control file; see Section 4.2.2 for details. PRECIS is a character variable
which must be supplied as either “single” or “double”. It determines whether single or double
precision protocol is to be observed in writing parameter values; unless a parameter space is
greater than 13 characters in width it has no bearing on the precision with which a parameter
value is written to a model input file, as this is determined by the width of the parameter
space. If PRECIS is set to “single”, exponents are represented by the letter “e”; also if a
parameter space is greater than 13 characters in width, only the last 13 spaces are used in
writing the number representing the parameter value, any remaining characters within the

The Model-PEST Interface 3-7

parameter space being left blank. For the “double” alternative, up to 23 characters can be
used to represent a number and the letter “d” is used to represent exponents; also, extremely
large and extremely small numbers can be represented.

If a model’s input data fields are small, and there is nothing you can do about it, every effort
must be made to “squeeze” as much precision as possible into the limited parameter spaces
available. PEST will do this anyway, but it may be able to gain one or more extra significant
figures if it does not need to include a decimal point in a number if the decimal point is
redundant. Thus if a parameter space is 5 characters wide and the current value of the
parameter to which this field pertains is 10234.345, PEST will write the number as “1.0e4” or
as “10234” depending on whether it must include the decimal point or not. Similarly, if the
parameter space is 6 characters wide, the number 106857.34 can be represented as either
“1.07e5” or “1069e2” depending on whether the decimal point must be included or not.

By assigning the string “nopoint” to the PEST control variable DPOINT, you can instruct
PEST to omit the decimal point in the representation of a number if it can. However this
should be done with great caution. If the model is written in FORTRAN and numbers are
read using free field input, or using a field width specifier such as “(F6.0)” or “(E8.0)”, the
decimal point is not necessary. However in other cases the format specifier will insert its own
decimal point (eg. for specifiers such as “(F6.2)”), or enforce power-of-10 scaling (eg. for
specifiers such as “(E8.2)”) if a decimal point is absent from an input number. Hence if you
are unsure what to do, assign the string “point” to the control variable DPOINT; this will
ensure that all numbers written to model input files will include a decimal point, thus
overriding point-location or scaling conventions implicit in some FORTRAN format
specifiers.

Note that if a parameter space is 13 characters wide or greater and PRECIS is set to “single”,
PEST will include the decimal point regardless of the setting of “DPOINT”, for there are no
gains to be made in precision through leaving it out. Similarly, if PRECIS is set to “double”,
no attempt is made to omit a decimal point if the parameter space is 23 characters wide or
more.

Table 3.1 shows how the setting of DPOINT affects the representation of the number
12345.67. In examining this table, remember that PEST writes a number in such a way that
the maximum possible precision is “squeezed” into each parameter space.

The Model-PEST Interface 3-8

As explained below, a template file may contain multiple spaces for the same parameter. In
such a case, PEST will write the parameter value to all those spaces using the minimum
parameter space width specified for that particular parameter; for the wider spaces the
number will be right-justified, with spaces padded on the left. In this way a consistent
parameter value is written to all spaces pertaining to the one parameter.

3.2.7 Multiple Occurrences of the Same Parameter

Large numerical models which calculate the variation of some scalar or vector over two or
three-dimensional space may require on their input files large amounts of system property
data written in the form of two- or three-dimensional arrays. For example, a finite-difference
ground water model may read arrays representing the distribution of hydraulic conductivity,
storage coefficient, and other aquifer properties over the modelled area, each element within
each array pertaining to one rectangular, finite-difference “cell”. A finite-element model used
in simulating geophysical traverse results over an orebody may require an array containing
conductivity values for the various elements into which the orebody and surrounding earth
are subdivided. For large grids or networks used to spatially discretise two- or three-
dimensional inhomogeneous systems of this kind, hundreds, perhaps thousands, of numbers
may be required to represent the distributed system properties.

If it is required that field measurements be used to infer system properties (using models such
as these to link these properties to system response) certain assumptions regarding the
variation in space of the distributed parameters must be made. A common assumption is that
the model domain is “zoned”. According to this assumption the system is subdivided into a
number of areas or volumes in each of which a certain physical property is constant. Hence
while the input arrays will still contain hundreds, maybe thousands, of elements, each
element will be one of only n different numbers, where n is the number of zones into which
the model domain has been subdivided.

 Table 3.1 Representations of the number 12345.67

parameter space width
(characters)

DPOINT

“point” “nopoint”

8

7

6

5

4

3

2

 12345.67

 12345.7

 12346.

 1.2e4

 1.e4

 **

 12345.67

 12345.7

 12346.

 12346

 12e3

 1e4

 **

The Model-PEST Interface 3-9

It is a simple matter to construct a PEST template file for a model such as this. Firstly prepare
for a model run in the usual way. Using the model preprocessor, assign n different values for
a particular property to each of the n different model zones, writing the model input arrays to
the model input files in the usual manner. Then, using the “search and replace” facility of a
text editor, edit the model input file such that each occurrence within a particular array of the
number representing the property of a certain zone is altered to a parameter space identifier
(such as # ro1 #); remember to make the parameter space as wide as the model will allow
in order to ensure maximum precision. If this is done in turn for each of the n different
numbers occurring in the array, using a different parameter name in place of each different
number, the array of numbers will have been replaced by an array of parameter spaces. When
PEST writes the model input file it will, as usual, replace each such parameter space with the
corresponding current parameter value; hence it will reconstruct an array containing
hundreds, maybe thousands, of elements, but in which only n different numbers are
represented.

The occurrence of multiple incidences of the same parameter is not restricted to the one file.
If a model has multiple input files, and if a particular parameter which you would like to
optimise appears on more than one of these files, then at least one space for this parameter
will appear on more than one template file. PEST passes no judgement on the occurrence of
parameters within template files or across template files. However it does require that each
parameter cited in the PEST control file (see Chapter 4) occur at least once on at least one
template file, and that each parameter cited in a template file be provided with bounds and an
initial value in the PEST control file.

3.2.8 Preparing a Template File

Preparation of a template file is a simple procedure. For most models it can be done in a
matter of moments using a text editor to replace parameter values on a typical model input
file by their respective parameter space identifiers.

Once a template file has been prepared, it can be checked for correctness using the utility
program TEMPCHEK; see Chapter 10. TEMPCHEK also has the ability to write a model
input file on the basis of a template file and a user-supplied list of parameter values. If you
then run your model, providing it with such a TEMPCHEK-prepared input file, you can
verify that the model will have no difficulties in reading input files prepared by PEST.

3.3 Instruction Files
Of the possibly voluminous amounts of information that a model may write to its output
file(s), PEST is interested in only a few numbers, viz. those numbers for which corresponding
field or laboratory data are available and for which the discrepancy between model output
and measured values must be reduced to a minimum in the weighted least squares sense.
These particular model-generated numbers are referred to as “observations” or “model-
generated observations” in the discussion which follows (in order to distinguish them from
those model outcomes which are not used in the parameter estimation process), while the
field or laboratory data to which they are individually matched are referred to as
“measurements”.

The Model-PEST Interface 3-10

For every model output file containing observations, you must provide an instruction file
containing the directions which PEST must follow in order to read that file. Note that if a
model output file is more than 2000 characters in width PEST will be unable to read it;
however a model output file can be of any length.

Some models write some or all of their output data to the terminal. You can redirect this
screen output to a file using the “>” symbol and teach PEST how to read this file using a
matching instruction file in the usual manner.

It is suggested that instruction files be provided with the extension “.ins” in order to
distinguish them from other types of file.

3.3.1 Precision in Model Output Files

As was discussed in the previous chapter, if there are any model input variables which allow
you to vary the precision with which its output data are written, they should be adjusted for
maximum output precision. Unlike parameter values, for which precision is important but not
essential, precision in the representation of model-generated observations is crucial. The
Gauss-Marquardt-Levenberg method of nonlinear parameter estimation, upon which the
PEST algorithm is based, requires that the derivative of each observation with respect to each
parameter be evaluated once for every optimisation iteration. PEST calculates these
derivatives using the finite difference technique or one of its three-point variants. In all cases,
the derivative value depends on the difference between two or three observations calculated
on the basis of incrementally-varied parameter values. Unless the observations are
represented with maximum precision, this is a recipe for numerical disaster.

3.3.2 How PEST Reads a Model Output File

PEST must be instructed on how to read a model output file and identify model-generated
observations. For the method to work, model output files containing observations must be
text files; PEST cannot read a binary file. If your model produces only binary files, you will
need to write a simple program which reads this binary data and rewrites it in ASCII form;
PEST can then read the ASCII file for the observations it needs. Note that, as described in
Section 4.2.8, when PEST runs a model, this “model” can actually consist of a number of
programs run in succession.

Unfortunately, observations cannot be read from model output files using the template
concept. This is because many models cannot be relied upon to produce an output file of
identical structure on each model run. For example, a model which calculates the stress
regime in an aircraft wing may employ an iterative numerical solution scheme for which
different numbers of iterations are required to achieve numerical convergence depending on
the boundary conditions and material properties supplied for a particular run. If the model
records on its output file the convergence history of the solution process, and the results of its
stress calculations are recorded on the lines following this, the latter may be displaced
downwards depending on the number of iterations required to calculate them.

So instead of using an output file template, you must provide PEST with a list of instructions
on how to find observations on an output file. Basically, PEST finds observations on a model
output file in the same way that a person does. A person runs his/her eye down the file

The Model-PEST Interface 3-11

looking for something which he/she recognises - a “marker”; if this marker is properly
selected, observations can usually be linked to it in a simple manner. For example, if you are
looking for the outcome of the above stress model’s deliberations at an elapsed time of 100
milliseconds, you may instruct PEST to read its output file looking for the marker

STRESS CALCULATED AT FINITE ELEMENT NODES: ELAPSED TIME = 100 MSEC

A particular outcome for which you have a corresponding experimental measurement may
then be found, for example, between character positions 23 and 30 on the 4th line following
the above marker, or as the 5th item on the 3rd line after the marker, etc. Note that for simple
models, especially “home-made”, single-purpose models where little development time has
been invested in highly descriptive output files, no markers may be necessary, the default
initial marker being the top of the file.

Markers can be of either primary or secondary type. PEST uses a primary marker as it scans
the model output file line by line, looking for a reference point for subsequent observation
identification or further scanning. A secondary marker is used for a reference point as a
single line is examined from left to right.

3.3.3 An Example Instruction File

Example 3.6 shows an output file written by the model whose input file appears in Example
3.1. Suppose that we wish to estimate the parameters appearing in the template file of
Example 3.2 (ie. the resistivities of the three half-space layers and the thicknesses of the
upper two) by comparing apparent resistivities generated by the model with a set of apparent
resistivities provided by field measurement. Then we need to provide instructions to PEST on
how to read each of the apparent resistivities appearing in Example 3.6. An appropriate
instruction file is shown in Example 3.7.

The Model-PEST Interface 3-12

SCHLUMBERGER ELECTRIC SOUNDING

Apparent resistivities calculated using the linear filter method

electrode spacing apparent resistivity
 1.00 1.21072
 1.47 1.51313
 2.15 2.07536
 3.16 2.95097
 4.64 4.19023
 6.81 5.87513
 10.0 8.08115
 14.7 10.8029
 21.5 13.8229
 31.6 16.5158
 46.4 17.7689
 68.1 16.4943
 100. 12.8532
 147. 8.79979
 215. 6.30746
 316. 5.40524
 464. 5.15234
 681. 5.06595
 1000. 5.02980

Example 3.6 A model output file.

pif @
@electrode@
l1 [ar1]21:27
l1 [ar2]21:27
l1 [ar3]21:27
l1 [ar4]21:27
l1 [ar5]21:27
l1 [ar6]21:27
l1 [ar7]21:27
l1 [ar8]21:27
l1 [ar9]21:27
l1 [ar10]21:27
l1 [ar11]21:27
l1 [ar12]21:27
l1 [ar13]21:27
l1 [ar14]21:27
l1 [ar15]21:27
l1 [ar16]21:27
l1 [ar17]21:27
l1 [ar18]21:27
l1 [ar19]21:27

Example 3.7 A PEST instruction file.

The Model-PEST Interface 3-13

3.3.4 The Marker Delimiter

The first line of a PEST instruction file must begin with the three letters “pif” which stand for
“PEST instruction file”. Then, after a single space, must follow a single character, the marker
delimiter. The role of the marker delimiter in an instruction file is not unlike that of the
parameter delimiter in a template file. Its role is to define the extent of a marker; a marker
delimiter must be placed just before the first character of a text string comprising a marker
and immediately after the last character of the marker string. In treating the text between a
pair of marker delimiters as a marker, PEST does not try to interpret this text as a list of
instructions.

You can choose the marker delimiter character yourself; however your choice is limited. A
marker delimiter must not be one of the characters A - Z, a - z, 0 - 9, !, [,], (,), :, or &; the
choice of any of these characters may result in confusion, as they may occur elsewhere in an
instruction file in a role other than that of marker delimiter. Note that the character you
choose as the marker delimiter should not occur within the text of any markers as this, too,
will cause confusion.

3.3.5 Observation Names

In the same way that each parameter must have a unique name, so too must each observation
be provided with a unique name. Like a parameter name, an observation name must be
twelve characters or less in length. These twelve characters can be any ASCII characters
except for [,], (,), or the marker delimiter character.

As discussed above, a parameter name can occur more than once within a parameter template
file; PEST simply replaces each parameter space in which the name appears with the current
value of the pertinent parameter. However the same does not apply to an observation name.
Every observation is unique and must have a unique observation name. In Example 3.6,
observations are named “ar1”, “ar2” etc. These same observation names must also be cited in
the PEST control file where measurement values and weights are provided; see the next
chapter for further details.

There is one observation name, however, to which these rules do not apply, viz. the dummy
observation name “dum”. This name can occur many times, if necessary, in an instruction
file; it signifies to PEST that, although the observation is to be located as if it were a normal
observation, the number corresponding to the dummy observation on the model output file is
not actually matched with any laboratory or field measurement. Hence an observation named
“dum” must not appear in the PEST control file where measurement values are provided and
observation weights are assigned. As is illustrated below, the dummy observation is simply a
mechanism for model output file navigation.

3.3.6 The Instruction Set

Each of the available PEST instructions is now described in detail. When creating your own
instruction files, the syntax provided for each instruction must be followed exactly. If a
number of instruction items appear on a single line of an instruction file, these items must be
separated from each other by at least one space. Instructions pertaining to a single line on a
model output file are written on a single line of a PEST instruction file. Thus the start of a

The Model-PEST Interface 3-14

new instruction line signifies that PEST must read at least one new model output file line;
just how many lines it needs to read depends on the first instruction on the new instruction
line. Note, however, that if the first instruction on the new line is the character “&”, the new
instruction line is simply a continuation of the old one. Like all other instruction items, the
“&” character used in this context must be separated from its following instruction item by at
least one space.

PEST reads a model output file in the forward (top-to-bottom) direction, looking to the
instructions in the instruction file to tell it what to do next. Instructions should be written with
this in mind; an instruction cannot direct PEST to “backtrack” to a previous line on the model
output file. Also, because PEST processes model output file lines from left to right, an
instruction cannot direct PEST backwards to an earlier part of a model output file line than
the part of the line to which its attention is currently focussed as a result of the previous
instruction.

Primary Marker

Unless it is a continuation of a previous line, each instruction line must begin with either of
two instruction items, viz. a primary marker or a line advance item. The primary marker has
already been discussed briefly. It is a string of characters, bracketed at each end by a marker
delimiter. If a marker is the first item on an instruction line, then it is a primary marker; if it
occurs later in the line, following other instruction items, it is a secondary marker, the
operation of which will be discussed below.

On encountering a primary marker in an instruction file PEST reads the model output file,
line by line, searching for the string between the marker delimiter characters. When it finds
the string it places its “cursor” at the last character of the string. (Note that this cursor is
never actually seen by the PEST user; it simply marks the point where PEST is at in its
processing of the model output file.) This means that if any further instructions on the same
instruction line as the primary marker direct PEST to further processing of this line, that
processing must pertain to parts of the model output file line following the string identified as
the primary marker.

Note that if there are blank characters in a primary (or secondary) marker, exactly the same
number of blank characters is expected in the matching string on the model output file.

Often, as in Example 3.7, a primary marker will be part or all of some kind of header or label;
such a header or label often precedes a model’s listing of the outcomes of its calculations and
thus makes a convenient reference point from which to search for the latter. It should be
noted, however, that the search for a primary marker is a time-consuming process as each line
of the model output file must be individually read and scanned for the marker. Hence if the
same observations are always written to the same lines of a model output file (these lines
being invariant from model run to model run), you should use the line advance item in
preference to a primary marker.

A primary marker may be the only item on a PEST instruction line, or it may precede a
number of other items directing further processing of the line containing the marker. In the
former case the purpose of the primary marker is simply to establish a reference point for
further downward movement within the model output file as set out in subsequent instruction

The Model-PEST Interface 3-15

lines.

Primary markers can provide a useful means of navigating a model output file. Consider the
extract from a model output file shown in Example 3.8 (the dots replace one or a number of
lines not shown in the example in order to conserve space). The instruction file extract shown
in Example 3.9 provides a means to read the numbers comprising the third solution vector.
Notice how the “SOLUTION VECTOR” primary marker is preceded by the “PERIOD NO.
3” primary marker. The latter marker is used purely to establish a reference point from which
a search can be made for the “SOLUTION VECTOR” marker; if this reference point were
not established (using either a primary marker or line advance item) PEST would read the
solution vector pertaining to a previous time period.

Line Advance

The syntax for the line advance item is “ln” where n is the number of lines to advance; note
that “l” is “el”, the twelfth letter of the alphabet, not “one”. The line advance item must be

.

.
TIME PERIOD NO. 1 --->

.

.
SOLUTION VECTOR:
 1.43253 6.43235 7.44532 4.23443 91.3425 3.39872

.

.
TIME PERIOD NO. 2 --->

.

.
SOLUTION VECTOR
 1.34356 7.59892 8.54195 5.32094 80.9443 5.49399

.

.
TIME PERIOD NO. 3 --->

 .
.

SOLUTION VECTOR
 2.09485 8.49021 9.39382 6.39920 79.9482 6.20983

Example 3.8 Extract from a model output file.

pif *
.
.

PERIOD NO. 3
SOLUTION VECTOR
l1 (obs1)5:10 (obs2)12:17 (obs3)21:28 (obs4)32:37 (obs5)41:45
& (obs6)50:55

.

.

Example 3.9 Extract from an instruction file.

The Model-PEST Interface 3-16

the first item of an instruction line; it and the primary marker are the only two instruction
items which can occupy this initial spot. As was explained above, the initial item in an
instruction line is always a directive to PEST to move at least one line further in its perusal of
the model output file (unless it is a continuation character). In the case of the primary marker,
PEST stops reading new lines when it finds the pertinent text string. However for a line
advance it does not need to examine model output file lines as it advances. It simply moves
forward n lines, placing its processing cursor just before the beginning of this new line, this
point becoming the new reference point for further processing of the model output file.

Normally a line advance item is followed by other instructions. However if the line advance
item is the only item on an instruction line this does not break any syntax rules.

In Example 3.6 model-calculated apparent resistivities are written on subsequent lines. Hence
before reading each observation, PEST is instructed to move to the beginning of a new line
using the “l1” line advance item; see Example 3.7.

If a line advance item leads the first instruction line of a PEST instruction file, the reference
point for line advance is taken as a “dummy” line just above the first line of the model output
file. Thus if the first instruction line begins with “l1”, processing of the model output file
begins on its first line; similarly, if the first instruction line begins with “l8”, processing of
the model output file begins at its eighth line.

Secondary Marker

A secondary marker is a marker which does not occupy the first position of a PEST
instruction line. Hence it does not direct PEST to move downwards on the model output file
(though it can be instrumental in this - see below); rather it instructs PEST to move its cursor
along the current model output file line until it finds the secondary marker string, and to place
its cursor on the last character of that string ready for subsequent processing of that line.

Example 3.10 shows an extract from a model output file while Example 3.11 shows the
instructions necessary to read the potassium concentration from this output file. A primary
marker is used to place the PEST cursor on the line above that on which the calculated
concentrations are recorded for the distance in which we are interested. Then PEST is
directed to advance one line and read the number following the “K:” string in order to find an
observation named “kc”; the exclamation marks surrounding “kc” will be discussed shortly.

.

.
DISTANCE = 20.0: CATION CONCENTRATIONS:-
Na: 3.49868E-2 Mg: 5.987638E-2 K: 9.987362E-3

.

.

Example 3.10 Extract from a model output file.

The Model-PEST Interface 3-17

A useful feature of the secondary marker is illustrated in Examples 3.12 and 3.13 of a model
output file extract and a corresponding instruction file extract, respectively. If a particular
secondary marker is preceded only by other markers (including, perhaps, one or a number of
secondary markers and certainly a primary marker), and the text string corresponding to that
secondary marker is not found on a model output file line on which the previous markers'
strings have been located, PEST will assume that it has not yet found the correct model
output line and resume its search for a line which holds the text from all three markers. Thus
the instruction “%TIME STEP 10%” will cause PEST to pause on its downward journey
through the model output file at the first line illustrated in Example 3.12. However, when it
does not find the string “STRAIN” on the same line it recommences its perusal of the model
output file, looking for the string “TIME STEP 10” again. Eventually it finds a line
containing both the primary and secondary markers and, having done so, commences
execution of the next instruction line.

It is important to note that if any instruction items other than markers precede an unmatched
secondary marker, PEST will assume that the mismatch is an error condition and abort
execution with an appropriate error message.

pif ~
.
.

~DISTANCE = 20.0~
l1 ~K:~ !kc!

.

.

Example 3.11 Extract from an instruction file.

.

.
TIME STEP 10 (13 ITERATIONS REQUIRED) STRESS --->
X = 1.05 STRESS = 4.35678E+03
X = 1.10 STRESS = 4.39532E+03

.

.
TIME STEP 10 (BACK SUBSTITUTION) STRAIN --->
X = 1.05 STRAIN = 2.56785E-03
X = 1.10 STRAIN = 2.34564E-03

.

.

Example 3.12 Extract from a model output file.

The Model-PEST Interface 3-18

Whitespace

The whitespace instruction is similar to the secondary marker in that it allows the user to
navigate through a model output file line prior to reading a non-fixed observation (see
below). It directs PEST to move its cursor forwards from its current position until it
encounters the next blank character. PEST then moves the cursor forward again until it finds
a nonblank character, finally placing the cursor on the blank character preceding this
nonblank character (ie. on the last blank character in a sequence of blank characters) ready
for the next instruction. The whitespace instruction is a simple “w”, separated from its
neighbouring instructions by at least one blank space.

Consider the model output file line represented below:

MODEL OUTPUTS: 2.89988 4.487892 -4.59098 8.394843

The following instruction line directs PEST to read the fourth number on the above line:

%MODEL OUTPUTS:% w w w w !obs1!

The instruction line begins with a primary marker, allowing PEST to locate the above line on
the model output file. After this marker is processed the PEST cursor rests on the “:”
character of “OUTPUTS:”, ie. on the last character of the marker string. In response to the
first whitespace instruction PEST finds the next whitespace and then moves its cursor to the
end of this whitespace, ie. just before the “2” of the first number on the above model output
file line. The second whitespace instruction moves the cursor to the blank character preceding
the first “4” of the second number on the above line; processing of the third whitespace
instruction results in PEST moving its cursor to the blank character just before the negative
sign. After the fourth whitespace instruction is implemented, the cursor rests on the blank
character preceding the last number; the latter can then be read as a non-fixed observation
(see below).

Tab

The tab instruction places the PEST cursor at a user-specified character position (ie. column
number) on the model output file line which PEST is currently processing. The instruction
syntax is “tn” where n is the column number. The column number is obtained by counting
character positions (including blank characters) from the left side of any line, starting at 1.
Like the whitespace instruction, the tab instruction can be useful in navigating through a
model output file line prior to locating and reading a non-fixed observation. For example,
consider the following line from a model output file:

pif %
.
.

%TIME STEP 10% %STRAIN%
l1 %STRAIN =% !str1!
l1 %STRAIN =% !str2!

.

.

Example 3.13 Extract from an instruction file.

The Model-PEST Interface 3-19

TIME(1): A = 1.34564E-04, TIME(2): A = 1.45654E-04, TIME(3): A = 1.54982E-04

The value of A at TIME(3) could be read using the instruction line:

l4 t60 %=% !a3!

Here it is assumed that PEST was previously processing the fourth line prior to the above line
in the model output file; the marker delimiter character is assumed to be “%”.
Implementation of the “t60” instruction places the cursor on the “:” following the “TIME(3)”
string, for the colon is in the sixtieth character position of the above line. PEST is then
directed to find the next “=” character. From there it can read the last number on the above
line as a non-fixed observation (see below).

Fixed Observations

An observation reference can never be the first item on an instruction line; either a primary
marker or line advance item must come first in order to place PEST’s cursor on the line on
which one or more observations may lie. If there is more than one observation on a particular
line of the model output file, these observations must be read from left to right, backward
movement along any line being disallowed.

Observations can be identified in one of three ways. The first way is to tell PEST that a
particular observation can be found between, and including, columns n1 and n2 on the model
output file line on which its cursor is currently resting. This is by far the most efficient way to
read an observation value because PEST does not need to do any searching; it simply reads a
number from the space identified. Observations read in this way are referred to as “fixed
observations”.

Example 3.14 shows how the numbers listed in the third solution vector of Example 3.8 can
be read as fixed observations. The instruction item informing PEST how to read a fixed
observation consists of two parts. The first part consists of the observation name enclosed in
square brackets, while the second part consists of the first and last columns from which to
read the observation. Note that no space must separate these two parts of the observation
instruction; PEST always construes a space in an instruction file as marking the end of one
instruction item and the beginning of another (unless the space lies between marker
delimiters).

Reading numbers as fixed observations is useful when the model writes its output in tabular
form using fixed-field-width specifiers. However you must be very careful when specifying
the column numbers from which to read the number. The space defined by these column

pif *
.

.
PERIOD NO. 3
SOLUTION VECTOR
l1 [obs1]1:9 [obs2]10:18 [obs3]19:27 [obs4]28:36 [obs5]37:45
& [obs6]46:54

.

.

Example 3.14 Extract from an instruction file.

The Model-PEST Interface 3-20

numbers must be wide enough to accommodate the maximum length that the number will
occupy in the course of the many model runs that will be required for PEST to optimise the
model’s parameter set; if it is not wide enough, PEST may read only a truncated part of the
number or omit a negative sign preceding the number. However the space must not be so
wide that it includes part of another number; in this case a run-time error will occur and
PEST will terminate execution with an appropriate error message.

Where a model writes its results in the form of an array of numbers, it is not an uncommon
occurrence for these numbers to abut each other. Consider, for example, the following
FORTRAN code fragment:

A=1236.567
B=8495.0
C=-900.0
WRITE(10,20) A,B,C

20 FORMAT(3(F8.3))

The result will be

1236.5678495.000-900.000

In this case there is no choice but to read these numbers as fixed observations. (Both of the
alternative ways to read an observation require that the observation be surrounded by either
whitespace or a string that is invariant from model run to model run and can thus be used as a
marker.) Hence to read the above three numbers as observations A, B and C the following
instruction line may be used:

l1 [A]1:8 [B]9:16 [C]17:24

If an instruction line contains only fixed observations there is no need for it to contain any
whitespace or tabs; nor will there be any need for a secondary marker, (unless the secondary
marker is being used in conjunction with a primary marker in determining which model
output file line the PEST cursor should settle on - see above). This is because these items are
normally used for navigating through a model output file line prior to reading a non-fixed
observation (see below); such navigation is not required to locate a fixed observation as its
location on a model output file line is defined without ambiguity by the column numbers
included within the fixed observation instruction.

Semi-Fixed Observations

Example 3.9 demonstrates the use of semi-fixed observations. Semi-fixed observations are
similar to fixed observations in that two numbers are provided in the pertinent instruction
item, the purpose of these numbers being to locate the observation’s position by column
number on the model output file. However, in contrast to fixed observations, these numbers
do not locate the observation exactly. When PEST encounters a semi-fixed observation
instruction it proceeds to the first of the two nominated column numbers and then, if this
column is not occupied by a non-blank character, it searches the output file line from left to
right beginning at this column number, until it reaches either the second identified column or
a non-blank character. If it reaches the second column before finding a non-blank character,
an error condition arises. However if it finds a non-blank character, it then locates the nearest
whitespace on either side of the character; in this way, it identifies one or a number of non-

The Model-PEST Interface 3-21

blank characters sandwiched between whitespace (“whitespace” includes the beginning
and/or the end of the model output file line). It tries to read these characters as a number, this
number being the value of the observation named in the semi-fixed observation instruction.
Obviously the width of this number can be greater than the difference between the column
numbers cited in the semi-fixed observation instruction.

Like a fixed observation, the instruction to read a semi-fixed observation consists of two
parts, viz. the observation name followed by two column numbers, the latter being separated
by a colon; the column numbers must be in ascending order. However for semi-fixed
observations, the observation name is enclosed in round brackets rather than square brackets.
Again, there must be no space separating the two parts of the semi-fixed observation
instruction.

Reading a number as a semi-fixed observation is useful if you are unsure how large the
representation of the number could stretch on a model output file as its magnitude grows
and/or diminishes in PEST-controlled model runs; it is also useful if you do not know
whether the number is left or right justified. However you must be sure that at least part of
the number will always fall between (and including) the two nominated columns and that,
whenever the number is written and whatever its size, it will always be surrounded either by
whitespace or by the beginning or end of the model output file line. If, when reading the
model output file, PEST encounters only whitespace between (and including) the two
nominated column numbers, or if it encounters non-numeric characters or two number
fragments separated by whitespace, an error condition will occur and PEST will terminate
execution with an appropriate error message.

As for fixed observations, it is normally not necessary to have secondary markers, whitespace
and tabs on the same line as a semi-fixed observation, because the column numbers provided
with the semi-fixed observation instruction determine the location of the observation on the
line. As always, observations must be read from left to right on any one instruction line;
hence if more than one semi-fixed observation instruction is provided on a single PEST
instruction line, the column numbers pertaining to these observations must increase from left
to right.

For the case illustrated in Examples 3.6 and 3.7, all the fixed observations could have been
read as semi-fixed observations, with the difference between the column numbers either
remaining the same or being reduced to substantially smaller than that shown in Example 3.7.
However it should be noted that it takes more effort for PEST to read a semi-fixed
observation than it does for it to read a fixed observation as PEST must establish for itself the
extent of the number that it must read.

After PEST has read a semi-fixed observation its cursor resides at the end of the number
which it has just read. Any further processing of the line must take place to the right of that
position.

Non-Fixed Observations

Examples 3.11 and 3.13 demonstrate the use of non-fixed observations. A non-fixed
observation instruction does not include any column numbers because the number which
PEST must read is found using secondary markers and/or other navigational aids such as

The Model-PEST Interface 3-22

whitespace and tabs which precede the non-fixed observation on the instruction line.

If you do not know exactly where, on a particular model output file line, a model will write
the number corresponding to a particular observation, but you do know the structure of that
line, then you can use this knowledge to navigate your way to the number. In the PEST
instruction file, a non-fixed observation is represented simply by the name of the observation
surrounded by exclamation marks; as usual, no spaces should separate the exclamation marks
from the observation name as PEST interprets spaces in an instruction file as denoting the
end of one instruction item and the beginning of another.

When PEST encounters a non-fixed observation instruction it first searches forward from its
current cursor position until it finds a non-blank character; PEST assumes this character is
the beginning of the number representing the non-fixed observation. Then PEST searches
forward again until it finds either a blank character, the end of the line, or the first character
of a secondary marker which follows the non-fixed observation instruction in the instruction
file; PEST assumes that the number representing the non-fixed observation finishes at the
previous character position. In this way it identifies a string of characters which it tries to
read as a number; if it is unsuccessful in reading a number because of the presence of non-
numeric characters or some other problem, PEST terminates execution with a run-time error
message. A run time error message will also occur if PEST encounters the end of a line while
looking for the beginning of a non-fixed observation.

Consider the output file fragment shown in Example 3.15. The species populations at
different times cannot be read as either fixed or semi-fixed observations because the numbers
representing these populations cannot be guaranteed to fall within a certain range of column
numbers on the model output file because “iterative adjustment” may be required in the
calculation of any such population. Hence we must find our way to the number using another
method; one such method is illustrated in Example 3.16.

.

.
SPECIES POPULATION AFTER 1 YEAR = 1.23498E5
SPECIES POPULATION AFTER 2 YEARS = 1.58374E5
SPECIES POPULATION AFTER 3 YEARS (ITERATIVE ADJUSTMENT REQUIRED)= 1.78434E5
SPECIES POPULATION AFTER 4 YEARS = 2.34563E5

.

.

Example 3.15 Extract from a model output file.

The Model-PEST Interface 3-23

A primary marker is used to move the PEST cursor to the first of the lines shown in Example
3.15. Then, noting that the number representing the species population always follows a “=”
character, the “=” character is used as a secondary marker. After it processes a secondary
marker, the PEST cursor always resides on the last character of that marker, in this case on
the “=” character itself. Hence after reading the “=” character, PEST is able to process the
!sp1! instruction by isolating the string “1.23498E5” in the manner described above.

After it reads the model-calculated value for observation “sp1”, PEST moves to the next
instruction line. In accordance with the “l1” instruction, PEST reads into its memory the next
line of the model output file. It then searches for a “=” character and reads the number
following this character as observation “sp2”. This procedure is then repeated for
observations “sp3” and “sp4”.

Successful identification of a non-fixed observation depends on the instructions preceding it.
The secondary marker, tab and whitespace instructions will be most useful in this regard,
though fixed and semi-fixed observations may also precede a non-fixed observation;
remember that in all these cases PEST places its cursor over the last character of the string or
number it identifies on the model output file corresponding to an instruction item, before
proceeding to the next instruction.

Consider the model output file line shown below as a further illustration of the use of non-
fixed observations.

4.33 -20.3 23.392093 3.394382

If we are interested in the fourth of these numbers but we are unsure as to whether the
numbers preceding it might not be written with greater precision in some model runs (hence
pushing the number in which we are interested to the right), then we have no alternative but
to read the number as a non-fixed observation. However if the previous numbers vary from
model run to model run, we cannot use a secondary marker either; nor can a tab be used.
Fortunately, whitespace comes to the rescue, with the following instruction line taking PEST
to the fourth number:

l10 w w w !obs1!

Here it is assumed that, prior to reading this instruction, the PEST cursor was located on the
10th preceding line of the model output file. As long as we can be sure that no whitespace
will ever precede the first number, there will always be three incidences of whitespace
preceding the number in which we are interested. However, if it happens that whitespace may

pif *
.
.

SPECIES *=* !sp1!
l1 *=* !sp2!
l1 *=* !sp3!
l1 *=* !sp4!

.

.

Example 3.16 Extract from an instruction file.

The Model-PEST Interface 3-24

precede the first number on some occasions, while on other occasions it may not, then we can
read the first number as a dummy observation as shown below:

l10 !dum! w w w !obs1!

As was explained previously, the number on the model output file corresponding to an
observation named “dum” is not actually used; nor can the name “dum” appear in the
“observation data” section of the PEST control file (see the next chapter). The use of this
name is reserved for instances like the present case where a number must be read in order to
facilitate navigation along a particular line of the model output file. The number is read
according to the non-fixed observation protocol, for only observations of this type can be
dummy observations.

An alternative to the use of whitespace in locating the observation “obs1” in the above
example could involve using the dummy observation more than once. Hence the instruction
line below would also enable the number representing “obs1” to be located and read:

l10 !dum! !dum! !dum! !obs1!

However had the numbers in the above example been separated by commas instead of
whitespace, the commas should have been used as secondary markers in order to find “obs1”.

A number not surrounded by whitespace can still be read as a non-fixed observation with the
proper choice of secondary markers. Consider the model output file line shown below:

SOIL WATER CONTENT (NO CORRECTION)=21.345634%

It may not be possible to read the soil water content as a fixed observation because the “(NO
CORRECTION)” string may or may not be present after any particular model run. Reading it
as a non-fixed observation appears troublesome as the number is neither preceded nor
followed by whitespace. However a suitable instruction line is

l5 *=* !sws! *%*

Notice how a secondary marker (viz. *%*) is referenced even though it occurs after the
observation we wish to read. If this marker were not present, a run-time error would occur
when PEST tries to read the soil water content because it would define the observation string
to include the “%” character and, naturally, would be unable to read a number from a string
which includes non-numeric characters. However by including the “%” character as a
secondary marker after the number representing the observation “sws”, PEST will separate
the character from the string before trying to read the number. But note that if a post-
observation secondary marker of this type begins with a numerical character, PEST cannot be
guaranteed not to include this character with the observation number if there is no whitespace
separating it from the observation.

The fact that there is no whitespace between the “=” character and the number we wish to
read causes PEST no problems either. After processing of the “=” character as a secondary
marker, the PEST processing cursor falls on the “=” character itself. The search for the first
non-blank character initiated by the !sws! instruction terminates on the very next character
after the “=”, viz. the “2” character. PEST then accepts this character as the left boundary of
the string from which it must read the soil moisture content and searches forwards for the

The Model-PEST Interface 3-25

right boundary of the string in the usual manner.

After PEST has read a non-fixed observation, it places its cursor on the last character of the
observation number. It can then undertake further processing of the model output file line to
read further non-fixed, fixed or semi-fixed observations, or process navigational instructions
as directed.

Continuation

You can break an instruction line between any two instructions by using the continuation
character, “&”, to inform PEST that a certain instruction line is actually a continuation of the
previous line. Thus the instruction file fragment

l1 %RESULTS% %TIME (4)% %=% !obs1! !obs2! !obs3!

is equivalent to

l1
& %RESULTS%
& %TIME (4)%
& %=%
& !obs1!
& !obs2!
& !obs3!

For both these fragments, the marker delimiter is assumed to be “%”. Note that the
continuation character must be separated from the instruction which follows it by at least one
space.

3.3.7 Making an Instruction File

An instruction file can be built using a text editor. This is particularly easy in the WINDOWS
environment where you can open two command-line windows, one to view a model output
file, and the other to write the instruction file. If the viewing program is a text editor which
displays cursor line and column numbers, the job is even easier; note that the text editor,
EDIT, provides these numbers. Furthermore, with the help of the WINDOWS clipboard
facility, you can easily copy markers from a model output file to an instruction file using the
mouse.

You must always exercise caution in building an instruction set to read a model output file,
especially if navigational instructions such as markers, whitespace, tabs and dummy
observations are used. PEST will always follow your instructions to the letter, but it may not
read the number you intend if you get an instruction wrong. If PEST tries to read an
observation but does not find a number where it expects to find one, a run-time error will
occur. PEST will inform you of where it encountered the error and of the instruction it was
implementing when the error occurred; this should allow you to find the problem. However if
PEST actually reads the wrong number from the model output file, this may only become
apparent if an unusually high objective function results, or if PEST is unable to lower the
objective function on successive optimisation iterations. In this case you should interrupt
PEST execution, asking PEST to terminate execution with a statistics printout (see Chapter
5). Included in this printout are the current model-generated observation values; if PEST is
reading the wrong number it will then become apparent.

The Model-PEST Interface 3-26

Included in the PEST suite are two programs which can be used to verify that instruction files
have been built correctly. Program PESTCHEK, when checking all PEST input data for
errors and inconsistencies prior to a PEST run, reads all the instruction files cited in a PEST
control file (see the next chapter) ensuring that no syntax errors are present in any of these
files. Program INSCHEK, on the other hand, checks a single PEST instruction file for syntax
errors. If an instruction file is error-free, INSCHEK can then use that instruction file to read a
model output file, printing out a list of observation values read from that file. In this way you
can be sure that your instruction set “works” before it is actually used by PEST. See Chapter
10 of this manual for more details.

The PEST Control File 4-1

4. The PEST Control File

4.1 The Role of the PEST Control File
Once all the template and instruction files have been prepared for a particular case, a “PEST
control file” must be prepared which “brings it all together”. Unlike template and instruction
files, for which there is no naming convention, there are some conventions associated with
the name of the PEST control file. In particular, the file must have an extension of “.pst”. Its
filename base is referred to as the PEST “case name”; PEST uses this same filename base for
the files which it generates in the course of its run. Thus, for example, if you name the PEST
control file calib.pst, PEST will generate files calib.rec (the run record file), calib.par (best
parameter values achieved), calib.rst (restart information stored at the beginning of each
optimisation iteration), calib.jac (the Jacobian matrix for a possible restart), calib.jst (the
same file from the previous optimisation iteration), calib.jco (the Jacobian matrix pertaining
to best parameters for access by the JACWRIT utility), calib.sen (parameter sensitivities),
calib.seo (observation sensitivities) and calib.res (tabulated observation residuals). User-
supplied files calib.rmf (Parallel PEST run management file) and calib.hld (the “parameter
hold file”) are possible PEST input files.

Many of the data items in the PEST control file are used to “tune” PEST’s operation to the
case in hand; such items include parameter change limits, parameter transformation types,
termination criteria etc. As is further discussed in Chapter 5, before using PEST on a real-
world problem, you may wish to use it to estimate parameters for a case where your “field”
data are, in fact, model-generated; in this way you know the answers that PEST should
achieve. Through a careful examination of the PEST run record file, and perhaps a little
experimentation with PEST input variables, you should be able to determine what PEST
settings are best for your particular problem. (You can also test whether the observation set
that you provide affords the determination of a unique parameter set.)

The PEST control file can be built in one of two ways. It can be easily prepared using a text
editor following the directions provided in this chapter. Alternatively, you can use the PEST
utility, PESTGEN, to generate a PEST control file for your current case using default input
variables; this file can then be modified as you see fit using a text editor. In either case the
PEST control file can be checked for correctness and consistency using the utility program
PESTCHEK.

Note also that some of the programs of the PEST Ground Water and Surface Water Utilities
can be used to write a PEST control file.

4.2 Construction Details

4.2.1 The Structure of the PEST Control File

The PEST control file consists of integer, real and character variables. Its construction details
are set out in Example 4.1, where variables are referenced by name. A sample PEST control
file is provided in Example 4.2. Note that the PEST control file demonstrated in these two

The PEST Control File 4-2

examples pertains to the use of PEST in “parameter estimation mode” (the most usual case of
PEST usage). Use of PEST in “predictive analysis mode” is described in Chapter 6 while use
of PEST in “regularisation mode” is described in Chapter 7. Note also that whenever PEST is
upgraded and additional variables are required in the PEST control file, newer versions of
PEST will always be capable of reading old versions of the PEST control file; default values
will simply be assigned to missing variables.

pcf
* control data
RSTFLE PESTMODE
NPAR NOBS NPARGP NPRIOR NOBSGP
NTPLFLE NINSFLE PRECIS DPOINT NUMCOM JACFILE MESSFILE
RLAMBDA1 RLAMFAC PHIRATSUF PHIREDLAM NUMLAM
RELPARMAX FACPARMAX FACORIG
PHIREDSWH
NOPTMAX PHIREDSTP NPHISTP NPHINORED RELPARSTP NRELPAR
ICOV ICOR IEIG
* parameter groups
PARGPNME INCTYP DERINC DERINCLB FORCEN DERINCMUL DERMTHD
(one such line for each of the NPARGP parameter groups)
* parameter data
PARNME PARTRANS PARCHGLIM PARVAL1 PARLBND PARUBND PARGP SCALE OFFSET DERCOM
(one such line for each of the NPAR parameters)
PARNME PARTIED
(one such line for each tied parameter)
* observation groups
OBGNME
(one such line for each observation group)
* observation data
OBSNME OBSVAL WEIGHT OBGNME
(one such line for each of the NOBS observations)
* model command line
write the command which PEST must use to run the model
* model input/output
TEMPFLE INFLE
(one such line for each model input file containing parameters)
INSFLE OUTFLE
(one such line for each model output file containing observations)
* prior information
PILBL PIFAC * PARNME + PIFAC * log(PARNME) ... = PIVAL WEIGHT OBGNME
(one such line for each of the NPRIOR articles of prior information)

Example 4.1 Construction details of the PEST control file.

The PEST Control File 4-3

A PEST control file must begin with the letters “pcf” for “PEST control file”. Scattered
through the file are a number of section headers. These headers always follow the same
format, viz. an asterisk followed by a space followed by text. When preparing a PEST control

pcf
* control data
restart estimation
5 19 2 2 4
1 1 single point 1 0 0
5.0 2.0 0.4 0.03 10
3.0 3.0 1.0e-3
.1
30 .01 3 3 .01 3
1 1 1
* parameter groups
ro relative .001 .00001 switch 2.0 parabolic
h relative .001 .00001 switch 2.0 parabolic
* parameter data
ro1 fixed factor 0.5 .1 10 none 1.0 0.0 1
ro2 log factor 5.0 .1 10 ro 1.0 0.0 1
ro3 tied factor 0.5 .1 10 ro 1.0 0.0 1
h1 none factor 2.0 .05 100 h 1.0 0.0 1
h2 log factor 5.0 .05 100 h 1.0 0.0 1
ro3 ro2
* observation groups
group_1
group_2
group_3
group_4
* observation data
ar1 1.21038 1.0 group_1
ar2 1.51208 1.0 group_1
ar3 2.07204 1.0 group_1
ar4 2.94056 1.0 group_1
ar5 4.15787 1.0 group_1
ar6 5.77620 1.0 group_1
ar7 7.78940 1.0 group_2
ar8 9.99743 1.0 group_2
ar9 11.8307 1.0 group_2
ar10 12.3194 1.0 group_2
ar11 10.6003 1.0 group_2
ar12 7.00419 1.0 group_2
ar13 3.44391 1.0 group_2
ar14 1.58279 1.0 group_2
ar15 1.10380 1.0 group_3
ar16 1.03086 1.0 group_3
ar17 1.01318 1.0 group_3
ar18 1.00593 1.0 group_3
ar19 1.00272 1.0 group_3
* model command line
ves
* model input/output
ves.tp1 ves.inp
ves.ins ves.out
* prior information
pi1 1.0 * h1 = 2.0 3.0 group_4
pi2 1.0 * log(ro2) + 1.0 * log(h2) = 2.6026 2.0 group_4

Example 4.2 A PEST control file.

The PEST Control File 4-4

file, these headers must be written exactly as set out in Examples 4.1 and 4.2; however if
there is no prior information, the “prior information” header can be omitted.

On each line of the PEST control file, variables must be separated from each other by at least
one space. Real numbers can be supplied with the minimum precision necessary to represent
their value; the decimal point does not need to be included if it is redundant. If
exponentiation is required, this can be accomplished with either the “d” or “e” symbol; note,
however, that all real numbers are stored internally by PEST as double precision numbers.

The data which must reside in the PEST control file is now discussed in detail section by
section. Refer to Example 4.1 for the location within the PEST control file of each input
variable discussed below.

4.2.2 Control Data

The data provided in the “control data” section of the PEST control file are used to set
internal array dimensions, tune the optimisation algorithm to the problem at hand, and set
some data output options.

RSTFLE

This character variable must be assigned one of two possible values, viz. “restart” or
“norestart”. (Note that for this, and other character variables in the PEST control file, PEST is
case insensitive.) If it takes the value “restart”, PEST will dump the contents of many of its
data arrays to a binary file (named case.rst where case is the current case name) at the
beginning of each optimisation iteration; this allows PEST to be restarted later if execution is
prematurely terminated. If subsequent PEST execution is initiated using the “/r” command
line switch (see Section 5.4.2), it will recommence execution at the beginning of the iteration
during which it was interrupted. PEST will also dump the Jacobian matrix to a binary file
named case.jac on every occasion of this matrix being filled. This allows re-commencement
of execution with the “/j” switch which, as is explained in Section 5.6, may be useful if it is
desired that PEST re-calculate the parameter upgrade vector with certain recalcitrant
parameters temporarily held fixed.

If the RSTFLE variable is set to “norestart”, PEST will not intermittently dump its array or
Jacobian data; hence a later re-commencement of execution after premature termination is
impossible.

PESTMODE

This character variable must be supplied as either “estimation”, “prediction” or
“regularisation”. If set to “estimation” PEST will run in parameter estimation mode (its
traditional mode of operation); if set to “prediction” PEST will run in predictive analysis
mode; if set to “regularisation” PEST will run in regularisation mode.

If PEST is run in predictive analysis mode, you must ensure that the PEST control file
contains a “predictive analysis” section. You must also ensure that there are at least two
observation groups, one of which is named “predict”, and that the “predict” group has just
one observation. See Chapter 6 for further details.

The PEST Control File 4-5

If PEST is run in regularisation mode you must ensure that the PEST control file contains a
“regularisation” section. You must also ensure that there are at least two observation groups,
one of which is named “regul”. See Chapter 7 for further details.

Note that if PESTMODE is supplied as “estimation” there is no need to include a “predictive
analysis” section or a “regularisation” section in the PEST control file.

NPAR

This is the total number of parameters used for the current PEST case, including adjustable,
fixed and tied parameters; NPAR must be supplied as an integer.

NOBS

This integer variable represents the total number of observations used in the current case.
Note that, when counting the number of observations to evaluate NOBS, any dummy
observations (see Chapter 3) that may be referenced in one or a number of instruction files
are ignored.

NPARGP

This is the number of parameter groups; parameter groups are discussed in detail below.
NPARGP is an integer variable.

NPRIOR

NPRIOR, another integer variable, is the number of articles of prior information that you
wish to include in the parameter estimation process. If there are no articles of prior
information, NPRIOR must be zero.

In general, you should ensure that the number of adjustable parameters is less than or equal to
the number of observations for which there are non-zero weights plus the number of articles
of prior information for which there are non-zero weights. If this is not the case the PEST
“normal” matrix of equation 2.16 will not be positive definite (in fact it will be singular) and
a unique solution to the parameter estimation problem will not achievable. Nevertheless
PEST will probably still determine a parameter vector which minimises the objective
function, using the Marquardt parameter to make the normal matrix positive definite; see
equation 2.23. However, a parameter vector determined in this way is not unique;
furthermore, PEST will be unable to determine the parameter covariance matrix and to
calculate parameter uncertainty levels because the Marquardt lambda is not added to the
normal matrix prior to the determination of these quantities.

NOBSGP

NOBSGP, another integer variable, is the number of observation groups used in the current
case. Each observation and each prior information equation must be assigned to an
observation group (they can all be assigned to the same group if desired). When PEST
evaluates the objective function it also evaluates the contribution made to the objective
function by the observations and prior information equations belonging to each group.

The PEST Control File 4-6

NTPLFLE

This is an integer variable, informing PEST of the number of model input files which contain
parameters; PEST must write each of these files prior to a model run. As there must be one
template file for each such model input file, NTPLFLE is also equal to the number of
template files which PEST must use in writing the current parameter set.

A model may have many input files; however PEST is concerned only with those which it
needs to rewrite prior to each model run, ie. those for which there are template files. As
explained later, a single template file may, under some circumstances, be used to write more
than one model input file. In such a case you must treat each template file - model input file
pair separately in determining NTPLFLE.

NINSFLE

This is the number of instruction files. There must be one instruction file for each model
output file containing model-generated observations which PEST uses in the determination of
the objective function. (In some circumstances, a single model output file may be read by
more than one instruction file; however each instruction file - model output file pair is treated
separately in determining NINSFLE).

PRECIS

PRECIS is a character variable which must be either “single” or “double”. If it is supplied to
PEST as “single”, PEST writes parameters to model input files using single precision
protocol; ie. parameter values will never be greater than 13 characters in length (even if the
parameter space allows for a greater length) and the exponentiation character is “e”. If
PRECIS is supplied as “double”, parameter values are written to model input files using
double precision protocol; the maximum parameter value length is 23 characters and the
exponentiation symbol is “d”. See Section 3.2.6.

DPOINT

This character variable must be either “point” or “nopoint”. If DPOINT is provided with the
value “nopoint” PEST will omit the decimal point from representations of parameter values
on model input files if the decimal point is redundant, thus making room for the use of one
extra significant figure. If DPOINT is supplied as “point”, PEST will ensure that the decimal
point is always present. See Section 3.2.6.

NUMCOM, JACFILE and MESSFILE

These variables are used to control the manner in which PEST can obtain derivatives directly
from the model if these are available; see Chapter 8. For normal operation these should be set
at 1, 0 and 0 respectively.

RLAMBDA1

This real variable is the initial Marquardt lambda. As discussed in Section 2.1.7, PEST
attempts parameter improvement using a number of different Marquardt lambdas during any

The PEST Control File 4-7

one optimisation iteration; however, in the course of the overall parameter estimation
process, the Marquardt lambda generally gets smaller. An initial value of 1.0 to 10.0 is
appropriate for most models, though if PEST complains that the normal matrix is not positive
definite, you will need to provide a higher initial Marquardt lambda.

As explained in Section 2.1.7, for high values of the Marquardt lambda the parameter
estimation process approximates the steepest-descent method of optimisation. While the
latter method is inefficient and slow if used for the entirety of the optimisation process, it
often helps in getting the process started, especially if initial parameter estimates are poor.

The Marquardt lambda used by PEST is subject to user-alteration midway through the
optimisation process. See Section 5.6 for further details.

RLAMFAC

RLAMFAC, a real variable, is the factor by which the Marquardt lambda is adjusted; see
Section 2.1.7. RLAMFAC must be greater than 1.0. When PEST reduces lambda it divides
by RLAMFAC; when it increases lambda it multiplies by RLAMFAC. PEST reduces lambda
if it can. However if the normal matrix is not positive definite or if a reduction in lambda
does not lower the objective function, PEST has no choice but to increase lambda.

PHIRATSUF

During any one optimisation iteration, PEST may calculate a parameter upgrade vector using
a number of different Marquardt lambdas. First it lowers lambda and, if this is unsuccessful
in lowering the objective function, it then raises lambda. If, at any stage, it calculates an
objective function which is a fraction PHIRATSUF or less of the starting objective function
for that iteration, PEST considers that the goal of the current iteration has been achieved and
moves on to the next optimisation iteration. Thus PEST will commence iteration i+1 if, at
any stage during iteration i

Φi
j/Φi-1 ≤ PHIRATSUF (4.1)

where Φi-1 is the lowest objective function calculated for optimisation iteration i-1 (and hence
the starting value for optimisation iteration i) and Φi

j is the objective function corresponding
to a parameter set calculated using the j’th Marquardt lambda tested during optimisation
iteration i.

PHIRATSUF (which stands for “phi ratio sufficient”) is a real variable for which a value of
0.3 is often appropriate. If it is set too low, model runs may be wasted in search of an
objective function reduction which it is not possible to achieve, given the linear
approximation upon which the optimisation equations of Chapter 2 are based. If it is set too
high, PEST may not be given the opportunity of refining lambda in order that its value
continues to be optimal as the parameter estimation process progresses.

PHIREDLAM

If a new/old objective function ratio of PHIRATSUF or less is not achieved as the
effectiveness of different Marquardt lambdas in lowering the objective function are tested,

The PEST Control File 4-8

PEST must use some other criterion in deciding when it should move on to the next
optimisation iteration. This criterion is partly provided by the real variable PHIREDLAM.

The first lambda that PEST employs in calculating the parameter upgrade vector during any
one optimisation iteration is the lambda inherited from the previous iteration, possibly
reduced by a factor of RLAMFAC (unless it is the first iteration, in which case RLAMBDA1
is used). Unless, through the use of this lambda, the objective function is reduced to less than
PHIRATSUF of its value at the beginning of the iteration, PEST then tries another lambda,
less by a factor of RLAMFAC than the first. If the objective function is lower than for the
first lambda (and still above PHIRATSUF of the starting objective function), PEST reduces
lambda yet again; otherwise it increases lambda to a value greater by a factor of RLAMFAC
than the first lambda for the iteration. If, in its attempts to find a more effective lambda by
lowering and/or raising lambda in this fashion, the objective function begins to rise, PEST
accepts the lambda and the corresponding parameter set giving rise to the lowest objective
function for that iteration, and moves on to the next iteration. Alternatively if the relative
reduction in the objective function between the use of two consecutive lambdas is less than
PHIREDLAM, PEST takes this as an indication that it is probably more efficient to begin the
next optimisation iteration than to continue testing the effect of new Marquardt lambdas.
Thus if

(Φi
j-1 - Φi

j)/Φi
j-1 ≤ PHIREDLAM (4.2)

where Φi
j is the objective function value calculated during optimisation iteration i using the

j’th trial lambda, PEST moves on to iteration i+1.

A suitable value for PHIREDLAM is often around 0.01. If it is set too large, the criterion for
moving on to the next optimisation iteration is too easily met and PEST is not given the
opportunity of adjusting lambda to its optimal value for that particular stage of the parameter
estimation process. On the other hand if PHIREDLAM is set too low, PEST will test too
many Marquardt lambdas on each optimisation iteration when it would be better off starting
on a new iteration.

NUMLAM

This integer variable places an upper limit on the number of lambdas that PEST can test
during any one optimisation iteration. It should normally be set between 5 and 10. For cases
where parameters are being adjusted near their upper or lower limits, and for which some
parameters are consequently being frozen (thus reducing the dimension of the problem in
parameter space) experience has shown that a value closer to 10 may be more appropriate
than one closer to 5; this gives PEST a greater chance of adjusting to the reduced problem
dimension as parameters are frozen.

RELPARMAX and FACPARMAX

As was explained in Section 2.2.5, there should be some limit placed on the amount by which
parameter values are allowed to change in any one optimisation iteration. If there is no limit,
parameter adjustments could regularly “overshoot” their optimal values, causing a
prolongation of the estimation process at best, and instability with consequential estimation
failure at worst; the dangers are greatest for highly nonlinear problems.

The PEST Control File 4-9

PEST provides two input variables which can be used to limit parameter adjustments; these
are RELPARMAX and FACPARMAX, both real variables. RELPARMAX is the maximum
relative change that a parameter is allowed to undergo between optimisation iterations,
whereas FACPARMAX is the maximum factor change that a parameter is allowed to
undergo. Any particular parameter can be subject to only one of these constraints; ie. a
particular parameter must be either relative-limited or factor-limited in its adjustments.
Parameters are denoted as either relative-limited or factor-limited through the character
variable PARCHGLIM supplied for each parameter; see below.

The relative change in parameter b between optimisation iterations i-1 and i is defined as

(bi-1 - bi)/bi-1 (4.3)

If parameter b is relative-limited, the absolute value of this relative change must be less than
RELPARMAX. If a parameter upgrade vector is calculated such that the relative adjustment
for one or more relative-limited parameters is greater than RELPARMAX, the magnitude of
the upgrade vector is reduced such that this no longer occurs.

The factor change for parameter b between optimisation iterations i-1 and i is defined as

bi-1 /bi if bi-1 > bi , or

bi /bi-1 if bi > bi-1 (4.4)

If parameter b is factor-limited, this factor change (which either equals or exceeds unity
according to equation 4.4) must be less than FACPARMAX. If a parameter upgrade vector is
calculated such that the factor adjustment for one or more factor-limited parameters is greater
than FACPARMAX, the magnitude of the upgrade vector is reduced such that this no longer
occurs.

Whether a parameter should be relative-limited or factor-limited depends on the parameter.
However you should note that a parameter can be reduced from its current value right down
to zero for a relative change of only 1; as described in Section 2.2.5 it may then take many
iterations to re-adjust upwards, this causing serious inefficiencies in the parameter estimation
process. If you wish to limit the extent of its downward movement during any one iteration to
less than this, you may wish to set RELPARMAX to, for example, 0.5; however this may
unduly restrict its upward movement. It may be better to declare the parameter as factor-
limited. If so, a FACPARMAX value of, say 5.0, would limit its downward movement on any
one iteration to 0.2 of its value at the start of the iteration and its upward movement to 5
times its starting value. This may be a more sensible approach for many parameters.
Alternatively, provide the parameter with a non-zero OFFSET value and adjust its upper and
lower bounds such that it never becomes zero, or nearly zero.

It is important to note that a factor limit will not allow a parameter to change sign. Hence if a
parameter must be free to change sign in the course of the optimisation process, it must be
relative-limited; furthermore RELPARMAX must be set at greater than unity or the change
of sign will be impossible. Thus the utility program PESTCHEK (see Chapter 10) will not
allow you to declare a parameter as factor-limited, or as relative-limited with the relative
limit of less than 1, if its upper and lower bounds are of opposite sign. Similarly, if a

The PEST Control File 4-10

parameter’s upper or lower bound is zero, it cannot be factor-limited and RELPARMAX
must be at least unity.

Suitable values for RELPARMAX and FACPARMAX can vary enormously between cases.
For highly non-linear problems, these values are best set low. If they are set too low,
however, the estimation process can be very slow. An inspection of the PEST run record will
often reveal whether you have set these values too low, for PEST records the maximum
parameter factor and relative changes on this file at the end of each optimisation iteration. If
these changes are always at their upper limits and the estimation process is showing no signs
of instability, it is quite possible that RELPARMAX and/or FACPARMAX could be
increased (or that an insensitive parameter should be held at its current value - see Section
5.6).

If you are unsure of how to set these parameters, a value of 5 for each of them is often
suitable. In cases of extreme nonlinearity, be prepared to set them much lower. Note,
however, that FACPARMAX can never be less than 1; RELPARMAX can be less than 1 as
long as no parameter’s upper and lower bounds are of opposite sign.

Values assigned to RELPARMAX and FACPARMAX can be adjusted in the course of the
optimisation process through the user-intervention functionality discussed in Section 5.6.

FACORIG

If, in the course of the estimation process, a parameter becomes very small, the relative or
factor limit to subsequent adjustment of this parameter may severely hamper its growth back
to higher values, resulting in very slow convergence to an objective function minimum.
Furthermore, for the case of relative-limited parameters which are permitted to change sign,
it is possible that the denominator of equation 4.3 could become zero.

To obviate these possibilities, choose a suitable value for the real variable, FACORIG. If the
absolute value of a parameter falls below FACORIG times its original value, then FACORIG
times its original value is substituted for the denominator of equation 4.3. For factor-limited
parameters, a similar modification to equation 4.4 applies. Thus the constraints that apply to a
growth in absolute value of a parameter are lifted when its absolute value has become less
than FACORIG times its original absolute value. However, where PEST wishes to reduce the
parameter’s absolute value even further, factor-limitations are not lifted; nor are relative
limitations lifted if RELPARMAX is less than 1. FACORIG is not used to adjust limits for
log-transformed parameters.

FACORIG must be greater than zero. A value of 0.001 is often suitable.

PHIREDSWH

The derivatives of observations with respect to parameters can be calculated using either
forward differences (involving two parameter-observation pairs) or one of the variants of the
central method (involving three parameter-observation pairs) described in Section 2.3. As
discussed below, you must inform PEST through the variables FORCEN and DERMTHD
which method is to be used for the parameters belonging to each parameter group.

The PEST Control File 4-11

Using the variable FORCEN, you may wish to decree that, for a particular parameter group,
derivatives will first be calculated using the forward difference method and later, when PEST
is faltering in its attempts to reduce the objective function, calculated using one of the central
methods. Alternatively, you may direct that no such switching take place, the forward or
central method being used at all times for the parameters belonging to a particular group. In
the former case you must provide PEST with a means of judging when to make the switch;
this is the role of the real variable PHIREDSWH.

If the relative reduction in the objective function between successive optimisation iterations
is less than PHIREDSWH, PEST will make the switch to three-point derivatives calculation
for those parameter groups for which the character variable FORCEN has the value “switch”;
thus if, for the i’th iteration

(Φi-1 - Φi)/Φi-1 ≤ PHIREDSWH (4.5)

(where Φi is the objective function calculated on the basis of the upgraded parameter set
determined in the i’th iteration), PEST will use central derivatives in iteration i+1 (and all
succeeding iterations) for all parameter groups for which FORCEN is “switch”. A value of
0.1 is often suitable for PHIREDSWH. If it is set too high, PEST may make the switch to
three-point derivatives calculation before it needs to; the result will be that more model runs
will be required to fill the Jacobian matrix than are really needed at that stage of the
estimation process. If PHIREDSWH is set too low, PEST may waste an optimisation iteration
or two in lowering the objective function to a smaller extent than would have been possible if
it had made an earlier switch to central derivatives calculation. Note that PHIREDSWH
should be set considerably higher than the input variable PHIREDSTP which sets one of the
termination criteria on the basis of the relative objective function reduction between
optimisation iterations.

NOPTMAX

The input variables on the ninth line of the PEST control file set the termination criteria for
the parameter estimation process. These are the criteria by which PEST judges that the
optimisation process has been taken as far as it can go. These should be set such that either
parameter convergence to the optimal parameter set has been achieved, or it has become
obvious that continued PEST execution will not bear any fruits.

The first number required on this line is the integer variable NOPTMAX. This sets the
maximum number of optimisation iterations that PEST is permitted to undertake on a
particular parameter estimation run. If you want to ensure that PEST termination is triggered
by other criteria, more indicative of parameter convergence to an optimal set or of the futility
of further processing, you should set this variable very high. A value of 20 to 30 is often
appropriate.

Two possible settings for NOPTMAX have special significance. If NOPTMAX is set to 0,
PEST will not calculate the Jacobian matrix. Instead it will terminate execution after just one
model run. This setting can thus be used when you wish to calculate the objective function
corresponding to a particular parameter set and/or to inspect observation residuals
corresponding to that parameter set.

The PEST Control File 4-12

If NOPTMAX is set to –1, PEST will terminate execution immediately after it has calculated
the Jacobian matrix for the first time. The parameter covariance, correlation coefficient and
eigenvector matrices will be written to the run record file, and parameter sensitivities will be
written to the sensitivity file; these are based on the initial parameter set supplied in the
PEST control file.

PHIREDSTP and NPHISTP

PHIREDSTP is a real variable whereas NPHISTP is an integer variable. If, in the course of
the parameter estimation process, there have been NPHISTP optimisation iterations for which

(Φi - Φmin)/Φi ≤ PHIREDSTP (4.6)

(Φi being the objective function value at the end of the i’th optimisation iteration and Φmin

being the lowest objective function achieved to date), PEST will consider that the
optimisation process is at an end.

For many cases 0.01 and 4 are suitable values for PHIREDSTP and NPHISTP respectively.
However you must be careful not to set NPHISTP too low if the optimal values for some
parameters are near or at their upper or lower bounds (as defined by the parameter variables
PARLBND and PARUBND discussed below). In this case it is possible that the magnitude of
the parameter upgrade vector may be curtailed over one or a number of optimisation
iterations to ensure that no parameter value overshoots its bound. The result may be smaller
reductions in the objective function than would otherwise occur. It would be a shame if these
reduced reductions were mistaken for the onset of parameter convergence to the optimal set.

NPHINORED

If PEST has failed to lower the objective function over NPHINORED successive iterations, it
will terminate execution. NPHINORED is an integer variable; a value of 3 or 4 is often
suitable.

RELPARSTP and NRELPAR

If the magnitude of the maximum relative parameter change between optimisation iterations
is less than RELPARSTP over NRELPAR successive iterations, PEST will cease execution.
The relative parameter change between optimisation iterations for any parameter is calculated
using equation 4.3. PEST evaluates this change for all adjustable parameters at the end of
each optimisation iteration, and determines the relative parameter change with the highest
magnitude. If this maximum relative change is less than RELPARSTP, a counter is advanced
by one; if it is greater than RELPARSTP, the counter is zeroed.

All adjustable parameters, whether they are relative-limited or factor-limited, are involved in
the calculation of the maximum relative parameter change. RELPARSTP is a real variable
for which a value of 0.01 is often suitable. NRELPAR is an integer variable; a value of 2 or 3
is normally satisfactory.

The PEST Control File 4-13

ICOV, ICOR and IEIG

As is explained in Section 5.3.5, at the end of each optimisation iteration PEST writes a
“matrix file” containing the covariance and correlation coefficient matrices, as well as the
eigenvectors and eigenvalues of the covariance matrix based on current parameter values.
The settings of the ICOV, ICOR and IEIG variables determine which (if any) of these data
are recorded on the matrix file. A setting of 1 for each of these variables will result in the
corresponding data being recorded on the matrix file. On the other hand, a setting of 0 will
result in the corresponding data not being recorded. If all of these variables are set to zero
none of this data will be recorded. Where a large number of parameters are being estimated
(as might happen, for example, when PEST is being used in regularisation mode), setting all
of these variables to 0 may result in some savings in computation time, for there is then no
need for PEST to calculate the covariance matrix until the end of the parameter estimation
process when these matrices and eigenvalues/eigenvectors are recorded on the run record file
(irrespective of the settings of ICOV, ICOR and IEIG).

4.2.3 Parameter Groups

Each adjustable parameter (ie. each parameter which is neither fixed nor tied) must belong to
a parameter group; the group to which each such parameter belongs is supplied through the
parameter input variable PARGP (see below). Each parameter group must possess a unique
name of twelve characters or less.

The PEST input variables that define how derivatives are calculated pertain to parameter
groups rather than to individual parameters. Thus derivative data does not need to be entered
individually for each parameter; however, if you wish, you can define a group for every
parameter and set the derivative variables for each parameter separately. In many cases
parameters fall neatly into separate groups which can be treated similarly in terms of
calculating derivatives. For example in Example 4.2, which is a PEST control file for a case
involving the calculation of surface-measured apparent resistivities from layered-half-space
properties, the layer resistivities can be assembled into a single group, as can the layer
thicknesses.

A tied or fixed parameter can be a member of a group; however, as derivatives are not
calculated with respect to such parameters, the group to which these parameters belong is of
no significance (except, perhaps, in calculating the derivative increment for adjustable group
members if the increment type is “rel_to_max” - see below). Alternatively, fixed or tied
parameters can be assigned to the dummy group “none”. If any group name other than
“none” is cited for any parameter input variable PARGP in the “parameter data” section of
the PEST control file, the properties for that group must be defined in the “parameter groups”
section of the PEST control file. Note that an adjustable parameter cannot be assigned to the
dummy group “none”.

As Example 4.1 shows, one line of data must be supplied for each parameter group. Seven
entries are required in each such line; the requirements for these entries are now discussed in
detail.

The PEST Control File 4-14

PARGPNME

This is the parameter group name; all PEST names (viz. parameter, observation, prior
information and group names) are case-insensitive and must be a maximum of twelve
characters in length. If derivative data is provided for a group named by PARGPNME, it is
not essential that any parameters belong to that group. However if, in the “parameter data”
section of the PEST control file, a parameter is declared as belonging to a group that is not
featured in the “parameter groups” section of the PEST control file, an error condition will
arise.

Note that derivative variables cannot be defined for the group “none” as this is a dummy
group name, reserved for fixed and tied parameters for which no derivatives information is
required.

INCTYP and DERINC

INCTYP is a character variable which can assume the values “relative”, “absolute” or
“rel_to_max”. If it is “relative”, the increment used for forward-difference calculation of
derivatives with respect to any parameter belonging to the group is calculated as a fraction of
the current value of that parameter; that fraction is provided as the real variable DERINC.
However if INCTYP is “absolute” the parameter increment for parameters belonging to the
group is fixed, being again provided as the variable DERINC. Alternatively, if INCTYP is
“rel_to_max”, the increment for any group member is calculated as a fraction of the group
member with highest absolute value, that fraction again being DERINC. See Section 2.3 for a
full discussion of the methods used by PEST to calculate parameter derivatives.

Thus if INCTYP is “relative” and DERINC is 0.01 (a suitable value in many cases), the
increment for each group member for each optimisation iteration is calculated as 0.01 times
the current value of that member. However if INCTYP is “absolute” and DERINC is 0.01,
the parameter increment is the same for all members of the group over all optimisation
iterations, being equal to 0.01. If INCTYP is “rel_to_max” and DERINC is again 0.01, the
increment for all group members is the same for any one optimisation iteration, being equal
to 0.01 times the absolute value of the group member of highest current magnitude; however
the increment may vary from iteration to iteration.

If a group contains members which are fixed and/or tied you should note that the values of
these parameters are taken into account when calculating parameter increments using the
“rel_to_max” option.

For the “relative” and “rel_to_max” options, a DERINC value of 0.01 is often appropriate.
However no suggestion for an appropriate DERINC value can be provided for the “absolute”
increment option; the most appropriate increment will depend on parameter magnitudes.

DERINCLB

If a parameter increment is calculated as “relative” or “rel_to_max”, it is possible that it may
become too low if the parameter becomes very small or, in the case of the “rel_to_max”
option, if the magnitude of the largest parameter in the group becomes very small. A
parameter increment becomes “too low” if it does not allow reliable derivatives to be

The PEST Control File 4-15

calculated with respect to that parameter because of roundoff errors incurred in the
subtraction of nearly equal model-generated observation values.

To circumvent this possibility, an absolute lower bound can be placed on parameter
increments; this lower bound will be the same for all group members, and is provided as the
input variable DERINCLB. Thus if a parameter value is currently 1000.0 and it belongs to a
group for which INCTYP is “relative”, DERINC is 0.01, and DERINCLB is 15.0, the
parameter increment will be 15.0 instead of 10.0 calculated on the basis of DERINC alone. If
you do not wish to place a lower bound on parameter increments in this fashion, you should
provide DERINCLB with a value of 0.0.

Note that if INCTYP is “absolute”, DERINCLB is ignored.

FORCEN

The character variable FORCEN (an abbreviation of “FORward/CENtral”) determines
whether derivatives for group members are calculated using forward differences, one of the
variants of the central difference method, of whether both alternatives are used in the course
of an optimisation run. It must assume one of the values “always_2”, “always_3” or “switch”.

If FORCEN for a particular group is “always_2”, derivatives for all parameters belonging to
that group will always be calculated using the forward difference method; as explained in
Section 2.3, filling of the columns of the Jacobian matrix corresponding to members of the
group will require as many model runs as there are adjustable parameters in the group. If
FORCEN is provided as “always_3”, the filling of these same columns will require twice as
many model runs as there are parameters within the group; however the derivatives will be
calculated with greater accuracy and this will probably have a beneficial effect on PEST’s
performance. If FORCEN is set to “switch”, derivatives calculation for all adjustable group
members will begin using the forward difference method, switching to the central method for
the remainder of the estimation process on the iteration after the relative objective function
reduction between successive optimisation iterations is less than PHIREDSWH, a value for
which is supplied in the “control data” section of the PEST control file.

Experience has shown that in most instances the most appropriate value for FORCEN is
“switch”. This allows speed to take precedence over accuracy in the early stages of the
optimisation process when accuracy is not critical to objective function improvement, and
accuracy to take precedence over speed later in the process when realisation of a (normally
smaller) objective function improvement requires that derivatives be calculated with as much
accuracy as possible, especially if parameters are highly correlated and the normal matrix
thus approaches singularity.

DERINCMUL

If derivatives are calculated using one of the three-point methods, the parameter increment is
first added to the current parameter value prior to a model run, and then subtracted prior to
another model run. In some cases it may be desirable to increase the value of the increment
for this process over that used for forward difference derivatives calculation. The real
variable DERINCMUL allows you to achieve this. If three-point derivatives calculation is
employed, the value of DERINC is multiplied by DERINCMUL; this applies whether

The PEST Control File 4-16

DERINC holds the increment factor, as it does for “relative” or “rel_to_max” increment
types, or holds the parameter increment itself, as it does for “absolute” increment types.

As discussed in Section 2.3.3, for many models the relationship between observations and
parameters, while being in theory continuously differentiable, is often “granular” when
examined under the microscope, this granularity being a by-product of the numerical solution
scheme used by the model. In such cases the use of parameter increments which are too small
may lead to highly inaccurate derivatives calculation, especially if the two or three sets of
parameter-observation pairs used in a particular derivative calculation are on the same side of
a “bump” in the parameter-observation relationship. Parameter increments must be chosen
large enough to cope with model output granularity of this type. But increasing parameter
increments beyond a certain amount diminishes the extent to which finite differences can
approximate derivatives, the definition of the derivative being the limit of the finite
difference as the increment approaches zero. However the deterioration in the derivative
approximation as increments are increased is normally much greater for the forward
difference method than for any of the central methods (particularly the “parabolic” option).
Hence, the use of one of the central methods with an enhanced derivative increment may
allow you to calculate derivatives in an otherwise hostile modelling environment.

Whenever the central method is employed for derivatives calculation, DERINC is multiplied
by DERINCMUL, no matter whether INCTYP is “absolute”, “relative” or “rel_to_max”, and
whether FORCEN is “always_3” or “switch”. If you do not wish the increment to be
increased, you must provide DERINCMUL with a value of 1.0. Alternatively, if for some
reason you wish the increment to be reduced if three-point derivatives calculation is
employed, you should provide DERINCMUL with a value of less than 1.0. Experience shows
that a value between 1.0 and 2.0 is usually satisfactory.

DERMTHD

There are three variants of the central (ie. three-point) method of derivatives calculation; each
method is described in Section 2.3. If FORCEN for a particular parameter group is
“always_3” or “switch”, you must inform PEST which three-point method to use. This is
accomplished through the character variable DERMTHD which must be supplied as
“parabolic”, “best_fit” or “outside_pts”. If FORCEN is “always_2”, you must still provide
one of these three legal values for DERMTHD; however for such a parameter group, the
value of DERMTHD has no bearing on derivatives calculation for the member parameters.

4.2.4 Parameter Data - First Part

For every parameter cited in a PEST template file, up to ten pieces of information must be
provided in the PEST control file. Conversely, every parameter for which there is information
in the PEST control file must be cited at least once in a PEST template file.

The “parameter data” section of the PEST control file is divided into two parts; in the first
part a line must appear for each parameter. In the second part, a little extra data is supplied
for tied parameters (viz. the name of the parameter to which each such tied parameter is
linked). If there are no tied parameters the second part of the “parameter data” section of the
PEST control file is omitted.

The PEST Control File 4-17

Each item of parameter data is now discussed in detail; refer to Example 4.1 for the
arrangement on the PEST control file of the PEST input variables discussed below.

PARNME

This is the parameter name. Each parameter name must be unique and of twelve characters or
less in length; the name is case insensitive.

PARTRANS

PARTRANS is a character variable which must assume one of four values, viz. “none”,
“log”, “fixed” or “tied”.

If you wish that a parameter be log-transformed throughout the estimation process, the value
“log” must be provided. As discussed in Section 2.2.1, logarithmic transformation of some
parameters may have a profound affect on the success of the parameter estimation process. If
a parameter is log-transformed PEST optimises the log of the parameter rather than the
parameter itself. Hence the column of the Jacobian matrix pertaining to that parameter
actually contains derivatives with respect to the log of the parameter; likewise, data specific
to that parameter in the covariance, correlation coefficient and eigenvector matrices
computed by PEST, pertains to the log of the parameter. However when you supply the
parameter initial value (PARVAL1) and its upper and lower bounds (PARUBND and
PARLBND), these must pertain to the parameter itself; likewise at the end of the parameter
estimation process, PEST provides the optimised parameter value itself rather than the log of
its value.

Experience has shown repeatedly that log transformation of at least some parameters can
make the difference between a successful parameter estimation run and an unsuccessful one.
This is because, in many cases, the linearity approximation on which each PEST optimisation
iteration is based holds better when certain parameters are log-transformed. However caution
must be exercised when designating parameters as log-transformed. A parameter which can
become zero or negative in the course of the parameter estimation process must not be log-
transformed; hence if a parameter’s lower bound is zero or less, PEST will disallow
logarithmic transformation for that parameter. (Note, however, that by using an appropriate
scale and offset, you can ensure that parameters never become negative. Thus if you are
estimating the value for a parameter whose domain, as far as the model is concerned, is the
interval [-9.99, 10], you can shift this domain to [0.01, 20] for PEST by designating a scale of
1.0 and an offset of -10.0. Similarly if a parameter’s model domain is entirely negative, you
can make this domain entirely positive for PEST by supplying a scale of -1.0 and an offset of
0.0. See Section 2.2.4 and the discussion on the SCALE and OFFSET variables below.)

If a parameter is fixed, taking no part in the optimisation process, PARTRANS must be
supplied as “fixed”. If a parameter is linked to another parameter, this is signified by a
PARTRANS value of “tied”. In the latter case the parameter takes only a limited role in the
estimation process. However the parameter to which the tied parameter is linked (this
“parent” parameter must be neither fixed nor tied itself) takes an active part in the parameter
estimation process; the tied parameter simply “piggy-backs” on the parent parameter, the
value of the tied parameter maintaining at all times the same ratio to the parent parameter as
the ratio of their initial values. Note that the parent parameter for each tied parameter must be

The PEST Control File 4-18

provided in the second part of the “parameter data” section of the PEST control file.

If a parameter is neither fixed nor tied, and is not log-transformed, the parameter
transformation variable PARTRANS must be supplied as “none”.

Note that if a particular parameter estimation problem will benefit from a more complex
parameter transformation type than logarithmic, this can be accomplished using the
parameter preprocessor PAR2PAR; see Section 10.7 for further details.

PARCHGLIM

This character variable is used to designate whether an adjustable parameter is relative-
limited or factor-limited; see Section 2.2.5 and the discussion of the input variables
RELPARMAX and FACPARMAX above. PARCHGLIM must be provided with one of two
possible values, viz. “relative” or “factor”. For tied or fixed parameters this variable has no
significance.

PARVAL1

PARVAL1, a real variable, is a parameter’s initial value. For a fixed parameter, this value
remains invariant during the optimisation process. For a tied parameter, the ratio of
PARVAL1 to the parent parameter’s PARVAL1 sets the ratio between these two parameters
to be maintained throughout the optimisation process. For an adjustable parameter
PARVAL1 is the parameter’s starting value which, together with the starting values of all
other adjustable parameters, is successively improved during the optimisation process.

To enhance optimisation efficiency, you should choose an initial parameter value which is
close to what you think will be the parameter’s optimised value. However you should note
the following repercussions of choosing an initial parameter value of zero.

• A parameter cannot be subject to change limits (see the discussion on RELPARMAX
 and FACPARMAX) during the first optimisation iteration if its value at the start of
that iteration is zero. Furthermore FACORIG cannot be used to modify the action of
RELPARMAX and FACPARMAX for a particular parameter throughout the
optimisation process, if that parameter’s original value is zero.

• A relative increment for derivatives calculation cannot be evaluated during the first
iteration for a parameter whose initial value is zero. If the parameter belongs to a
group for which derivatives are, in fact, calculated as “relative”, a non-zero
DERINCLB variable must be provided for that group.

• If a parameter has an initial value of zero, the parameter can be neither a tied nor a
parent parameter as the tied:parent parameter ratio cannot be calculated.

PARLBND and PARUBND

These two real variables represent a parameter’s lower and upper bounds respectively. For
adjustable parameters the initial parameter value (PARVAL1) must lie between these two
bounds. However for fixed and tied parameters the values you provide for PARLBND and

The PEST Control File 4-19

PARUBND are ignored. (The upper and lower bounds for a tied parameter are determined by
the upper and lower bounds of the parameter to which it is tied and by the ratio between the
tied and parent parameters.)

PARGP

PARGP is the name of the group to which a parameter belongs. As discussed already, a
parameter group name must be twelve characters or less in length and is case-insensitive.

As derivatives are not calculated with respect to fixed and tied parameters, PEST provides a
dummy group name of “none” to which such tied and fixed parameters can be allocated. Note
that it is not obligatory to assign such parameters to this dummy group; they can be assigned
to another group if you wish. However, any group other than “none” which is cited in the
“parameter data” section of the PEST control file must be properly defined in the “parameter
groups” section of this file.

SCALE and OFFSET

Just before a parameter value is written to a model input file (be it for initial determination of
the objective function, derivatives calculation or parameter upgrade), it is multiplied by the
real variable SCALE, after which the real variable OFFSET is added. The use of these two
variables allows you to redefine the domain of a parameter. Because they operate on the
parameter value “at the last moment” before it is written to the model input file, they take no
part in the estimation process; in fact they can “conceal” from PEST the true value of a
parameter as seen by the model, PEST optimising, instead, the parameter bp where

bp = (bm - o)/s (4.7)

Here bp is the parameter optimised by PEST, bm is the parameter seen by the model, while s
and o are the scale and offset for that parameter. If you wish to leave a parameter unaffected
by scale and offset, enter the SCALE as 1.0 and the OFFSET as 0.0.

DERCOM

Unless using PEST’s external derivatives functionality (see Chapter 8), this variable should
be set to 1.

4.2.5 Parameter Data - Second Part

The second part of the “parameter data” section of the PEST control file consists of one line
for each tied parameter; if there are no tied parameters, the second part of the “parameter
data” section must be omitted.

Each line within the second part of the “parameter data” section of the PEST control file
consists of two entries. The first is PARNME, the parameter name. This must be the name of
a parameter already cited in the first part of the “parameter data” section, and for which the
PARTRANS variable was assigned the value “tied”. The second entry on the line, the
character variable PARTIED, must hold the name of the parameter to which the first-
mentioned parameter is tied, ie. the “parent parameter” of the first-mentioned parameter. The

The PEST Control File 4-20

parent parameter must not be a tied or fixed parameter itself.

Note that PEST allows you to link as many tied parameters as you wish to a single parent
parameter. However a tied parameter can, naturally, be linked to only one parent parameter.

4.2.6 Observation Groups

In the “observation groups” section of the PEST control file a name is supplied for every
observation group. Like all other names used by PEST, observation group names must be of
twelve characters or less in length and are case insensitive. A name assigned to one
observation group must not be assigned to any other observation group.

Observation group names are written one to a line. NOBSGP such names must be provided,
where NOBSGP is listed on the fourth line of the PEST control file. If PEST is running in
predictive analysis mode one of these group names must be “predict”. If it is running in
regularisation mode one of these group names must be “regul”.

4.2.7 Observation Data

For every observation cited in a PEST instruction file there must be one line of data in the
“observation data” section of the PEST control file. Conversely, every observation for which
data is supplied in the PEST control file must be represented in an instruction file.

Each line within the “observation data” section of the PEST control file must contain four
items. Each of these four items is discussed below; refer to Example 4.1 for the arrangement
of these items.

OBSNME

This is a character variable containing the observation name. As discussed in Section 3.3.5,
an observation name must be twelve characters or less in length. Observation names are case-
insensitive, but must be unique to each observation.

OBSVAL

OBSVAL, a real variable, is the field or laboratory measurement corresponding to a model-
generated observation. It is PEST’s role to minimise the difference between this number and
the corresponding model-calculated number (the difference being referred to as the
“residual”) over all observations by adjusting parameter values until the sum of squared
weighted residuals (ie. the objective function) is at a minimum.

WEIGHT

This is the weight attached to each residual in the calculation of the objective function. The
manner in which weights are used in the parameter estimation process is discussed in Section
2.1.2. An observation weight can be zero if you wish (meaning that the observation takes no
part in the calculation of the objective function), but it must not be negative.

If observations are all of the same type, weights can be used to discriminate between field or

The PEST Control File 4-21

laboratory measurements which you can “trust” and those with whom a greater margin of
uncertainty is associated; the trustworthy measurements should be given a greater weight.
Weights should, in general, be inversely proportional to measurement standard deviations.

If observations are of different types, weights are vital in setting the relative importance of
each measurement type in the overall parameter estimation process. For example, a ground
water model simulating pollution plume growth and decay within an aquifer may produce
outputs of ground water head and pollutant concentration. Field measurements of both of
these quantities may be available over a certain time period. If both sets of measurements are
to be used in the model calibration process they must be properly weighted with respect to
each other. Head measurements may be expressed in meters and pollutant concentrations may
be expressed in meq/l. Heads may be of the order of tens of meters, with model-to-
measurement discrepancies of up to 0.1 m being tolerable; however pollutant concentrations
may be of the order of 10-4meq/l, with model-to-measurement discrepancies of 0.1×10-4meq/l
being tolerable. In such a case the weights for the concentration measurements should be a
factor of 104 greater than those for the head measurements so that both sets of measurements
are equally effective in determining model parameters.

Some parameter estimation packages offer a “log least squares” option whereby the objective
function is calculated as the sum of squared deviations between the logarithms of the
measurements and the logarithms of their respective model-generated counterparts. Note that,
provided the linearity assumption upon which the estimation process is based is reasonably
well met, it can be shown that the same effect can be achieved by providing a set of weights
in which each weight is inversely proportional to the measurement to which it pertains
(provided all measurements are of the same sign).

OBGNME

OBGNME is the name of the observation group to which the observation is assigned. When
recording the objective function value on the run record file, PEST lists the contribution
made to the objective function by each observation group. It is good practice to assign
observations of different type to different observation groups. In this way the user is in a
position to adjust observation weights in order that one measurement type does not dominate
over another in the inversion process by virtue of a vastly greater contribution to the
objective function.

The observation group name supplied here must be one of the group names listed in the
“observation groups” section of the PEST control file.

4.2.8 Model Command Line

This section of the PEST control file supplies the command which PEST must use to run the
model. The command line may be simply the name of an executable file, or it may be the
name of a batch file containing a complex sequence of steps. Note that you may include the
path name in the model command line which you provide to PEST if you wish. If PEST is to
be successful in running the model, then either the model must be in the current directory, its
full path must be provided, or the PATH environment variable must include the directory in
which the executable or batch file is situated.

The PEST Control File 4-22

Consider the case of a finite difference model for the stress field surrounding a tunnel. The
input file may be very complicated, involving one or a number of large two or three-
dimensional arrays. While parameters can be written to such files using appropriate
templates, you may prefer a different approach. Perhaps you wish to estimate rock properties
within a small number of zones whose boundaries are known, these zones collectively
covering the entire model domain. Furthermore, as is often the case, you may have some
preprocessing software which is able to construct the large model arrays from the handful of
parameters of interest, viz. the elastic properties of the zones into which the model domain
has been subdivided. In this case it may be wise to run the preprocessor prior to every model
run. This can be accomplished by including the commands to run both programs in a batch
file called by PEST as the model; hence PEST can now write input files for the preprocessor
rather than for the model itself.

Similarly the model output file may be voluminous; in fact, often models of this kind write
their data to binary files rather than ASCII files, relying on the user’s postprocessing software
to make sense of the abundance of model-generated information. You may have a
postprocessing program which interpolates the model-generated stress array to the locations
of your stress sensors. In this case PEST should read the postprocessor output file rather than
the model output file.

Hence to use PEST in the parameterisation of the above stress-field model, a suitable model
command line may be

stress

where stress.bat is a batch file containing the following sequence of commands

prestres
stres3d
postres

Here PRESTRES and POSTRES are the model pre- and postprocessors respectively;
STRES3D is the stress model itself.

You can get even more complicated than this if you wish. For example, a problem that can
arises in working with large numerical models is that they do not always converge to a
solution according to the model convergence criteria which you, the user, must supply. The
popular United States Geological Survey ground water model, MODFLOW, requires a
variable HCLOSE which determines the precision with which heads are calculated by its
preconditioned conjugate gradient matrix solution package. As discussed in Section 2.3.3,
variables such as this should be set small so that heads can be calculated with high precision;
the accurate calculation of head derivatives depends on this. However if HCLOSE is set too
low the conjugate gradient method may never converge to a point where the maximum head
correction between successive conjugate gradient iterations is less than HCLOSE, roundoff
errors causing slight oscillatory behaviour. In this case MODFLOW will terminate execution
with an error message. Unfortunately, it may be very difficult to predict when this will occur;
behaviour of the solution method may be perfect for one parameter set and unsatisfactory for
another. Hence, as PEST continually adjusts parameters for derivatives calculation and
parameter upgrades, there is a good chance that, on at least one occasion, there will be a
solution failure. When this happens PEST will not find the observations it expects on the
model output file and will terminate execution with an appropriate error message.

The PEST Control File 4-23

One solution to this problem may be to set HCLOSE high enough such that convergence
failure will never occur. However this may result in mediocre PEST performance because of
inaccurate derivatives calculation. A better solution would be to recode MODFLOW slightly
such that it reads HCLOSE from a tiny file called hclose.dat, and such that, if it terminates
execution because of solution convergence failure, it does so with a non-zero errorlevel
setting of, say, 100. (See a DOS manual or help file for a description of this setting; most
compilers allow you to set the errorlevel variable on program run completion through an
appropriate exit function call.) Then write two small programs, one named HMUL which
reads hclose.dat, multiplies HCLOSE by 2 and then rewrites hclose.dat with the increased
HCLOSE value; the second program, named SETORIG, should write the original, low value
of HCLOSE to hclose.dat. A suitable model batch file may then be as shown in Example 4.3.

(Note that there are alternative, simpler solutions to the MODFLOW convergence problem
discussed here; the purpose of this example is to demonstrate the type of batch processing
that may be useful as a PEST model run.)

The variations on the content of a model batch file are endless. You can call one model
followed by another, then by another. The third model may or may not require the outputs of
the other two. PEST may read observations from the files generated by all the models or just
from the file(s) generated by the last. Another possibility is that the model batch file may call
the same model a number of times, running it over different historical time periods so that
measurements made through all these time periods can be simultaneously used in model
calibration. Furthermore, as shown in the example above, you can insert intelligence into the
way component models are run through the use of the errorlevel variable.

4.2.9 Model Input/Output

In this section of the PEST control file you must relate PEST template files to model input
files and PEST instruction files to model output files. You will already have informed PEST
of the respective numbers of these files through the PEST control variables NTPLFLE and
NINSFLE. See Example 4.1 for the structure of the “model input/output” section of the PEST
control file.

For each model input file - PEST template file pair there should be a line within the “model
input/output” section of the PEST control file containing two entries, viz. the character

@echo off
rem Set hclose to a suitably low value
SETORIG
rem Now run the model
:model
MODFLOW
rem Did MODFLOW converge?
if errorlevel 100 goto adjust
goto end
rem Multiply HCLOSE by 2
:adjust
HMUL
rem Now run model
goto model
:end

Example 4.3 A batch file called by PEST as the model.

The PEST Control File 4-24

variables TEMPFLE and INFLE. The first of these is the name of a PEST template file while
the second is the name of the model input file to which the template file is matched.
Pathnames should be provided for both the template file and the model input file if they do
not reside in the current directory. Construction details for template files are provided in
Chapter 3 of this manual.

It is possible for a single template file to be linked to more than one model input file. (This
may occur if the same model is being run over more than one historical time period and
parameter data for the model resides in a different file from excitation data.) A separate line
must be provided for each such pair of files in the “model input/output” section of the PEST
control file. A model input file cannot be linked to more than one template file.

As explained in Chapter 3, a model may have many input files. However PEST only needs to
know about those that contain parameters.

The second part of the “model input/output” section of the PEST control file contains
instruction file - model output file pairs. There should be one line for each of NINSFLE such
pairs, the value of NINSFLE having been provided to PEST in the “control data” section of
the PEST control file. Pathnames must be provided for both instruction files and model
output files if they do not reside in the current directory. Construction details for instruction
files are provided in Chapter 3 of this manual.

A single model output file may be read by more than one instruction file; perhaps you wish to
extract the values for observations of different types from the model output file using
different instruction files. However any particular observation can only ever be referenced
once; hence a particular instruction file cannot be matched to more than one model output
file.

4.2.10 Prior Information

If the value of NPRIOR provided in the “control data” section of the PEST control file is not
zero, PEST expects NPRIOR articles of prior information.

Prior information is written to this section of the PEST control file in a manner not unlike the
way in which you would write it down on paper yourself; however certain strict protocols
must be observed. Refer to Example 4.2 for an instance of a PEST control file containing
prior information.

Each item on a prior information line must be separated from its neighbouring items by at
least one space. Each new article of prior information must begin on a new line. No prior
information line is permitted to exceed 300 characters in length; however a continuation
character (“&” followed by a space at the start of a line) allows you to write a lengthy prior
information article to several successive lines.

Prior information lines must adhere to the syntax set out in Example 4.1. The protocol is
repeated here for ease of reference.

The PEST Control File 4-25

Each prior information article must begin with a prior information label (the character
variable PILBL in Example 4.4). Like all other names used by PEST, this label must be no
more than twelve characters in length, is case insensitive, and must be unique to each prior
information article.

Following the prior information label is the prior information equation. To the left of the “=”
sign there are one or more combinations of a factor (PIFAC) plus parameter name
(PARNME), with a “log” prefix to the parameter name if appropriate. PIFAC and PARNME
are separated by a “*” character (which must be separated from PIFAC and PARNME by at
least one space) signifying multiplication. All parameters referenced in a prior information
equation must be adjustable parameters; ie. you must not include any fixed or tied parameters
in an article of prior information. Furthermore, any particular parameter can be referenced
only once in any one prior information equation; however, it can be referenced in more than
one equation.

The parameter factor must never be omitted. Suppose, for example, that a prior information
equation consists of only a single term, viz. that an untransformed, adjustable parameter
named “par1” has a preferred value of 2.305, and that you would like PEST to include this
information in the optimisation process with a weight of 1.0. If this article of prior
information is given the label “pi1”, the pertinent prior information line can be written as

pi1 1.0 * par1 = 2.305 1.0 pr_info

If you had simply written

pi1 par1 = 2.305 1.0 pr_info

PEST would have objected with a syntax error.

If a parameter is log-transformed, you must provide prior information pertinent to the log of
that parameter, rather than to the parameter itself. Furthermore, the parameter name must be
placed in brackets and preceded by “log” (note that there is no space between “log” and the
following opening bracket). Thus, in the above example, if parameter “par1” is log-
transformed, the prior information article should be rewritten as

pi1 1.0 * log(par1) = .362671 1.0 pr_info

Note that logs are taken to base 10. Though not illustrated, you will also need to review the
weight which you attach to this prior information article by comparing the extent to which
you would permit the log of “par1” to deviate from 0.362671 with the extent to which model-
generated observations are permitted to deviate from their corresponding measurements.

The left side of a prior information equation can be comprised of the sum and/or difference of
a number of factor-parameter pairs of the type already illustrated; these pairs must be
separated from each other by a “+” or “-” sign, with a space to either side of the sign. For

PILBL PIFAC * PARNME + PIFAC * log(PARNME) ... = PIVAL WEIGHT OBGNME
(one such line for each of the NPRIOR articles of prior information)

Example 4.4 The syntax of a prior information line.

The PEST Control File 4-26

example:

pi2 1.0 * par2 + 3.43435 * par4 - 2.389834 * par3 = 1.09e3 3.00 group_pr

Prior information equations which include log-transformed parameters must express a
relationship between the logs of those parameters. For example if you would like the ratio
between the estimated values of parameters “par1” and “par2” to be about 40.0, the prior
information article may be written as

pi3 1.0 * log(par1) - 1.0 * log(par2) = 1.60206 2.0 group_pr

To the right of the “=” sign of each article of prior information are two real variables and a
character variable viz. PIVAL, WEIGHT and OBGNME. The first of these is the value of the
right side of the prior information equation. The second is the weight assigned to the article
of prior information in the parameter estimation process. As for observation weights, the
prior information weight should ideally be inversely proportional to the standard deviation of
the prior information value (PIVAL); it can be zero if you wish but must not be negative. in
practice the weights should be chosen such that the prior information equation neither
dominates the objective function or is dwarfed by other components of the objective function.
In choosing observation and prior information weights, remember that the weight is
multiplied by its respective residual and then squared before being assimilated into the
objective function.

The final item on each line of prior information must be the observation group to which the
prior information belongs. Recall that each observation, and each element of prior
information, cited in a PEST control file must be assigned to an observation group. In the
course of carrying out the parameter estimation process, PEST calculates the contribution
made to the objective function by each such observation group. The name of any observation
group to which an item of prior information is assigned, must also be cited in the
“observation groups” section of the PEST control file. As was discussed above, the name of
an observation group must be twelve characters or less in length. If desired, a particular item
of prior information can belong to the same group as an observation cited in the “observation
data” section of the PEST control file. However it is difficult to see why this would be done
because, under normal circumstances, the user will want to know the relative contributions
made to the objective function by observations and prior information separately.

When writing articles of prior information you should note that no two prior information
equations should say the same thing. Thus the following pair of prior information lines is
illegal:

pi1 2.0 * log(par1) + 2.5 * log(par2) - 3.5 * log(par3) = 1.342 1.00 obgp1
pi2 4.0 * log(par1) + 5.0 * log(par2) - 7.0 * log(par3) = 2.684 1.00 obgp2

If you wish to break a single prior information article into more than one line, use the
continuation character “&”. This must be placed at the beginning of each continuation line,
separated from the item which follows it by a space. The line break must be placed between
individual items of a prior information article; not within an item. Thus the following lines
convey the same information as does the first of the above pair of prior information lines:

pi1
& 2.0
& *
& log(par1)
& +

The PEST Control File 4-27

& 2.5
& *
& log(par2)
& -
& 3.5
& *
& log(par3)
& =
& 1.342
& 1.00
& obgp1

However the following prior information article is illegal because of the break between “log”
and “par2":

pi1 2.0 * log(par1) + 2.5 * log

& (par2) - 3.5 * log(par3) = 1.342 1.00 obgp1

4.3 Observation Covariances

4.3.1 Using an Observation Covariance Matrix Instead of Weights

As was discussed in Section 2.1.2, the use of observation weights in calculating the objective
function is based on the premise that observations are independent, ie. that the “uncertainty”
pertaining to any one observation bears no relationship to the “uncertainty” pertaining to any
other observation. However if residuals are likely to show consistency over space and/or time
for certain observation types, then it may not be appropriate to assume statistical
independence of these observation types. In such cases it may be preferable to describe the
uncertainties associated with these observations using an observation covariance matrix (or a
matrix that is proportional to this matrix), rather than using a set of individual observation
weights. See Section 2.1.11 for more details.

Use of an observation covariance matrix can be particularly useful when prior information is
employed in the inversion process, especially if this prior information comprises the
“regularisation observations” used by PEST when running in regularisation mode. In many
cases involving spatially-distributed parameters, individual parameter values, or the
differences between individual parameter values, may exhibit some degree of distance-
dependent correlation (perhaps expressed by a variogram). In this case it may be a good idea
to include that correlation in the inversion process by assigning a covariance matrix to the
prior information equations that reflects the observed parameter interdependence, rather than
a set of weights based on the false premise that the value of each parameter is independent of
that of its neighbours.

Observation correlation may be important in other situations as well. For example consider
the case where, for a particular ground water model, the extent of outflow from the ground
water domain into two neighbouring reaches of a stream is used in the model calibration
process. Consider also (as often occurs in practice) that the total outflow into both of the
neighbouring reaches can be more accurately measured than the outflow into each individual
reach. However it may be considered desirable for a particular model application that the
model be calibrated using both of the individual reach outflows rather than the total outflow.
Because the uncertainties associated with the individual reach outflow measurements will not

The PEST Control File 4-28

be independent (for a positive “error” in one is likely to be complemented by a negative
“error” in the other), it would be better to assign a covariance matrix to these observations
which reflects their interdependence, rather than to ignore this interdependence through the
assignment of separate, individual weights, when undertaking the inversion process.

 4.3.2 Supplying the Observation Covariance Matrix to PEST

The design of PEST is such that if PEST is supplied with a covariance matrix, that matrix
must pertain to a specific observation group. Because prior information items can also be
assigned to one or more observation groups, this allows a covariance matrix to be supplied
for a group of prior information items, just as it can for a group of observations.

More than one covariance matrix can be supplied to PEST for use in the parameter estimation
process. In fact a covariance matrix can be supplied for every observation group. However,
more often than not it will be supplied for only one or two such groups, with weights being
used for the remainder of the groups. Example 4.5 shows a simple PEST control file in which
two covariance matrices are supplied, one for the observation group “obsgp1” and the other
for the observation group “obsgp2”, the latter being used for prior information.

The PEST Control File 4-29

The following rules must be obeyed when using one or more observation covariance matrices
in a PEST run.

1. The name of a text file containing an observation covariance matrix (or rather, a
matrix related to an observation covariance matrix by an unknown constant of
proportionality), can be provided in the PEST control file following the name of the
observation group to which the matrix pertains in the “observation groups” section of
the PEST control file; in Example 4.5 the names of these observation covariance
matrix files are cov1.dat and cov2.dat.

2. A covariance matrix file must contain a square symmetric matrix of dimension n,
where n is the number of observations belonging to the observation group to which
the covariance matrix pertains. Thus every observation belonging to the pertinent
observation group must be involved in the covariance matrix. Example 4.6 illustrates
a covariance matrix file.

pcf
* control data
restart estimation
3 10 1 3 3
1 1 single point 1 0 0
5 2 0.3 0.01 10
2 3 0.001 0
0.1
30 0.01 5 5 0.01 5
1 1 1
* parameter groups
ro relative 0.001 0.0001 switch 2 parabolic
* parameter data
ro1 log factor 4.00 0.1 10000 ro 1 0 1
ro2 log factor 5.00 0.1 10000 ro 1 0 1
ro3 log factor 6.00 0.1 10000 ro 1 0 1
* observation groups
obsgp
obsgp1 cov1.dat
obsgp2 cov2.dat
* observation data
ar1 1.21 1.0 obsgp
ar2 1.51 1.0 obsgp
ar3 2.07 1.0 obsgp
ar4 2.94 1.0 obsgp
ar5 4.15 1.0 obsgp
ar6 5.77 1.0 obsgp
ar7 7.78 1.0 obsgp1
ar8 9.99 1.0 obsgp1
ar9 11.8 1.0 obsgp1
ar10 12.3 1.0 obsgp1
* model command line
model.bat
* model input/output
ves.tpl model.in1
ves.ins model.out
* prior information
pi1 1.0 * log(ro1) = 1.32 1.0 obsgp2
pi2 1.0 * log(ro2) = 0.45 1.0 obsgp2
pi3 1.0 * log(ro3) = 0.89 1.0 obsgp2

Example 4.5. A PEST control file citing two covariance matrices.

The PEST Control File 4-30

3. All diagonal elements of the covariance matrix must be positive. While the matrix
should, theoretically, be positive definite to qualify as a covariance matrix, a
symmetric matrix will be acceptable. However the matrix must be such that it is
possible to calculate eigenvectors and eigenvalues for that matrix without incurring
numerical difficulties (this will rarely be a problem).

4. Elements of the covariance matrix, as represented in the covariance matrix file, must
be space or comma-delimited. A line of this matrix can wrap around to the next line if
it is too long. However each row of the matrix must begin on a new line.

5. Whether or not a covariance matrix is supplied for a particular observation group,
weights must still be supplied for members of that group in the “observation data”
section of the PEST control file. However these weights will be ignored by PEST
(including a weight of zero that may be assigned to a certain observation in order to
“take it out” of the parameter estimation process).

6. Observation groups used for prior information and those used for actual observations
must be separate when one or more covariance matrices are supplied for use in the
inversion process. Thus a particular observation group cannot have members which
are both observations and prior information equations.

At the end of the inversion process the true covariance matrices pertaining to various
observation groups can be calculated from user-supplied covariance matrices through
multiplication by the reference variance determined through the parameter estimation process
(ie. σ2 of equation 2.5). Recall from Section 2.1.2 that variances and covariances represented
in covariance matrices supplied to PEST by the user will be related to true observation
variances and covariances by a constant of proportionality that is unknown before completion
of the inversion process. For the sake of consistency with observations for which a
covariance matrix is not supplied, this constant of proportionality should be the same as that
by which observation variances are related to the inverse square of observation weights. In
practice, however, the user should simply ensure that, as always, weights and covariance
matrices are such that no observation group either dominates the parameter estimation
process or is dominated by other observation groups.

4.3.3 PEST Outputs

When one or more observation covariance matrices are supplied to PEST as part of its input
dataset, PEST’s output dataset is a little different from that which is recorded if no covariance
matrices are supplied. While PEST outputs are treated in detail in the next chapter, these
differences are now briefly outlined.

1.0 0.1 0.0 0.0
0.1 1.0 0.1 0.0
0.0 0.1 1.0 0.1
0.0 0.0 0.1 1.0

Example 4.6 Example of a covariance matrix file.

The PEST Control File 4-31

4.3.3.1 Echoing of Covariance Matrices

Before undertaking the parameter estimation process, PEST records much of the information
that it reads from the PEST control file to its run record file. This information includes the
contents of any covariance matrix files that are supplied to it in its input dataset.

When echoing observation weights to its run record file, the weights supplied for
observations belonging to an observation group for which a covariance matrix has been
supplied are not recorded, for these weights are not used in the inversion process. Rather, the
character string “Cov. Mat.” is recorded in place of the pertinent weights to remind the user
that an observation covariance matrix is used in their stead.

4.3.3.2 Objective Function

Calculation of the objective function, and of the contribution to the objective function made
by various observation groups, takes account of the fact that a covariance matrix is supplied
for at least one group of observations.

4.3.3.3 Residuals

Measurements, together with their model-generated counterparts calculated on the basis of
best-fit parameters, are tabulated at the end of the run record file; observation weights are
also tabulated with this data. For those observations which are associated with a covariance
matrix, the character string “Cov. Mat.” replaces the observation weight in this table, this
indicating, once again, that the latter are ignored in all calculations pertaining to these
observations undertaken by PEST.

At the end of the parameter estimation process PEST records measurements, their model-
generated counterparts, residuals, observation weights, and a number of functions of these in
a “residuals file”. The format of this file is such that the data contained therein is suitable for
importation into a spreadsheet for further mathematical analysis. Where tabulated functions
of those observations for which a covariance matrix is supplied involve observation weights,
these functions are not calculated and recorded by PEST, for the weights supplied by the user
for these observations are not used in the inversion process. Instead the “Cov. Mat.” string is
written in place of the redundant observation weight, and “na” (for “not applicable”) is
recorded in place of any functions which depend on these weights.

If at least one observation covariance matrix is supplied in its input dataset, PEST records an
additional residuals file called a “rotated residuals file”. This has the same filename base as
the ordinary residuals file (ie. the filename base of the PEST control file), but is given an
extension of “.rsr”. Whereas the normal residuals file tabulates measurements, their model-
generated counterparts, the residuals calculated therefrom, and various functions of these
quantities (see Section 5.3.4), the rotated residuals file tabulates “rotated measurements”,
their rotated model-generated counterparts, residuals calculated therefrom, and the same
functions of these quantities. Because, through the use of rotated observations the observation
covariance matrix is diagonalised, weights can be used in the calculation of these various
functions. As is explained in Section 2.1.11, these weights are actually the reciprocals of the
square roots of the eigenvalues of the original observation covariance matrix supplied by the
user.

The PEST Control File 4-32

Where a covariance matrix is supplied for only a few of the many observations used in the
parameter estimation process, most of the entries in the rotated residuals file will be the same
as those found in the normal residuals file. However entries pertaining to observation groups
for which a covariance matrix is supplied will be different. Because a new set of “rotated
observations” is calculated for members of this group, the user-assigned names for the
original observations are no longer applicable. Hence when PEST lists the names of the new
observations to this file, it formulates new observation names by adding the string “_r” to the
names of the original observations. Rotated observations are listed in order of decreasing
observation weight (ie. in order of increasing eigenvalues of the original covariance matrix).
New names for these observations are formulated in the order in which these observations are
supplied in the original PEST control file. It is important to note that a rotated observation
whose name is formulated by adding the string “_r” to the name of the original observation
has no more of a direct relationship to that original observation than it does to any other
member of the original observation group; this observation naming convention is just a
convenience.

4.3.3.4 Analysis of Residuals

PEST calculates and records a number of basic statistics pertaining to optimised residuals to
the end of its run record file. Due to the fact that these statistics are calculated on the basis of
weighted residuals, rather than the residuals themselves, PEST calculates them using rotated
residuals rather than true residuals for those observation groups for which a covariance
matrix is supplied. The fact that rotated residuals, rather than direct residuals, are used in this
calculation is recorded on the run record file. Also, where the names of any such rotated
residuals are cited, the “_r” suffix appended to a residual’s name indicates its rotated status.

Running PEST 5-1

5. Running PEST

5.1 How to Run PEST

5.1.1 Checking PEST’s Input Data

PEST’s input file requirements have been discussed in detail in the previous two chapters.
Before submitting these files to PEST for a parameter estimation run, you should check that
all information contained in them is syntactically correct and consistent. This can be done
using the utility programs PESTCHEK, TEMPCHEK and INSCHEK described in Chapter 10
of this manual.

PEST carries out some checking of its input dataset itself; if there are any syntax errors in
any of these input files, or if some of the data elements are of the incorrect type (for example
real instead of integer, integer instead of character), PEST will cease execution with an
appropriate error message. However PEST does not carry out extensive consistency checks,
as the coding required to achieve this would take up too much memory, this memory being
reserved for array storage for PEST and, possibly, the model. Hence, unless you carry out
input data checking yourself using the utility programs mentioned above, PEST may
commence execution on the basis of an erroneous data set. Sometimes the error will be
detected and PEST will terminate execution with an error message. In other cases PEST may
commence the optimisation process, only to terminate execution at some later stage with a
run-time error message that may bear little relation to the inconsistency that gave rise to the
problem in the first place.

5.1.2 Versions of PEST

As explained in Chapter 1, there are two versions of PEST. Each can be run by typing the
name of the pertinent executable file at the command prompt.

PEST

The “single window” version of PEST (contained in the pest.exe executable program) is the
simpler version of PEST to use. In this version of PEST, the model and PEST share the same
window. Hence screen output from one will cause screen output from the other to scroll away
out of sight.

The single window version of PEST is run using the command

pest case [/r] [/j]

where case is the filename base of the PEST control file (PEST automatically adds the
extension “.pst”) and “/r” or “/j” is an optional restart switch.

PPEST

PPEST is Parallel PEST, the operation of which is fully described in Chapter 9. Parallel

Running PEST 5-2

PEST is contained in the ppest.exe executable. When a user runs Parallel PEST, he/she must
also run one or a number of “slaves” which, in turn, run the model. These slaves can reside
on the same machine as Parallel PEST, or on other machine(s) with which the PEST machine
is networked. Because model runs can be undertaken simultaneously on different machines
during calculation of the Jacobian matrix, the savings in overall optimisation time through the
use of Parallel PEST can be considerable. It should be noted, however, that due to the
overheads involved in communicating with one or a number of slaves, parameter estimation
for a small model with a short run time may actually be larger when using Parallel PEST than
when using the single window version of PEST. The considerable efficiencies involved in
parallelisation of the parameter estimation process are only fully realised where model run-
times are of the order of 30 seconds or greater.

Parallel PEST is a little more complex to run than the single window version of PEST
because an extra PEST input file (called the “run management file”) must be prepared. Also,
as well as starting PEST, the user must also start each of the slaves. However it is more than
worth the extra trouble where model run times are large and adjustable parameters are many.

While Parallel PEST was built for the purpose of running a model simultaneously on a
number of different machines across a network, it can also be used to run a single instance of
the model on a single machine. Doing this has the advantage that the model and PEST
operate in different windows; hence the screen output of one does not interfere with the
screen output of the other.

Parallel PEST is run using the command

ppest case [/r] [/j]

where case is the filename base of the PEST control file (PPEST automatically adds the
extension “.pst”) and “/r” and “/j” are optional restart switches.

For more information on running Parallel PEST, see Chapter 9 and the “Frequently Asked
Questions” in Chapter 13.

5.2 The PEST Run Record

5.2.1 An Example

As PEST executes, it writes a detailed record of the parameter estimation process to file
case.rec, where case is the filename base of the PEST control file to which it is directed
through the PEST command line. Example 5.1 shows such a run record file; the PEST control
file corresponding to Example 5.1 is that shown in Example 4.2. Note that this example does
not demonstrate a very good fit between measurements and model outcomes calculated on
the basis of the optimised parameter set. This is because it was fabricated to demonstrate a
number of aspects of the parameter estimation process that are discussed in the following
pages. Note also that PEST was run in parameter estimation mode in order to produce the run
record demonstrated in Example 5.1. As will be discussed in Sections 6 and 7, the run record
produced as an outcome of a PEST run in predictive analysis or regularisation modes is
slightly different.

Running PEST 5-3

Example 5.1 A PEST run record file; Example 4.2 shows the corresponding PEST
control file.

 PEST RUN RECORD: CASE manual

Case dimensions:-

 Number of parameters : 5
 Number of adjustable parameters : 3
 Number of parameter groups : 2
 Number of observations : 19
 Number of prior estimates : 2

Model command line:-

ves

Model interface files:-

 Templates:
 ves.tp1
 for model input files:
 ves.inp

 (Parameter values written using single precision protocol.)
 (Decimal point always included.)

 Instruction files:
 ves.ins
 for reading model output files:
 ves.out

Derivatives calculation:-

Param Increment Increment Increment Forward or Multiplier Method
group type low bound central (central) (central)
 ro relative 1.0000E-03 1.0000E-05 switch 2.000 parabolic
 h relative 1.0000E-03 1.0000E-05 switch 2.000 parabolic

Parameter definitions:-

Name Trans- Change Initial Lower Upper Group
 formation limit value bound bound
ro1 fixed na 0.500000 na na none
ro2 log factor 5.00000 0.100000 10.0000 ro
ro3 tied to ro2 na 0.500000 na na ro
h1 none factor 2.00000 5.000000E-02 100.000 h
h2 log factor 5.00000 5.000000E-02 100.000 h

Name Scale Offset
ro1 1.00000 0.000000
ro2 1.00000 0.000000
ro3 1.00000 0.000000
h1 1.00000 0.000000
h2 1.00000 0.000000

Prior information:-

Prior info Factor Parameter Prior Weight
name information
 pi1 1.00000 * h1 = 2.00000 3.000
 pi2 1.00000 * log[ro2] +
 1.00000 * log[h2] = 2.60260 2.000

Prior Info Name Observation Group
 pi1 group_4
 pi2 group_4

Observations:-

Observation name Observation Weight Group
 ar1 1.21038 1.000 group_1
 ar2 1.51208 1.000 group_1
 ar3 2.07204 1.000 group_1

Running PEST 5-4

 ar4 2.94056 1.000 group_1
 ar5 4.15787 1.000 group_1
 ar6 5.77620 1.000 group_1
 ar7 7.78940 1.000 group_2
 ar8 9.99743 1.000 group_2
 ar9 11.8307 1.000 group_2
 ar10 12.3194 1.000 group_2
 ar11 10.6003 1.000 group_2
 ar12 7.00419 1.000 group_2
 ar13 3.44391 1.000 group_2
 ar14 1.58279 1.000 group_2
 ar15 1.10380 1.000 group_3
 ar16 1.03086 1.000 group_3
 ar17 1.01318 1.000 group_3
 ar18 1.00593 1.000 group_3
 ar19 1.00272 1.000 group_3

Inversion control settings:-

 Initial lambda : 5.0000
 Lambda adjustment factor : 2.0000
 Sufficient new/old phi ratio per iteration : 0.40000
 Limiting relative phi reduction between lambdas : 3.00000E-02
 Maximum trial lambdas per iteration : 10

 Maximum factor parameter change (factor-limited changes) : 3.0000
 Maximum relative parameter change (relative-limited changes) : na
 Fraction of initial parameter values used in computing
 change limit for near-zero parameters : 1.00000E-03

 Relative phi reduction below which to begin use of
 central derivatives : 0.10000

 Relative phi reduction indicating convergence : 0.10000E-01
 Number of phi values required within this range : 3
 Maximum number of consecutive failures to lower phi : 3
 Maximum relative parameter change indicating convergence : 0.10000E-01
 Number of consecutive iterations with minimal param change : 3
 Maximum number of optimisation iterations : 30

 OPTIMISATION RECORD

INITIAL CONDITIONS:
Sum of squared weighted residuals (ie phi) = 523.8
Contribution to phi from observation group “group_1” = 127.3
Contribution to phi from observation group “group_2” = 117.0
Contribution to phi from observation group “group_3” = 185.2
Contribution to phi from observation group “group_4” = 94.28

 Current parameter values
 ro1 0.500000
 ro2 5.00000
 ro3 0.500000
 h1 2.00000
 h2 5.00000

OPTIMISATION ITERATION NO. : 1
 Model calls so far : 1
 Starting phi for this iteration: 523.8
 Contribution to phi from observation group “group_1”: 127.3
 Contribution to phi from observation group “group_2”: 117.0
 Contribution to phi from observation group “group_3”: 185.2
 Contribution to phi from observation group “group_4”: 94.28

 Lambda = 5.000 ----->
 phi = 361.4 (0.69 of starting phi)

 Lambda = 2.500 ----->
 phi = 357.3 (0.68 of starting phi)

 No more lambdas: relative phi reduction between lambdas less than 0.0300
 Lowest phi this iteration: 357.3

 Current parameter values Previous parameter values
 ro1 0.500000 ro1 0.500000
 ro2 10.0000 ro2 5.00000
 ro3 1.00000 ro3 0.500000

Running PEST 5-5

 h1 1.94781 h1 2.00000
 h2 10.4413 h2 5.00000
 Maximum factor parameter change: 2.088 [h2]
 Maximum relative parameter change: 1.088 [h2]

OPTIMISATION ITERATION NO. : 2
 Model calls so far : 6
 Starting phi for this iteration: 357.3
 Contribution to phi from observation group “group_1”: 77.92
 Contribution to phi from observation group “group_2”: 103.8
 Contribution to phi from observation group “group_3”: 121.3
 Contribution to phi from observation group “group_4”: 54.28

 Lambda = 1.250 ----->
 parameter "ro2" frozen: gradient and update vectors out of bounds
 phi = 252.0 (0.71 of starting phi)

 Lambda = 0.6250 ----->
 phi = 243.6 (0.68 of starting phi)

 Lambda = 0.3125 ----->
 phi = 235.9 (0.66 of starting phi)

 Lambda = 0.1563 ----->
 phi = 230.1 (0.64 of starting phi)

 No more lambdas: relative phi reduction between lambdas less than 0.0300
 Lowest phi this iteration: 230.1

 Current parameter values Previous parameter values
 ro1 0.500000 ro1 0.500000
 ro2 10.0000 ro2 10.0000
 ro3 1.00000 ro3 1.00000
 h1 1.41629 h1 1.94781
 h2 31.3239 h2 10.4413
 Maximum factor parameter change: 3.000 [h2]
 Maximum relative parameter change: 2.000 [h2]

OPTIMISATION ITERATION NO. : 3
 Model calls so far : 13
 Starting phi for this iteration: 230.1
 Contribution to phi from observation group “group_1”: 29.54
 Contribution to phi from observation group “group_2”: 84.81
 Contribution to phi from observation group “group_3”: 91.57
 Contribution to phi from observation group “group_4”: 24.17

 All frozen parameters freed

 Lambda = 7.8125E-02 ----->
 parameter "ro2" frozen: gradient and update vectors out of bounds
 phi = 89.49 (0.39 of starting phi)

 No more lambdas: phi is now less than 0.4000 of starting phi
 Lowest phi this iteration: 89.49

 Current parameter values Previous parameter values
 ro1 0.500000 ro1 0.500000
 ro2 10.0000 ro2 10.0000
 ro3 1.00000 ro3 1.00000
 h1 0.472096 h1 1.41629
 h2 34.3039 h2 31.3239
 Maximum factor parameter change: 3.000 [h1]
 Maximum relative parameter change: 0.6667 [h1]

OPTIMISATION ITERATION NO. : 4
 Model calls so far : 17
 Starting phi for this iteration: 89.49
 Contribution to phi from observation group “group_1”: 9.345
 Contribution to phi from observation group “group_2”: 34.88
 Contribution to phi from observation group “group_3”: 21.57
 Contribution to phi from observation group “group_4”: 23.69

 All frozen parameters freed

 Lambda = 3.9063E-02 ----->
 parameter "ro2" frozen: gradient and update vectors out of bounds
 phi = 79.20 (0.89 of starting phi)

 Lambda = 1.9531E-02 ----->
 phi = 79.19 (0.88 of starting phi)

 No more lambdas: relative phi reduction between lambdas less than 0.0300

Running PEST 5-6

 Lowest phi this iteration: 79.19

 Current parameter values Previous parameter values
 ro1 0.500000 ro1 0.500000
 ro2 10.0000 ro2 10.0000
 ro3 1.00000 ro3 1.00000
 h1 0.157365 h1 0.472096
 h2 44.2189 h2 34.3039
 Maximum factor parameter change: 3.000 [h1]
 Maximum relative parameter change: 0.6667 [h1]

OPTIMISATION ITERATION NO. : 5
 Model calls so far : 22
 Starting phi for this iteration: 79.19
 Contribution to phi from observation group “group_1”: 6.920
 Contribution to phi from observation group “group_2”: 22.45
 Contribution to phi from observation group “group_3”: 14.88
 Contribution to phi from observation group “group_4”: 34.94

 All frozen parameters freed

 Lambda = 9.7656E-03 ----->
 parameter "ro2" frozen: gradient and update vectors out of bounds
 phi = 64.09 (0.81 of starting phi)

 Lambda = 4.8828E-03 ----->
 phi = 64.09 (0.81 of starting phi)

 Lambda = 1.9531E-02 ----->
 phi = 64.09 (0.81 of starting phi)

 No more lambdas: relative phi reduction between lambdas less than 0.0300
 Lowest phi this iteration: 64.09

 Current parameter values Previous parameter values
 ro1 0.500000 ro1 0.500000
 ro2 10.0000 ro2 10.0000
 ro3 1.00000 ro3 1.00000
 h1 0.238277 h1 0.157365
 h2 42.4176 h2 44.2189
 Maximum factor parameter change: 1.514 [h1]
 Maximum relative parameter change: 0.5142 [h1]

OPTIMISATION ITERATION NO. : 6
 Model calls so far : 28
 Starting phi for this iteration: 64.09
 Contribution to phi from observation group “group_1”: 6.740
 Contribution to phi from observation group “group_2”: 18.98
 Contribution to phi from observation group “group_3”: 10.53
 Contribution to phi from observation group “group_4”: 27.84

 All frozen parameters freed

 Lambda = 1.9531E-02 ----->
 parameter "ro2" frozen: gradient and update vectors out of bounds
 phi = 63.61 (0.99 of starting phi)

 Lambda = 9.7656E-03 ----->
 phi = 63.61 (0.99 of starting phi)

 No more lambdas: relative phi reduction between lambdas less than 0.0300
 Lowest phi this iteration: 63.61
 Relative phi reduction between optimisation iterations less than 0.1000
 Switch to central derivatives calculation

 Current parameter values Previous parameter values
 ro1 0.500000 ro1 0.500000
 ro2 10.0000 ro2 10.0000
 ro3 1.00000 ro3 1.00000
 h1 0.265320 h1 0.238277
 h2 42.2249 h2 42.4176
 Maximum factor parameter change: 1.113 [h1]
 Maximum relative parameter change: 0.1135]h1]

OPTIMISATION ITERATION NO. : 7
 Model calls so far : 33
 Starting phi for this iteration: 63.61
 Contribution to phi from observation group “group_1”: 3.679
 Contribution to phi from observation group “group_2”: 32.58
 Contribution to phi from observation group “group_3”: 0.111
 Contribution to phi from observation group “group_4”: 27.24

Running PEST 5-7

 All frozen parameters freed

 Lambda = 4.8828E-03 ----->
 parameter "ro2" frozen: gradient and update vectors out of bounds
 phi = 63.59 (1.00 of starting phi)

 Lambda = 2.4414E-03 ----->
 phi = 63.59 (1.00 of starting phi)

 Lambda = 9.7656E-03 ----->
 phi = 63.59 (1.00 of starting phi)

 No more lambdas: relative phi reduction between lambdas less than 0.0300
 Lowest phi this iteration: 63.59

 Current parameter values Previous parameter values
 ro1 0.500000 ro1 0.500000
 ro2 10.0000 ro2 10.0000
 ro3 1.00000 ro3 1.00000
 h1 0.261177 h1 0.265320
 h2 42.2006 h2 42.2249
 Maximum factor parameter change: 1.016 [h1]
 Maximum relative parameter change: 1.5615E-02 [h1]

 Optimisation complete: the 3 lowest phi's are within a relative distance
 of eachother of 1.000E-02
 Total model calls: 42

 OPTIMISATION RESULTS

Adjustable parameters ----->

Parameter Estimated 95% percent confidence limits
 value lower limit upper limit
 ro2 10.0000 0.665815 150.192
 h1 0.261177 -1.00256 1.52491
 h2 42.2006 0.467914 3806.02

Note: confidence limits provide only an indication of parameter uncertainty.
 They rely on a linearity assumption which may not extend as far in
 parameter space as the confidence limits themselves - see PEST manual.

Tied parameters ----->

Parameter Estimated value
 ro3 1.00000

Fixed parameters ----->

Parameter Fixed value
 ro1 0.500000

Observations ----->

Observation Measured Calculated Residual Weight Group
 value value
 ar1 1.21038 1.64016 -0.429780 1.000 group_1
 ar2 1.51208 2.25542 -0.743340 1.000 group_1
 ar3 2.07204 3.03643 -0.964390 1.000 group_1
 ar4 2.94056 3.97943 -1.03887 1.000 group_1
 ar5 4.15787 5.04850 -0.890630 1.000 group_1
 ar6 5.77620 6.16891 -0.392710 1.000 group_1
 ar7 7.78940 7.23394 0.555460 1.000 group_2
 ar8 9.99743 8.12489 1.87254 1.000 group_2
 ar9 11.8307 8.72551 3.10519 1.000 group_2
 ar10 12.3194 8.89590 3.42350 1.000 group_2
 ar11 10.6003 8.40251 2.19779 1.000 group_2
 ar12 7.00419 6.96319 4.100000E-02 1.000 group_2
 ar13 3.44391 4.70412 -1.26021 1.000 group_2
 ar14 1.58279 2.56707 -0.984280 1.000 group_2
 ar15 1.10380 1.42910 -0.325300 1.000 group_3
 ar16 1.03086 1.10197 -7.111000E-02 1.000 group_3
 ar17 1.01318 1.03488 -2.170000E-02 1.000 group_3
 ar18 1.00593 1.01498 -9.050000E-03 1.000 group_3
 ar19 1.00272 1.00674 -4.020000E-03 1.000 group_3

Prior information ----->

Prior Provided Calculated Residual Weight Group

Running PEST 5-8

information value value
 pi1 2.00000 0.261177 1.73882 3.000 group_4
 pi2 2.60260 2.62532 -2.271874E-02 2.000 group_4

See file TEMP3.RES for more details of residuals in graph-ready format.
See file TEMP3.SEO for composite observation sensitivities.

Objective Function ----->

 Sum of squared weighted residuals (ie phi) = 63.59
 Contribution to phi from observation group "group_1" = 3.686
 Contribution to phi from observation group "group_2" = 32.58
 Contribution to phi from observation group "group_3" = 0.1115
 Contribution to phi from observation group “group_4” = 27.21

Correlation Coefficient ----->
 Correlation coefficient = 0.9086

Analysis of residuals ----->

 All residuals:-
 Number of residuals with non-zero weight = 21
 Mean value of non-zero weighted residuals = -0.4399
 Maximum weighted residual [observation "ar13"] = 1.260
 Minimum weighted residual [observation "pi1"] = -5.216
 Standard variance of weighted residuals = 3.533
 Standard error of weighted residuals = 1.880

 Note: the above variance was obtained by dividing the objective
 function by the number of system degrees of freedom (ie. number of
 observations with non-zero weight plus number of prior information
 articles with non-zero weight minus the number of adjustable parameters.)
 If the degrees of freedom is negative the divisor becomes
 the number of observations with non-zero weight plus the number of
 prior information items with non-zero weight.

 Residuals for observation group "group_1":-
 Number of residuals with non-zero weight = 6
 Mean value of non-zero weighted residuals = 0.7424
 Maximum weighted residual [observation "ar4"] = 1.038
 Minimum weighted residual [observation "ar6"] = 0.3916
 "Variance" of weighted residuals = 0.6144
 "Standard error" of weighted residuals = 0.7838

 Note: the above "variance" was obtained by dividing the sum of squared
 residuals by the number of items with non-zero weight.

 Residuals for observation group "group_2":-
 Number of residuals with non-zero weight = 8
 Mean value of non-zero weighted residuals = -1.119
 Maximum weighted residual [observation "ar13"] = 1.260
 Minimum weighted residual [observation "ar10"] = -3.424
 "Variance" of weighted residuals = 4.072
 "Standard error" of weighted residuals = 2.018

 Note: the above "variance" was obtained by dividing the sum of squared
 residuals by the number of items with non-zero weight.

 Residuals for observation group "group_3":-
 Number of residuals with non-zero weight = 5
 Mean value of non-zero weighted residuals = 8.6256E-02
 Maximum weighted residual [observation "ar15"] = 0.3254
 Minimum weighted residual [observation "ar19"] = 4.0200E-03
 "Variance" of weighted residuals = 2.2300E-02
 "Standard error" of weighted residuals = 0.1493

 Note: the above "variance" was obtained by dividing the sum of squared
 residuals by the number of items with non-zero weight.

Residuals for observation group "group_4":-
 Number of residuals with non-zero weight = 2
 Mean value of non-zero weighted residuals = -2.585
 Maximum weighted residual [observation "pi2"] = 4.5451E-02
 Minimum weighted residual [observation "pi1"] = -5.216
 "Variance" of weighted residuals = 13.61
 "Standard error" of weighted residuals = 3.689

 Note: the above "variance" was obtained by dividing the sum of squared
 residuals by the number of items with non-zero weight.

Covariance Matrix ----->

Running PEST 5-9

 ro2 h1 h2
ro2 0.3136 4.8700E-03 -0.4563
h1 4.8700E-03 0.3618 1.3340E-02
h2 -0.4563 1.3340E-02 0.8660

Correlation Coefficient Matrix ----->

 ro2 h1 h2
ro2 1.000 1.4457E-02 -0.8756
h1 1.4457E-02 1.000 2.3832E-02
h2 -0.8756 2.3832E-02 1.000

Normalized eigenvectors of covariance matrix ----->
 Vector_1 Vector_2 Vector_3
ro2 -0.8704 -3.6691E-02 -0.4909
h1 3.5287E-02 -0.9993 1.2121E-02
h2 -0.4910 -6.7718E-03 0.8711

Eigenvalues ----->

 5.6045E-02 0.3621 1.123

The various sections of the PEST run record file are now discussed in detail.

5.2.2 Echoing the Input Data Set

PEST commences execution by reading all its input data. As soon as this is read, it echoes
most of this data to the run record file. Hence the first section of this file is simply a
restatement of most of the information contained in the PEST control file. Note that the
letters “na” stand for “not applicable”; in Example 5.1, “na” is used a number of times to
indicate that a particular PEST input variable has no effect on the optimisation process. Thus,
for example, the type of change limit for parameter “ro1” is not applicable because this
parameter is fixed.

It is possible that the numbers cited for a parameter’s initial value and for its upper and lower
bounds will be altered slightly from that supplied in the PEST control file. This will only
occur if the space occupied by this parameter in a model input file is insufficient to represent
any of these numbers to the same degree of precision with which they are cited in the PEST
control file. The fact that PEST adjusts its internal representations of parameter values such
that they are expressed with the same degree of precision as that with which they are written
to the model input files has already been discussed (see Section 3.2). For consistency,
PEST’s internal representation of parameter bounds is adjusted in the same way.

5.2.3 The Parameter Estimation Record

After echoing its input data, PEST calculates the objective function arising out of the initial
parameter set; it records this initial objective function value on the run record file together
with the initial parameter values themselves. Then it starts the estimation process in earnest,
beginning with the first optimisation iteration. After calculating the Jacobian matrix PEST
attempts objective function improvement using one or more Marquardt lambdas. As it does
this, it records the corresponding objective function value, both in absolute terms and as a
fraction of the objective function value at the commencement of the optimisation iteration.

During the first iteration of Example 5.1, PEST tests two Marquardt lambdas; because the
second lambda results in an objective function fall of less than 0.03 (ie. PHIREDLAM)

Running PEST 5-10

relative to the first one tested, PEST does not test any further lambdas. Instead it progresses
to the next optimisation iteration after listing both the updated parameter values as well as
those from which the updated parameter set was calculated, viz. those at the commencement
of the optimisation iteration. Note that the only occasion on which the “previous parameter
values” recorded at the end of an optimisation iteration do not correspond with those
determined during the previous optimisation iteration is when the switch to three-point
derivatives calculation has just been made and the previous iteration failed to lower the
objective function; on such an occasion, PEST adopts as its starting parameters for the new
optimisation iteration the parameter set resulting in the lowest objective function value
achieved so far.

At the end of each optimisation iteration PEST records either two or three (depending on the
input settings) very important pieces of information; in the case of Example 5.1 it is two.
These are the maximum factor parameter change and the maximum relative parameter
change. As was discussed in previous chapters, each adjustable parameter must be designated
as either factor-limited or relative-limited; in Example 5.1 all adjustable parameters are
factor-limited with a factor limit of 3.0. A suitable setting for the factor and relative change
limits (ie. FACPARMAX and RELPARMAX) may be crucial in achieving optimisation
stability. Note that, along with the value of the maximum factor or parameter change
encountered during the optimisation iteration, PEST also records the name of the parameter
that underwent this change. This information may be crucial in deciding which, if any,
parameters should be temporarily held at their current values should trouble be encountered
in the optimisation process. For details of the options for user-intervention, see Section 5.6 of
this manual.

The recording of the maximum factor and relative parameter changes at the end of each
iteration allows you to judge whether you have set these vital variables (ie. FACPARMAX
and RELPARMAX) wisely. In the present case only the maximum factor change is needed
because no parameters are relative-limited; the maximum relative parameter change is
recorded, however, because one of the termination criteria involves the use of relative
parameter changes. Note that had some of the parameters in Example 5.1 been relative-
limited, this part of the run record would have been slightly different in that the maximum
factor parameter change would have been provided only for factor-limited parameters and the
maximum relative parameter change would have been provided for relative-limited
parameters. However a further line documenting the maximum relative parameter change for
all parameters would have been added because of its pertinence to the aforementioned
termination criterion.

The PEST run record of Example 5.1 shows that in iteration 2, one of the parameters, viz.
“h2”, incurs the maximum allowed factor change, thus limiting the magnitude of the
parameter upgrade vector. In optimisation iterations 3 and 4, parameter “h1” limits the
magnitude of the parameter upgrade vector through incurring the maximum allowed
parameter factor change. It is possible that convergence for this case would have been
achieved much faster if FACPARMAX on the PEST control file were set higher than 3.0.

At the beginning of the second optimisation iteration, parameter “ro2” is at its upper bound.
After calculating the Jacobian matrix and formulating and solving equation 2.23, PEST
notices that parameter “ro2” does not wish to move back into its domain; so it temporarily
freezes this parameter at its upper bound and calculates an upgrade vector solely on the basis

Running PEST 5-11

of the remaining adjustable parameters. The two-step process by which PEST judges whether
to freeze a parameter which is at its upper or lower limit is explained in Section 2.2.3. Note
that at the beginning of optimisation iteration 3, parameter “ro2” is released again in case,
with the upgrading of the other adjustable parameters during the previous optimisation
iteration, it wants to move back into the internal part of its domain.

In the third optimisation iteration only a single Marquardt lambda is tested, the objective
function having been lowered to below 0.4 times its starting value for that iteration through
the use of this single lambda; 0.4 is the user-supplied value for the PEST control variable
PHIRATSUF.

During the fifth optimisation iteration three lambdas are tested. The second results in a
raising of the objective function over the first (though this is not apparent in the run record
because “phi”, the objective function, is not written with sufficient precision to show it), so
PEST tests a lambda which is higher than the first. For the case illustrated in Example 5.1,
when lambda is raised or lowered it is adjusted using a factor of 2.0, this being the user-
supplied value for the PEST control variable RLAMFAC. For optimisation iteration 6, the
first lambda tested is the same as the most successful one for the previous iteration, viz.
1.9531E-02. However, for each of the previous iterations, where the objective function was
improved through lowering lambda during the iteration prior to that, the starting lambda is
lower by a factor of 2.0 (ie. RLAMFAC) than the most successful lambda of the previous
iteration.

At the end of optimisation iteration 6 PEST calculates that the relative reduction in the
objective function from that achieved in iteration 5 is less that 0.1; ie. it is less than the user-
supplied value for the PEST control variable PHIREDSWH. Hence, as the input variable
FORCEN for at least one parameter group (both groups in the present example) is set to
“switch”, PEST records the fact that it will be using central differences to calculate
derivatives with respect to the members of those groups from now on. Note that in Example
5.1, the use of central derivatives does not result in a significant further lowering of the
objective function, nor in a dramatic change in parameter values, the objective function
having been reduced nearly as far as possible through the use of forward derivatives only.
However in other cases, especially those involving a greater number of adjustable parameters
than in the above example, the introduction of central derivatives can often get a stalled
optimisation process moving again.

The optimisation process of Example 5.1 is terminated at the end of optimisation iteration 7,
after the lowest 3 (ie. NPHISTP) objective function values are within a relative distance of
0.01 (ie. PHIREDSTP) of each other.

Note that where PEST lists the current objective function value at the start of the optimisation
process and at the start of each optimisation iteration, it also lists the contribution made to the
objective function by each observation group (including the observation group “group_4”
comprised solely of prior information). This is valuable information, for if a user notices that
one particular group is either dominating the objective function or is not “seen” as a result of
dominance by another contributor, he/she may wish to adjust observation or prior
information weights and start the optimisation process again.

Running PEST 5-12

5.2.4 Optimised Parameter Values and Confidence Intervals

After completing the parameter estimation process, PEST prints the outcomes of this process
to the third section of the run record file. First it lists the optimised parameter values. It does
this in three stages; the adjustable parameters, then the tied parameters and, finally, any fixed
parameters. PEST calculates 95% confidence limits for the adjustable parameters. However,
you should note carefully the following points about confidence limits.

• Confidence limits can only be obtained if the covariance matrix has been calculated.
If, for any reason, it has not been calculated (eg. because JtQJ of equation 2.17 could
not be inverted) confidence limits will not be provided.

• As noted in the PEST run record itself, parameter confidence limits are calculated on
the basis of the same linearity assumption which was used to derive the equations for
parameter improvement implemented in each PEST optimisation iteration. If the
confidence limits are large they will, in all probability, extend further into parameter
space than the linearity assumption itself. This will apply especially to
logarithmically-transformed parameters for which the confidence intervals cited in the
PEST run record are actually the confidence intervals of the logarithms of the
parameters, as evaluated by PEST from the covariance matrix. If confidence intervals
are exaggerated in the logarithmic domain due to a breakdown in the linearity
assumption, they will be very much more exaggerated in the domain of non-
logarithmically-transformed numbers. This is readily apparent in Example 5.1.

• No account is taken of parameter upper and lower bounds in the calculation of 95%
confidence intervals. Thus an upper or lower confidence limit can lie well outside a
parameter’s allowed domain. In Example 5.1, the upper confidence limits for both
“ro2” and “h2” lie well above the allowed upper bounds for these parameters, as
provided by the parameter input variable PARUBND for each of these parameters;
similarly the lower confidence limit for parameter “h1” lies below its lower bound
(PARLBND) of 0.05. PEST does not truncate the confidence intervals at the
parameter domain boundaries so as not to provide an unduly optimistic impression of
parameter certainty.

• The parameter confidence intervals are highly dependent on the assumptions
underpinning the model. If the model has too few parameters to accurately simulate a
particular system, the optimised objective function will be large and then so too,
through equations 2.5 and 2.17, will be the parameter covariances and, with them, the
parameter confidence intervals. However, if a model has too many parameters, the
objective function may well be small, but some parameters may be highly correlated
with each other due to an inability on the part of a possibly limited measurement set
to uniquely determine each parameter of such a complex model; this will give rise to
large covariance values (and hence large confidence intervals) for the correlated
parameters.

Notwithstanding the above limitations, the presentation of 95% confidence limits provides a
useful means of comparing the certainty with which different parameter values are estimated
by PEST. In Example 5.1 it is obvious that parameters “ro2” and “h2” (particularly “h2”) are
estimated with a large margin of uncertainty. This is because these two parameters are well

Running PEST 5-13

correlated; this means that they can be varied in harmony and, provided one is varied in a
manner that properly complements the variation of the other, there will be little effect on the
objective function. Hence while the objective function may be individually sensitive to each
one of these parameters, it appears to be relatively insensitive to both of them if they are
varied in concert. This illustrates the great superiority of using covariance and eigenvector
analysis over the often-used “sensitivity analysis” method of determining parameter
reliability.

Confidence limits are not provided for tied parameters. The parent parameters of all tied
parameters are estimated with the tied parameters “riding on their back”; hence the
confidence intervals for the respective parent parameters reflect their linkages to the tied
parameters.

Note that at the end of a PEST optimisation run a listing of the optimised parameter values
can also be found in the PEST parameter value file case.par.

5.2.5 Observations and Prior Information

After it has written the optimised parameter set to the run record file, PEST records the
measured observation values, together with their model-generated counterparts calculated on
the basis of the optimised parameter set. The differences between the two (ie. the residuals)
are also listed, together with the user-supplied set of observation weights. Following the
observations, the user-supplied and model-optimised prior information values are listed; a
prior information value is the number on the right side of the prior information equation. As
for the observations, residuals and user-supplied weights are also tabulated.

Tabulated residuals and weighted residuals can also be found in file case.res; see Section
5.3.4. Composite observation sensitivities can be found in file case.seo; see Section 5.3.3.

5.2.6 Objective Function

Next the objective function is listed, together with the contribution made to the objective
function by the different observation groups.

5.2.7 Correlation Coefficient

The correlation coefficient pertaining to the current parameter estimation problem, calculated
using equation 2.43, is next listed.

5.2.8 Analysis of Residuals

The next section of the run record file lists a number of statistics pertaining to observation
residuals - first to all residuals, and then separately to each observation group (including any
observation groups to which prior information was assigned). Ideally, after the parameter
estimation process is complete, weighted residuals should have a mean of zero and be
randomly distributed. The information contained in this section of the run record file helps to
assess whether this is the case. It also allows the user to immediately identify outliers (those
observations for which the residuals are unusually high).

Running PEST 5-14

In calculating residual statistics, observations with zero weight are ignored.

5.2.9 The Parameter Covariance Matrix

The covariance matrix is always a square symmetric matrix with as many rows (and
columns) as there are adjustable parameters; hence there is a row (and column) for every
parameter which is neither fixed nor tied. The order in which the rows (and columns) are
arranged is the same as the order of occurrence of the adjustable parameters in the previous
listing of the optimised parameter values. (This is the same as the order of occurrence of
adjustable parameters in both the PEST control file and in the first section of the run record
file.)

Being a by-product of the parameter estimation process (see Chapter 2), the elements of the
covariance matrix pertain to the parameters that PEST actually adjusts; this means that where
a parameter is log-transformed, the elements of the covariance matrix pertaining to that
parameter actually pertain to the logarithm (to base 10) of that parameter. Note also that the
variances and covariances occupying the elements of the covariance matrix are valid only in
so far as the linearity assumption, upon which their calculation is based, is valid.

The diagonal elements of the covariance matrix are the variances of the adjustable
parameters; for Example 5.1 the variances pertain, from top left to bottom right, to the
parameters log(“ro2”), “h1” and log(“h2”) in that order. The variance of a parameter is the
square of its standard deviation. With log(“h2”) having a variance of 0.866 (and hence a
standard deviation of 0.931), and bearing in mind that the number “1” in the log domain
represents a factor of 10 in untransformed parameter space, it is not hard to see why the 95%
confidence interval cited for parameter “h2” is so wide.

The off-diagonal elements of the covariance matrix represent the covariances between
parameter pairs; thus, for example, the element in the second row and third column of the
above covariance matrix represents the covariance of “h1” with log(“h2”).

If there are more than eight adjustable parameters, the rows of the covariance matrix are
written in “wrap” form; ie. after eight numbers have been written, PEST will start a new line
to write the ninth number. Similarly if there are more than sixteen adjustable parameters, the
seventeenth number will begin on a new line. Note, however, that every new row of the
covariance matrix begins on a new line of the run record file.

5.2.10 The Correlation Coefficient Matrix

The correlation coefficient matrix is calculated from the covariance matrix through equation
2.7. The correlation coefficient matrix has the same number of rows and columns as the
covariance matrix; furthermore the manner in which these rows and columns are related to
adjustable parameters (or their logs) is identical to that for the covariance matrix. Like the
covariance matrix, the correlation coefficient matrix is symmetric.

The diagonal elements of the correlation coefficient matrix are always unity; the off-diagonal
elements are always between 1 and -1. The closer that an off-diagonal element is to 1 or -1,
the more highly correlated are the parameters corresponding to the row and column numbers
of that element. Thus, for the correlation coefficient matrix of Example 5.1, the logs of

Running PEST 5-15

parameters “ro2” and “h2” show medium to high correlation, as is indicated by the value of
elements (1,3) and (3,1) of the correlation coefficient matrix, viz. -0.8756. This explains why,
individually, these parameters are determined with a high degree of uncertainty in the
parameter estimation process, as evinced by their wide confidence intervals.

5.2.11 The Normalised Eigenvector Matrix and the Eigenvalues

The eigenvector matrix is composed of as many columns as there are adjustable parameters,
each column containing a normalised eigenvector. Because the covariance matrix is positive
definite, these eigenvectors are real and orthogonal; they represent the directions of the axes
of the probability “ellipsoid” in the n-dimensional space occupied by the n adjustable
parameters.

In the eigenvector matrix the eigenvectors are arranged from left to right in increasing order
of their respective eigenvalues; the eigenvalues are listed beneath the eigenvector matrix. The
square root of each eigenvalue is the length of the corresponding semiaxis of the probability
ellipsoid in n-dimensional adjustable parameter space.

If the ratio of a particular eigenvalue to the lowest eigenvalue pertaining to the parameter
estimation problem is particularly large, then the respective eigenvector defines a direction of
relative insensitivity in parameter space. The eigenvector pertaining to the highest eigenvalue
is worthy of attention in most parameter estimation problems, for this defines the direction of
maximum insensitivity, and hence of greatest elongation of the probability ellipsoid in
adjustable parameter space. If this eigenvector is dominated by a single element, then the
parameter associated with that element may be quite insensitive, the “magnitude of its
insensitivity” being defined by the square root of the magnitude of the corresponding
eigenvalue. However if this eigenvector contains a number of significant components rather
than just one, then this is an indication of insensitivity associated with a group of parameters
(ie. parameter correlation). The correlated parameters are those whose eigenvector
components are significantly non-zero.

The ratio of the highest to lowest eigenvalue constitutes another significant item of
information that is forthcoming as a by-product of the parameter estimation process. The
square root of this ratio is related to the “condition number” of the matrix that PEST must
invert when solving for the parameter upgrade vector - see equation 2.23. If the condition
number of a matrix is too high, then inversion of this matrix becomes numerically difficult or
even impossible. In the present instance this is an outcome of the fact that solution of the
inverse problem approaches nonuniqueness as elongation of the probability ellipsoid
increases. In general, if the ratio of the highest to lowest eigenvalue is greater than about 108,
there is a strong possibility that PEST is having difficulty in calculating the parameter
upgrade vector because of parameter insensitivity and/or correlation. Its performance may be
seriously degraded as a result.

5.3 Other PEST Output Files

5.3.1 The Parameter Value File

At the end of each optimisation iteration PEST writes the best parameter set achieved so far

Running PEST 5-16

(ie. the set for which the objective function is lowest if PEST is running in parameter
estimation mode) to a file named case.par where case is the filename base of the PEST
control file; this type of file is referred to as a PEST “parameter value file”. At the end of a
PEST run, the parameter value file contains the optimal parameter set. Example 5.2 illustrates
such a file. Note that a PEST parameter value file can be used by program TEMPCHEK in
building a model input file based on a template file, by program PESTGEN in assigning
initial parameter values to a PEST control file, and by program PARREP in building a new
PEST control file from an old PEST control file; see Chapter 10 for further details.

The first line of a parameter value file cites the character variables PRECIS and DPOINT, the
values for which were provided in the PEST control file; see Section 4.2.2. Then follows a
line for each parameter, each line containing a parameter name, its current value and the
values of the SCALE and OFFSET variables for that parameter.

5.3.2 The Parameter Sensitivity File

5.3.2.1 The Composite Parameter Sensitivity

Most of the time consumed during each PEST optimisation iteration is devoted to calculation
of the Jacobian matrix. During this process the model must be run at least NPAR times,
where NPAR is the number of adjustable parameters.

As is explained in Section 2.2.7, based on the contents of the Jacobian matrix, PEST
calculates a figure related to the sensitivity of each parameter with respect to all observations
(with the latter weighted as per user-assigned weights). The “composite sensitivity” of
parameter i is defined as:

si = (JtQJ)ii
1/2 /m (5.1)

where J is the Jacobian matrix and Q is the “cofactor matrix”; in most instances the later will
be a diagonal matrix whose elements are comprised of the squared observation weights. m in
equation 5.1 is the number of observations with non-zero weights. Thus the composite
sensitivity of the i’th parameter is the normalised (with respect to the number of
observations) magnitude of the column of the Jacobian matrix pertaining to that parameter,
with each element of that column multiplied by the weight pertaining to the respective
observation. Recall that each column of the Jacobian matrix lists the derivatives of all
“model-generated observations” with respect to a particular parameter.

Immediately after it calculates the Jacobian matrix, PEST writes composite parameter
sensitivities to a “parameter sensitivity file” called “case.sen” where case is the current case
name (ie. the filename base of the current PEST control file). Example 5.3 shows an extract
from a parameter sensitivity file.

single point
 ro1 1.000000 1.000000 0.0000000
 ro2 40.00090 1.000000 0.0000000
 ro3 1.000000 1.000000 0.0000000
 h1 1.000003 1.000000 0.0000000
 h2 9.999799 1.000000 0.0000000

Example 5.2 A parameter value file.

Running PEST 5-17

The relative composite sensitivity of a parameter is obtained by multiplying its composite
sensitivity by the magnitude of the value of the parameter. It is thus a measure of the
composite changes in model outputs that are incurred by a fractional change in the value of
the parameter.

It is important to note that composite sensitivities recorded in the parameter sensitivity file
are sensitivities “as PEST sees them”. Thus if a parameter is log-transformed, sensitivity is
expressed with respect to the log of that parameter. The relative composite sensitivity of a
log-transformed parameter is determined by multiplying the composite sensitivity of that
parameter by the absolute log of the value of that parameter.

As is explained in Section 5.6, composite parameter sensitivities are useful in identifying
those parameters which may be degrading the performance of the parameter estimation
process through lack of sensitivity to model outcomes. The use of relative sensitivities in
addition to normal sensitivities assists in comparing the effects that different parameters have
on the parameter estimation process when these parameters are of different type, and possibly
of very different magnitudes.

Information is appended to the parameter sensitivity file during each optimisation iteration
immediately following calculation of the Jacobian matrix. In the event of a restart, the
parameter sensitivity file is not overwritten; rather PEST preserves the contents of the file,
appending information pertaining to subsequent iterations to the end of the file. In this
manner the user is able to track variations in the sensitivity of each parameter through the
parameter estimation process.

When inspecting the parameter sensitivity file, keep the following points in mind:-

• If PEST is working in predictive analysis mode, it assumes that the weight assigned to
the observation constituting the sole member of the observation group “predict” is
zero. Thus there is no contribution to the composite sensitivity of any parameter from
the sole member of this observation group. However the situation is slightly different
for information written to the parameter sensitivity file at the end of the simulation -
see below.

 PARAMETER SENSITIVITIES: CASE VES4
OPTIMISATION ITERATION NO. 1 ----->
 Parameter_name Group Current value Sensitivity Rel. Sensitivity
 ro1 ro 4.00000 1.25387 0.754905
 ro2 ro 5.00000 0.327518 0.228925
 ro3 ro 6.00000 2.09172 1.62768
 h1 hhh 5.00000 0.176724 0.123525
 h2 hhh 4.00000 4.718210E-02 2.840646E-2

 OPTIMISATION ITERATION NO. 2 ----->
 Parameter_name Group Current value Sensitivity Rel. Sensitivity
 ro1 ro 3.79395 1.30721 0.756995
 ro2 ro 15.0000 0.672146 0.790506
 ro3 ro 4.57028 1.77164 1.16918
 h1 hhh 2.85213 0.661729 0.301198
 h2 hhh 4.00000 0.465682 0.280369

Example 5.3 Part of a parameter sensitivity file.

Running PEST 5-18

• If PEST is working in regularisation mode, the weights assigned to members of the
observation group “regul” vary from optimisation iteration to optimisation iteration.
Composite parameter sensitivities for any optimisation iteration are calculated using
the optimal weight factor (calculated on an iteration-by-iteration basis by PEST) for
members of the group “regul”.

• If an observation covariance matrix is supplied instead of observation weights for any
observation group, this is automatically taken into account when computing
composite parameter sensitivities.

5.3.2.2 Sensitivity Information Recorded on Termination of PEST Execution

At the end of the parameter estimation process (or if PEST is halted prematurely using the
“stop with statistics” option), PEST provides a complete listing of composite parameter
sensitivities based on the best sensitivity matrix (ie. Jacobian matrix) computed during the
optimisation process. “Best” is defined in terms of the aim of the optimisation process; this
may be to minimise the objective function (parameter estimation mode), to
maximise/minimise a prediction subject to objective function constraints (predictive analysis
mode), or to minimise the regularisation component of the objective function subject to
constraints imposed on the measurement component of the objective function (regularisation
mode).

The point within the parameter estimation process where the “best” Jacobian matrix was
computed will vary from run to run. It may have been computed during the last optimisation
iteration, or it may have been computed some iterations ago, subsequent attempts to improve
the outcome of the optimisation process since that iteration having met with no success. Note
also that if there was a marginal improvement in the outcome of the optimisation process
during the final optimisation iteration, but not enough to warrant the undertaking of another
optimisation iteration, then sensitivities will not correspond exactly to optimised parameter
values, as PEST does not compute another Jacobian matrix before ceasing execution under
these conditions. Nevertheless sensitivities computed by PEST on the basis of the near-
optimal parameter values which it uses at the beginning of the last iteration will be a very
close approximation to sensitivities calculated for PEST’s final parameter estimates.
However, if you would like to ensure that sensitivities correspond exactly to optimised
parameter values, you can do the following:-

1. Use program PARREP (see Chapter 10) to build a new PEST control file based on
optimised parameter values from the present run.

2. Set NOPTMAX in that file to -1, thus requesting that PEST compute sensitivities and
then cease execution.

3. Perhaps set the FORCEN variable for each parameter group to “always_3”, thus
ensuring that PEST calculates derivatives with maximum precision.

4. If working in regularisation mode, set the initial weight factor (WFINIT) to the
optimal weight factor determined on the present optimisation run.

Then run PEST.

Running PEST 5-19

When writing “completion parameter sensitivities” to the end of the parameter sensitivity
file, PEST lists the composite sensitivity and relative composite sensitivity to each parameter
of all observation groups, as well as of each individual observation group. The composite
parameter sensitivity of each observation group is evaluated by calculating the magnitude of
the respective column of the weighted Jacobian matrix using Equation 5.1, with the
summation confined to members of that particular observation group. The magnitude is then
divided by the number of members of that observation group which have non-zero weights.

When PEST is run in predictive analysis mode, the observation group “predict” deserves
special attention. As was mentioned above, it is not included in the computation of overall
parameter sensitivities when PEST is run in this mode. However, because it is a separate
observation group, PEST lists the composite sensitivity to each parameter of the member of
this group, together with composite sensitivities of other observation groups, at the end of the
parameter sensitivity file. The observation weight used in this calculation is the weight
assigned to the observation comprising the sole member of the observation group “predict” in
the PEST control file. When working in predictive analysis mode, this weight is ignored by
PEST in actual predictive analysis calculations. However it is not ignored in calculating the
sensitivity of the sole member of this group to each adjustable parameter for the purpose of
recording composite sensitivities pertaining to each observation group at the end of the
parameter sensitivity file. The user should consider this when assigning a weight to the sole
member of the observation group “predict” when preparing the PEST control file for a
predictive analysis run.

When using PEST in regularisation mode, weights assigned to the observation group “regul”
are multiplied by the optimal regularisation weight factor determined as part of the parameter
estimation process before recording composite sensitivities with respect to the members of
this group of each adjustable parameter.

5.3.3 Observation Sensitivity File

The composite observation sensitivity of observation oj is defined as:

sj ={Q(JJT)}j,j
1/2 /n (5.2)

That is, the composite sensitivity of observation j is the magnitude of the j’th row of the
Jacobian multiplied by the weight associated with that observation; this magnitude is then
divided by the number of adjustable parameters. It is thus a measure of the sensitivity of that
observation to all parameters involved in the parameter estimation process. At the end of its
run, PEST lists all observation values and corresponding model-calculated values, as well as
composite sensitivities for all observations to the “observation sensitivity file”. This file is
named case.seo.

Though composite observation sensitivities can be of some use, they do not, in general,
convey as much useful information as composite parameter sensitivities. In fact in some
instances the information that they provide can even be a little deceptive. Thus while a high
value of composite observation sensitivity would, at first sight, indicate that an observation is
particularly crucial to the inversion process because of its high information content, this may
not necessarily be the case. Another observation made at nearly the same time and/or place as
the first observation may carry nearly the same information content. In this case, it may be

Running PEST 5-20

possible to omit one of these observations from the parameter estimation process with
impunity, for the information which it carries is redundant as long as the other observation is
included in the process. Thus while a high value of composite observation sensitivity does
indeed mean that the observation to which it pertains is possibly sensitive to many
parameters, it does not indicate that the observation is particularly indispensable to the
parameter estimation process, for this can only be decided in the context of the presence or
absence of other observations with similar sensitivities.

Example 5.4 shows part of an observation sensitivity file.

5.3.4 The Residuals File

At the end of its execution, PEST writes a “residuals file” listing in tabular form observation
names, the groups to which various observations belong, measured and modelled observation
values, differences between these two (ie. residuals), measured and modelled observation
values multiplied by respective weights, weighted residuals, measurement standard
deviations and “natural weights”. This file can be readily imported into a spreadsheet for
various forms of analysis and plotting. Its name is case.res where case is the current PEST
case name.

A word of explanation is required concerning the last two data types presented in the
residuals file. As is explained in Section 2.1.2 of this manual, after the parameter estimation
process has been carried out and a value has been obtained for the “reference variance” σ, the
standard deviation of each observation can be calculated as the inverse of its weight
multiplied by the square root of the reference variance. Care must be taken in interpreting this
standard deviation for, being dependent on the fit achieved between model outputs and
corresponding field or laboratory measurements, it is a valid measure of observation
uncertainty only in so far as the model is a valid simulation of the processes that it is intended
to represent.

“Natural weights” as represented on the observation residuals file are the inverse of
measurement standard deviations as determined above. If these weights are used in the
parameter estimation process, the reference variance will be 1.0.

Where a covariance matrix is supplied for one or more observation groups instead of weights,
the residuals file is slightly modified. As well as this, an extra file called a “rotated residuals
file” is generated by PEST. See Section 4.3.3 for details.

Observation Group Measured Modelled Sensitivity
 ar1 group_1 1.210380 1.639640 0.5221959
 ar2 group_1 1.512080 2.254750 0.6824375
 ar3 group_1 2.072040 3.035590 0.8591846
 ar4 group_1 2.940560 3.978450 1.0338167
 ar5 group_1 4.157870 5.047430 1.1915223
 ar6 group_1 5.776200 6.167830 1.3226952
 ar7 group_2 7.789400 7.232960 1.4450249
 ar8 group_2 9.997430 8.124100 1.5881968
 ar9 group_2 11.83070 8.724950 1.7506757
 ar10 group_2 12.31940 8.895600 1.8875951
 ar11 group_2 10.60030 8.402450 1.9690974

Example 5.4 Part of an observation sensitivity file.

Running PEST 5-21

5.3.5 The Matrix File

During each optimisation iteration, just after it has calculated the Jacobian matrix, if any of
the ICOV, ICOR or IEIG variables supplied in the PEST control file are set to 1, PEST
calculates the covariance and correlation coefficient matrices, as well as the eigenvalues and
normalised eigenvectors of the covariance matrix, for the current set of parameter values.
Depending on the settings of the ICOV, ICOR and IEIG variables, these matrices will then be
written to a special file named a “matrix file”. This file is named case.mtt where case is the
current case name (ie. the filename base of the PEST control file). Each time this file is
written, the previous file of the same name is overwritten. Hence the matrices contained in
the matrix file pertain to the current optimisation iteration only (or, at the end of the
parameter estimation process, to the last optimisation iteration).

If any of ICOV, ICOR or IEIG are set to zero, the corresponding matrix is not written to the
matrix file. If they are all set to zero, then no matrices are written to this file. If ICOV is set to
1 then, as well as recording the covariance matrix to the matrix file, PEST records current
parameter values and standard deviations. (The standard deviation of a parameter is the
square root of its variance; parameter variances comprise the diagonal of the covariance
matrix.) As with the elements of the covariance and associated matrices, the standard
deviation of a parameter actually pertains to the log of that parameter if the parameter is log
transformed during the parameter estimation process.

The observant PEST user may notice slight differences between the matrices recorded to the
final matrix file and those recorded to the run record file at the end of the PEST run. If the
lowest objective function achieved during the parameter estimation process was calculated by
PEST during the final optimisation iteration, then he/she may expect that these two sets of
matrices will be identical. Nevertheless, there are often differences between these two sets of
matrices. These differences result from the fact that the “reference variance” (see equation
2.5) used in the calculation of matrices which are recorded in the matrix file is computed
using the objective function calculated at the end of the previous optimisation iteration,
whereas for the covariance and related matrices recorded in the run record file, the best
objective function calculated during the whole parameter estimation process is used in
computing the reference variance. If the best objective function was computed on the final
parameter upgrade, this will differ slightly from that calculated at the beginning of the last
optimisation iteration, resulting in slight differences between the matrices recorded on the
final matrix file and those recorded on the run record file.

5.3.6 Other Files

If requested through the PEST control variable RSTFLE, PEST intermittently stores its data
arrays and last two Jacobian matrices in binary files named case.rst, case.jac and case.jst. If
PEST execution is re-commenced using the “/r” switch, it reads the first of these binary files
in addition to its normal input files; if it is re-started with the “/j” switch it reads all of them.

As is explained in Section 10.6, PEST records the Jacobian matrix corresponding to
optimised parameter values to a file named case.jco. This is accessible by the JACWRIT
utility for recording of the Jacobian matrix in text format.

Parallel PEST uses a number of files for communication between PEST and its various

Running PEST 5-22

slaves. It also writes a “run management file” documenting the communications history
between the various programs taking part in the optimisation process. All of these files are
described in detail in Chapter 9.

5.3.7 PEST’s Screen Output

As well as recording the progress of the parameter estimation process to its run record file,
PEST also prints some of its run-time information to the screen; through this means the user
is informed of the status of the estimation process at any time.

If you are using the single window version of PEST and the model of which PEST has
control writes its own output to the screen, this will interfere with PEST’s presentation of run
record information to the screen. Perhaps this will not worry you because it allows you to
check that the model is running correctly under PEST’s control; in any case, you can
interrupt PEST execution to inspect the run record file at any time (see the following section).
However, if you find it annoying, you may be able to redirect the model screen output to a
file using the “>” symbol in the model command line; this will leave the screen free to
display PEST’s run-time information only. Thus, if program VES cited in the PEST control
file of Example 4.2 produces a verbose screen output which is of no real use in the parameter
estimation process, the model command line cited in the “model command line” section of
the PEST control file could be replaced by

ves > temp.dat

or

ves > nul

In the latter case screen output is simply “lost”, for there is no nul file.

5.3.8 Run-time Errors

As was discussed above, PEST performs limited checking of its input dataset. In the event of
an error or inconsistency in its input data PEST will terminate execution with a run-time error
message. Unlike PESTCHEK (see Chapter 10), PEST will not continue reading its input data
files in order to determine whether more errors are present so that it can list them as well;
rather it ceases execution as soon as it has noticed that something is wrong.

Other errors can arise later in the estimation process. For example, if the instruction set fails
to locate a particular observation, PEST will cease execution immediately with the
appropriate run-time error message. This may happen if the model has varied the structure of
its output file in response to a certain set of parameter values in a way that you did not
anticipate when you wrote the instruction set. It may also arise if the model terminated
execution prematurely. Hence if a run-time error informs you that PEST was not able to read
the model output file correctly, you should check both the screen and the model output file
for a model-generated error message. If there is a compiler-generated error message on the
screen informing you of a floating point or other error, and this is followed by a PEST run-
time error message informing you that an observation could not be found, then the model, not
PEST, was responsible for the error. You should then carefully inspect the model output file
for clues as to why the error occurred. In many cases you will find that one or a number of

Running PEST 5-23

model parameters have transgressed their allowed domains, in which case you will have to
adjust their upper and/or lower bounds accordingly on the PEST control file.

Another model-related error which can lead to PEST run-time errors of this kind will occur if
the subdirectory which contains the model executable file is not cited in either the PATH
environment variable or in the “model command line” section of the PEST control file. In
this case, after PEST attempts to make the first model run, you will receive the message

Running modelBad command or file name

prior to a PEST run-time error message informing you that a model output file cannot be
opened. (Note, however, that the model path is not required if the model executable resides in
the current directory.)

It is normally an easy matter to distinguish PEST errors from model errors, as PEST informs
you through its screen output when it is running the model. A model-generated error, if it
occurs, will always follow such a message. Furthermore, a PEST run-time error message is
clearly labelled as such, as shown in Example 5.5. If you are using Parallel PEST the model
window will be different from the PEST window. In this case it will be much easier to
distinguish an error originating from the model from an error originating from PEST.

PEST run-time errors are written both to the screen and to the PEST run record file.

5.4 Stopping and Restarting PEST

5.4.1 Interrupting PEST Execution

At the end of every model run PEST checks for the presence of a file named pest.stp in the
directory from which it was invoked. If this file is present, PEST reads the first item in the
file. If this item is “1”, PEST ceases execution immediately. If it is “2” PEST ceases
execution after it prints out parameter statistics. If it is “3” PEST pauses execution; to resume
PEST execution after a pause, rewrite file pest.stp with a “0” as the first entry.

File pest.stp can be written by the user using any text editor while positioned in another
window to that in which PEST is running. However this file can also be written using
programs PPAUSE, PUNPAUSE, PSTOP and PSTOPST supplied with PEST simply by
typing the name of the appropriate program as a command while situated in the PEST
working directory in another command-line window. As the names suggest, PPAUSE writes
a “3” to pest.stp in order to tell PEST to pause execution; PUNPAUSE writes a “0” to
pest.stp to tell it to resume execution; PSTOP writes a “1” to tell PEST to cease execution,
while PSTOPSTP instructs PEST to cease execution with a full parameter statistics printout

Error condition prevents continued PEST execution:-

Varying parameter “par1" has no affect on model output -
Try changing initial parameter value, increasing derivative increment,
holding parameter fixed or using it in prior information.

Example 5.5 A PEST run-time error message.

Running PEST 5-24

by writing a “2” to file pest.stp. Note that if the single window version of PEST is running,
PEST will not respond to the presence of file pest.stp until the current model run is complete.
Parallel PEST will respond immediately; however the various incidences of the model will
continue to run to completion in their own windows after PEST execution has ceased.

While PEST execution is paused, the run record file can be inspected by viewing it using a
text editor or viewer from another window.

5.4.2 Restarting PEST with the “/r” Switch

As was discussed in Section 4.2.2, you can instruct PEST to periodically dump the contents
of its memory to a number of binary files so that, if its execution is terminated at any stage, it
can later be restarted, taking advantage of the work which it has already done. Thus, for
example, if you had been using the single window version of PEST and you had previously
terminated its execution before the inversion process was complete, you could restart it using
the command:-

pest case /r

where case is the filename base of the PEST control file. The restart option is invoked in an
identical manner for Parallel PEST; however it may be necessary to restart the slaves first.

When PEST is restarted in this manner, it will not resume execution exactly where it left off;
rather it will recommence the parameter estimation process at the beginning of the
optimisation iteration in which it was previously interrupted.

In general it is unwise to interfere with any of PEST’s input files (ie. the PEST control file as
well as its template and instruction files) between interrupting and restarting PEST. While
PEST reads all of the data previously contained in its storage arrays from the binary file
case.rst in the event of a restart, it still needs to obtain the problem dimensions and many of
its settings from the PEST control file, the parameter templates from the respective template
files and its instructions from the respective instruction files. If any information in any of
these files is inconsistent with the information stored in file case.rst, PEST’s behaviour will
be unpredictable.

However, if you are very, very careful, you can alter a number of control variables with
impunity. The variables which you may alter are RLAMFAC, PHIRATSUF, PHIREDLAM
and NUMLAM which affect the way in which PEST selects Marquardt lambdas, and
NOPTMAX, PHIREDSTP, NPHINORED, RELPARSTP and NRELPAR which are
termination criteria. You can also alter the derivative variables DERINC, DERINCLB,
DERINCMUL and DERMTHD for any parameter group. Thus if, for example, PEST
terminates execution with a run-time error message such as shown in Example 5.5, you can
edit the PEST control file, altering DERINC, DERINCLB and/or DERINCMUL, and then
recommence execution using the restart option.

Program PARREP, one of the PEST utilities described in Chapter 10, provides a much safer
means of restarting PEST execution with one or more control variables altered. It allows a
new PEST control file to be built from an existing PEST control file and a parameter value
file; the latter may contain values optimised by PEST on a previous run. Thus a new PEST

Running PEST 5-25

run can be restarted (with or without altered control settings) where an old one left off.

5.4.3 Restarting PEST with the “/j” Switch

PEST can also be restarted with the “/j” switch; this is an integral part of the user-interaction
functionality provided by PEST. It is discussed in Section 5.6.

5.5 If PEST Won't Optimise

5.5.1 General

PEST allows the user to follow closely the progress of an optimisation run both through its
screen output and through the user’s ability to inspect the run record file. Through watching
the value of the objective function (referred to as “phi” on the PEST run record) from
optimisation iteration to optimisation iteration, you can monitor PEST’s ability and efficiency
in lowering the objective function to the minimum which can be achieved within the user-
provided parameter domain.

There can be many reasons for a failure on the part of PEST to lower the objective function;
in most cases the problem can be easily overcome by adjusting one or a number of PEST
input variables. The fact that PEST provides so many control variables by which it can be
“tuned” to a particular model is one of the cornerstones of its model-independence. In other
cases, PEST’s progress can be assisted by selectively holding either one or a few parameters
at their current values; the user may then re-commence PEST execution at that spot at which
the Jacobian matrix was last calculated in order to re-compute the last parameter upgrade
vector, or simply continue execution with the selected parameters held fixed for a while. See
the next section for details.

If you are using a particular model for the first time with PEST, you may wish to run a
theoretical case first. You should use the model to fabricate a sequence of observation values
of the same type as that for which you have laboratory or field measurements, and then use
these fabricated observations as your field or laboratory data. Then you should run PEST,
using as your initial parameter estimates the parameters that gave rise to the fabricated
observation set. PEST should terminate execution after the first model run with an objective
function value of zero. (In some cases it will not be exactly zero because of roundoff errors;
nevertheless it should be extremely small.) In this way you can check that PEST is supplying
correct parameter values to the model, running the model correctly, and reading observation
values correctly.

Next you should vary the parameter initial values and run PEST again. It is at this stage,
while working with a theoretical dataset for which you know PEST should achieve a low
objective function value, that you can adjust PEST control variables in order to tune PEST to
the model. Note that it is unlikely that you will achieve an objective function value of zero
again; though, depending on the number of observations and their magnitudes and weights,
the objective function should nevertheless be reduced to as close to zero as roundoff errors
permit (provided the model is not beset by severe nonlinearities and/or the presence of local
objective function minima). In most cases PEST is able to solve a parameter estimation
problem using substantially less than 20 optimisation iterations.

Running PEST 5-26

If PEST does not lower the objective function, or lowers it slowly, you should run through
the following checklist of reasons for PEST’s poor performance. In most instances the
problem can be rectified.

5.5.2 Derivatives are not Calculated with Sufficient Precision

Precise calculation of derivatives is critical to PEST’s performance. Improper derivatives
calculation will normally be reflected in an inability on the part of PEST to achieve full
convergence to the optimal parameter set. Sometimes, in such circumstances, PEST will
commence an optimisation run in spectacular fashion, lowering the objective function
dramatically in the first optimisation iteration or two. But then it “runs out of steam”, failing
to lower it much further.

Make sure that model outcomes are being written to the model output file with the maximum
precision which the model allows. If the model places an upper limit on output precision,
ensure that the parameter increments used for derivatives calculation are large enough to
cause a useable change in all model-calculated observations, given the number of significant
digits in which they are expressed. Try not to make parameter increments too large though, or
finite-difference-generated derivatives will be a poor approximation to the real thing.
However if they must be large, use one of the three-point methods of derivatives calculation.
Try the “parabolic” method first; if that doesn't work, use the “best-fit” method.

Check that parameter values are written to model input files with enough significant digits to
reflect parameter increments. If some parameters become very low as the optimisation
process progresses, you may need to provide a suitable lower bound on derivative
increments through the parameter group variable DERINCLB, or calculate the increment
using the largest member of a parameter group by denoting the group variable INCTYP as
“rel_to_max”.

For a model which solves large matrix equations using an iterative method, you should
ensure that the model’s solution convergence criterion is set very low so that model-
generated observations are calculated with a high degree of precision. However if you set it
too low the model solution procedure may not converge; worse still, it may converge for
some parameter sets and not for others. To overcome this you may need to make a small
change to the model such that it prints out its solution vector even if it has not converged
according to your very stringent convergence setting; alternatively you could employ a batch
process such as was demonstrated in Example 4.3.

5.5.3 High Parameter Correlation

There is often a temptation in fitting models to data, to improve the fit between modelled and
measured observations by increasing the number of adjustable parameters. While it is true
that this can result in a lowered objective function, it is not always true that such an
improvement increases a model’s ability to make reliable predictions, or that a high number
of parameters represents a valid interpretation of the dataset to which the model’s outcomes
are matched. Furthermore, as the number of parameters requiring estimation is increased,
there will come a stage where PEST’s ability to lower the objective function by adjusting the
values of these parameters is diminished due to the effects of roundoff error (particularly for
highly nonlinear models); this applies not just to PEST but to any parameter estimation

Running PEST 5-27

package.

The trouble with increasing the number of parameters without limit is that, sooner or later,
some parameters become highly correlated. This results from the fact that the measurement
set upon which the parameter estimation process is based may not have the ability to
discriminate between different combinations of parameter values, each combination giving
rise to an equally low objective function. As has already been discussed, the extent to which
parameter pairs and/or groups are correlated can be gleaned from an inspection of the
correlation coefficient and/or eigenvector matrices.

If parameters are too highly correlated the matrix JtQJ of equation 2.18 becomes singular.
However because PEST adds the Marquardt parameter to the diagonal elements of this matrix
before solving for the parameter upgrade vector (see equation 2.20), rendering it singular no
longer, an upgrade vector can nevertheless be obtained. Eventually, unless circumvented by
roundoff errors, an objective function minimum will be obtained through the normal iterative
optimisation process. However the parameter set determined on this basis may not be unique.
Hence, if you are running a theoretical case, PEST may determine a parameter set which is
entirely different from the one which you used to generate the artificial measurement set. In
spite of this, the objective function may be very small.

In addition to the nonuniqueness problem, the optimisation process may become very slow if
there are many parameters in need of estimation. There are two reasons for this. The first is
that PEST requires at least as many model runs as there are adjustable parameters in order to
fill the Jacobian matrix during each optimisation iteration. The second reason is based on the
possible near-singular condition of the normal matrix and the way in which PEST adjusts the
Marquardt lambda upwards in response to this. In general, while high lambda values can lead
to a rapid lowering of the objective function at the early stages of the parameter estimation
process when parameter values are far from optimal, it is normally far better to decrease
lambda as the objective function minimum is approached. As discussed in Section 2.1.5, use
of a high Marquardt lambda is equivalent to the use of the “steepest descent” optimisation
method; however this method is notoriously slow when parameters are highly correlated, due
to the phenomenon of “hemstitching” as the parameter upgrade vector oscillates across
narrow objective function valleys in parameter space. But if lambda cannot be lowered
because the normal matrix would then become singular, or at best ill-conditioned, due to the
excessive number of parameters requiring estimation, there will be no way to prevent this.

The incorporation of prior information into the estimation process can often add stability to
an over-parameterised system. Likewise, removing a number of parameters from the process
by holding them fixed at strategic values may yield dramatic improvements in PEST’s
performance. In many environmental modelling contexts a spectacular increase in PEST’s
ability to estimate large numbers of parameters can be achieved by running PEST in
regularisation mode; see Chapter 7 for full details.

5.5.4 Inappropriate Parameter Transformation

PEST allows adjustable parameters to be either log-transformed or untransformed. A suitable
choice for or against log transformation for each parameter can make the difference between
a successful PEST run and an unsuccessful one.

Running PEST 5-28

Trial and error is often the only means by which to judge whether certain parameters should
be log-transformed or not. There is no general rule governing which parameters are best log-
transformed; however experience has shown that parameters whose values can vary over one
or a number of orders of magnitude often benefit from log transformation. Log
transformation of these parameters will often linearise the relationship between them and the
observations, making the optimisation process more amenable to the linearity assumption
upon which the equations of Chapter 2 are based.

Use of suitable SCALE and OFFSET variables can be used to change the domain of a
parameter such that logarithmic transformation, and with it the possible benefits of increased
linearity, becomes a possibility. The use of parameter scaling and offsetting is discussed in
Sections 2.2.4 and 4.2.4.

More complex parameter transformations than logarithmic which may, in some
circumstances, decrease the nonlinearity of a particular parameter estimation problems can be
undertaken using the parameter preprocessor PAR2PAR; see Chapter 10 for details.

5.5.5 Highly Nonlinear Problems

If the relationship between parameters and observations is highly nonlinear, the optimisation
process will proceed only with difficulty. As discussed above, such nonlinearity may
sometimes be circumvented through appropriate transformation of some parameters.
However, in other cases this will make little difference. In such cases the Gauss-Marquardt-
Levenberg method of parameter estimation on which PEST is based may not be the most
appropriate method to use.

Sometimes the use of a high initial Marquardt lambda is helpful in cases of this type. Also,
the relative and absolute parameter change limits (RELPARMAX and FACPARMAX on the
PEST control file) may need to be set lower than normal; a careful inspection of the PEST
run record file may suggest suitable values for these variables and, indeed, which parameters
should be relative-limited and which should be factor-limited. Parameter increments for
derivatives calculation should be set as low as possible without incurring roundoff errors. The
three-point “parabolic” method may be the most appropriate method for calculating
derivatives because of its quadratic approximation to the relationship between observations
and parameters. The incorporation of prior information into the parameter estimation process
(with a suitably high weight assigned to each prior information equation) may also yield
beneficial results.

5.5.6 Discontinuous Problems

The equations derived in Chapter 2, upon which the Gauss-Marquardt-Levenberg algorithm
is based, are predicated on the assumption that observations are continuously differentiable
functions of parameters. If this assumption is violated for a particular model, PEST will have
extreme difficulty in estimating parameters for that model. (However, it may have some
success if the dependence is continuous, if not continuously differentiable.)

5.5.7 Parameter Change Limits Set Too Large or Too Small

As discussed above with respect to highly nonlinear problems, a suitable choice for relative

Running PEST 5-29

and factor parameter change limits (ie. RELPARMAX and FACPARMAX) may allow
optimisation to be carried out under hostile circumstances. However if these change limits are
set too low, minimisation of the objective function may be hampered as the upgrade vector is
continually shortened in order to conform to the demands of these limits. An inspection of the
run record file should reveal immediately whether parameter upgrades are being limited by
these variables. If the maximum relative and/or factor parameter changes per optimisation
iteration are consistently equal to the respective user-supplied limits, then it is possible that
these limits could be increased; however, if your model is highly nonlinear or “messy”, it
may be better to keep RELPARMAX and FACPARMAX low as they may prevent parameter
adjustment “overshoot”.

You should exercise caution in choosing which parameters are relative-limited and which are
factor-limited. Remember that if a parameter is factor-limited, or if it is relative-limited with
a limit of less than 1, the parameter can never change sign. Conversely, if a parameter is
relative-limited with a limit of 1 or greater, it can be reduced right down to zero in a single
step without transgressing the limit; this may cause parameter “overshoot” problems for some
nonlinear models and a factor limit may need to be considered. However the latter cannot be
used if the parameter can change sign. Faced with quandaries of this type, the parameter
OFFSET variable may be useful in shifting the parameter domain such that it does not
include zero.

As described in Section 5.6, RELPARMAX and FACPARMAX can be altered midway
through a PEST optimisation run. Furthermore, if the parameter adjustment vector is
dominated by a particular insensitive parameter such that the change to that parameter is at its
RELPARMAX or FACPARMAX limit and the changes to other parameters are minimal,
then the offending parameter can be held at its current value through the user-intervention
process described in Section 5.6.

5.5.8 Poor Choice of Initial Parameter Values

In general, the closer are the initial parameter values to optimal (ie. the values for which the
objective function is at its global minimum), the faster will PEST converge to that global
minimum. Furthermore not only does a wise choice of initial parameter values reduce the
PEST run time, it may also make optimisation possible, especially for highly nonlinear
models or models for which there are local objective function minima at places removed in
parameter space from the location of the global objective function minimum.

5.5.9 Poor Choice of Initial Marquardt Lambda

The PEST algorithm is such that PEST should find its way to a close-to-optimal Marquardt
lambda at each stage of the parameter estimation process. However if you supply an initial
Marquardt lambda which is far from optimal, the adjustment to optimal lambda may not
occur. After attempting a parameter upgrade with the initial lambda, PEST searches for
alternative lambdas, using the input variable RLAMFAC to calculate them. If the initial
lambda was poor, these alternative lambdas may be little better in terms of lowering the
objective function than the first one. Soon, in accordance with the settings provided by
PHIREDLAM and NUMLAM on the PEST control file, PEST may move on to the next
optimisation iteration, having achieved little in lowering the objective function. The story

Running PEST 5-30

may then be repeated at the next optimisation iteration, and perhaps the next as well. Soon,
because the objective function has not been lowered (or has been lowered very little) over a
number of iterations, PEST will terminate execution in accordance with one of its termination
criteria.

In most cases, the choice of an initial Marquardt lambda of between 1.0 and 10.0 works well.
Nevertheless, if PEST spends the first few optimisation iterations adjusting this to a vastly
higher value (or a vastly lower value - but remember that lambda is reduced in the normal
course of the optimisation process anyway) before making great gains in objective function
reduction, then you will probably need to reconsider your choice of initial lambda in
subsequent uses of PEST in conjunction with the same model. However, if the parameter
estimation process simply does not “get off the ground”, you should start again with an
entirely different lambda; try a much greater one first, especially if PEST has displayed
messages to the effect that the normal matrix is not positive definite.

To help PEST search farther afield for a suitable Marquardt lambda, perhaps you should set
the input variable RLAMFAC high for a while. However it is bad practice to keep it high
through the entirety of an optimisation run; hence if PEST finds a lambda which seems to
work you should terminate PEST execution, supply that lambda as the initial lambda, reset
RLAMFAC to a reasonable value (eg. 2.0) and start the optimisation process again.

Experience has shown that if the initial parameter set is poor, PEST may need a high
Marquardt lambda to get the parameter estimation process started. Also the Marquardt
lambda may need to be greater for highly nonlinear problems than for well-behaved
problems.

Note that the Marquardt lambda is one of the input variables that can be adjusted in mid-run
through user-intervention; see Section 5.6.

5.5.10 Observations are Insensitive to Initial Parameter Values

For some types of models, observations can be insensitive to initial parameter values if the
latter are not chosen wisely. For example, if you wish to optimise the resistivities and
thicknesses of a three-layered half-space on the basis of electric current and voltage
measurements made on the surface of that half-space, it would be a mistake to provide all the
layer resistivities with the same initial value. If you did, the model would be insensitive to the
thicknesses of either of the upper layers (the lowest layer extends to infinity) because the
half-space is uniform no matter what these thicknesses are. Hence PEST will set about
calculating derivatives of observations with respect to these thicknesses and discover that the
derivatives of all observations with respect to all thicknesses are zero. It will then issue a
message such as “parameter “h1” has no effect on model output”. This problem can be easily
circumvented by choosing initial layer resistivities which are different from each other.

In other cases the solution may not be as obvious. For some models, a certain parameter may
have very little effect on model outcomes over part of its domain, yet it may have a much
greater effect on these outcomes over other parts of its domain. If the optimised value lies
within the insensitive area, a large degree of uncertainty will surround its estimate. However
if the optimal value lies in the sensitive part of the parameter’s domain it is likely that the
parameter will be well-determined (unless, of course, it is highly correlated with some other

Running PEST 5-31

parameter). In either case you should take care to ensure that the number which you supply as
the parameter’s initial value is within the sensitive part of its domain.

5.5.11 Parameter Cannot be Written with Sufficient Precision

In certain unusual cases an optimal parameter value may not be capable of representation in a
field of limited width on the model input file. The obvious solution to this problem is to
increase the width of the parameter field in the corresponding template file. However this
may not be possible if model input format requirements are too rigid.. The only other
remedial action that can be taken is to set the DPOINT variable to “nopoint”, thus allowing a
gain of one extra significant figure in some circumstances. Before you do this, however,
make sure that the model can still read the parameter value correctly with its decimal point
omitted. (Note that PEST omits the decimal point only if it is redundant. However because
some models may use format specifiers which make certain assumptions about where an
absent decimal point should be, it is possible that a number lacking a decimal point may be
misinterpreted; see Section 3.2.6 .)

5.5.12 Incorrect Instructions

If the objective function cannot be lowered it is possible that PEST is reading the model
output file incorrectly. If a non-numeric string is present on the model output file at a place
where PEST has been lead to expect (through its instruction set) a number, PEST will
terminate execution with an appropriate error message. However if a number is present where
PEST expects one, but this number is not the one that you intended PEST to read when you
built the instruction set, then it is unlikely that PEST’s performance in lowering the objective
function will be good.

You can check that PEST is reading the correct numbers by terminating PEST execution
using the “Stop with statistics” option. PEST will then list on its run record file the model-
generated observations corresponding to its best parameter set achieved so far. As PEST also
lists the residual corresponding to each model-generated observation, an incorrectly read
model outcome may be apparent as that for which there is an unusually high residual.

Note that program INSCHEK can also be used to check that an instruction file does, indeed,
read the correct numbers from a model output file. See Chapter 10.

5.5.13 Upgrade Vector Dominated by Insensitive Parameters

This is a common cause of poor PEST performance. It is discussed in greater detail in the
following section.

5.6 User Intervention

5.6.1 An Often-Encountered Cause of Aberrant PEST Behaviour

Where many parameters are being estimated and some are far more insensitive than others, it
is not uncommon to encounter problems in the parameter estimation process. PEST, in
response to the relative insensitivity of certain parameters, may calculate an upgrade vector in

Running PEST 5-32

which these insensitive parameters are adjusted by a large amount in comparison with other,
more sensitive, parameters; this large adjustment of insensitive parameters may be necessary
if alterations to their values are to have any effect on the objective function. However the
magnitude of the change that can be incurred by any parameter during any particular
optimisation iteration is limited by the values assigned to the PEST control variables
RELPARMAX and FACPARMAX. PEST reduces the magnitude (but not the direction) of
the parameter upgrade vector such that no parameter undergoes a change that exceeds these
limits. Unfortunately, if a particular insensitive parameter dominates the parameter upgrade
vector, restricting the magnitude of the upgrade vector such that the change to the value of
the insensitive parameter is limited to RELPARMAX or FACPARMAX (depending on its
PARCHGLIM setting) will result in much smaller changes to other, more sensitive,
parameters. Hence, the objective function may be reduced very little (if at all).

Under these circumstances, increasing RELPARMAX and FACPARMAX is not necessarily
the solution to the problem, for parameter change limits are necessary in order to avoid
unstable behaviour in the face of problem nonlinearity.

In normal PEST usage the occurrence of this problem is easily recognised by the fact that
either the maximum relative parameter change or the maximum factor parameter change for a
particular optimisation iteration (as printed to the screen and to the run record file) is equal to
RELPARMAX or FACPARMAX respectively, and that the objective function is reduced
very little. PEST records the names of parameters that have undergone the largest factor and
relative changes at the end of each optimisation iteration. More often than not, an inspection
of the parameter sensitivity file (see Section 5.3.2) will reveal that these same parameters
possess a low sensitivity.

5.6.2 Fixing the Problem

The solution to the above problem is to hold parameters which are identified as being
troublesome at their current values, at least for a while. With such recalcitrant parameters
“out of the road”, PEST can often achieve a significant improvement in the objective
function. Such temporarily held parameters can then be brought back into the parameter
estimation process at a later date.

It may be found that quite a few parameters need to be held in this manner, for once a
particular troublesome parameter has been identified and held, it may be found that the
problem does not go away because another insensitive parameter then dominates the
parameter upgrade vector. When that parameter is held, yet another troublesome parameter
may be identified, and so on. All such parameters can be temporarily held at their current
values if desired. A user may hold such parameters one by one as they are identified in the
manner described above, or he/she may prefer instead to take the pre-emptive measure of
temporarily holding at their current values all parameters identified in the parameter
sensitivity file as being particularly insensitive, and hence potentially troublesome.

5.6.3 The Parameter Hold File

After it calculates the Jacobian matrix, and immediately before calculating the parameter
upgrade vector, PEST looks for a file named case.hld (where case is the filename base of the
PEST control file) in its current directory. If it does not find it, PEST proceeds with its

Running PEST 5-33

execution in the normal manner. However if it finds such a file, it opens it and reads its
contents in order to ascertain the user’s wishes for the current optimisation iteration.

A parameter hold file is shown in Example 5.6.

Entries in a parameter hold file can be in any order. Any line beginning with the “#”
character is ignored, this being interpreted as a comment line. If any lines are in error they are
also ignored, for PEST does not pause in its execution or clutter up either its screen display
or its run record file with error messages pertaining to the parameter hold file. However it
does report any alterations that it makes to its behaviour on the basis of directives obtained
from the parameter hold file to its run record file.

A user is permitted to alter the values of three PEST control variables using the parameter
hold file. These are RELPARMAX, FACPARMAX and LAMBDA. The syntax is shown in
Example 5.6, ie. the name of the variable must be followed by its new value. It is important
to note that if a parameter hold file is left “lying around”, any lines altering the value of
lambda should be removed or “commented out” or PEST will be prevented from making its
normal adjustment to lambda from iteration to iteration. This may severely hamper the
optimisation process.

Note that once RELPARMAX and FACPARMAX have been altered using a parameter hold
file, they stay altered, even if the file is removed or the lines pertaining to RELPARMAX and
FACPARMAX are subsequently deleted or commented out.

To hold a parameter at its current value while the parameter upgrade vector is being
calculated, use a line such as the fourth appearing in Example 5.6, ie. the string “hold
parameter” followed by the parameter’s name. (If the parameter name is incorrect, PEST
simply ignores the line.) If the pertinent line is removed from the parameter hold file, or the
parameter hold file itself is removed, the parameter is then free to move in later optimisation
iterations.

The format for the sixth line in Example 5.6 is:-

hold group pargpnme < x

where pargpnme is the name of a parameter group and x is a positive number. A line such as
this directs PEST to hold any parameter in the named parameter group temporarily fixed if
the sensitivity of that parameter is less than the supplied number (ie. x). Held parameters can
be freed again later by reducing x (to zero if desired), by deleting this line from the parameter
hold file, or by deleting the parameter hold file itself.

relparmax 10.0
facparmax 10.0
lambda 200.0
hold parameter thick1
hold parameter thick2
hold group conduct < 15.0
hold group thicknss lowest 3
hold eigenvector 1 highest 2

Example 5.6 Part of a parameter hold file.

Running PEST 5-34

As is illustrated in the 7th line of Example 5.6, the n most insensitive parameters in a
particular parameter group can be held at their current values using the command:-

hold group pargpnme lowest n

where n is a positive integer. Such held parameters can be freed later in the parameter
estimation process by reducing n (to zero if desired), by deleting this line from the parameter
hold file, or by deleting the parameter hold file itself.

The syntax of the 8th line of Example 5.6 is:-
hold eigenvector n highest m

This option has been included in PEST’s parameter holding functionality to accommodate the
fact that an observation dataset can be insensitive to certain groups of parameters varied in a
specific ratio, even though observations might be individually sensitive to each parameter
comprising the group. As is discussed in Chapter 2, this is a manifestation of the phenomenon
of parameter correlation. The damage done to the parameter estimation process by such an
insensitive parameter combination can be every bit as bad as that done by insensitive
parameters on their own. Hence, in some circumstances, the parameter estimation process
may benefit from the temporary removal of some or all members of such a damaging
parameter combination.

In interpreting the above parameter holding command, eigenvectors are counted in order of
the magnitude of their corresponding eigenvalues, starting from the highest eigenvalue and
working down. Thus eigenvector number 1 is the eigenvector associated with the highest
eigenvalue of the covariance matrix. (This will be the eigenvector most commonly cited in
parameter hold files supplied by the user, because the magnitude of an eigenvalue is a
measure of the insensitivity of the objective function to parameters varied in ratios specified
by the elements of the corresponding eigenvector.)

Once the desired eigenvector has been identified (ie. eigenvector number n in the above
command), PEST then selects the parameters which comprise the m largest components of
that eigenvector. These are the parameters which are, collectively, those to which the
observation dataset is least sensitive. PEST then holds these parameters at their current
values while it calculates the parameter upgrade vector.

As is discussed in Section 5.5, eigenvalues and eigenvectors are available at all stages of the
parameter estimation process through the matrix file recorded by PEST during every
optimisation iteration.

While the ability to hold parameters according to their component magnitudes in various
eigenvectors can be of use in difficult cases, care should be taken in using this functionality.
Where excessive parameter correlation is causing problems in the inversion process, it is
often sufficient for only 1, 2 or a very few of the correlated parameters to be held, rather than
all of them, when calculating an upgraded parameter set. The parameters to which the held
parameters were formerly correlated are then free to move as PEST searches for the objective
function minimum using the reduced parameter set. This may result in a greater objective
function improvement than if all of the correlated parameters were held. Unless all of the
held parameters have values close to optimal (with “optimal” in this case covering a broad
range of values by virtue of their correlated state) there will be little benefit in holding all of

Running PEST 5-35

them, for at least some of them will need to be assigned different values if the objective
function is to be minimised.

5.6.4 Re-calculating the Parameter Upgrade Vector

In normal PEST operation, the user will probably not be aware that his/her intervention is
required until after at least one optimisation iteration has elapsed. Even if it has met with
little success in lowering the objective function, PEST moves on to the next optimisation
iteration commencing, once again, its time-consuming calculation of the Jacobian matrix
(possibly having switched to the use of three-point derivatives).

However the functionality exists within PEST to halt its execution at any time and restart it at
that place at which it last commenced calculation of the parameter upgrade vector, ie. at the
place at which it last completed its calculation of the Jacobian matrix. Provided the PEST
control variable RSTFLE is set to 1, PEST stores the Jacobian matrix in a binary file each
time it is calculated; the Jacobian matrix is easily retrieved if PEST is asked to re-calculate
the parameter upgrade vector.

Re-commencement of PEST execution for upgrade vector re-calculation is effected by
running PEST using the command

pest case /j

or, if using Parallel PEST,
ppest case /j

where case is the current PEST case name, ie. the filename base of the PEST control file; “j”
stands for “Jacobian”. Whether PEST was terminated while testing the efficacy of different
Marquardt lambdas in lowering the objective function, or whether it was terminated after the
iteration counter had “ticked over” and PEST was engaged in calculation of a new Jacobian
matrix, PEST will re-commence execution at the place at which the last Jacobian matrix had
just finished being calculated. Thus, depending on what PEST was doing when its execution
was terminated, it may re-commence execution either within the same optimisation iteration
as that in which it was interrupted, or in the previous iteration. In either case, it moves
straight into calculation of the parameter upgrade vector and the testing of different
Marquardt lambdas.

It is through this restart mechanism that user-assistance is possible with PEST. Upon
inspection of the run record file and the parameter sensitivity file, a user may decide that
PEST can do better in improving the objective function if it attempts the last parameter
upgrade again with certain parameters, or groups of parameters, held fixed. Thus the
laborious calculation of the Jacobian matrix is not wasted, for PEST is able to get a “second
chance” at using this important information in calculating a better parameter set.

PEST can be stopped and restarted using the “/j” switch as many times as is desired. Thus, in
some over-parameterised cases, a user can progressively hold more and more parameters
fixed until a significant improvement in the objective function is realised. Then he/she can let
PEST move on to the next optimisation iteration.

Running PEST 5-36

5.6.5 Maximum Parameter Change

As has already been discussed, at the end of each optimisation iteration PEST records on its
run record file the maximum factor and relative changes undergone by any parameter. It also
records the names of the parameters undergoing these maximum changes. This, in
combination with the contents of the parameter sensitivity file, may assist the user in
deciding which (if any) parameters to temporarily hold at their present values using directives
supplied in the parameter hold file.

5.7 PEST Postprocessing

5.7.1 General

After the parameter estimation process is complete, a thorough examination must be
undertaken of the results of this process before the estimated parameters can be used in a
calibrated model which is run for predictive purposes. This section presents a guide to some
of this analysis procedure. The discussion necessarily pertains to general parameter
estimation post-processing; extra, case-specific analysis will be required for each particular
instance of PEST deployment.

The information upon which to base post-processing analyses such as those outlined in this
section is contained in the PEST run record file and in a number of other files that are written
by PEST, often in a format that facilitates plotting using commercial graphing and
spreadsheet packages. See Sections 5.2 and 5.3 for details.

5.7.2 Parameter Values

Parameter values should be inspected for reasonableness. It is often a good idea to undertake
initial PEST runs with parameter bounds set very wide. In this way PEST is free to assign
unrealistic values to certain parameters if this is required in order to achieve goodness of fit
between model outcomes and corresponding field data. When reasonable parameter bounds
are then imposed it will often be possible to obtain just as good a fit, this being an outcome of
the parameter correlation that is a feature of most real-world model calibration. However if it
is not possible to achieve just as good a fit with parameters constrained to reasonable values,
then PEST is providing valuable information on model adequacy, for this state of affairs
indicates that the model may not be simulating all aspects of the system that it is intended to
portray. Whether this is a worrying matter or not depends on the particular modelling
application. It is sometimes valid modelling practice to allow unsimulated subprocesses to be
represented by out-of-range surrogate parameter values. In other applications this is
completely unacceptable. The making of the appropriate decision in each case is part of the
art of modelling.

5.7.3 Parameter Statistics

This manual discusses at length the role of the various statistics that are produced as an
outcome of the PEST parameter estimation process. These include the parameter covariance
matrix, correlation coefficient matrix, covariance matrix eigenvalues and eigenvectors and
parameter confidence intervals. Though all of these quantities are only approximate because

Running PEST 5-37

of the fact that their calculation is based on a linearity assumption that is often violated, there
is nevertheless much to be learned about the model, its parameterisation, and its
appropriateness for a specific application from an inspection of these quantities.

High levels of parameter uncertainty can result from a poor fit between model outcomes and
field observations, from a high level of parameter correlation, from insensitivity on the part
of certain parameters, or from all of these. Provided PEST has not faltered in the nonlinear
parameter estimation process (see Section 5.5), the first condition indicates that either field
data is poor or that the model is inappropriate. (Or it may indicate that certain model
parameters that were held fixed during the optimisation process may have been held at
inappropriate values.) Fortunately, the reason for the poorness of fit is often easy to identify,
though not necessarily easy to rectify (especially if it requires alterations to model design).

Parameter uncertainty resulting from high levels of parameter correlation may or may not be
a defect, depending on the problem to which the model will be applied. Highly correlated
parameters are recognised through an inspection of the correlation coefficient matrix, and
through an inspection of the eigenvalues and eigenvectors of the parameter covariance
matrix. Whether indeterminacy of these parameters affects a particular model prediction
depends on the prediction. The ultimate test of this is to use PEST’s predictive analyser (see
Chapter 6) in order to test the range of predictive variability that occurs as an outcome of
parameter uncertainty. As a general rule, if predictions that are to be made by the model are
of the same type as the measurements used in the calibration process, and if the “stress
regime” imposed on the system represented by the model under predictive conditions is not
too different from that prevailing under calibration conditions, then the effect of correlation-
induced parameter uncertainty on predictive uncertainty may not be too large. However if
any of these conditions are violated, predictive uncertainty may be very large indeed.

Parameter uncertainty caused by parameter insensitivity is often difficult to rectify. Recall
that composite parameter sensitivities are listed in the parameter sensitivity file produced by
PEST. Parameter insensitivity results from the fact that the dataset used in the optimisation
process simply does not possess the information content that is required to resolve the values
of offending parameters. Thus these parameters can assume a range of values with minimal
effect on model outcomes.

Once again, parameter uncertainty arising out of parameter insensitivity may or may not
result in high levels of predictive uncertainty. As always, the extent of predictive uncertainty
can be estimated using PEST’s predictive analyser.

Parameter uncertainty resulting from either excessive correlation or from insensitivity of
parameters can often be reduced by including more measurement data in the inversion
process, especially if these measurements are “targeted” at the offending parameters. Extra
information in the form of prior information can also be very effective in increasing
parameter sensitivity and in reducing parameter correlation. Use of PEST in regularisation
mode can also be very effective in reducing the deleterious effects of parameter insensitivity.

5.7.4 Residuals

An analysis of the differences between model outcomes and corresponding field or laboratory
data is an extremely important part of any parameter estimation application.

Running PEST 5-38

The mathematical basis of the parameter estimation algorithm used by PEST relies on the
assumption that measurement uncertainties are uncorrelated, ie. that the uncertainty
associated with any one measurement is unrelated to that associated with any other
measurement. If measurements do, in fact, exhibit correlation then an observation covariance
matrix should be used in place of observation weights so that the “rotated residuals” are
uncorrelated. See Section 4.3 for details.

One of the first tasks that should be undertaken after the parameter estimation process is
complete is to determine whether residuals (or rotated residuals) are, in fact, randomly
distributed about a mean of zero with minimal correlation between them. PEST provides
some degree of assistance in making this determination. As described in Section 5.2.8 and in
Section 4.3, on its run record file PEST lists a number of pieces of information pertaining to
the residuals taken as a whole, and to the residuals pertaining to each observation group.

Much can be learned about residuals (and about the efficacy of the parameter estimation
process that gave rise to these residuals), by different types of graphical inspection. Graphs
can be readily obtained using commercial plotting software based on the information
contained in the residuals file, and perhaps the rotated residuals file, written by PEST at the
end of its run. These files can also be used as a basis for more sophisticated residuals analysis
using commercial statistical software.

Ideally, a plot of weighted (rotated) residuals against weighted or unweighted (rotated)
observation values (or weighted or unweighted simulated values) should reveal no
dependence of one upon the other (unless weights were purposefully chosen to accentuate
certain observation types). Furthermore, a plot of weighted (rotated) residuals against the
normal variate should (ideally) reveal that residuals are normally distributed.

Perhaps the most important types of residuals analyses are those that can only be undertaken
in a case-specific manner. For example, if the model being calibrated is a steady-state ground
water model and the measurements are of water levels in various bores spread throughout the
model domain, then it is important that residuals be plotted at the locations of their respective
boreholes and superimposed on a map of the area; “proportional posting” and/or contouring
of these residuals may also be useful. Such a two-dimensional graphical portrayal of residuals
will immediately indicate any spatial correlation between them. If such spatial correlation
exists, this is an indication that the manner in which the model domain has been subdivided
for parameterisation purposes could do with some improvement.

If measurements used in the calibration process represent the variation of some quantity over
time at one or a number of measurement sites, then superimposed plots of model-generated
and measured quantities against time, or of the residuals themselves against time, at all
measurement sites should be inspected. Any tendency of the model to overpredict or
underpredict over extended periods of time, or over certain segments of the graphs, should be
noted, for this may indicate an inadequacy in the model’s ability to represent facets of real-
world behaviour; such an inadequacy may have unwanted repercussions when the model is
used for predictive purposes. If time-varying measurements are made at different
geographical locations, plots of the spatial distribution of residuals at different times may also
reveal worrying departures from independent behaviour, spatial correlation possibly
indicating, once again, certain inadequacies on the part of the model.

Running PEST 5-39

5.7.5 Over-Parameterisation

In many cases of model deployment the fit between model outcomes and field measurements
can be improved with relative ease by declaring more parameters as adjustable, or by simply
adding more parameters to the model. This is particularly the case for distributed parameter
models where it is an easy matter to undertake a finer subdivision of the model domain for
parameterisation purposes, thus endowing the model with a greater number of parameters that
require estimation. Ultimately, through adding more and more parameters, it may be possible
to reduce the objective function to almost zero as every nuance of system behaviour is
replicated by the model outputs.

It is very important to be aware of the fact that a good fit under calibration conditions does
not guarantee an accurate model prediction. In general, the more parameters that are
estimated, the more highly are they correlated, and the more likely it is that some of them are
insensitive. Both of these will contribute to a high degree of parameter uncertainty which
may result in a high degree of uncertainty for at least some types of model predictions.

If the system under study is such that a high level of parameterisation is nevertheless required
because it is necessary that the model be capable of reproducing the “fine detail” of system
response, then the user should be very aware of the uncertainty surrounding estimated
parameters and of the uncertainty that is likely to accompany many of the predictions made
by the model. In this case predictive analysis is a necessity. Alternatively, some kind of
problem “regularisation” is required, this being a mechanism by which parameter uncertainty
can be reduced through the enforcement of known or suspected relationships between
parameters (such as a “smoothing condition” in the case of distributed parameter models).
Such techniques can be very effective in combating the deleterious effects of over-
parameterisation; if properly designed they can be such as to ensure that departures from
simplicity in parameterisation are limited to those that are just sufficient to reproduce the
required level of detail in system behaviour. See Chapter 7 for a description of PEST’s uses
in “regularisation mode” for more details.

5.7.6 Covariance Matrix for Best-Fit Parameters

The user is reminded that once PEST has calculated an optimal set of parameter values and,
in accordance with one of its termination criteria, finishes execution, it calculates the
covariance matrix and the statistics derived therefrom on the basis of the Jacobian matrix
giving rise to the best set of parameter values, unless these were achieved on the very last
optimisation iteration. If this is the case, then PEST’s termination criteria are such as to
ensure that the statistics calculated on the basis of the “not-quite-optimal” parameter set will
depart only minimally from those calculated on the basis of the optimal parameter set. Use of
the “not-quite-optimal” parameter set saves PEST from having to carry out another set of
model runs at the end of the optimisation process in order to re-calculate the Jacobian matrix
on the basis of best-fit parameters. Normally this is quite acceptable. However if you want to
be absolutely sure that the covariance matrix and its derived statistics are as right as they can
be (notwithstanding the fact that they are based on an often poorly-met linearity assumption),
then you way wish to undertake a special PEST run simply to calculate these statistics on the
basis of optimal parameter values. You can do this by following these steps:-

1. Use program PARREP (see Section 10.5) to build a new PEST control file in which

Running PEST 5-40

initial parameter values are actually optimised parameter values determined on a
previous PEST run.

2. Set the control variable NOPTMAX (see Section 4.2.2) to -1 in the new PEST control
file.

3. Run PEST.

Greater accuracy in derivatives calculation (and hence greater accuracy in calculation of the
parameter covariance matrix) can be achieved with the FORCEN variable (see Section 4.2.3)
for all parameter groups set to “always_3” in the new PEST control file.

5.7.7 Model Outputs based on Optimal Parameter Values

Whether or not you have undertaken the steps outlined in the previous section for obtaining
statistics based on optimal parameters, the last model run undertaken by PEST prior to
termination of execution will not normally have been undertaken on the basis of optimal
parameters. (If the instructions outlined in the previous section are followed, the last model
run will, in fact, have been undertaken with one parameter value slightly incremented or
decremented from optimality for the purpose of derivatives calculation.) Hence model output
files available at the termination of PEST execution will not contain “best-fit model outputs”.
These can only be obtained if a model run is explicitly undertaken on the basis of optimised
parameter values. This can be achieved in either of two ways. The first is to use TEMPCHEK
to generate a set of model input files based on template files for the current case together with
the parameter value file produced by PEST in the course of its previous parameter estimation
run; see Section 10.1 for details. The second option is to use PARREP in the manner
described in the previous section, but with NOPTMAX set to 0 in the new PEST control file
so that PEST undertakes only one model run, this being for the purpose of objective function
calculation.

Predictive Analysis 6-1

6. Predictive Analysis

6.1 The Concept

6.1.1 What Predictive Analysis Means

In the discussion that follows, reference will be made to PEST’s usage in the role of model
calibration. However PEST is often used in the role of data interpretation as well, particularly
geophysical data interpretation in which earth properties are inferred from a number of
discrete surficial or downhole measurements. Though not referenced specifically, the
following discussion is just as applicable to PEST’s usage in that role as it is to PEST’s usage
in model calibration.

PEST “calibrates” a model by reducing the discrepancies between model outputs and field
observations to a minimum in the weighted least squares sense. The differences between field
measurements and model outputs are encapsulated in an “objective function” defined as the
weighted sum of squared deviations between field observations and corresponding model
outputs. As PEST executes, it progressively reduces this objective function until it can reduce
it no more.

In many cases the “landscape” of the objective function in parameter space is not comprised
of a discrete bowl-shaped depression with the objective function minimum lying neatly at the
bottom of that depression. Rather (especially if parameters number more than just a few), the
objective function minimum often lies at the bottom of a long, narrow valley of almost equal
depth along its length. Any parameters for which the objective function lies within the valley
can be considered to calibrate (or almost calibrate) the model. Figure 6.1 illustrates this
situation for a simple, linear, two-parameter model; for a linear model, contours of the
objective function in parameter space are always elliptical. The situation in a more complex
nonlinear case is schematised in Figure 6.2. In both of these figures, p1 and p2 are the values
of the two parameters.

Predictive Analysis 6-2

p
1

p
2

Φmin

Φ + δmin

Figure 6.1. Objective function contours in parameter space; linear model.

Φmin

Φ + δmin

p
2

p
1

Figure 6.2. Objective function contours in parameter space; nonlinear model.

Both of Figures 6.1 and 6.2 depict situations where there is a high degree of parameter
correlation – that is, one parameter can be varied in harmony with another with virtually no
effect on the objective function. Thus the solution to the inverse problem (ie. the model
calibration problem) is nonunique. If the minimum of the objective function is denoted as
Φmin, and if all parameters for which the objective function is less than Φmin + δ (where δ is
relatively small) can also be considered to calibrate the model, then the range of parameter
values which can be considered to calibrate the model can be quite large indeed. In Figures
6.1 and 6.2 the set of “allowable parameter values” (from the model calibration point of
view) occupies the area that lies within the Φmin + δ contour in parameter space.

In most instances of model calibration, only a single set of parameters lying within the Φmin +

δ contour of Figures 6.1 and 6.2 is calculated. Model predictions are then made with this
single parameter set. An obvious question is this: what would have been the model’s

Predictive Analysis 6-3

predictions if another set of parameters lying within the Φmin + δ contour were used for
predictive purposes instead, particularly if this alternative set is relatively distant from the
original parameter set as measured in parameter space?

6.1.2 Some Solutions

A number of different methods are available for answering this question. However traditional
“sensitivity analysis” cannot be used. The term “sensitivity analysis” is often used to describe
the technique whereby parameter values are individually varied from calibration values in
order to determine the effects of these changes on model predictive outcomes. This is an
unacceptable method of predictive analysis in most instances because unless parameters are
varied in certain discrete ratios (that vary with parameter value for nonlinear models) the
model is immediately uncalibrated as soon as any parameter is varied from its calibrated
value. To fully explore the repercussions of parameter nonuniqueness on predictive
nonuniqueness, parameters must be varied in such a way that the objective function hardly
changes. As is apparent from Figures 6.1 and 6.2, parameter values can often vary
enormously while the objective function changes very little. If parameters are simply
incremented and/or decremented one by one, and the effect of this variation tested on both
model predictions and on the objective function calculated under calibration conditions, it is
likely that the latter will rise very quickly, giving the modeller the false impression that
parameter values are estimated with a high degree of precision by the calibration process, and
hence that predictive nonuniqueness resulting from parameter nonuniqueness will be slight
because of the absence of the latter.

Monte-Carlo analysis is often used to examine uncertainty in model predictions. Parameter
sets can be generated at random; for each such parameter set the model is run under
calibration conditions. If the resulting objective function is above Φmin + δ the parameter set
is rejected. If it is below Φmin + δ the model is then run under predictive conditions. After
many thousands of model runs have been undertaken a suite of predictions will have been
built up, all generated by parameter sets which satisfy calibration constraints. In many cases
some kind of probability distribution can then be attached to these predictions, based on
where corresponding calibration objective functions lie with respect to Φmin and the Φmin + δ
contour.

This method of predictive analysis has many attractions; however its main disadvantage is in
the number of model runs required. Where there are any more than a handful of adjustable
parameters, the dimensionality of the problem requires that millions of model runs be
undertaken, rendering the method intractable in many practical settings.

6.1.3 The “Critical Point”

The effect of parameter nonuniqueness on predictive nonuniqueness depends on the
prediction being considered. In many instances a model is calibrated under a very different
stress regime from that under which it will operate to make predictions; in other cases the
stress regimes will be similar. In some cases model predictions will be of the same type as
those that were used for calibration; in other cases a model will be required to generate
predictions of a very different type from those used in the calibration process. In some cases
predictions will be required at the same locations as those for which data was available to

Predictive Analysis 6-4

assist in the calibration process; in other cases predictions will be required at very different
places.

In general, the more similarity that model predictions bear to the type of data used in
calibrating the model, and the more similar is the stress regime in which predictions are made
to those prevailing at the time of calibration, the greater is the likelihood that parameter
uncertainty arising as an outcome of the calibration process will not result in a large degree
of predictive uncertainty. If parameter uncertainty “doesn’t matter” in terms of the model’s
ability to replicate historical system conditions, then it will quite possibly not matter in terms
of its ability to predict future conditions, provided things are not too different in the future.
However where conditions are different, and where predictions are of a different type from
those used in the calibration process, it is possible that a large degree of predictive
uncertainty may be associated with model parameter uncertainty.

Hence parameter uncertainty is, in itself, not a big issue. Parameter uncertainty is important
only in so far as it effects predictive uncertainty, and this depends on the prediction. (Unless,
of course, the role of the inversion process is actually to infer parameters for their own sakes;
in this case the parameters themselves are the predictions. The discussion that follows is
directly applicable to this situation when parameters are considered in that light.)

Figure 6.3 illustrates the dependence of a particular model prediction on parameter values for
the two parameter system represented in Figure 6.2. As can be seen from Figure 6.3, the
prediction of interest increases with both p1 and p2 (the values of the two parameters). If it is
our desire to find the maximum prediction of this type that is compatible with the fact that
model parameters must be constrained such that the model correctly simulates system
performance under calibration conditions, then this prediction is seen to correspond to the
“critical point” depicted in Figure 6.4. This is the point of maximum model prediction on the

Φmin + δ contour. The model prediction made with parameter values corresponding to this
critical point is the maximum model prediction that is compatible with calibration-imposed
constraints on parameter values. In many instances of model usage, this particular prediction
is of greater importance than a model prediction made with best-fit parameter values (ie.
using parameters corresponding to Φmin).

Predictive Analysis 6-5

direction of increasing
prediction value

p
2

p
1

Figure 6.3 Contours of a model prediction in parameter space.

critical
point

p
2

p
1

Figure 6.4 The “critical point” in parameter space.

The situation is only slightly more complicated when parameter bounds are imposed. Figure
6.5 shows objective function contours, model prediction contours, and the critical point in
this case. The prediction corresponding to parameter values at the critical point is now the
worst or best model prediction that it is possible to make after both knowledge and
calibration constraints have been imposed.

Predictive Analysis 6-6

critical
point

p
2

p
1

Figure 6.5 The “critical point” with parameter bounds taken into account.

The importance of predictive analysis in model deployment cannot be understated. In most
instances of model usage only a single prediction is made. However where a range of
predictions is possible, it is poor modelling practice not to provide at least some indication of
the extent of this range. The model prediction corresponding to the critical point defines the
extent of this predictive range in one direction.

For example, if a rainfall-runoff model has been calibrated in order to make predictions of
flood height following future high rainfall events, then the model’s prediction of the
maximum possible flood height may be of critical importance to formulation of a flood
management strategy. Due to the fact that the height of the flood peak may be sensitive to
parameters which are highly correlated with each other under the more benign conditions
under which the model was calibrated, the possibility of predictive uncertainty is very high;
so too is the imperative for predictive analysis.

6.1.4 Dual Calibration

There are two means whereby PEST can be used to establish the degree of uncertainty
associated with a particular model prediction. The first is approximate and can be done using
PEST under normal parameter estimation conditions. The second involves determination of
the actual critical point. The first of these is discussed in the present section while the second
is discussed in the next section.

“Dual Calibration” gets its name from the fact that PEST is asked to calibrate a model that is
actually comprised of two models. Recall that the “model” run by PEST can actually be a
batch file comprised of many executables. A batch file can easily be written such that it first
runs the model under calibration conditions and then runs the model under predictive
conditions. The dataset for “calibration” of this dual model should be the normal calibration
dataset (for which corresponding model-generated numbers are produced by the first
component of the dual model, ie. the model run under calibration conditions), plus a single
extra “observation” which corresponds to a best or worst case model outcome of a certain
type for which the corresponding model-generated number is produced by the second

Predictive Analysis 6-7

component of the dual model. PEST is thus asked to calibrate this dual model such that, on
the one hand, the model produces numbers which match historical system behaviour, while
on the other hand it produces a certain best or worst case prediction. If a parameter set can be
found which allows the model to do this, then the worst or best case prediction is compatible
with calibration constraints (and knowledge constraints if parameter bounds are imposed). If
it cannot, then the hypothesised worst case or best case prediction is not possible.

The trick in implementing the dual calibration technique is the selection of a weight to assign
to the single model prediction. In general, the weight applied to this prediction should be
such that the contribution to the final objective function by the residual associated with the
single prediction is of the same order as the contribution to the objective function by all of
the residuals associated with the historical component of the dual model. If this is the case,
then obviously the model will not be producing a prediction which is exactly equal to the
user-supplied best or worst case prediction. Because of this, the prediction may have to be
supplied as a little “worse than worst” or “better than best”. A strategy for choosing a suitable
weight and predictive value will soon become apparent once the method is implemented on a
particular case.

Dual calibration can be used with any nonlinear parameter estimator. However it is
particularly easy to implement with PEST. One reason for this is the model-independent
nature of PEST which allows it to be used as easily with a composite model encapsulated in a
batch file as with a model comprised of a single executable. Another reason lies in the robust
nature of the PEST inversion algorithm. Yet another reason lies in the fact that PEST prints
out the contribution made to the objective function by different observation groups. Thus if
historical observations used with the calibration component of the composite model are
assigned to one observation group, and the single model prediction made under future
conditions is assigned to another observation group, the user can see at a glance what the
“calibration component” of the objective function is, and what the “predictive component” of
the objective function is. Together, these add up to the total objective function whose task it
is for PEST to minimise during the dual calibration process.

If one of the names of the observation groups supplied to PEST is “predict”, and if there is
only one observation belonging to that group (this observation can have any name), then
PEST prints out the model-calculated number corresponding to that observation every time it
calculates a new parameter update vector. Thus whenever it displays a new objective function
it also prints out the line:-

prediction = x

where x is the model-generated value corresponding to the sole observation belonging to
observation group “predict”. Obviously, if you are not using PEST to undertake dual
calibration, you should avoid use of “predict” as an observation group name.

6.1.5 Predictive Analysis Mode

PEST can run in three different modes – “parameter estimation mode”, “regularisation mode”
and “predictive analysis mode”. The first of these modes is used to find the objective function
minimum Φmin; the second is most useful when many parameters require adjustment through
the calibration process; see the next chapter. When run in predictive analysis mode, PEST

Predictive Analysis 6-8

finds the critical point depicted in Figures 6.4 and 6.5 and determines the model prediction
associated with that point. The theory underpinning PEST’s calculations when run in
predictive analysis mode is presented in Section 2.1.9.

Model setup for predictive analysis is similar to that for dual calibration operations. That is, a
composite model is constructed comprised of the model run under calibration conditions
followed by the model run under predictive conditions. There can be as many field
observations corresponding to the former model component as desired, these being the
“calibration observations”. However there should be only one output from the predictive
model component which is used by PEST as an observation. Furthermore, so PEST can
recognise this observation, it should be the sole member of an observation group named
“predict”. It is important to note that PEST takes no notice of either the “observed value” of
this observation or of the weight assigned to this observation. PEST’s job is simply to raise
or lower the model output corresponding to this observation, while maintaining the objective
function at or below Φmin + δ.

Before using PEST to undertake predictive analysis, you should have already calibrated the
model. Because the model has been calibrated, you will have determined a parameter set
corresponding to the objective function minimum; you will also have determined the
objective function minimum itself, ie. Φmin. When run in predictive analysis mode PEST
must be supplied with the value of Φmin + δ, henceforth referred to as Φ0. PEST then
maximises or minimises the model prediction (you tell it which), while ensuring that the
objective function (calculated on the basis of calibration observations alone) is as close as
possible to Φ0. See Section 2.1.9 for further details.

PEST’s operation in predictive analysis mode has much in common with its operation in
parameter estimation mode. Like parameter estimation, the process required to determine the
critical point is an iterative one, beginning at some user-supplied initial parameter set. Initial
parameters can be either inside the Φ0 contour or outside of it; in fact they can be the same
initial values that were used for the parameter estimation process. If they are outside of the
Φ0 contour, PEST automatically works in parameter estimation mode until it is “within
reach” of Φ0, at which stage it modifies its operations to search for the critical point.

When run in predictive analysis mode PEST still needs to calculate a Jacobian matrix, so
derivatives of model outcomes with respect to adjustable parameters are still required.
Derivatives can be calculated using two or three points; PEST can switch from one to the
other as the solution process progresses. Parameters must still be assigned to groups for the
purpose of assigning variables which govern derivatives calculation. Parameters can be log-
transformed, linked to one another, or fixed in predictive analysis mode just as in parameter
estimation mode. In fact parameter transformations and linkages must be the same for a
predictive analysis run as they were for the preceding parameter estimation run in which Φmin

was determined, for the value supplied to PEST for Φ0 must be consistent with the previously
determined value of Φmin.

Just as in parameter estimation mode, a Marquardt lambda is used to assist PEST in coping
with model nonlinearities when it is run in predictive analysis mode; this lambda is adjusted
by PEST as the optimisation process progresses. The same user-supplied control variables
affect PEST’s lambda adjustment procedure as when it is used in parameter estimation mode
(plus a couple more – see below). However, if desired, a line search procedure along the

Predictive Analysis 6-9

direction of the parameter upgrade vector can be used to improve calculation of the
maximum or minimum model prediction for any value of the Marquardt lambda. This, in
fact, is the recommended procedure.

When run in predictive analysis mode PEST can be stopped and restarted at any time; it can
be re-started using the “/r” or “/j” switch just as in parameter estimation mode (provided that
the PEST RSTFLE variable was set to “restart” on the previous run). Relative and factor
change limits are just as important when PEST is used in predictive analysis mode as when it
is used in parameter estimation mode. Prior information can also be used; naturally if it is
used in a predictive analysis run following a parameter estimation run, the prior information
equations and weights should be the same for both runs.

Observation and observation group functionality in predictive analysis mode is identical to
that in parameter estimation mode. However, as was mentioned above, when PEST is used in
predictive analysis mode there must be at least two observation groups, one of which is
named “predict”. This group must contain only one observation (of any name), this being the
observation corresponding to the single model output for which a maximum or minimum is
sought within the constraints of Φ0. All other observations for this PEST run must be
identical in value and weight to those used in the previous parameter estimation run in which

Φmin was determined. The single observation belonging to the “predict” group (which,
obviously, does not figure in the previous PEST calibration run) can be assigned any weight
at all; this weight is ignored by PEST when run in predictive analysis mode.

When run in predictive analysis mode more model runs are normally required to achieve
solution convergence than are required when PEST is run in parameter estimation mode
because it is usually a more difficult matter to find the critical point than it is to find the
objective function minimum.

Except for the value of one control variable, the same control file can be used by PEST when
run in both parameter estimation and predictive analysis modes (provided the control file has
a “predictive analysis” section – see below). Furthermore, because of the functionality
attached to the observation group “predict”, it is a particularly simple matter to run PEST in
predictive analysis mode on a particular problem and then switch to running PEST in
parameter estimation mode on the same problem in order to implement a dual calibration
exercise.

PEST screen output is slightly different when run in predictive analysis mode from its screen
output when run in parameter estimation mode in that the value calculated for the prediction
is written to the screen on every parameter upgrade. The user should bear in mind when
monitoring PEST performance through watching its screen output, that successful PEST
execution is no longer measured in terms of how much it can reduce the objective function. It
is now measured by how high or low (depending on the user’s request) the prediction can be
made, while keeping the objective function as close as possible to Φ0.

After completion of a predictive analysis run, the highest or lowest model prediction for
which the objective function is equal to or less than Φ0 is recorded on the PEST run record
file. Corresponding parameter values are also recorded on this file as well as in file case.par
where case is the filename base of the PEST control file.

Predictive Analysis 6-10

As has already been mentioned, predictive analysis should only be undertaken after PEST
has been used to undertake parameter estimation with the model run under calibration
conditions alone. The predictive analysis and parameter estimation runs are closely related.
All parameters, parameter transformations, parameter linkages, observations, observation
weights, prior information equations and prior information weights must be the same for the
two runs in order to ensure consistency in objective function values.

6.2 Working with PEST in Predictive Analysis Mode

6.2.1 Structure of the PEST Control File

The PEST control file used for running PEST in predictive analysis mode is shown in
Example 6.1 An example of this file is provided in Example 6.2.

pcf
* control data
RSTFLE PESTMODE
NPAR NOBS NPARGP NPRIOR NOBSGP
NTPLFLE NINSFLE PRECIS DPOINT NUMCOM JACFILE MESSFILE
RLAMBDA1 RLAMFAC PHIRATSUF PHIREDLAM NUMLAM
RELPARMAX FACPARMAX FACORIG
PHIREDSWH
NOPTMAX PHIREDSTP NPHISTP NPHINORED RELPARSTP NRELPAR
ICOV ICOR IEIG
* parameter groups
PARGPNME INCTYP DERINC DERINCLB FORCEN DERINCMUL DERMTHD
(one such line for each of the NPARGP parameter groups)
* parameter data
PARNME PARTRANS PARCHGLIM PARVAL1 PARLBND PARUBND PARGP SCALE OFFSET DERCOM
(one such line for each of the NPAR parameters)
PARNME PARTIED
(one such line for each tied parameter)
* observation groups
OBGNME
(one such line for each observation group)
* observation data
OBSNME OBSVAL WEIGHT OBGNME
(one such line for each of the NOBS observations)
* model command line
write the command which PEST must use to run the model
* model input/output
TEMPFLE INFLE
(one such line for each model input file containing parameters)
INSFLE OUTFLE
(one such line for each model output file containing observations)
* prior information
PILBL PIFAC * PARNME + PIFAC * log(PARNME) ... = PIVAL WEIGHT OBGNME
(one such line for each of the NPRIOR articles of prior information)
* predictive analysis
NPREDMAXMIN
PD0 PD1 PD2
ABSPREDLAM RELPREDLAM INITSCHFAC MULSCHFAC NSEARCH
ABSPREDSWH RELPREDSWH
NPREDNORED ABSPREDSTP RELPREDSTP NPREDSTP

Example 6.1. Construction details of the PEST control file for use in predictive analysis
mode.

Predictive Analysis 6-11

Differences between the PEST control file used by PEST for running in predictive analysis
mode, and that used for work in parameter estimation mode are few. The PESTMODE
variable on the third line of the PEST control file must be set to “prediction”. Also, the PEST
control file must contain a “predictive analysis” section which controls PEST’s operations in
this mode. Note the following:-

• if PEST is run in parameter estimation mode the “predictive analysis” section of the
PEST control file is ignored and can, in fact, be omitted;

pcf
* control data
restart prediction
5 10 2 0 3
3 3 single point 1 0 0
5 2 0.3 0.01 10
2 3 0.001
0.1
30 0.01 5 5 0.01 5
1 1 1
* parameter groups
ro relative 0.001 0.0001 switch 2 parabolic
hhh relative 0.001 0.0001 switch 2 parabolic
* parameter data
ro1 log factor 4.000000 1e-10 10000 ro 1 0 1
ro2 log factor 5.000000 1e-10 10000 ro 1 0 1
ro3 log factor 6.000000 1e-10 10000 ro 1 0 1
h1 log factor 5.000000 1e-10 100 hhh 1 0 1
h2 log factor 4.000000 1e-10 100 hhh 1 0 1
* observation groups
obsgp1
obsgp2
predict
* observation data
ar1 1.21038 1 obsgp1
ar2 1.51208 1 obsgp1
ar3 2.07204 1 obsgp1
extra 5.0 0.0 predict
ar4 2.94056 1 obsgp1
ar5 4.15787 1 obsgp1
ar6 5.7762 1 obsgp1
ar7 7.7894 1 obsgp1
ar8 9.99743 1 obsgp1
ar9 11.8307 1 obsgp2
* model command line
model.bat
* model input/output
ves1.tpl a_model.in1
ves2.tpl a_model.in2
extra.tpl extra.dat
ves1.ins a_model.ot1
ves2.ins a_model.ot2
extra.ins extra1.dat
* prior information
* predictive analysis
-1
1.0 1.05 2.0
0.00 0.005 1.0 2.0 8
0.00 0.05
4 0.0 0.005 4

Example 6.2. Example of a PEST control file for use in predictive analysis mode.

Predictive Analysis 6-12

• if there is no prior information the “prior information” section of the PEST control
file should either be omitted or simply left empty.

6.2.2 PEST Variables used for Predictive Analysis

The role of those PEST variables which govern its operation in predictive analysis mode will
now be discussed in detail. Although PESTMODE was discussed in Section 4.2.2,
specifications for this variable will now be repeated. All other variables discussed below
reside in the “predictive analysis” section of the PEST control file and hence pertain only to
PEST’s operation in predictive analysis mode.

PESTMODE

This is a character variable that appears on the third line of the PEST control file just after the
RSTFLE variable. It must be supplied as either “estimation”, “prediction” or “regularisation”.
In the first case PEST will run in parameter estimation mode (its traditional mode of
operation); in the second case PEST will run in predictive analysis mode; in the third case
PEST will run in regularisation mode (see Chapter 7).

As mentioned above, if PEST is run in predictive analysis mode, then you must ensure that
the PEST control file contains a “predictive analysis” section. You must also ensure that
there are at least two observation groups, one of which is named “predict”, and that the
“predict” group has just one observation. In most cases this will correspond to an output of
the predictive component of a composite model. The observation can have any name, value
and weight; the latter two are ignored by PEST when run in predictive analysis mode.
(Naturally you must supply an instruction file to read this extra observation from the
pertinent model output file.)

NPREDMAXMIN

When PEST is used in predictive analysis mode, its task is to maximise or minimise the
single model prediction while maintaining the objective function at or below Φmin + δ (ie.
Φ0). If NPREDMAXMIN is set to 1, PEST will maximise the prediction; if
NPREDMAXMIN is set to –1, PEST will minimise the prediction.

PD0

PD0 is a value for the objective function which, under calibration conditions, is considered
sufficient to “just calibrate” the model. It is equal to Φmin + δ, ie. Φ0 (see Section 6.1.1). A
PEST predictive analysis run should be preceded by a parameter estimation run in which Φmin

is determined. The user then decides on a suitable value for δ and hence Φ0 before supplying
the latter as PD0 for a PEST predictive analysis run. Naturally PD0 should be greater than
Φmin; however in most circumstances it should only be a little greater.

PD1

The procedure by which PEST calculates the location of the critical point in parameter space
is a complex one; see Section 2.1.9. If PEST is asked to maximise (minimise) a certain model
prediction while constrained to keep the objective function (calculated on the basis of

Predictive Analysis 6-13

calibration observations only) as close as possible to PD0 it will, in the course of its iterative
solution process, wander in and out of “allowed parameter space” (ie. the area inside the Φ0 +

δ contour of Figures 6.1, 6.2, 6.4 and 6.5).

Because the shape of the PD0 contour can be so complex, it is extremely hard for PEST to
find a parameter set which lies exactly on this contour. The value supplied for PD1 (which
must be slightly higher than PD0) is a value which PEST will consider as being “close
enough” when approaching this contour from the outside. (When approaching it from the
inside, any objective function value is “good enough” because values on the inside of the
PD0 contour are all less than PD0 and hence all calibrate the model.)

Thus PD0 is the value of the objective function that PEST must “aim for” when maximising
(minimising) the model prediction; PD1 is the value that it will accept. This should normally
be about 5% higher than PD0. However if you are not undertaking a line search for
refinement of the parameter upgrade vector (see below), or if PEST appears to be having
difficulties in finding parameter sets which can raise or lower the prediction (whichever is
appropriate) while keeping the model calibrated, it may be advisable to raise PD1 to 10%
higher than PD0.

PD2

When used in predictive analysis mode, the solution procedure used by PEST is very similar
to that used in parameter estimation mode. During each optimisation iteration PEST first fills
the Jacobian matrix; then it calculates some trial parameter upgrade vectors on the basis of a
number of different values of the Marquardt lambda. The latter is automatically altered by
PEST during the course of the solution process using a complex adjustment procedure. If the
current value of the objective function is above PD1, PEST adjusts the Marquardt lambda in
such a manner as to lower the objective function; if the objective function is below PD1,
PEST’s primary concern is to raise (lower) the model prediction.

After PEST has tested a few different Marquardt lambdas it must make the decision as to
whether to continue calculating parameter upgrade vectors based on new lambdas or whether
it should move on to the next optimisation iteration. If the objective function is above PD1
this decision is made using the same criteria as in normal PEST operation; these criteria are
based on the efficacy of new lambdas in lowering the objective function. An important
variable in this regard is PHIREDLAM. As is explained in Section 4.2.2 of this manual, if
PEST fails to lower the objective function by a relative amount equal to PHIREDLAM on
successive parameter upgrade attempts using successive Marquardt lambdas, PEST will
move on to the next optimisation iteration.

When PEST is run in predictive analysis mode, as the objective function approaches PD0 the
relative change in the objective function, Φ, between Marquardt lambdas may be small;
however the relative reduction in (Φ - Φ0) (ie. the objective function minus PD0) may be
sufficient to warrant testing the efficacy of another Marquardt lambda. The objective function
value at which PEST stops testing for a relative objective function reduction, and begins
testing for a relative reduction in (Φ - Φ0) is PD2. Generally this should be set at 1.5 to 2
times PD0. In either case the decision as to whether to try another lambda or move on to the
next optimisation iteration is made through comparison with PHIREDLAM.

Predictive Analysis 6-14

ABSPREDLAM and RELPREDLAM

During each iteration, after it has filled the Jacobian matrix PEST tests the ability of a
number of different values of the Marquardt lambda to achieve its objective. Its exact
objective depends on the current value of the objective function, Φ. If the objective function
is above PD1, PEST’s highest priority is to lower it; if the objective function is less than
PD1, PEST’s highest priority is to raise or lower (depending on the value of
NPREDMAXMIN) the model prediction. In either case, PEST is constantly faced with the
decision of whether to test more lambdas or to move on to the next iteration.

If the objective function is below PD1 and successive Marquardt lambdas have not succeeded
in raising (lowering) the model prediction by a relative value of more than RELPREDLAM
or by an absolute value of more than ABSPREDLAM, PEST will move on to the next
optimisation iteration. Due to the fact that the approach to the critical point is often slow,
these values may need to be set low. A value of 0.005 for RELPREDLAM is often suitable;
the value for ABSPREDLAM depends on the context. If you would like one of these
variables to have no effect on the predictive analysis process (which is mostly the case for
ABSPREDLAM), use a value of 0.0.

INITSCHFAC, MULSCHFAC and NSEARCH

When undertaking predictive analysis, PEST calculates a parameter upgrade vector in
accordance with the theory presented in Section 2.1.9 of this manual. However it has been
found from experience that the critical point of Figures 6.4 and 6.5 can be found more
efficiently if PEST undertakes a line search along the direction of its calculated parameter
upgrade vector each time it calculates such a vector, in order to find the exact point of
intersection of this vector with the Φmin + δ contour. However this search will not be
undertaken unless the objective function has fallen below Φmin + δ at least once during any
previous optimisation iteration.

A line search is undertaken for each trial value of the Marquardt lambda. The maximum
number of model runs that PEST will devote to this line search for any value of lambda is
equal to the user-supplied value of NSEARCH; set NSEARCH to 1 if you wish that no line
search be undertaken. Otherwise, a good value is between 6 and 8.

When undertaking the line search, the initial model run is undertaken at that point along the
parameter upgrade vector which is a factor of INITSCHFAC along the line of the distance
that PEST would have chosen using the theory of Section 2.1.9 alone. Unless there is a good
reason to do otherwise, a value of 1.0 is appropriate here. Then PEST moves along the
parameter upgrade vector, increasing or decreasing the distance along this vector by a factor
of MULSCHFAC as appropriate. A value of 1.5 to 2.0 is suitable for this variable in most
cases. Then, once the Φmin + δ contour has been subtended by two different model runs,
PEST uses a bisection algorithm to find the intersection point with greater precision.

It may seem at first sight that implementation of a line search algorithm may prove very
costly in terms of model runs. However experience to date is such as to suggest that inclusion
of the line search option may result in a dramatic reduction in overall model runs, as fewer
optimisation iterations are required to find the critical point, even though each iteration may
individually require more model runs.

Predictive Analysis 6-15

ABSPREDSWH and RELPREDSWH

In the “parameter groups” section of the PEST control file, the user informs PEST whether
derivatives of model outcomes with respect to the members of each parameter group are to be
calculated using two points, three points, or two points at first and then three points later.
When run in parameter estimation mode, PEST makes the switch between two point and
three point derivatives calculation if it fails to lower the objective function by a relative
amount equal to PHIREDSWH between successive optimisation iterations. The value for
PHIREDSWH is supplied in the “control data” section of the PEST control file.

When used in predictive analysis mode, the role of PHIREDSWH is unchanged if the current
objective function is above PD1. However if it is below PD1, PEST’s decision to switch from
two point derivatives calculation to three point derivatives calculation is based on
improvements to the model prediction. If, between two successive optimisation iterations, the
model prediction is raised (lowered) by no more than a relative amount of RELPREDSWH or
by an absolute amount of ABSPREPSWH, PEST makes the switch to three point derivatives
calculation. A setting of 0.05 is often appropriate for RELPREDSWH. The setting for
ABSPREDSWH is context-dependent. Supply a value of 0.0 for either of these variables if
you wish that it has no effect on the optimisation process. (On most occasions
ABSPREDSWH should be set to 0.0.)

NPREDNORED

The last four variables are termination criteria.

When PEST is used in parameter estimation mode, the optimisation process is judged to be
complete when the objective function can be reduced no further, or if it is apparent that a
continuation of the optimisation process will reduce it very little. This is still the case if
PEST, when used in predictive analysis mode, fails to lower the objective function below
PD1. However if it has been successful in lowering it to this value (which it should be if PD0
and PD1 are chosen to be above Φmin as determined from a previous parameter estimation
run), then termination criteria are based on improvements to the model prediction.

If NPREDMAXMIN is set to 1 and NPREDNORED optimisation iterations have elapsed
since PEST has managed to raise the model prediction, then it will terminate execution.
Alternatively if NPREDMAXMIN is set to -1 and NPREDNORED optimisation iterations
have elapsed since PEST has managed to lower the model prediction, then it will terminate
execution. A good setting for NPREDNORED is 4.

ABSPREDSTP, RELPREDSTP and NPREDSTP

If NPREDMAXMIN is set to 1 and if the NPREDSTP highest predictions are within an
absolute distance of ABSPREDSTP of each other, or are within a relative distance of
RELPREDSTP of each other, PEST will terminate execution. If NPREDMAXMIN is set to
-1 and the NPREDSTP lowest predictions are within an absolute distance of ABSPREDSTP
of each other, or are within a relative distance of RELPREDSTP of each other, PEST will
terminate execution. A good setting for RELPREDSTP is 0.005. The setting for
ABSPREDSTP is context-dependent; set ABSPREDSTP to 0.0 if you wish it to have no
effect (which is normally the case). A good setting for NPREDSTP is 4.

Predictive Analysis 6-16

Note that the maximum allowed number of optimisation iterations is set by the value of the
NOPTMAX variable provided in the “control data” section of the PEST control file.
Consider setting this higher than you would for PEST’s usage in parameter estimation mode.

6.3 An Example
See Section 12.2 for an example of PEST’s use in Predictive Analysis Mode.

Regularisation 7-1

7. Regularisation

7.1 About Regularisation

7.1.1 General

PEST (and other nonlinear parameter estimation software) sometimes encounters difficulties
in minimising the calibration objective function where too many parameters must be
simultaneously estimated. Such situations often arise when calibrating models that represent
two- and three-dimensional spatial processes, or when using such models to infer the
properties of a two- or three-dimensional model domain as part of a data interpretation
process. In many cases the user may not wish to observe the conventional wisdom of
parameter parsimony for fear of losing important system details. However the use of too
many parameters leads to numerical instability and nonuniqueness of parameter estimates.

In an attempt to reduce the number of parameters to a manageable level, a two- or three-
dimensional model domain is often subdivided into a small number of zones of assumed
parameter constancy; zone boundaries can be chosen on the basis of geological and/or other
evidence (where this evidence exists), or inferred from the field data itself. While this
methodology works well, there are many problems associated with it. For example, zonation
of the model domain may be difficult as it may not be immediately apparent from the
observation dataset where property contrasts exist, or whether property transitions are smooth
rather than abrupt. In many cases, the modeller may prefer to ask PEST to infer areas of high
or low property value itself, rather than attempting to construct a parameter zonation scheme
based on an incomplete knowledge of the locations of property discontinuities.

Unfortunately a calibration and/or data interpretation strategy which does not rely entirely on
an externally-supplied zonation will nearly always result in the necessity to estimate a large
number of parameters. Some of these parameters will invariably be more sensitive to the field
data than others; insensitive parameters are not only difficult to estimate themselves, but may
hamper PEST’s ability to estimate other, more sensitive, parameters (see Section 5.6 for
details). Furthermore, parameter correlation is often very strong in highly parameterised
systems, this resulting in a high degree of nonuniqueness in parameter estimates. Hence even
if a good fit is obtained between model outputs and field data, the parameters giving rise to
this fit will probably be just one set out of a virtually infinite number of sets that will also
result in a good fit between model outputs and field data.

A related problem in working with highly-parameterised systems is that unless some
constraints are imposed on parameter values, or on relationships between parameter values,
individual parameter estimates tend to show a high degree of spatial variability, and can even
take on extreme values, as PEST tries to use every parameter at its disposal in order to
accommodate every nuance of the observation dataset upon which the calibration or data
interpretation process is based. In many cases these nuances are better considered as “system
noise”. Hence an appropriate level of misfit between model outputs and field data can be
tolerated on this basis, for it is well known that a parameterisation which attempts to fit all of
the “fine detail” of a measurement dataset is often a poor representation of true system
properties. Use of an appropriate regularisation procedure in the parameter estimation process

Regularisation 7-2

overcomes this problem by allowing the modeller to inject some “sanity” into the process by
limiting the degree of spatial variability that optimised parameter values are allowed to show.
While this may be done at the cost of obtaining a perfect fit between model outputs and field
data, the estimated parameters are often far more believable as result of this misfit.
Furthermore, as will be described below, when run in “regularisation mode” the user is able
to inform PEST of the maximum cost that he/she is prepared to tolerate in terms of model-to-
measurement misfit when implementing a regularisation constraint.

The power of a properly-implemented regularisation procedure is that it allows the modeller
access to the benefits of using a large number of parameters (in terms of the spatial resolution
required to define the location of important property contrasts), at the same time as it allows
him/her access to the benefits of a more sparingly parameterised system (in terms of stability
of the inversion process, reduced parameter correlation, and a reduced propensity for
estimated parameter values to be wild and unbelievable). It also allows the user to inject
his/her judgement into the parameterisation process by selecting a regularisation scheme that
reflects his/her current state of knowledge of that system.

7.1.2 Smoothing as a Regularisation Methodology

The most commonly used regularisation methodology is the imposition of a “smoothing
constraint” on parameter values. In most cases this is achieved by taking differences between
neighbouring pairs of parameter values (or between functions of these parameter values) and
requesting that each such difference be zero if possible. This is done by supplying each
parameter difference to PEST as an extra “observation”, or as an article of prior information,
the “observed value” for which is zero in each case. Thus each non-zero parameter difference
makes a contribution to the objective function whose task it is for PEST to minimise. Hence
in minimising the objective function, PEST seeks to minimise these parameter differences
and, in so doing, increases parameter uniformity across the model domain (or of sub-areas
within this domain - see below).

Regularisation can be used in conjunction with most methods of defining a parameterisation
scheme over a model domain. It can be used in conjunction with zones of assumed parameter
constancy, for use of an appropriate regularisation scheme allows the modeller to use more
zones than he/she otherwise would. Through enforcing either a single, regional smoothing
condition, or a series of more local smoothing conditions over different model sub-areas, the
model can be parameterised in such a way that it respects outside knowledge (for example
geological knowledge) at the same time as it accommodates smaller scale property variations
in order to provide a satisfactory fit between model outputs and field measurements.
Similarly, if a “pilot points” parameterisation scheme is used (in which parameter values are
estimated for points lying within the model domain, and these parameter values are then
spatially interpolated to the cells or elements of the model grid or mesh using kriging or some
other spatial interpolation method), the degree of spatial parameter variation between these
pilot points, or of various subgroups of them, can be limited through the imposition of
appropriate uniformity criteria.

As stated above, regularisation can take place across the entire model domain, or across sub-
areas within the domain. In the latter case, if there are boundaries within the model domain
where property discontinuities are known to exist, then no parameter differences should be
taken across these boundaries for inclusion in the “regularisation observations” used to

Regularisation 7-3

enforce the smoothing condition.

Regularisation criteria other than uniform smoothing can also be used. For example
individual parameter differences might be weighted according to inter-parameter distance. Or
a minimum curvature condition could be imposed; each relationship comprising this
regularisation scheme will cite at least 3 parameters, stating that the difference between the
“inner” parameter value and the average of at least two “outer” parameter values is zero. Or a
regularisation scheme might be comprised of a series of differences between many (or all) of
the model’s parameters and some preferred value for each of these parameters. Even more
sophisticated techniques might be developed; for example a regularisation condition imposed
on the calibration of a transient model might be that the same parameter distribution which
calibrates the transient model also calibrates a steady state model. There is no limit to the
range of possibilities.

The main criteria for a regularisation methodology are that:-

1. it includes a substantial number of relationships between most or all of the parameters
involved in the parameterisation process, and

2. it encapsulates some “preferred state” of the system; deviations from this “preferred
state” are tolerated only to the extent that they allow the model to provide an
acceptable fit to field measurements.

Because regularisation should attempt to impose some “preferred state” on system
parameters, and because it should involve as many of the model parameters as possible, it
constitutes a mechanism for making insensitive parameters sensitive. Without the use of a
suitable regularisation strategy, a parameter pertaining to a part of the model domain far
removed from locations where field measurements were made, may have a sensitivity of
almost zero. Thus if that parameter is estimated (together with other model parameters) on
the basis of field data alone, its estimated value will be subject to a very large margin of
uncertainty. However if a regularisation condition is imposed, the value estimated for such an
ill-determined parameter will most likely be the “natural value” of the parameter as defined
through the regularisation process. Similarly if, when estimated on the basis of field
measurements alone, certain parameters are highly correlated with each other, each member
of the correlated set could take on an infinite number of values, provided other members of
the set take on complementary values. Imposition of a properly-constructed regularisation
condition will result in the selection of just one set of values for these correlated parameters,
ie. the set of values that is most in harmony with the “natural” state of the system as defined
by the regularisation conditions.

7.1.3 Theory

The theoretical underpinnings of the regularisation methodology provided in PEST is
presented in Section 2.1.10 of this manual.

Regularisation 7-4

7.2 Implementation in PEST

7.2.1 Regularisation Mode

To introduce regularisation into the parameter estimation process in the manner described in
Section 2.1.10, PEST must be run in “regularisation mode”. This mode of operation is not too
different from PEST’s traditional parameter estimation mode in that an objective function is
minimised, the objective function being defined as the sum of squared weighted differences
between observations and corresponding model outputs. However when used in
regularisation mode, observations must be subdivided into “measurement observations” and
“regularisation observations” so that PEST can calculate the contribution made to the total
objective function by each of these. Furthermore, during each optimisation iteration, just after
the Jacobian matrix has been filled, and just before parameter upgrade vectors are calculated
and tested, PEST calculates a suitable “regularisation weight factor” (ie. µ from equation
2.33) by which all of the weights pertaining to the regularisation observations are multiplied
prior to calculation of the parameter upgrade vector. This regularisation weight factor is
calculated in such a way as to try to ensure that the measurement objective function after
parameter upgrade is equal to Φm

l defined in equation 2.31, ie. the “limiting measurement
objective function” below which the model is deemed to be calibrated. However, as it is
calculated on the basis of a linearity assumption (based on the Jacobian matrix) that is not
always a good approximation to reality, measurement objective functions equal (or nearly
equal) to Φm

l are not normally achieved until late in the parameter estimation process.

7.2.2 The Observation Group “Regul”

Regularisation observations are distinguished from measurement observations through being
assigned to a special observation group named “regul”. As was discussed in Section 4.2.6,
prior information items, as well as observations, should be assigned to observation groups.
Thus regularisation observations can be supplied in either the “observation data” or “prior
information” sections of the PEST control file, or both. All observations and/or prior
information equations which do not belong to the group “regul” are assumed to be part of the
“measurement” dataset. The weights used by these measurement observations and/or prior
information equations are not varied during the parameter estimation process.

The user must also supply PEST with a value for the limiting measurement objective function

Φm
l. In some cases, PEST will be run in regularisation mode only after it has been used on

the same problem in parameter estimation mode. If this is the case, the user will know the
lowest value for Φm that can be achieved without any regularisation constraints imposed, and
will set Φm

l a little higher than this. Alternatively, if no preceding parameter estimation run
has been carried out, Φm

l can be set at a level that is judged to be appropriate on the basis of
assumed measurement standard deviations. If PEST cannot lower the measurement objective
function as low as Φm

l
 , then it will simply lower it as far as it can (and will normally

calculate a low regularisation weight factor in order to achieve this).

While PEST’s operation in regularisation mode is similar in many respects to its operation in
parameter estimation mode, there are some important differences. In both modes of operation
PEST attempts to lower an objective function; however in regularisation mode the total
objective function cannot be compared from iteration to iteration, for the composition of the

Regularisation 7-5

objective function changes with the regularisation weight factor µ depicted in equation 2.33.
However each of the separate components of the objective function, viz. Φr (the
regularisation component) and Φm (the measurement component) can be compared from
iteration to iteration.

Because, when operating in regularisation mode, PEST’s intention during each optimisation
iteration remains the same as in parameter estimation mode, ie. to lower an objective
function, all of the input variables which control its operation in parameter estimation mode
are still required for its operation in regularisation mode. Furthermore, they still have the
same roles. However, as will be discussed below, a number of new variables are required in
the PEST control file to control PEST’s operation in regularisation mode.

7.3 Preparing for a PEST Run in Regularisation Mode

7.3.1 The PEST Control File - “Control Data” Section

As was discussed in Section 4.2.2 of this manual, the variable PESTMODE on the third line
of the PEST control file must be provided as “estimation”, “prediction” or “regularisation”;
the last of these options must be supplied for this variable for PEST to run in regularisation
mode. If so, there must be a “regularisation” section at the end of the PEST control file
(following either the “model input/output” section or, if present, the “prior information”
section of the PEST control file).

7.3.2 The PEST Control File - Observation Groups

As has already been discussed, when working in regularisation mode, observations and/or
prior information must be assigned to at least two different observation groups, one of which
must be named “regul”. All observations and/or prior information items belonging to the
group “regul” comprise the “regularisation observations”; all observations and/or prior
information equations belonging to all other groups comprise the “measurement
observations”. Weights must be assigned to individual observations and prior information
equations within each group in the normal manner (or an observation covariance matrix can
be assigned - see Section 4.3). However, as was explained above, weights assigned to the
regularisation observations and/or prior information equations are multiplied internally by a
“regularisation weight factor” prior to formulation of the total objective function during each
optimisation iteration.

7.3.3 Control File - “Regularisation” Section

Example 7.1 shows the format of the “regularisation” section of the PEST control file. This
section should be placed at the end of the file.

Regularisation 7-6

An example of the “regularisation” section of a PEST control file is provided in Example 7.2.

The “regularisation” section of the PEST control file must begin with a single line containing
the character string “* regularisation”. Then follow three lines, each of which contains a
number of variables which control the way in which PEST operates when working in this
mode. The role of each of these variables is now discussed.

PHIMLIM

This is Φm
l of equation 2.31. That is, it is the upper limit of the measurement objective

function (ie. the upper level of model-to-measurement misfit) that is tolerable when trying to
minimise the regularisation objective function Φr. In some cases a PEST regularisation run
will postdate a normal parameter estimation run. If the latter run was successful, it will have
informed the user of how low the measurement objective function can be if all parameters are
adjusted without reference to any regularisation conditions. Φm

l should be set somewhat
above this, for the imposition of regularisation constraints will mostly result in a slight
diminution of PEST’s ability to fit the field data exactly. The user informs PEST of the extent
to which he/she will tolerate a less-than-optimal fit between model outputs and field data for
the sake of adhering to the “reality check” imposed by the regularisation constraints through
the variable PHIMLIM.

PHIMACCEPT

During each optimisation iteration, just after it has linearised the problem through calculating
the Jacobian matrix, and just before it begins calculation of the parameter upgrade vector,
PEST calculates the optimal value of the regularisation weight factor µ for that iteration. This
is the value which, under the linearity assumption encapsulated in the Jacobian matrix, results
in a parameter upgrade vector for which the measurement component of the objective
function is equal to PHIMLIM. However, due to the approximate nature of the linearity
assumption, PEST may not be able to lower the measurement component of the objective
function to PHIMLIM on that iteration in spite of the fact that it uses a number of different
values for the Marquardt lambda in attempting to do so. If it cannot lower the measurement
objective function to an acceptable level, it simply accepts the upgraded parameters, proceeds
to the next optimisation iteration and tries again. However if it does succeed in lowering the
measurement objective function to an acceptable level, or if it has succeeded in doing this on
previous iterations, then PEST slightly alters its philosophy of choosing new Marquardt

* regularisation
PHIMLIM PHIMACCEPT FRACPHIM
WFINIT WFMIN WFMAX
WFFAC WFTOL

Example 7.1 Format of the “regularisation” section of the PEST control file.

* regularisation
135.0 140.0 0.0
1.0e-2 1.0e-6 1.0e6
1.3 1.0e-2

Example 7.2 An example of the “regularisation” section of a PEST control file.

Regularisation 7-7

lambdas, in that it now attempts to lower the regularisation component of the objective
function Φr while maintaining the measurement component of the objective function Φm

below this acceptable level. This acceptable level is PHIMACCEPT; it should be set slightly
higher than PHIMLIM (ie. Φm

l) in order to give PEST some “room to move” in its attempts
to lower Φr while keeping Φm below, or close to, Φm

l. It needs this “room to move” because
of the fact that it bases its calculations on a linearity assumption that is only approximately
satisfied.

Normally PHIMACCEPT should be about 5% to 10% greater than PHIMLIM. However if
PEST is performing well, you may wish to make it closer to PHIMLIM than this. In choosing
the best parameter set at any stage of the optimisation process (for recording in the parameter
value file) PEST looks at all parameter sets for which it has carried out model runs up to that
point in the process. If any of these runs have resulted in an objective function less than
PHIMACCEPT, it then searches from among these runs for the parameter set which gave rise
to the lowest regularisation objective function. If PHIMACCEPT is set too close to
PHIMLIM, PEST’s selection of the best parameter set may be restricted somewhat, for there
may be some parameter sets for which the measurement objective function Φm is just above
PHIMACCEPT but for which Φr is quite low. Alternatively, if PHIMACCEPT is set too
large, then PEST might not try hard enough to reduce Φm to Φm

l, preferring instead to work
within the weaker constraint set by PHIMACCEPT. When working in regularisation mode,
PEST prints out Φr and Φm for every parameter upgrade attempt. It will be apparent from this
information whether PHIMACCEPT has been set correctly.

FRACPHIM

PEST ignores the value supplied for FRACPHIM unless it is greater than zero. A value of
between zero and 1.0 (but normally less than about 0.3) can be supplied for this variable if
you are unsure what value to use for PHIMLIM. See Section 7.3.4 below for a full discussion
of this variable.

WFINIT

This is the initial regularisation weight factor. During every optimisation iteration PEST
calculates a suitable regularisation weight factor to use during that optimisation iteration
using an iterative, numerical solution procedure; its initial value when implementing this
procedure for the first optimisation iteration is WFINIT. If there are many adjustable
parameters, calculation of the regularisation weight factor for the first optimisation iteration
can be very time-consuming if WFINIT is far from optimal. Hence if you have any idea of
what the weight factor should be (for example from a previous PEST run), then you should
provide WFINIT with this value.

WFMIN, WFMAX

These are the minimum and maximum permissible values that the regularisation weight
factor is allowed to take. If a regularisation scheme is poor, (and does not lend too much
stability to an already unstable parameter estimation process), selection of appropriate values
for WFMIN and WFMAX may be quite important, for these can prevent PEST from
calculating outrageous values for the regularisation weight factor in an attempt to compensate

Regularisation 7-8

for inadequacies of the regularisation scheme.

A regularisation scheme should be such that, even if there are no field measurements, it can
“almost” result in a unique parameter set all by itself; “almost” here implies that there may
still be a degree of nonuniqueness, but that this might only be in relation to a factor by which
all parameters can be multiplied and still satisfy the regularisation conditions. However if the
regularisation scheme is such as to allow high and untrammelled variability of parameters,
PEST can encounter serious difficulties if the inversion problem to which the regularisation
scheme refers is already unstable. In the belief that if regularisation observations were to
make a more substantial contribution to the objective function than measurement
observations, greater stability will ensue in accordance with the aims of introducing
regularisation into the optimisation process in the first place, PEST may try to assign greater
weights to regularisation observations than it otherwise would when the inversion process
runs into difficulties. Where the number of adjustable parameters is high and numerical
solution of the weight factor equation is thus very time-consuming, this may place an undue
strain on PEST’s operation in regularisation mode. If the upper weight factor limit, WFMAX,
is set at an appropriate value, the user will be able to detect this aberrant behaviour sooner
than he/she otherwise would, and take appropriate action if necessary.

WFMIN and WFMAX values of 10-6 and 106 respectively are suitable for most occasions.

WFFAC, WFTOL

When PEST calculates the appropriate regularisation weight factor to use during any
optimisation iteration, it uses an iterative procedure which begins at the value of the
regularisation weight factor calculated for the previous optimisation iteration; for the first
optimisation iteration it uses WFINIT to start the procedure. In the process of finding the
weight factor which, under the linearity assumption used in its calculation, will result in a
measurement objective function (ie. Φm) of PHIMLIM (ie. Φm

l), PEST first travels along a
path of progressively increasing or decreasing weight factor (it decides which one of these
alternatives to explore on the basis of the value of the current measurement objective function
with respect to PHIMLIM). In undertaking this exploration, it either multiplies or divides the
weight factor by WFFAC; it continues to do this until it has found two successive weight
factors which lie on either side of the optimal weight factor for that optimisation iteration.
Once it has done this, it uses Newton’s method to calculate the optimal weight factor,
through a series of successive approximations. When two subsequent weight factors
calculated in this way differ from each other by no more than a relative amount of WFTOL,
the optimal weight factor is deemed to have been calculated.

Experience has shown that a suitable value for WFFAC is about 1.3; it must be greater than
1. WFTOL is best set at somewhere between 10-3 and 10-2. However if there are many
adjustable parameters and PEST consumes a large amount of time in determining the optimal
weight factor, a tolerance of somewhat higher than 10-2 may prove suitable.

7.3.4 The Control Variable FRACPHIM

As was mentioned above, a non-zero value can be supplied for FRACPHIM if you would like
to use PEST in regularisation mode, but you are unsure of what value to use for PHIMLIM.

Regularisation 7-9

If FRACPHIM is provided with a value of zero or less (or if this variable is absent from the
PEST control file), then PEST’s action when working in regularisation mode will be exactly
the same as that already described. However if FRACPHIM is provided with a value of
between 0.0 and 1.0 (values of 1.0 or greater are illegal), then PEST will calculate a new
value for PHIMLIM at the beginning of each optimisation iteration. This value will be
calculated as the current value of the measurement objective function times FRACPHIM.
Thus PEST will always “aim for” a measurement objective function that is lower than the
current one. This allows it to lower the measurement objective function as the parameter
estimation process progresses while, at the same time, making use of the numerically
stabilising effects of regularisation.

The following aspects of the use of the FRACPHIM variable should be carefully noted:-

1. If FRACPHIM is supplied as 0.0, or as less than 0.0, PEST will assume that no value
has been supplied for FRACPHIM at all. The value of PHIMLIM used in every
optimisation iteration will thus be that supplied in the PEST control file.

2. If FRACPHIM is supplied with a value of 1.0 or greater, PEST will cease execution
with an error message.

3. For other values of FRACPHIM, PEST will adjust the value of PHIMLIM at each
optimisation iteration by multiplying the current value of the measurement objective
function by FRACPHIM. However it will lower PHIMLIM no further than the value
for this variable supplied in the PEST control file.

4. Optimal values for FRACPHIM are normally in the range 0.1 to 0.3.

5. As well as adjusting the value of PHIMLIM during every optimisation iteration,
PEST also adjusts the value of PHIMACCEPT. This adjustment is made such that,
during every optimisation iteration, the ratio of PHIMACCEPT to PHIMLIM is the
same as that supplied in the PEST control file. Normally this ratio should be no
greater than 1.1.

7.4 Working with PEST in Regularisation Mode

7.4.1 Run-Time Information

As it runs, PEST records information to both the screen and to its run record file. When PEST
is run in parameter estimation mode, the principal items of interest during each optimisation
iteration are the value of the objective function at the beginning of the iteration, and new
values of the objective function which are calculated as PEST tests a series of parameter
upgrade vectors calculated on the basis of a number of different Marquardt lambdas. When
run in predictive analysis mode, the current value of the model prediction is also important.

The situation is slightly different when PEST runs in regularisation mode. Because the
regularisation weight factor (µ in equation 2.33) is different from iteration to iteration, the
objective function calculated during one optimisation iteration is not directly comparable
with that calculated by PEST during the previous optimisation iteration. However the
measurement and regularisation objective functions are comparable from optimisation

Regularisation 7-10

iteration to optimisation iteration.

Example 7.3 shows part of a run record file produced by PEST when operating in
regularisation mode.

PEST begins each optimisation iteration by recording the current value of the regularisation
weight factor (as calculated during the previous optimisation iteration) and of the
regularisation and measurement objective functions Φr and Φm. Note that user-supplied
regularisation weights are not multiplied by the current weight factor when calculating the
regularisation objective function. (That is why the value of the regularisation objective
function is comparable from optimisation iteration to optimisation iteration.) Of course, no
weight factor is used in calculation of the measurement objective function.

Next PEST fills the Jacobian matrix. Then, on the basis of the linearity assumption
encapsulated in the Jacobian matrix, PEST calculates the optimal value for the regularisation
weight factor for the current iteration. Once it has calculated the regularisation weight factor,

OPTIMISATION ITERATION NO. : 5
 Model calls so far : 50
 Current regularisation weight factor : 0.16403
 Current value of measurement objective function : 2.8654
 Current value of regularisation objective function : 2.2663

 Re-calculated regularisation weight factor : 0.32052
 Starting objective function for this itn. (ie. phi) : 3.0982

 Lambda = 3.90625E-02 ----->
 Phi = 2.0301 (0.655 of starting phi)
 Meas. fn. = 1.6652
 Regul. fn. = 3.5520

 Lambda = 1.95313E-02 ----->
 Phi = 2.5257 (0.815 of starting phi)
 Meas. fn. = 2.0957
 Regul. fn. = 4.1855

 Lambda = 7.81250E-02 ----->
 Phi = 2.2408 (0.723 of starting phi)
 Meas. fn. = 1.9340
 Regul. fn. = 2.9866

 No more lambdas: phi rising
.
.

 Maximum factor change: 1.650 ["ro9"]
 Maximum relative change: 0.4643 ["ro8"]

OPTIMISATION ITERATION NO. : 6
 etc

Example 7.3 Extract from a PEST run record file.

Regularisation 7-11

it can calculate an objective function (ie. “phi”) for the current optimisation iteration using
equation 2.33. PEST prints this phi as “the starting objective function for this itn.”.

PEST then calculates one or a number of parameter upgrade vectors on the basis of one or a
number of different Marquardt lambdas in an attempt to lower the objective function as much
as possible. As is apparent from equation 2.33, by lowering the objective function PEST will
simultaneously lower one or both of Φr and Φm. Marquardt lambdas are selected using a
similar procedure to that used when PEST is working in parameter estimation mode. For each
parameter upgrade vector that it tests, PEST lists the measurement and regularisation
objective functions as well as the total objective function calculated on the basis of a model
run undertaken with the trial parameters. Note that the sum of the measurement and
regularisation objective functions will not equal the total objective function unless the
regularisation weight factor is unity - see equation 2.33.

7.4.2 Composite Parameter Sensitivities

As described in Section 5.3.2 of this manual, in the course of its execution PEST records the
composite sensitivities of all adjustable parameters to a “parameter sensitivity file”. The
composite sensitivity of any parameter can be considered as the magnitude of the vector
comprising the weighted column of the Jacobian matrix corresponding to that parameter,
divided by the number of observations. Where some of the observations taking part in the
parameter estimation process are regularisation observations, their weights will change from
optimisation iteration to optimisation iteration in accordance with the current value of the
regularisation weight factor. The changing weight factor alters the values of the composite
parameter sensitivities. Hence these sensitivities are not directly comparable from
optimisation iteration to optimisation iteration.

7.4.3 Post-Run Information

At the end of the parameter estimation process PEST records information to its run record
file, to its residuals file, to its parameter value file, and to its observation sensitivity file.

Information recorded to the run record file is similar to that recorded to this file when PEST
operates in parameter estimation mode. Included in this information are parameter
uncertainties and the parameter covariance and associated matrices. Regularisation weights
are multiplied by the optimised regularisation weight factor prior to computation of these
matrices. Caution should thus be exercised in interpreting the information contained in these
matrices. Regularisation information serves the very useful purpose of imposing a “reality
check” on an overparameterised calibration problem, and of adding numerical stability to the
solution of that problem. However it does not constitute part of the measurement dataset, and
hence should not really be used in the calculation of the uncertainty associated with each
parameter that is estimated on the basis of that dataset.

Like the run record file produced by PEST when run in parameter estimation mode, the run
record file produced as an outcome of a regularisation run contains a listing of residuals and
respective weights, together with a brief statistical summary of the residuals pertaining to
each observation group. It should be noted that wherever weights are cited, or are used in any
statistical calculation in this section of the PEST run record file, the weights pertaining to
regularisation observations are multiplied by the optimised regularisation weight factor, ie.

Regularisation 7-12

by the regularisation weight factor used in the calculation of optimised parameter values.
(Note that these optimised parameter values are also listed on the run record file and, of
course, in the parameter value file).

A similar consideration applies to information written to the residuals file at the end of the
optimisation process. That is, where weights are used in the calculation of any quantities
pertaining to regularisation observations listed in this file, the regularisation weights supplied
by the user are multiplied by the optimised regularisation weight factor. Note also that
“measurement standard deviations” and “natural weights” are not calculated for
regularisation residuals, as these have no meaning.

Information recorded on the observation sensitivity file produced by PEST at the end of its
run is also weight-dependent; see Section 5.3.3 for details. In this case, just as in the cases
discussed already, weights used for regularisation observations are equal to user-supplied
weights multiplied by the optimal regularisation weight factor.

7.5 Other Considerations Related to Regularisation

7.5.1 Using PEST in Two Different Modes

As is explained in Section 7.3, a PEST control file suitable for use by PEST in regularisation
mode differs from a PEST control file suitable for use by PEST in parameter estimation
mode, in three ways, viz:

1. the PESTMODE variable must be set to “regularisation” rather than “estimation”,

2. an observation group named “regul” must be present, and

3. a “regularisation” section must be present at the end of the PEST control file.

Once a PEST control file has been built for PEST usage in regularisation mode, it is a simple
matter to use PEST in parameter estimation mode on the basis of the same input dataset. All
that needs to be done is to change PESTMODE from “regularisation” to “estimation”. PEST
will then run happily in parameter estimation mode, ignoring the redundant “regularisation”
section at the end of the PEST control file. It will treat the observation group “regul” just like
any other group, and members of this group just like any other observations. However, if you
wish to dispense with this regularisation information altogether, assign all members of this
group a weight of zero.

As was mentioned above, parameter uncertainties and other statistics recorded at the end of
the run record file after PEST was run in regularisation mode are calculated on the basis of
user-supplied weights for members of the observation group “regul” multiplied by the
optimised regularisation weight factor. However if you have just undertaken a regularisation
run and you would like to calculate parameter uncertainties (and/or the parameter covariance
matrix and other quantities derived from this matrix) on the basis of the measurement dataset
alone, you should undertake the following steps.

1. After the regularisation run, create a new PEST control file with optimised parameter
values substituted for initial parameter values, using the PARREP utility program

Regularisation 7-13

supplied with PEST.

2. Set all regularisation weights to zero.

3. Alter PESTMODE on the new PEST control file to “estimation”.

4. Adjust NOPTMAX to -1. As explained in Section 4.2.2 of this manual, when PEST is
run with NOPTMAX set to -1, it undertakes enough model runs to calculate the
Jacobian matrix, and then terminates execution with a full statistical printout at the
end of its run record file.

7.5.2 Initial Parameter Values

When running PEST in regularisation mode, you can supply initial parameter values that are
far from optimal, or you can supply optimised parameter values from a previous
unregularised PEST run if you wish. In the latter case, the initial measurement objective
function Φm may actually be less than Φm

l.

In most cases it makes no difference to PEST what the starting parameter values are; if they
are a long way from optimal, PEST will reduce them to near-optimal before the regularisation
mechanism begins to have a strong effect on the optimisation process. However in difficult
cases, it has been found from experience that it is sometimes better to start PEST from a
previously-optimised set of parameter values. If this is done, the measurement objective
function Φm will approach PHIMLIM (ie. Φm

l) “from the inside” rather than “from the
outside”. Sometimes this appears to be a more stable procedure. Where run times are long it
may also prove to be a faster procedure, as PEST can normally minimise the regularisation
objective function, subject to the PHIMLIM constraint, using a fewer number of model runs
when starting from an optimal or near-optimal set of parameter values than when starting
from parameter values that are far from optimal.

7.6 Two Examples of Regularisation

7.6.1 A Layered Half-Space

Electrical soundings are often undertaken by geophysicists in order to infer the variation of
electrical resistivity with depth in the ground. A sounding is carried out by passing electrical
current through the ground between two current electrodes placed at varying distances apart
from each other and measuring the voltage gradient at the surface induced by this current
flow. Interpretation of data gathered in this way is based on the premise that the earth can be
simulated as a layered half-space. A model can be used to simulate the electrical response of
this half space to the currents that flow through it for different current electrode separations.
PEST can then be used in conjunction with this model to infer the electrical properties of the
half-space from the sounding data.

A traditional method of inferring half-space properties is to assume that the earth under the
measurement site is comprised of a small number of layers, each of uniform resistivity. PEST
can then be asked to estimate the resistivity and thickness of each of these layers from the
surficial voltage measurements. An alternative method is to assume that there are a large

Regularisation 7-14

number of geoelectric layers, and that the boundaries between these layers are situated at
logarithmically increasing depths below the surface. PEST can then be asked to estimate the
resistivities of these layers. However because of the large number of layers (and hence
parameters to be estimated), the level of parameter correlation (and hence of nonuniqueness)
will be high. Thus a regularisation constraint must be enforced to stabilise the problem. This
can take the form of a series of differences between the resistivities of successive model
layers, the “observed value” for each such difference being zero.

Assume that the names provided to PEST for the resistivity of each model layer are “ro1”,
“ro2”, etc. Assume also that these parameters are log-transformed during the parameter
estimation process. If regularisation observations are added to the “prior information” section
of the PEST control file, this section will look something like Example 7.4. (It is assumed
that the subsurface has been subdivided into 15 different layers.)

Note the following points.

• The “observed” value of each parameter difference is 0.0.

• Each element of prior information pertains to the logarithm of the respective
parameters rather than to the parameters themselves because the parameters are log-
transformed in the parameter estimation process. If it is the user’s desire that
differences be formed between the parameters themselves rather than between the
parameter logarithms, then the differences could be calculated by the model, and an
“observed value” of 0.0 for each such observation supplied in the “observation data”
section of the PEST control file.

• All of the items of prior information involved in the regularisation process have been
assigned to the observation group “regul”.

• In the present instance, all of the regularisation observations have been assigned the
same weight. (These weights are multiplied internally by the regularisation weight
factor before being used by PEST to calculate a new set of parameter values.) If it is
the user’s desire that PEST try harder to enforce uniformity in some areas rather than
others, then this could be requested by adopting a different weights assignment
strategy.

• Each parameter difference comprising the set of regularisation observations is formed
between a certain layer and the layer underneath it. However for the bottommost
layer, the difference is formed between that layer and the topmost layer.

* prior information
pi1 1.0 * log(ro1) - 1.0 * log(ro2) = 0.0 1.0 regul
pi2 1.0 * log(ro3) - 1.0 * log(ro2) = 0.0 1.0 regul

.

.
pi15 1.0 * log(ro15) - 1.0 * log(ro1) = 0.0 1.0 regul

Example 7.4 Regularisation observations contained in the “prior information” section
of a PEST control file.

Regularisation 7-15

Experience has demonstrated that a regularisation scheme such as that depicted in Example
7.4 works very well. However if an attempt is made to estimate layer thicknesses as well as
resistivities, then the scheme breaks down. If layer thicknesses are estimated as well as
resistivities, then the regularisation observations on their own do not provide a sufficiently
strong constraint on parameter values to constitute a suitable regularisation scheme. The
reason for this is obvious when it is realised that if all regularisation conditions were exactly
obeyed and the subsurface was uniform, layer thicknesses would be completely
indeterminate, for layer thicknesses have no meaning in a uniform half-space.

7.6.2 A Heterogeneous Aquifer

Under steady-state conditions, the flow of ground water through the subsurface is
mathematically described by Darcy’s law and constrained by the conservation of mass. These
two laws can be combined into a single partial differential equation which can be used to
calculate the distribution of hydraulic heads throughout a study area for different dispositions
of sources and sinks of water, and for different system boundary conditions. Where the shape
of the model domain is complex, and/or the hydraulic conductivity of the porous medium
through which the water flows is nonuniform, this equation must be solved numerically using
a technique such as the finite difference, finite element or analytical element method.

In most ground water modelling applications, the hydraulic conductivity at different locations
within the model domain is only poorly known. However if the strengths of the various
sources and sinks of water and the characteristics of the pertinent boundary conditions
affecting the system are known, then hydraulic conductivities in different parts of the domain
can be inferred from borehole water level measurements using PEST (assuming that the
coverage of observation bores is good enough). However before doing this, the user must
decide on an appropriate parameterisation strategy for the model domain.

A common strategy is to subdivide the model domain into zones of assumed parameter
constancy based on geological or other information. Unfortunately, such information is often
absent or unreliable. Furthermore, there can be a considerable degree of variation of
hydraulic conductivity within each geological unit as a result of many factors including
lithological heterogeneity, differential weathering, structural features created during tectonic
events, etc.

Thus in many instances it is necessary to consider a more complex parameterisation scheme.
A simple but effective scheme is to divide the model domain into a large number of
“parameter blocks” (or rectangles) arranged in rows and columns in a grid-like structure, and
to then estimate the hydraulic conductivity within each such block. Due to the large number
of parameters requiring estimation, a suitable regularisation scheme is essential. One such
scheme is to request that differences between block hydraulic conductivities (or their
logarithms) in both the row and column directions (assuming that the blocks are arranged in a
grid pattern) be reduced to a minimum. The regularisation information can be supplied as
prior information, or the parameter differences comprising this information can be calculated
by the model. In the latter case, they should be provided to PEST as a series of observations.
Hence whenever the model is run, it provides not just the model-generated counterparts to the
heads measured at boreholes, but also a series of hydraulic conductivity differences based on
the current set of parameters used by the model. If the pertinent regularisation observations
are named “d1”, “d2”, etc, part of the “observation data” section of the PEST control file may

Regularisation 7-16

appear as in Example 7.5.

The following points should be noted.

• The “observed value” of each regularisation observation is zero.

• All regularisation observations belong to the observation group “regul”.

• Each regularisation observation should pertain to a single difference between a
particular parameter and its neighbour in either the row or column direction.

• For each parameter block, differences should be taken in both the row and column
directions (resulting in two regularisation observations). However where a geological
boundary occurs between two neighbouring blocks, the difference between parameter
values on either side of that boundary should be omitted from the regularisation
dataset. In this way the regularisation scheme informs PEST that the preferred
locations of hydraulic property contrasts are at recognised geological boundaries.
However heterogeneity elsewhere will be accommodated if required.

Other parameterisation schemes, together with appropriate regularisation methodologies, can
be used. For example, a “pilot points” methodology is very attractive. Using this technique,
PEST is asked to assign hydraulic conductivities to discrete points within the model domain.
The hydraulic conductivity at each cell or node of the numerical ground water model is then
calculated from the hydraulic conductivities assigned to these pilot points using a spatial
interpolation algorithm such as kriging. If appropriate, the interpolation algorithm can be
tailored to the geology such that different subsets of pilot points are used as a basis for spatial
interpolation within different mapped geological units. For each subset of pilot points a series
of differences can be formed between the parameter values assigned to these points in order
to create a regularisation scheme not unlike that described above. A Delauney triangulation
of the model domain based on pilot point locations can be used to define the set of
neighbours to each such point; a parameter difference will then be taken for each
neighbouring pair of points. The weight used for each regularisation observation could be
independent of the distance between the points, or could be defined as a function of this
distance. Where a geological boundary passes between two points, then either the difference
would not be taken, or the weight assigned to the pertinent regularisation observation would
be zero.

A suite of utility software that implements the use of pilot points for spatial parameter
definition in conjunction with the United States Geological Survey ground water flow model
MODFLOW is available through the “Ground Water Data Utilities” supplied with PEST.

o1 0.0 1.0 regul
o2 0.0 1.0 regul
o3 0.0 1.0 regul
etc

Example 7.5 Regularisation observations contained within the “observation data”
section of a PEST control file.

Model-Calculated Derivatives 8-1

8. Model-Calculated Derivatives

8.1 General
Accuracy in the calculation of model outputs with respect to adjustable parameters is
essential for good PEST performance, especially when working with highly parameterised
systems. As well as accuracy, efficiency of derivatives calculation is also important, for run-
times can be very long when PEST is used with such systems. To enhance its use in
conjunction with a complex modelling system, PEST offers the user increased flexibility in
derivatives calculation over that which is available through finite differences alone.

8.2 Externally-Supplied Derivatives

8.2.1 The External Derivatives File

Some models are able to calculated derivatives of their outputs with respect to their
parameters themselves. If so, it is often better for PEST to use these derivatives instead of the
derivatives that it calculates itself using finite parameter differences. There are two reasons
for this.

1. Code included within the model itself for the purpose of derivatives calculation can
often exploit certain aspects of the mathematics underlying the numerical simulation
process to calculate derivatives far more quickly than they can be calculated using
finite differences.

2. Derivatives calculated directly by the model are often numerically more precise than
those calculated by taking differences between model outputs calculated on the basis
of incrementally-varied parameter values.

Hence if a model can calculate derivatives itself, PEST should use these derivatives.

PEST can read derivatives of model-calculated observations with respect to adjustable
parameters from a special file written by the model whenever derivatives are requested by
PEST. Because this file must satisfy special formatting requirements, it will normally be
required that the user add a few lines of code to the model to endow it with the ability to
write this file to PEST’s specifications.

The “external derivatives file” (as it is called herein) produced by the model must contain a
“derivatives matrix”. (This is slightly different from the Jacobian matrix in that the latter
matrix takes account of whether parameters are log-transformed or not during the inversion
process.) The derivatives matrix, like any other matrix, is comprised of rows and columns.
Each column contains the derivative of every model outcome for which there is a
complementary observation with respect to a particular parameter. Each row contains the
derivatives of a single observation with respect to all parameters. Example 8.1 shows an
example of an external derivatives file expected by PEST.

Model-Calculated Derivatives 8-2

The first line of an external derivatives file contains two integers listing the number of
parameters and number of observations represented in the derivatives file. These correspond
to the number of columns and the number of rows respectively in the derivatives matrix.
They must also agree exactly with the values of the PEST variables NPAR and NOBS in the
PEST control file. The derivative matrix is listed next in the file.

Some further aspects of this file are now discussed in detail. These should be noted carefully,
for if the external derivatives file does not meet PEST’s specifications it will not be read by
PEST, or (what is worse) may be read incorrectly by PEST.

8.2.2 File Management

As is further discussed below, it is not necessary that the model supplies an external
derivatives file if you do not want it to. However if you notify PEST that the model will
supply such a file, then you must also inform PEST of the name of the external derivatives
file and of the command which PEST must use to run the model in such a way that it writes
this file. Just before issuing this command (it is issued once every optimisation iteration)
PEST first checks to see whether a derivatives file already exists. If such a file does exist,
PEST deletes it. Thus if the model fails to run, PEST does not read the old file, mistaking it
for the new one; instead it writes an error message to the screen informing the user that the
derivatives file cannot be found. Alternatively, if PEST issues an error message to the effect
that it encountered a premature end to the external derivatives file, this indicates that either
the model did not run to completion, or that there is an error in the code added to the model
to write this file.

8.2.3 File Format

The external derivatives file must be an ASCII (ie. text) file in which numbers are separated
by spaces, tabs or a comma (it is read by PEST using FORTRAN free field input). As
mentioned above, it must be headed by a line citing the number of columns and rows
comprising the matrix. The matrix itself must have NOBS rows and NPAR columns, where
NPAR is the number of parameters and NOBS is the number of observations cited in the
PEST control file for the current case. The ordering of parameters and observations in the
external derivatives file must be the same as that in the PEST control file. Note that a column
must be included in the derivatives matrix for every parameter, even for those parameters
which are tied or fixed (PEST ignores derivatives calculated with respect to fixed

4 9
5.00000 1707.60 34.4932 42.1234
5.25066 8.79458 93.2321 23.5921
1.04819 1.16448 5.34642 19.3235
1.52323 0.11418 0.59235 75.2354
3.21342 0.48392 9.49293 95.3459
2.49321 5.39230 0.49332 9.22934
19.4492 9.93024 0.49304 5.39234
36.3444 10.4933 0.59439 6.49345
95.4592 86.4234 47.4232 324.434

Example 8.1. An external derivatives file.

Model-Calculated Derivatives 8-3

parameters). Similarly, there must be a row for every observation cited in the PEST control
file, even for observations which are assigned a weight of zero.

Where there are many parameters to be estimated, each row representing the derivatives of a
particular observation with respect to all parameters can be wrapped onto the next line (or as
many lines as you wish). However derivatives for the next observation must begin on a new
line.

8.2.4 Derivatives Type

As is documented elsewhere in this manual, some parameters can be log transformed during
the parameter estimation process; PEST then estimates the log (to base 10) of such
parameters rather than the parameters themselves. For such parameters, respective elements
of the Jacobian matrix used by PEST contain derivatives with respect to the logs of these
parameters rather than to the parameters themselves; PEST calculates derivatives with
respect to parameter logs internally from derivatives with respect to native parameters. When
writing the external derivatives file, the model need not concern itself with whether a
parameter is log-transformed by PEST or not. The model must simply supply derivatives
with respect to untransformed parameters and let PEST take care of the calculations required
to convert these derivatives to derivatives with respect to parameter logs.

Similarly, if the SCALE and OFFSET values for a particular parameter differ from 1 and 0
respectively, the model need not concern itself with this. PEST modifies the derivatives cited
in the external derivatives file to take account of this.

8.2.5 Use of Derivatives Information

A complex model often consists of many different parameter types. It may be possible to
compute derivatives with respect to some of these parameters inside the model, yet it may be
necessary to compute derivatives with respect to others using PEST’s traditional method of
finite differences. As is discussed below, the user is able to indicate to PEST the parameters
for which derivatives information is supplied externally, and those for which derivatives must
be computed by PEST using finite differences.

Even greater complexity can arise. For example, a model may be able to calculate derivatives
with respect to a certain parameter for some observations but not for others. In this case,
derivatives with respect to the pertinent parameter are actually obtained twice by PEST. First
PEST undertakes model runs in the usual manner to calculate derivatives for that parameter
using finite differences. Then, after all necessary finite difference model runs have been
undertaken for the purposes of finite-difference derivatives calculation for those parameters
which need it, PEST completes the Jacobian calculation process by running the “derivatives
model” to calculate external derivatives. As is discussed above, for those observations where
derivatives can be calculated by the model, such derivatives are usually more accurate than
those calculated by PEST using finite differences and hence should be used in preference to
those calculated by PEST. However in reading the derivatives file it must be ensured that
previously-calculated finite-difference derivatives are not overwritten by those elements of
the external derivatives matrix that could not be calculated by the model. To prevent this
from happening the respective elements of the external derivatives file should be assigned a
value of -1.11e33 by the model. Wherever PEST encounters such a value it does not use it.

Model-Calculated Derivatives 8-4

Rather it uses the derivative value that already exists in its internal derivatives matrix, this
having been calculated by finite differences.

In summary, model-calculated derivatives are read by PEST after derivatives are calculated
by finite differences for those parameters for which the user has requested finite-difference
derivatives calculation for at least one observation. Externally supplied derivatives override
those already calculated by finite differences except where a value of -1.11e33 is supplied for
the derivative value.

8.2.6 Tied Parameters

If a parameter is tied to a parent parameter, and derivatives of the former parameter for a
particular observation are supplied externally, then derivatives of the tied parameter for that
same observation must also be supplied externally. If this does not occur, PEST will cease
execution with an appropriate error message.

8.2.7 Name of the Derivatives File

The user must inform PEST of the name of the external derivatives file through the PEST
control file for the current case (see Section 8.5). The external derivatives file can have any
legal name except for the following names which are already used by PEST. If the filename
root of the current project is case, the names to be avoided are:- case.hld, case.jac, case.jco,
case.jst, case.par, case.pst, case.res, case.rmf, case.rmr, case.rst, case.rsr, case.sen, case.mtt
and case.seo. Other names which must be avoided are pest.hlt, pest.mmf and pest.stp.

8.2.8 Predictive Analysis Mode

It is very important to note that if PEST is used in predictive analysis mode and at least some
derivatives are supplied externally, then the sole member of the observation group “predict”
must be the last observation cited in the PEST control file. Because the ordering of
observations in the PEST control and external derivatives files must be the same, then
derivatives for this observation must also comprise the last row of the derivatives matrix
contained in the external derivatives file.

8.2.9 Parallel PEST

PEST cannot receive derivatives through an external file if it is being run as Parallel PEST.

8.3 Sending a Message to the Model
PEST has the ability to send a small “message” to the model prior to running it. This is useful
if some aspect of the model’s deployment depends on whether it is being run to test
parameter upgrades, to calculate derivatives by forward or central differences, or to fill an
external derivatives file. The message sent by PEST resides in a file which is always named
pest.mmf. The contents of a typical message file are shown in Example 8.2

Model-Calculated Derivatives 8-5

The first line of a message file contains a character string which tells the model why PEST is
running it. The various strings used by PEST are as follows:-

forward_model_run

This string informs the model that it is being run either to test a parameter upgrade, or as the
first model run of the PEST optimisation process.

derivative_increment

The model is being run as part of the finite-difference derivatives calculation process
undertaken by PEST.

external_derivatives

The model is being run in order to write an external derivatives file.

If the character string on the first line of the PEST-to-model message file is
“derivative_increment”, then the integer on the second line of this file has significance. A
value of n for this integer indicates that the model run is being undertaken with the value of
the nth parameter incremented for the purpose of derivatives calculation by forward
differences, or as the first of two runs by which derivatives will be calculated using central
differences. A value of -n indicates that the nth parameter is decremented in the second of two
runs undertaken for the purpose of derivatives calculation by central differences.

The third line of the message file lists the number of parameters (PEST variable NPAR) and
number of observations (PEST variable NOBS) involved in the parameter estimation process.
Following this are NPAR lines of data with three entries on each line. The first entry on each
line is a parameter name; recall that this name can contain up to12 characters. Then follows
the value of the parameter used on the current model run. Following that is an integer code
that informs the model of the parameter’s status in the inversion process. A value of 0
denotes that the parameter is adjustable and is not logarithmically transformed. A value of 1
indicates that the parameter is adjustable and is logarithmically transformed. A value of -n
indicates that the parameter is tied to parameter number n, while a value of -10000 indicates
that the parameter is fixed.

The PEST-to-model message file is always written to the current working directory; it is
written just before each model run is undertaken. However in the case of Parallel PEST, the
message file is written to each slave working directory just before the pertinent model run is

derivative_increment
 -2
 4 20
 hcond1 5.005787 1
 hcond2 9.850230 0
 stor1 -5.660591 -2
 stor2 8.257257 -10000

Example 8.2. A PEST-to-model message file, pest.mmf.

Model-Calculated Derivatives 8-6

initiated by the slave.

8.4 Multiple Command Lines
As has already been discussed, when PEST runs a model for the purpose of external
derivatives calculation, it can use a different command to that which it uses for ordinary
model runs. (The same command can be used for both of these types of model run if desired.
In this case it may be necessary for the model to acquaint itself with PEST’s expectations. It
can do this by reading the PEST-to-model message file.)

With PEST it is possible to use different commands to run the model when calculating finite-
difference derivatives with respect to different parameters. Recall that when PEST calculates
the derivatives of all model outputs with respect to a particular parameter, it runs the model
once (maybe twice) with the value of the parameter incrementally varied. Thus a different
command can now be used to run the model for each such incrementally-varied parameter.

Use of a variable command-line strategy may allow a reduction in overall PEST run time to
be achieved in some circumstances. For example, if a composite model is comprised of a
sequence of executable programs encapsulated in a batch file, it may not be necessary to run
the earlier programs of the sequence when parameters pertaining to the later programs are
being incrementally varied for the purpose of derivatives calculation, for outputs of the
earlier programs will not vary between subsequent model runs. Hence the “model” run by
PEST when incrementally varying these later parameters may replace the earlier submodel
commands with commands by which pertinent output files for these earlier models (stored
under separate names) are copied to the model output files expected by PEST (recall that
these are deleted by PEST prior to each model run). Caution should be exercised in doing this
however, for it must be ensured that the model output files that are copied in this way pertain
to un-incremented parameter values for the current optimisation iteration. Thus it may be
necessary to undertake a full model run for the first of those parameters which affect only the
later submodels and, as part of this run, copy model output files from the earlier models to the
files which are to be used for temporary storage. This will be done using yet another “model”
comprised of a batch or script file which includes the pertinent “copy” commands.

8.5 External Derivatives and the PEST Control File

8.5.1 General

Formatting of the PEST control file must be slightly expanded from that discussed in Section
4.2 to accommodate the use of external derivatives and to control PEST-to-model messaging.
Pertinent variables in the PEST control file which govern this aspect of PEST’s functionality
are now discussed.

8.5.2 “Control Data” Section

As is explained in Section 4.2, the fifth line of the PEST control file begins with the PEST
control variables NTPLFLE, NINSFLE, PRECIS and DPOINT. The three variables situated
to the end of this line (for which values of 1, 0 and 0 were suggested in Section 4.2) are
named NUMCOM, JACFILE and MESSFILE (in that order). (For the sake of backwards

Model-Calculated Derivatives 8-7

compatibility with older versions of PEST, these variables may be omitted from this line.
However it is important to note that either these three variables must be completely absent
from the fifth line of the PEST control file, or all of them must be present.)

The roles of these variables are now discussed.

NUMCOM

This is the number of different command lines which can be used to run the model. The
actual commands themselves are listed in the “model command line” section of the PEST
control file (see below). For previous versions of PEST, only one command line could be
used to run the model. However for versions of PEST from 5.0 onwards, different commands
can be used to run the model, depending on the purpose of the model run.

Note that when counting the number of available model command lines when assigning a
value to NUMCOM, the command that is used to run the model in order to fill the external
derivatives file should not be included in the count. This command is listed in a separate
section of the PEST control file to the “model command line” section, as will be discussed
shortly.

If there is only one command listed in the “model command line” section of the PEST control
file (which will most often be the case), then NUMCOM should be supplied with a value of
1.

JACFILE

Provide this integer variable with a value of 1 if a special model run is to be undertaken
during each optimisation iteration for the purpose of external derivatives calculation.
Otherwise provide JACFILE with a value of 0.

Note that if JACFILE is provided with a value of 1 and an attempt is made to run Parallel
PEST, PEST will cease execution with an appropriate error message.

MESSFILE

Provide this integer variable with a value of 1 if PEST is required to write a PEST-to-model
message file prior to each model run. Otherwise provide it with a value of 0.

8.5.3 “Parameter Data” Section

As is described in Section 4.2.4, each line of the “parameter data” section of the PEST
control file contains values for the variables PARNME, PARTRANS, PARCHGLIM,
PARVAL1, PARLBND, PARUBND, PARGP, SCALE, OFFSET and DERCOM (in that
order). Only the variable DERCOM is used in implementing PEST’s external derivatives
functionality.

As was discussed above, the various commands which can be used to run the model for
purposes other than external derivatives calculation are listed in the “model command line”
section of the PEST control file. The value of DERCOM pertaining to each parameter

Model-Calculated Derivatives 8-8

denotes which of these commands will be used to run the model when PEST calculates
derivatives with respect to that parameter using finite differences; commands within the
“model command line” section are numbered from first to last, beginning at 1.

Alternatively, if the derivatives of all observations with respect to a particular parameter are
to be supplied externally, then the DERCOM value for that parameter should be supplied as
zero. If this is the case, PEST will not undertake any model runs to calculate derivatives with
respect to this parameter using the finite difference method.

For a particular parameter, derivatives for some observations may be calculated using finite
differences while derivatives for others may be supplied externally by the model. In this case
a non-zero value should be provided for DERCOM, thus ensuring that PEST calculates
derivatives using finite differences for this parameter. If JACFILE (in the “control data”
section of the PEST control file) is set to 1, then the model will be called specifically to
calculate external derivatives after PEST has calculated derivatives using finite differences
for all parameters with a non-zero DERCOM value. As is stressed above, to ensure that a
finite-difference-calculated derivative is not overwritten when PEST reads the derivatives
matrix from the external derivatives file, the model should fill all elements of the derivatives
matrix for which it has not actually calculated an external derivative with a value of -
1.11e33.

It is important to note that if JACFILE is provided with a value of 1, then the external
derivatives command will be issued, and PEST will read derivatives from the external
derivatives file, whether or not any parameter has been assigned a DERCOM value of 0.
Thus if JACFILE is set to 1, PEST can only assume that for at least one parameter with a
non-zero DERCOM value, finite-difference-calculated derivatives for some observations are
to be supplemented by external derivatives for others. It is again emphasised that when
writing code to fill the external derivatives matrix, the user should take particular care to
provide all elements of this matrix with a value of -1.11e33 unless an external derivative is
actually calculated for that element. Thus derivatives with respect to parameters for which
external derivatives are not required will not be overwritten by spurious values.

8.5.4 “Derivatives Command Line” Section

If a non-zero value is supplied for JACFILE in the “control data” section of the PEST control
file, the PEST control file must contain a “derivatives command line” section. This must be
situated just above the “model command line” section. Contents of the “derivatives command
line” section of the PEST control file are illustrated in Example 8.3, while an example is
provided in Example 8.4.

* derivatives command line
command to run the model
EXTDERFLE

Example 8.3. Structure of the “derivatives command line” section of a PEST control
file.

Model-Calculated Derivatives 8-9

Like all other sections of the PEST control file, the beginning of the “derivatives command
line” section must be denoted using a special header line, the first character of which is an
asterisk. Following the header line, the next line of this section consists of the command used
to run the model when it is required to calculate external derivatives. If appropriate, this can
be the same command as that used to run the model for the purpose of testing parameter
upgrades or for the calculation of derivatives using finite differences.

The final line of the “derivatives command line” section consists of the name of the file to
which the model should write the derivatives matrix, ie. the name of the external derivatives
file.

If JACFILE is set to 0 in the “control data” section of the PEST control file, the “derivatives
command line” section can be omitted.

8.5.5 “Model Command Line” Section

In previous versions of PEST the “model command line” section of the PEST control file
contained only a single line, this being comprised of the command that PEST must use to run
the model. Indeed if NUMCOM in the “control data” section of the PEST control file is set to
1, then the contents of this section are the same. However if NUMCOM is set to n, there must
be n model command lines listed in this section of the PEST control file, one under the other.
The DERCOM variable in the “parameter data” section of the PEST control file refers to
these commands by number when indicating which of these commands is to be used when
running the model to calculate derivatives using finite differences with respect to each
parameter.

It is important to note that when the model is run in order to test a parameter upgrade, and
when the model is run for the first time in the optimisation process in order to obtain the
objective function corresponding to the initial parameter set, the first of the listed model
commands is used to run the model.

8.6 An Example
A simple example is presented to demonstrate the use of PEST’s external derivatives
functionality. Files pertaining to this example can be found in the edpestex subdirectory of
the PEST directory after installation. See Chapter 12 for a more fully discussed example of
the use of PEST and its utilities. In that example derivatives are calculated using finite
differences.

File polymod.f contains the source code for a simple program which computes the ordinates
of a third degree polynomial at a number of different abscissae. That is, it computes the

* derivatives command line
model_d.bat
derivs.dat

Example 8.4. An example of the “derivatives command line” section of a PEST
control file.

Model-Calculated Derivatives 8-10

function:-

y = ax3 + bx2 + cx + d (8.1)

for different values of x. It reads these values of x from a file named poly_x.in and writes its
computed values of y to a file named poly_val.out. “Parameter values”, ie. the values of the
polynomial coefficients a, b, c and d, are read from a file named poly_par.in.

As well as computing values of y corresponding to different values of x. POLYMOD also
computes a “prediction”, in this case a function of the parameter values given by the
equation:-

p = a + 2b + 3c + 4d (8.2)

The “prediction” is written to the end of file poly_val.out following the computed polynomial
values.

POLYMOD also computes a Jacobian matrix; this is a matrix of the derivative of y with
respect to each parameter (ie. a, b, c and d) at each value of x. This is stored internally in the
JACOB matrix and written to a derivatives file in the format expected by PEST. The name of
this file is poly_der.out.

A template file named poly_par.tpl has been prepared to complement the “model input file”
poly_par.in. This file provides spaces for the four parameters a, b, c and d. An instruction file
named poly_val.ins reads polynomial values and the prediction value from the model output
file poly_val.out.

Two PEST control files have been prepared. In one of these (poly.pst), PEST is asked to run
in parameter estimation mode, while in the other (polyp.pst) it is asked to run in predictive
analysis mode. In the former case the model “prediction” plays no part in the parameter
estimation process as it is assigned a weight of zero. PEST is thus asked to estimate values
for the parameters a, b, c and d by matching computed polynomial values at different
abscissae to the “field data” contained in the PEST control file. Because this “field data” was,
in fact, model-generated, PEST is able to achieve a very low objective function.

On the fifth line of file poly.pst, the values of the PEST control variables NUMCOM,
JACFILE and MESSFILE are set to 1, 1 and 0 respectively. Thus PEST is asked to look to a
derivatives file to obtain its Jacobian matrix; no PEST-to-model message file is requested. As
is evident in the “derivatives command line” section of poly.pst, the expected name of the
derivatives file is poly_der.out. Note also from the contents of the “derivatives command
line” and “model command line” sections of the PEST control file, that the command used by
PEST to run the model for the purpose of derivatives calculation is the same as the command
that it uses to run the model in order to simply obtain model outputs.

The final entry on each line of the “parameter data” section of file poly.pst is the value of the
variable DERCOM. In the present instance DERCOM is zero for all parameters; this
indicates that, for each parameter cited in the control file, PEST will obtain derivatives of all
model outputs with respect to that parameter from the derivatives file poly_der.out - ie. no
supplementary model run is required to calculate some derivatives with respect to this

Model-Calculated Derivatives 8-11

parameter using finite differences.

(Note that an OFFSET value of 1.0 is provided for parameter d; this circumvents problems
that can sometimes arise in the parameter estimation process when a parameter approaches
zero; see the discussion of RELPARMA X and FACPARMAX in Section 4.2.2.)

Check the input dataset contained in file poly.pst, and the template and instruction file cited
therein, by typing the command
pestchek poly

at the screen prompt. PESTCHEK should report no errors or inconsistencies - just a warning
that the command used to run the model for the purpose of derivatives calculation is the same
as that used to run the model for the purpose of obtaining normal model outputs. Then run
PEST using the command
pest poly

PEST should quickly reduce the objective function to a very low value.

Now inspect file polyp.pst. While file polyp.pst is very similar to poly.pst, there are some
important differences. Through this file PEST is asked to carry out predictive analysis,
minimising the value of the “prediction” while keeping the model “calibrated” to the extent
that the objective function (based on the match between model outputs and “field data” cited
in the PEST control file), remains at or below a value of 1.0. Starting parameter values are
the same as those in poly.pst. As these are very different from optimal parameter values,
PEST effectively works in parameter estimation mode for a while, concentrating on lowering
the objective function until it “sniffs” the “critical point” - ie. the point at which the
“prediction” is minimised while maintaining the objective function below the user-supplied
threshold (which is 1.0 in the present case). It then calculates the parameter values
corresponding to this point.

Once again, PEST receives derivatives from the model by reading the “derivatives file”
poly_der.out.

Check the PEST input dataset using PESTCHEK and then run PEST to obtain the minimum
model prediction that satisfies calibration constraints. This should be about 8.60.

You can repeat these PEST runs with derivatives calculated by PEST using finite differences
if you wish. For each of the two PEST control files, do the following:-

1. Alter the value of JACFILE (sixth variable on the fifth line) to 0.

2. Alter the value of DERCOM for each parameter (last variable on each line of the
“parameter data” section) to 1.

Check your work with PESTCHEK and then run PEST.

Parallel PEST 9-1

9. Parallel PEST

9.1 Introduction

9.1.1 General

In the course of optimising parameters for a model or of undertaking predictive analysis,
PEST runs the model many times. Some model runs are made in order to test a new set of
parameters. Others are made with certain parameters temporarily incremented as part of the
process of calculating the Jacobian matrix, ie. the matrix of derivatives of observations with
respect to parameters (unless derivatives are supplied to PEST directly by the model in
accordance with PEST’s external derivatives functionality). In calculating the Jacobian
matrix, PEST needs to run the model at least as many times as there are adjustable parameters
(and up to twice this number if derivatives for some of the adjustable parameters are
calculated using central differences). In most cases by far the bulk of PEST’s run time is
consumed in running the model. It follows that any time savings that are made in carrying out
these model runs will result in dramatic enhancements to overall PEST performance.

Parallel PEST can achieve a high degree of performance enhancement by carrying out model
runs in parallel. If installed on a machine that is part of a local area network, Parallel PEST
can carry out model runs on the different machines which make up the network (including the
machine which PEST itself is running on). If model run times are large and the number of
parameters is greater than four or five, overall PEST run times can be reduced by a factor
almost equal to the number of machines over which Parallel PEST is able to distribute model
runs.

As well as allowing a user to distribute model runs across a network, Parallel PEST can also
manage simultaneous model runs on a single machine. This can realise significant increases
in PEST efficiency when carrying out parameter optimisation or predictive analysis on a
multi-processor computer by keeping all processors simultaneously busy carrying out model
runs.

The optimisation (including regularisation) and predictive analysis algorithms used by
Parallel PEST are no different from those used by the normal PEST. Preparation of template
files, instruction files and the PEST control file is identical in Parallel PEST to that of the
normal PEST. However use of Parallel PEST requires that one extra file be prepared prior to
undertaking an optimisation run, viz. a “run management file”. This file informs Parallel
PEST of the machines to which it has access, of the names of the model input and output files
residing on those machines, and of the name of a subdirectory it can use on each of these
machines to communicate with a “slave” which carries out model runs on request; see below.

9.1.2 Parallelisation of the Jacobian Matrix Calculation Process

When PEST calculates derivatives of model outcomes with respect to adjustable parameters
using finite parameter differences, successive model runs are independent, ie. the parameters
used for one particular model run do not depend on the results of a previous model run. The
complete independence of model runs undertaken as part of the process of filling the

Parallel PEST 9-2

Jacobian matrix makes this process easily parallelised. Under these circumstances Parallel
PEST simply distributes model runs to different machines or processors as they become
available, and processes the outcomes of these runs as they are finished.

9.1.3 Parallelisation of the Marquardt Lambda Testing Process

Unlike the Jacobian calculation process, the lambda search process (see Section 2.1.7) is
difficult to parallelise. This is because, with the exception of the first two model runs
undertaken as part of the lambda search procedure during each optimisation iteration, the
Marquardt lambda used at subsequent stages of this procedure is dependent on the results of
model runs undertaken on the basis of previous lambda values. Hence it is necessary for
PEST to wait until the results of a previous model run have been evaluated before it can
undertake a further model run on the basis of a new parameter set calculated using a new
Marquardt lambda.

However while the lambda search process is not immediately amenable to parallelisation, it is
not impossible to accelerate this process somewhat through “partial parallelisation”, thanks to
the fact that lambda values used by PEST in this search are all related to each other by
multiples of LAMFAC. Thus if PEST is run as Parallel PEST, and if it has access to a
number of processors, it can undertake simultaneous model runs across these different
processors using parameters calculated on the basis of a series of lambda values related to
each other by factors of LAMFAC. To some extent, PEST must “guess” which lambdas to
use for these parallelised model runs. If it turns out that some of these lambdas are actually
not required, then nothing will have been lost because the respective processors’
contributions to the lambda search procedure would have also been zero if they were
undertaking no model runs at all.

While Parallel PEST allows such a “partial parallelisation” of the lambda search to be
undertaken, parallel lambda runs will not be undertaken:-

• if at least one parameter is frozen at its upper or lower bound,

• if PEST is running in predictive analysis mode and a line search is undertaken as part
of the predictive analysis process,

• if the model run time for the fastest processor involved in the parallelisation process is
less than 1.8 times the model run time for the second fastest processor (see below),

• if only one slave is currently available for the undertaking of model runs (this may
happen if all but one slave is currently completing redundant model runs arising out
of the previous parallel Jacobian calculation process),

• the user indicates to PEST that only the Jacobian matrix calculation process is to be
parallelised (see below).

The user should take particular note of the first of the above exceptions to PEST’s ability to
undertake a partial parallelisation of the lambda search. The reason for this exception is that
while PEST may be able to “guess” the values of future Marquardt lambdas to be used in the
lambda search procedure with a high probability of success, it has far more difficulty in

Parallel PEST 9-3

predicting whether a parameter is to be frozen at its upper or lower bound, and the order in
which parameters are to be frozen if more than one of them are at their limits. (The fact that a
parameter is at its upper or lower bound is no guarantee that it will be frozen, for it may need
to move back into adjustable parameter space from that bound as different lambdas are
tested).

A continuation of the discussion on how Parallel PEST undertakes “partial parallelisation” of
the lambda testing procedure will be presented in Section 9.2.6 below after a discussion of
how Parallel PEST actually works.

9.1.4 A Warning

If model run times are short, gains in computational efficiency that are achievable using
Parallel PEST will not be as great as when model times are large, for the time taken in
writing and reading (possibly lengthy) model input and output files across a local area
network may then become large in comparison with model run times.

9.1.5 Installing Parallel PEST

The command-line version of the Parallel PEST executable, ppest.exe is automatically
installed when you install PEST on your machine.

As is explained below, for Parallel PEST to run a model on another machine it must signal a
slave, named PSLAVE, residing on the other machine to generate the command to run the
model. Thus pslave.exe must be installed on each machine engaged in the Parallel PEST
optimisation process. To do this, copy pslave.exe (also provided with PEST) to an
appropriate subdirectory on each such machine. This subdirectory can be the model working
directory on that machine if desired; if not, it should be a directory whose name is cited in the
PATH environment variable on that machine. Alternatively, if each slave has access to the
PEST directory on the “master” machine, PSLAVE can be loaded from that directory each
time it is run on each slave machine. This is most easily accomplished if the PEST directory
on the master computer, as seen by each slave computer, is cited in the latter’s PATH
variable.

9.2. How Parallel PEST Works

9.2.1 Model Input and Output Files

The manner in which Parallel PEST carries out model runs on different machines is just a
simple extension of the manner in which PEST carries out model runs on a single machine.
Before running a model on any machine Parallel PEST writes one or more input files for that
model, these files containing parameter values appropriate to that model run. After the model
has finished execution, Parallel PEST reads one or more files generated by the model in order
to obtain values calculated by the model for a set of outcomes for which there are
corresponding field or laboratory measurements.

Operation of Parallel PEST assumes that PEST can write model input files and read model
output files, even though these files may reside on a different machine to that on which PEST

Parallel PEST 9-4

itself is running. Access to files on other machines is achieved through the use of modern
network software. Input and output files for a particular model may reside on the machine
which actually runs the model, or on a network server to which both PEST and the model’s
machine have access. The only provisos on where these files reside is that both PEST and the
model must be able to read and write to these files, and that these files are named using
normal filename protocol. This is easily accomplished through the use of the “shared folder”
concept available across local area networks.

Parallel PEST writes input file(s) for the models running on the various networked machines
using one or more templates residing on the machine on which PEST is running. Similarly,
Parallel PEST reads the output file(s) produced by the various models using the instructions
contained in one or a number of instruction files residing on the machine on which PEST
runs. The fact that model input files are written and model output files are read by PEST
across a network underlines the point made above that the potential reduction in overall
PEST run time that can be achieved by undertaking model runs in parallel will only be
realised if model run times are large compared with the delays that may be incurred in
writing and reading these files across a network.

9.2.2 The PEST Slave Program

While Parallel PEST is able to achieve access to model input and output files residing on
other machines through the use of shared subdirectories, it cannot actually run the model on
another machine; only a program running on the other machine can do that. Hence before
PEST commences execution, a “slave” program must be started on each machine on which
the model will run. Whenever PEST wishes to run a model on a particular machine it signals
the slave running on that machine to start the model. Once the model has finished execution
the slave signals PEST that the model run is complete. PEST can then read the output file(s)
generated by the model.

The slave program (named PSLAVE) must be started before Parallel PEST on each machine
on which model runs are to be undertaken. It detects the commencement of PEST execution
through reading a signal sent by PEST as the latter starts up. It then awaits an order by PEST
to commence a model run, upon the arrival of which it sends a command to its local system
to start the model. It is possible that the command used to start the model may be different for
different slave machines (for example if the model executable resides in a differently-named
subdirectory on each such machine and the full model pathname is used in issuing the system
command); hence PSLAVE prompts the user for the local model command as it commences
execution.

Parallel PEST 9-5

Figure 9.1 illustrates in diagrammatic form the relationship between Parallel PEST, PSLAVE
and the model for the case where PEST resides on one machine and the model is run on each
of two other machines. Note that, as is explained below, this is an unusual case in that it is
common practice for the master machine (ie. machine #1 in Figure 9.1) to also be a slave
machine to avoid wastage of system resources.

9.2.3 Running the Model on Different Machines

Greatest efficiency can be achieved if an independent model executable program resides on
each slave machine. Thus when PSLAVE runs the model, the executable program does not
have to be loaded across the network. Note however, that if PEST and two incidences of
PSLAVE are being run on the same machine in order to gain access to two different
processors belonging to that machine, there is no reason why each slave should not run the
same model executable.

It is essential that for each slave engaged in the Parallel PEST optimisation process, the
model, as run by that slave, reads its input file(s) and writes its output file(s) to a different
subdirectory (or subdirectories) from the model as run by any of the other slaves; this will
probably occur naturally when slaves reside on different machines. If this is not done, model
output files generated during one parallel model run will be overwritten by those generated
during another; similarly model input files prepared by PEST for one particular model run
will be overwritten by those that it prepares for another.

In many cases all input files for one particular model are housed in a single subdirectory; also

Machine #2

pslave.exe
model input files
model output files

Machine #3

pslave.exe
model input files
model output files

Machine #1

ppest.exe
template files
instruction files

writes model input files

reads model output files

writes model input files

reads model output files

Figure 9.1 Relationship between PEST, PSLAVE and the model.

Parallel PEST 9-6

all model output files are written to this same subdirectory. In this simple case, preparation
for model runs on different machines across a network consists in simply copying the entire
model working directory from the master machine to an appropriate directory on each of the
other machines. As is explained below, the structure of the “run management file” which
Parallel PEST must read in order to ascertain the whereabouts of each of its slaves is
particularly simple under these circumstances.

9.2.4 Communications between Parallel PEST and its Slaves

Parallel PEST must communicate with each of its slaves many times during the course of the
optimisation process. It must inform each slave that it has begun execution, it must command
various slaves to run the model, and it must receive signals from its slaves informing it that
different model runs have reached completion. It must also inform all slaves to shut down
under some circumstances of run termination, and be informed by each slave, when it
commences execution, that the slave itself is up and running.

Such signalling is achieved through the use of short shared “signal” files. These files,
whether originating from PEST or PSLAVE, are written to the directory from which
PSLAVE is run on each slave machine; PSLAVE provides these signal files with no path
prefix, thus ensuring that they are written to the directory from which its execution was
initiated. PEST however must be informed of the names of these various PSLAVE working
directories (most of which will reside on other machines) through its run management file.
Note that there is no reason why a PSLAVE working directory should not also be a model
working directory on any slave machine, as long as filename conflicts are avoided. In fact
such an arrangement, being simpler, mitigates against making mistakes. Table 9.1 shows the
names of the signal files used by PEST and PSLAVE to communicate with each other.

If Parallel PEST carries out two simultaneous model runs on the one machine (for example to
exploit that machine’s dual processors), then a separate PSLAVE working directory must be
commissioned for each separate PSLAVE running on that machine. Once again, these
directories may also be the working directories for each of the two distinct model runs.

Parallel PEST 9-7

Where Parallel PEST is used to run the model on different machines across a network, it is
likely that one such slave machine will be the machine that PEST is also running on. This is
because PEST is not, in general, a big consumer of system resources, much of its role being
to manage input and output to and from the model runs being initiated by its various slaves.
Hence the running of PEST leaves adequate system resources available for the running of the
model on the same machine. For such a case running PSLAVE from the model working
directory, thus designating it as the PSLAVE working directory is, again, entirely
appropriate. This directory can also be that from which PEST is run and may thus hold PEST
control, template and instruction files. See Section 9.3.8 for a further discussion of this topic.

9.2.5 The Parallel PEST Run Management File

The purpose of the Parallel PEST run management file is to inform PEST of the working
directory of each slave (as seen through the network from the machine on which PEST is
run), and of the names and paths pertaining to each model input file which it must write and
each model output file which it must read. The run management file must possess the same
filename base as the current PEST case; its extension must be “.rmf”. Thus if Parallel PEST
is run using the command:

ppest calib

then PEST will look to file calib.pst to read its control data (ie. calib.pst is the PEST control
file for the current case) and file calib.rmf to read data pertaining to the distribution of model
runs across the network.

File Written By Function

pslave.rdy PSLAVE Informs PEST that it has begun execution; also
informs it of the command line which it will use
to run the model.

pest.rdy PEST Informs PSLAVE that it has begun execution.

param.rdy PEST Informs PSLAVE that it has just generated
model input files(s) on the basis of a certain
parameter set and that it must now run the
model.

observ.rdy PSLAVE Informs PEST that the model has finished
execution and that it must now read the model
output file(s).

pslave.fin PEST Informs PSLAVE that it must now cease
execution.

p###.## PEST Used to test whether PEST has access to all
PSLAVE working directories.

Table 9.1 Files used by PEST and PSLAVE to communicate with each other.

Parallel PEST 9-8

Example 9.1 shows the structure of a run management file while Example 9.2 shows an
example of such a file for the case where there are three slaves.

The first line of a run management file should contain only the character string “prf”
identifying the file as a PEST run management file. The next line must contain four items, the
first of which is the number of slaves, NSLAVE, involved in the current Parallel PEST run.
The second item on this line is the value of the variable IFLETYP which must be either 1 or
0. If it is 1 then all model input and output files on the various slave machines must be
individually named (as is demonstrated in Example 9.2). However if the names of all
corresponding input and output files are the same across all slaves, being identical to the
names provided (without subdirectory name) in the PEST control file, and if each set of
model input and output files lies within the PSLAVE working directory on each slave
machine, then a value of 0 can be supplied for IFLETYP and the model input and output
filenames omitted from the run management file; Example 9.3 shows such a file. In this case
PEST automatically affixes the working directory of each slave to the front of each model

prf
NSLAVE IFLETYP WAIT PARLAM
SLAVNAME SLAVDIR
(once for each slave)
(RUNTIME(I), I=1,NSLAVE)
Any lines after this point are required only if IFLETYP is nonzero; the
following group of lines is to be repeated once for each slave.
INFLE(1)
INFLE(2)
(to NTPFLE lines, where NTPFLE is the number of template files)
OUTFLE(1)
OUTFLE(2)
(to NINSFLE lines, where NINSFLE is the number of instruction files)

Example 9.1 Structure of the Parallel PEST run management file.

prf
3 1 1.5 0
'my machine' .\
'steve''s machine' k:.\
'jerome''s machine' l:\model\
600 600 720
model.in1
model.in2
model.o1
model.o2
model.o3
k:.\model.in1
k:.\model.in2
k:.\model.o1
k:.\model.o2
k:.\model.o3
l:\model\model.in1
l:\model\model.in2
l:\model\model.o1
l:\model\model.o2
l:\model\model.o3

Example 9.2 A typical Parallel PEST run management file.

Parallel PEST 9-9

input and output file as named in the PEST control file.

The third item on the second line of the PEST run management file is the value for the
variable WAIT. As PEST and PSLAVE exchange information with each other and as PEST
writes and reads model input and output files, both PEST and PSLAVE pause at certain
strategic places in the communications process for an amount of time specified as the value
of the variable WAIT; such pauses allow one machine to “catch up” in implementing the
instructions supplied by another machine. WAIT is the duration of each such pause,
expressed in seconds; its value must be greater than zero. Experience has demonstrated that if
PEST and all of its slaves are running on the same machine a value of 0.2 seconds is
normally adequate. However for communications across a busy network, values as high as
10.0 seconds (or even higher) may be appropriate. By pausing at appropriate moments in the
data exchange process, “sharing violation” errors can be avoided. In some cases such errors
will result in nothing more than a message (generated by the operating system) to the PEST
or PSLAVE screen; this matters little as both PEST and PSLAVE check that their
instructions have been obeyed, re-issuing them if they have not. However if a model, rather
than PEST or PSLAVE encounters such an error through reading from or writing to a file
which has not been closed by another process (such as PEST or even the previous model
run), then the operating system will issue a message such as

Sharing violation reading drive C
Abort, Retry, Fail? [y/n]

The slave running that particular model will drop out of the Parallel PEST optimisation
process until this question is answered. It would obviously be unfortunate if the question is
asked at midnight when no-one is around to answer it with a simple “r” to send the model on
its way again. Fortunately, if WAIT is set high enough, this should not happen.

If PARLAM (the fourth variable appearing on the second line of the run management file) is
set to 1, partial parallelisation of the lambda search is undertaken. However if it is set to 0,
then the lambda search is conducted in serial fashion using just one processor. Partial
parallelisation is further discussed in Section 9.2.6 below.

Lines 3 to NSLAVE+2 (ie. NSLAVE lines in all) of the run management file should contain
two entries each. The first is the name of each slave; any name of up to 30 characters in
length can be provided. The name should be surrounded by single quotes if it contains any
blank spaces; an apostrophe should be written twice. This name is used for identification
purposes only; it need bear no resemblance to computer names or IP addresses as allocated
by the network manager.

The second item on each of these lines (ie. SLAVDIR) is the name of the PSLAVE working
directory as seen by PEST. This directory name should terminate with a backslash character;
if you do not terminate the name with a backslash, PEST will add it automatically. You can
either provide the full path to the PSLAVE working directory, or supply it in abbreviated
form if this works. Thus if, having opened a command-line window to run PEST, you transfer
to drive K in Example 9.2 (this being a slave machine’s disk) and change the directory to the
PSLAVE working directory, and then change back to the local directory again (eg. by typing
“C:”), then a path designation of K:.\ affixed to the filenames listed in Table 9.1 will
ensure that these files are written correctly to the PSLAVE working directory no matter what

Parallel PEST 9-10

is its full pathname. Note however that the directory K:\ (without the dot) is not the same
directory as K:.\ (with the dot) if directories under the PSLAVE working directory are
accessible from the machine on which PEST is run. If there are any doubts, provide the full
PSLAVE path.

Note also from Example 9.2 that a slave on the local machine can work from the same
directory as PEST. This may be desirable if all model input files are in this same directory
(which is often the case) and this is also the current PEST working directory. A designation
of .\ is sufficient to identify this directory.

The next line of the run management file must contain as many entries as there are slaves.
Each entry is the expected run time of the model on the respective slave, the ordering of
slaves on this line being the same as that in which slave data was supplied earlier in the run
management file. Run times should be supplied in seconds; if you are unsure of the exact run
times, simply provide the correct run time ratios. There is no need for stopwatch precision
here as PEST continually updates model run time estimates in the course of the parameter
estimation process. However it is better to overestimate, rather than underestimate these run
times so that PEST will not re-instigate the initial model run (which is not part of the
Jacobian calculation) on an alternative machine if the initial model run takes much longer
than you have indicated, and PEST comes to the conclusion that a mishap may have occurred
on the machine to which that run was initially assigned.

If the value supplied for IFLETYP is 0, then the run management file is complete. However
if it is supplied as 1, the names of all model input files and all model output files on all slave
machines must next be supplied individually. Either full pathnames can be supplied or
abbreviated pathnames, the abbreviations being sufficient for PEST to write and read the
respective files from the directory in which it is run. Data for the various slaves must be
supplied in the same order as that in which the slaves were introduced earlier in the file. For
each slave the names of NTPFLE model input files must be followed by the names of
NINSFLE model output files, where NTPFLE is the number of template files and NINSFLE
is the number of instruction files pertaining to the present PEST case. (Note that the PEST
template and instruction file corresponding to each of these model input and output files is
identified in the PEST control file read by Parallel PEST.)

Example 9.3 shows a Parallel PEST run management file equivalent to that of Example 9.2
but with the value of NFLETYP set to 0. Use of an abbreviated run management file such as
that shown in Example 9.3 is only possible where all model input and output files on each
slave reside in the one subdirectory, and this subdirectory is also the PSLAVE working
directory on that machine.

prf
3 0 1.5
'my machine' .\
'steve''s machine' k:.\
'jerome''s machine' l:\model
600 600 720

Example 9.3 A Parallel PEST run management file equivalent to that of Example 9.2,
but with NFLETYP set to zero.

Parallel PEST 9-11

9.2.6 More on Partial Parallelisation of the Marquardt Lambda Testing Process

The algorithm used by PEST to undertake parallel model runs as part of its lambda search
procedure is similar to that used for parallelisation of the Jacobian matrix calculation process.
However there are some important differences. One such difference is that if any slave carries
out model runs with a run time which is greater than 1.8 times that of the fastest slave, then
that slave is not used in the partial parallelisation process. This is because PEST sends model
runs to its slaves in “packets” of 1 or more runs, and will not resume its normal execution
until all of those runs are completed. The size of this “packet of runs” at any stage of the
lambda search procedure is equal to the number of available slaves whose execution speed is
roughly equivalent to that of the fastest slave. The “packet” is limited to this size because if
one particular slave can complete two model runs in the same or less time than that required
for another slave to complete only one model run, then it would be more efficient to
undertake these model runs in serial, with the proper decision-making process taking place
after each such run.

Another difference between the procedure by which Jacobian runs are carried out in parallel
and that by which lambda search runs are carried out in parallel is that in the former case
PEST knows the number of runs that must be carried out before the Jacobian calculation
process is complete. However the lambda search procedure is deemed to be complete when
PEST judges that the overall parameter estimation process is better served by terminating the
current lambda search procedure and moving on to the next optimisation iteration. The
criteria by which this decision is made are supplied through the variables appearing on the
sixth line of the PEST control file. Hence the size of the “packet” of parallel model runs
ordered by PEST is determined solely on the basis of the number and speed of available
slaves, and not on the basis of foreknowledge of the number of parallel runs required for
completion of the lambda search procedure. The decision-making process involved in the
lambda search procedure is activated only after each packet of model runs is complete, a
process that may result in some of these runs being ignored. The fact that the lambda
adjustment procedure then becomes a combination of parallelisation with intermittent
decision-making is the basis for its classification as a “partial parallelisation” procedure.

During any optimisation iteration, upon commencement of the lambda search procedure for
that optimisation iteration, PEST’s first packet of model runs is based on Marquardt lambdas
which are generally lower than the optimal lambda determined during the previous
optimisation iteration. However, if there are enough slaves at its disposal, PEST also carries
out model runs based on one or a number of higher Marquardt lambda values as well. On
subsequent occasions during the same lambda search procedure on which PEST orders
packets of model runs to be completed, parameters used for such runs are all based on
decreasing Marquardt lambdas or on increasing Marquardt lambdas, depending on the results
of the previous package of parallel runs.

The lambda search procedure is such that parallelisation inevitably results in some model
runs being wasted. Hence, although PEST might inform the user through its screen output
that n parallel model runs are being carried out, it may not display the results (ie. the
objective function and perhaps the model prediction) of all of these n model runs. It simply
processes the results of that “packet” of runs in accordance with its lambda search algorithm.
If the demands of that algorithm are such that more Marquardt lambdas must then be tested,
another “packet” of runs is carried out.

Parallel PEST 9-12

Nevertheless, there will be some occasions when the path taken by the parameter estimation
process is slightly different when the lambda search procedure is parallelised from that which
is taken when the lambda search is conducted on the basis of serial model runs. If an
unexpected and significant advance in the parameter estimation process is achieved in a run
that would not have been undertaken on the basis of the usual Marquardt lambda testing
procedure based on serial model runs, PEST will not ignore this; the results of that run will
be assimilated into the parameter estimation process.

9.3. Using Parallel PEST

9.3.1 Preparing for a Parallel PEST Run

Before running Parallel PEST, a PEST run should be set up in the usual manner. This will
involve preparation of a set of template and instruction files as well as a PEST control file.
When preparing the PEST control file it is important for template and instruction files to be
properly identified. However the names of the corresponding model input and output files are
not used if the value of IFLETYP in the run management file is set to 1, for these are then
supplied to PEST in the run management file itself. Similarly, the model command line as
provided in the PEST control file is ignored by Parallel PEST as the model command line is
supplied directly to each slave by the user on commencement of the latter’s execution (see
below). Once the entire PEST input dataset has been prepared, PESTCHEK should be used to
ensure that it is all consistent and correct.

Next the Parallel PEST run management file should be prepared in the manner discussed in
Section 9.2.5.

Before Parallel PEST is started, care should be taken to ensure that the model runs correctly
on each slave machine. A set of model input files should be transferred from the master
machine to each slave machine (or TEMPCHEK can be used to construct such files on the
basis of a set of template files and a parameter value file). Where any model input files are
not generated by Parallel PEST (because they contain no adjustable parameters), these files
should be identical across all machines that run the model. In most cases all model input files
will be placed into a single model working directory on each slave machine. In most cases
the model itself will need to be installed on each slave machine as well.

9.3.2 Starting the Slaves

Go to each of the slaves in turn, open a command-line window and transfer to the PSLAVE
working directory on that machine. Start PSLAVE execution by typing the command
“pslave”. PSLAVE immediately prompts the user for the command which it must use to run
the model. Type in the appropriate command. Remember that, as with the normal PEST, the
“model” may be a batch file running a series of executables; alternatively, the model may be
a single executable. Provide the model pathname if the model batch file or executable is not
cited in the PATH environment variable on the local machine, or does not reside in the
PSLAVE working directory.

On each slave machine, PSLAVE now waits for PEST to commence execution. At this stage,
or at any other stage of PSLAVE execution, the user can press the <Ctl-C> keys to terminate

Parallel PEST 9-13

its execution if this is desired.

9.3.3 Starting PEST

The next step is to start PEST. Move to the machine on which PEST resides, open a
command-line window, transfer to the appropriate directory and type:

ppest case

where case is the filename base of both the PEST control file and the Parallel PEST run
management file.

PEST then commences execution. First it reads the PEST control file and then the run
management file. Then it attempts to write to, and read from, the PSLAVE working directory
on each slave machine in order to verify that it has access to each such directory. It also
informs each PSLAVE that it has commenced execution and waits for a response from each
of them. Once it has received all necessary responses it commences the parameter
optimisation process.

Operation of Parallel PEST is very similar to that of PEST. However whenever a model run
must be carried out, Parallel PEST selects a slave to carry out this run. If model runs are to be
conducted one at a time (as do, for example, the initial model run and the sequence of model
runs in which parameter upgrades are tested if the user has decided not to parallelise the
lambda search procedure by setting the PARLAM variable to zero), Parallel PEST selects the
fastest available slave to carry out each run. Initially it knows which slave is fastest from the
estimated model run times supplied in the run management file. However once it has
completed a few model runs itself, Parallel PEST is able to re-assess relative slave machine
execution speeds and will use these upgraded machine speed estimates in allocating model
runs to slaves.

The Parallel PEST run manager is “intelligent” to the extent that if a model run is
significantly late in completion Parallel PEST, fearing the worst, allocates that same model
run to another slave if the latter is standing idle. Similarly, if a slave has just become free and
Parallel PEST calculates that a model run which is currently being undertaken on a certain
slave can be completed on the newly freed slave in a significantly faster time, it reassigns the
run to the new slave. As it allocates model runs to different slaves it writes a record of what it
does to its “run management record file”; see below.

Parallel PEST execution continues until either the optimisation process is complete or the
user interrupts it by typing the PPAUSE, PSTOP or PSTOPST command while situated in the
PPEST working directory within another command-line window; see Section 5.4.1 for further
details. In the former case PEST execution can be resumed if the PUNPAUSE command is
typed. Meanwhile the run record file can be examined by opening it with any text editor.

9.3.4 Re-Starting Parallel PEST

If the RSTFLE variable on the PEST control file is set to restart, a terminated Parallel PEST
run may be restarted at any time from the beginning of the optimisation iteration during
which it was interrupted. This can be achieved through entering the command:

Parallel PEST 9-14

ppest case /r

where case.pst is the PEST control file for the current case. Alternatively, execution can be
re-commenced at that point at which calculation of the Jacobian matrix had most recently
been completed by typing the command:

ppest case /j

PSLAVE must be started in the usual fashion on each slave machine before issuing either of
these commands. Note, however, that if PSLAVE is already running on each of these
machines, it does not have to be restarted. This is because an already executing PSLAVE can
detect the commencement of a new PEST run.

If PEST is restarted without the “/r” or “/j” switch, it will commence the optimisation process
from the very beginning. Once again, if PSLAVE is already running on each of the slave
machines (having been initially started for the sake of a previous Parallel PEST run), it need
not be restarted on any of these machines. Such a re-commencement of PEST execution
“from scratch” will sometimes be warranted after PEST terminates execution with an error
message, or if the user terminates PEST execution with the “Immediate stop” option; in
neither case does PEST signal to its slaves to cease execution, just in case the user wishes to
restart PEST immediately after rectifying an error in the PEST control file or in a template or
instruction file. Note, however, that if changes are made to the run management file, each of
the slaves should be stopped and then re-started.

If PEST is restarted with the “/r” or “/j” switch, neither the PEST control file, nor any
template or instruction file should have been altered from that supplied to PEST on its
original run. It is important to note, however, that the same does not apply to the run
management file. Thus Parallel PEST can recommence a lengthy execution using more, less,
and/or different slaves than those that were used for the initial part of the Parallel PEST run,
as long as the new run management file is prepared in the correct fashion and PSLAVE
execution is recommenced on each of the slave machines identified in that file before PEST
execution is recommenced.

9.3.5 Parallel PEST Errors

As in normal PEST operation, Parallel PEST run-time error messages are written to both the
screen and the run record file.

9.3.6 Losing Slaves

If, during the course of a Parallel PEST run, a slave machine drops out of the network, under
many circumstances PEST will continue execution. If communications are lost during the
course of a model run, then PSLAVE executing on the lost machine will not be able to
inform PEST of the completion of that model run. PEST will soon grow tired of waiting and
allocate that run to another slave. It will thus continue execution with one less slave at its
disposal. However if the slave machine drops out just while PEST is trying to read a model
output file, PEST will terminate execution with an error message.

Even complete network failure may not result in the termination of a Parallel PEST run, for if
one slave is running on the same machine as PEST, PEST will be able to continue execution

Parallel PEST 9-15

using just that single slave, as long as the time of network failure did not coincide with the
time at which PEST was reading a model output file from a slave machine.

9.3.7 The Parallel PEST Run Management Record File

Section 5.2 discusses in detail the PEST run record file which records the progress of the
parameter estimation process. Parallel PEST produces an identical run record file to that of
the normal PEST. It also writes a “run management record file”. Like the run record file, the
run management record file possesses a filename base identical to that of the PEST control
file. However PEST provides this file with an extension of “.rmr” (for “Run Management
Record”). Example 9.4 shows part of a Parallel PEST run management record file.

 PEST RUN MANAGEMENT RECORD FILE: CASE VES2

 SLAVE DETAILS:-

 Slave Name PSLAVE Working Directory
 ---------- ------------------------
 "slave 1" k:.\model\
 "slave 2" l:.\model\
 "slave 3" m:.\model\

 Attempting to communicate with slaves

 - slave "slave 2" has been detected.
 - slave "slave 3" has been detected.
 - slave "slave 1" has been detected.

 SLAVE MODEL INPUT AND OUTPUT FILES:-

 Slave "slave 1" ----->

 Model input files on slave "slave 1":-
 k:.\model\ves.in1
 k:.\model\ves.in2

 Model output files on slave "slave 1":-
 k:.\model\ves.ot1
 k:.\model\ves.ot2
 k:.\model\ves.ot3

 Model command line for slave "slave 1":-
 ves

 Slave "slave 2" ----->

 Model input files on slave "slave 2":-
 l:.\model\ves.in1
 l:.\model\ves.in2

 Model output files on slave "slave 2":-
 l:.\model\ves.ot1
 l:.\model\ves.ot2
 l:.\model\ves.ot3

 Model command line for slave "slave 2":-
 ves

 Slave "slave 3" ----->

 Model input files on slave "slave 3":-
 m:.\model\ves.in1
 m:.\model\ves.in2

 Model output files on slave "slave 3":-
 m:.\model\ves.ot1

Parallel PEST 9-16

 m:.\model\ves.ot2
 m:.\model\ves.ot3

 Model command line for slave "slave 3":-
 ves

AVERAGE WAIT INTERVAL: 50 hundredths of a second.

 RUN MANAGEMENT RECORD

RUNNING MODEL FOR FIRST TIME ----->
 21:50:00.19:- slave "slave 1" commencing model run.
 21:55:05.00:- slave "slave 1" finished execution; reading results.

 OPTIMISATION ITERATION NO. 1 ----->

 Calculating Jacobian matrix: running model 5 times
 21:55:23.65:- slave "slave 1" commencing model run.
 21:55:33.92:- slave "slave 3" commencing model run.
 21:55:44.20:- slave "slave 2" commencing model run.
 22:00:05.79:- slave "slave 2" finished execution; reading results.
 22:00:17.77:- slave "slave 3" finished execution; reading results.
 22:00:29.47:- slave "slave 2" commencing model run.
 22:00:39.58:- slave "slave 3" commencing model run.
 22:00:50.07:- slave "slave 1" finished execution; reading results.
 22:05:11.83:- slave "slave 2" finished execution; reading results.
 22:05:43.70:- slave "slave 3" finished execution; reading results.

 Testing parameter upgrades
 22:06:01.69:- slave "slave 2" commencing model run.
 22:11:16.45:- slave "slave 2" finished execution; reading results.
 22:11:27.49:- slave "slave 2" commencing model run.
 22:16:19.63:- slave "slave 2" finished execution; reading results.
 22:16:35.95:- slave "slave 2" commencing model run.
 22:21:23.48:- slave "slave 2" finished execution; reading results.

 OPTIMISATION ITERATION NO. 2 ----->

 Calculating Jacobian matrix: running model 5 times
 22:21:45.07:- slave "slave 2" commencing model run.
 22:21:55.40:- slave "slave 3" commencing model run.
 22:22:25.05:- slave "slave 1" commencing model run.
 22:27:05.83:- slave "slave 2" finished execution; reading results.
 22:27:28.20:- slave "slave 3" finished execution; reading results.
 22:27:39.52:- slave "slave 2" commencing model run.
 22:27:52.63:- slave "slave 3" commencing model run.
 22:28:05.18:- slave "slave 1" finished execution; reading results.
 22:33:06.55:- slave "slave 2" finished execution; reading results.
 22:33:33.03:- slave "slave 3" finished execution; reading results.

 Testing parameter upgrades
 22:34:11.46:- slave "slave 2" commencing model run.
 22:39:36.82:- slave "slave 2" finished execution; reading results.
 22:39:48.09:- slave "slave 2" commencing model run.
 22:45:40.28:- slave "slave 2" finished execution; reading results.
 22:45:51.38:- slave "slave 2" commencing model run.
 22:50:43.30:- slave "slave 2" finished execution; reading results.

 OPTIMISATION ITERATION NO. 3 ----->

 Calculating Jacobian matrix: running model 10 times
 22:50:54.46:- slave "slave 2" commencing model run.
 22:51:14.68:- slave "slave 3" commencing model run.
 .
 .

Example. 9.4 Part of a Parallel PEST run management record file.

As is explained elsewhere in this manual, if PEST (or Parallel PEST) execution is re-
commenced through use of the “/r” or “/j” command line switches, the newly re-activated
PEST appends information to the run record file created on the previous PEST (or Parallel
PEST) run. The same is not true for the run management record file however, for it is
overwritten by a newly re-activated Parallel PEST. This is because, as was mentioned above,
there is no necessity for Parallel PEST to employ the same slaves when it recommences

Parallel PEST 9-17

execution as those which it employed in its previous life.

9.3.8 Running PSLAVE on the Same Machine as Parallel PEST

On many occasions of Parallel PEST execution, at least one of the slaves will be run on the
same machine as that on which PEST is run. In most cases of PEST usage, PEST’s tasks are
small compared with those of the model; hence there is adequate capacity on one single-
processor machine to run both a model and PEST without serious diminution of the
performance of either. However it is wise to ensure that the command-line window running
PSLAVE (and hence the model) is the active window (unless, of course, the user is running
other, interactive, applications at the same time). In this way the window undertaking most of
the work (ie. the window running the model) will receive the highest priority in the allocation
of system resources.

9.3.9 Running Parallel PEST on a Multi-Processor Machine

Parallel PEST can be used to harness the full potential of a multi-processor machine. Such a
machine can either be used on its own or as part of a network of other machines, some of
which may possess multiple processors and some of which may not.

On a single dual processor machine, operation of Parallel PEST is identical to that described
above for machines across a network. Three command-line windows must be opened, two of
which are used to run PSLAVE and one of which is for the use of PEST. A different set of
model input files, residing in a different subdirectory, must be prepared for the use of each
instance of PSLAVE. Each PSLAVE must also have its own separate working directory
which, for convenience, may just as well be the subdirectory holding its set of model input
files. Note that each PSLAVE can invoke the same model executable.

9.3.10 The Importance of the WAIT Variable

The role of the WAIT variable was briefly discussed in Section 9.2.5. As was outlined in that
section, an appropriate value for this variable gives machines across the network time to
respond to the information sent to them by other machines. If WAIT is set too small, the
potential exists for conflicts to occur, resulting in a message on the PEST or PSLAVE screen
sent by the operating system. In some cases, as mentioned in Section 9.2.5, this message
demands an answer which, if not provided, can temporarily remove a particular slave from
the Parallel PEST optimisation process.

If the message “access denied” appears on the PEST or PSLAVE screen, this is a sure
indication that WAIT needs to be set larger. This occurs when PEST or PSLAVE attempts to
delete one of the signal files of Table 9.1 after they have acted on the signal. If they do this
before the program which wrote the signal file has closed it (as can happen if WAIT is set too
small), then the above message appears. This is not serious, however, as no user response is
required and both PEST and PSLAVE ensure that a particular signal file has, in fact, been
deleted before they proceed with their execution.

The more serious case of a model trying to read or write a file that is still opened by PEST
results in the operating-system generated message:

Parallel PEST 9-18

Sharing violation reading drive C
Abort, Retry, Fail?

to which a response is demanded. If this occurs and you are there to respond, simply press the
“r” key. If you are not there to respond, the model cannot run; furthermore the affected slave
can take no further part in the optimisation process until the “r” key is pressed.

Experience will dictate an appropriate setting for WAIT. However it is important to note that
a user should err on the side of caution rather than setting WAIT too low. A high setting for
WAIT will certainly slow down communications between PEST and its slaves. It will also
result in a longer time between the issuing of a PPAUSE or PSTOP command and a response
from PEST. However it will ensure stable Parallel PEST performance across a busy network.

In general, the busier is the network, the higher should WAIT be set. In most cases a value of
1.0 to 2.0 seconds will be adequate, even for a relatively busy network; however do not be
afraid to set it as high as 10.0 seconds (or even higher) on an extremely busy network. While
this could result in elapsed times of as much as 1 minute between the end of one model run
and the beginning of another, if this is small in comparison with the model execution time,
then it will make little difference to overall Parallel PEST performance. Also be aware that
while networks may seem relatively quiet during the day, they may become extremely busy
at night when large backing up operations may take place.

9.3.11 If PEST will not Respond

As is mentioned above, if the PPAUSE, PSTOP or PSTOPST command is issued while the
command-line version of Parallel PEST is running, PEST execution will be interrupted in the
usual way. However unlike the single window version of PEST, Parallel PEST does not need
to wait until the end of the current model run to respond to these commands; rather there is
only a short delay, the length of this delay depending on the setting of the variable WAIT.
Hence if WAIT is set extremely high, be prepared for a short wait between the issuing of any
of the above commands and a response from PEST.

There is, however, one particular situation that can result in a large elapsed time between the
issuing of either of the above commands and the reception of a response from PEST. If, when
PEST tries to read a model output file, it encounters a problem, it does not immediately
terminate execution, reporting the error to the screen. Rather it waits for 30 seconds and then
tries to read the file again. If it is still unsuccessful it waits another 30 seconds and tries to
read the file yet again. This time, if the error is still present, it terminates execution, reporting
the error to the screen in the usual fashion. By trying to read the model output file three times
in this way before declaring that the model run was a failure (for example because the
parameter set that it was using was inappropriate in some way, or an instruction file was in
error), it removes the possibility that network problems have been the cause of PEST’s
failure to read the model output file. While it is engaged in this process however, it does not
check for the presence of file pest.stp (the file written by programs PPAUSE, PSTOP and
PSTOPST). Hence, if a user types any of these commands while PEST is thus engaged,
he/she may have to wait some time for PEST to respond. Meanwhile PEST records on the run
management record that there is a :-

problem (either model or communications) in reading results from slave “xxx"

Parallel PEST 9-19

9.3.12 The Model

The model can be any executable or batch program which can be run from the command line.

9.4 An Example
Once PEST has been installed, a subdirectory of the main PEST directory called ppestex will
contain all the files needed to undertake a Parallel PEST run on a single machine. Before
running this example make sure that the PEST directory is cited in the PATH environment
variable.

Change the working directory to the ppestex subdirectory and create two subdirectories to
this directory called test1 and test2.

Now open three command-line windows (you probably have one open already). In one of
these windows transfer to subdirectory test1 and type the command “pslave”. When
prompted for the command to run the model, type “..\a_model”. Do the same in another
command-line window for subdirectory test2.

In the third command-line window transfer to the directory holding the example files (ie. the
parent directory of test1 and test2) and type the command “ppest test”. Parallel PEST should
commence execution and, after verifying that it can communicate with each of its slaves,
undertake parameter optimisation for the a_model model.

If you wish, you can also carry out the parameter estimation process using the single window
version of PEST. While situated in the ppestex subdirectory, type “pest test”. For this
particular case the single window version of PEST will run faster than Parallel PEST. This is
because the model run time is too small to justify Parallel PEST’s run management
overheads. Furthermore, unless you are using a multi-processor machine, there is nothing to
be gained by undertaking parallel model runs on a single machine anyway. Note, however,
that Parallel PEST’s speed can be increased somewhat by reducing the value of the WAIT
variable from that provided on the test.rmf file.

9.5 Frequently Asked Questions
For more information on Parallel PEST see the frequently asked questions listed in Chapter
13.

PEST Utilities 10-1

10. PEST Utilities
PEST is accompanied by five utility programs whose role is to assist in PEST input file
preparation. These are programs TEMPCHEK, INSCHEK, PESTCHEK, PESTGEN and
PARREP. The first three of these programs are used to check template files, instruction files
and the PEST control file respectively for a particular PEST case, prior to actually running
PEST on that case. In this way you can be sure that the input dataset which you supply to
PEST is correct and consistent. The PESTGEN utility creates a PEST control file using
default values for many of the PEST input variables. PARREP builds a new PEST control
file based on an existing PEST control file and a set of values cited in a parameter value file.

A sixth utility program, named JACWRIT, acts in a PEST postprocessing capacity. It allows
a user to generate and ASCII file in which the Jacobian matrix for a particular parameter
estimation problem is recorded for inspection.

The PAR2PAR utility is used to undertake mathematical operations of arbitrary complexity
between existing parameters in order to generate new parameters. It is normally used in a
model preprocessing capacity, being run by PEST as part of a composite model encapsulated
in a batch file. Its many uses include complex parameter transformation (perhaps to improve
model linearity), and the generation of a large number of “secondary parameters” (as used by
the model) from a smaller number of “primary parameters” (as estimated by PEST).

10.1 TEMPCHEK
Program TEMPCHEK checks that PEST template files obey PEST protocol. If provided with
a set of parameter values, TEMPCHEK can also be used to generate a model input file from a
template file. It builds the model input file in the same way that PEST does; you can then run
your model, checking that it is able to read such a PEST-generated input file without any
difficulties.

TEMPCHEK is run using the command

tempchek tempfile [modfile [parfile]]

where

tempfile is the name of a template file,
modfile is the name of a model input file to be generated by TEMPCHEK (optional), and
parfile is the name of a PEST parameter value file (also optional).

The simplest way to run TEMPCHEK is to use the command

tempchek tempfile

When invoked in this way TEMPCHEK simply reads the template file tempfile, checking it
for breaches of PEST protocol. It writes any errors it finds to the screen. These errors can be
redirected to a file using the “>” symbol on the TEMPCHEK command line. Thus to run
program TEMPCHEK, directing it to write any errors found in the template file model.tpl to
the file errors.chk, use the following command

PEST Utilities 10-2

tempchek model.tpl > errors.chk

If no errors are encountered in the template file, TEMPCHEK informs you of this through an
appropriate screen message. This message also informs you of the number of parameters that
TEMPCHEK identified in the template file. TEMPCHEK lists these parameters in a file
named file.pmt, where file is the filename base of tempfile (ie. the filename minus its
extension). If tempfile has no extension TEMPCHEK simply adds the extension “.pmt” to
tempfile. By supplying a parameter value as well as a scale and offset for each parameter,
file.tmp can be transformed into a PEST parameter value file which TEMPCHEK can then
use to generate a model input file (see below).

Note that if a parameter is cited more than once in a template file, the parameter is
nevertheless written only once to file.pmt; also it is counted only once as TEMPCHEK sums
the total number of parameters cited in the template file.

If you wish TEMPCHEK to generate a model input file you must supply it with the name of
the template file upon which the model input file is based, the name of the model input file
which it must generate, and the values of all parameters named in the template file. To run
TEMPCHEK in this fashion, enter the command

tempchek tempfile modfile [parfile]

The name of the parameter value file is optional. If you don't supply a name TEMPCHEK
generates the name itself by replacing the extension used in the template filename with the
extension “.par”; if tempfile has no extension, “.par” is simply appended. Hence the naming
convention of the parameter value file is in accordance with that used by PEST which
generates such a file at the end of every optimisation iteration; see Section 5.3.1.

A PEST parameter value file is shown in Example 5.2. The first line of a parameter value file
must contain values for the character variables PRECIS and DPOINT; the role of these
variables is discussed in Section 4.2.2. These variables must be supplied to TEMPCHEK so
that it knows what protocol to use when writing parameter values to the model input file
which it generates.

The second and subsequent lines of a parameter value file each contain a parameter name, a
value for the named parameter, and the scale and offset to be used when writing the
parameter value to the model input file. Because TEMPCHEK is supplied with a scale and
offset for each parameter, it is able to generate model input files in exactly the same way that
PEST does; see Section 4.2.4.

If TEMPCHEK finds a parameter in a template file which is not listed in the parameter value
file, it terminates execution with an appropriate error message. However a parameter value
file may contain more parameters than are cited in the template file; these extra parameters
are ignored when generating the model input file. This may occur if your model has a number
of input files and you wish to optimise parameters occurring on more than one of them. You
must make a template file for each such model input file; however you need to prepare only
one parameter value file containing all the parameters for that particular problem.

PEST Utilities 10-3

10.2 INSCHEK
Program INSCHEK assists in the construction of PEST instruction files. Like TEMPCHEK it
can be used in two modes. In the first mode it simply checks that an instruction file has no
syntax errors and obeys PEST protocol as set out in Section 3.3. In its second mode it is able
to read a model output file using the directions contained in the instruction file; it then writes
a file listing all observations cited in the instruction file together with the values of these
observations as read from the model output file. In this way you can verify that not only is
your instruction set syntactically correct, but that it reads a model output file in the way it
should.

INSCHEK is run using the command

inschek insfile [modfile]

where

insfile is a PEST instruction file, and
modfile is a model output file to be read by INSCHEK (optional).

The simplest way to run INSCHEK is to use the command

inschek insfile

When invoked in this way, INSCHEK simply reads the instruction file insfile, checking that
every instruction is valid and that the instruction set is consistent. If it finds any errors it
writes appropriate error messages to the screen. You can redirect this screen output to a file if
you wish by using the “>” symbol on the command line. Thus to run INSCHEK such that it
records any errors found in the instruction file model.ins to the file errors.chk, use the
command

inschek model.ins > errors.chk

If no errors are found in the instruction file insfile, INSCHEK informs you of how many
observations it identified in the instruction set and lists these observations to file.obf, where
file is the filename base (ie. the filename without its extension) of insfile; if insfile has no
extension, the extension “.obf” is simply appended to the filename.

For an instruction set to be useable by PEST it must do more than simply obey PEST
protocol; it must also read a model output file correctly. You can check this by invoking
INSCHEK with the command

inschek insfile modfile

When run in this way, INSCHEK first checks insfile for syntax errors; if any are found it
writes appropriate error messages to the screen and does not proceed to the next step.
Alternatively, if the instruction set contained in insfile is error free, INSCHEK reads the
model output file modfile using the instruction set. If any errors are encountered in this
process, INSCHEK generates an appropriate error message and abandons execution; such
errors may arise if, for example, INSCHEK finds a blank space where a number should be,
encounters the end of the model output file before locating all observations, etc. However if

PEST Utilities 10-4

INSCHEK reads the file without trouble, it lists all observations cited in the instruction set,
together with their values as read from modfile, to file.obf, where file is the filename base of
insfile. Example 10.1 shows a typical observation value file.

10.3 PESTCHEK
PESTCHEK should be used when all preparations for a PEST run are complete, ie. when all
template files, instruction files and the PEST control file which “brings it all together” have
been prepared. PESTCHEK reads the PEST control file, making sure that all necessary items
of information are present on this file and that every item is consistent with every other item
(for example that logarithmically-transformed parameters do not have negative lower bounds,
that RELPARMAX is greater than unity if at least one parameter is free to change sign
during the optimisation process etc.). As PEST does not carry out consistency checks such as
these, it is essential that PESTCHEK be used to check all input data prior to a PEST run.

PESTCHEK also carries out some of the tasks undertaken by programs TEMPCHEK and
INSCHEK, viz. it checks all template and instruction files cited in the PEST control file for
correct syntax. Unlike TEMPCHEK and INSCHEK, PESTCHEK cannot generate a model
input file nor read a model output file; nevertheless it does check that all parameters and
observations cited in the PEST control file are also cited in the template and instruction files
referenced in the PEST control file, and that parameters and observations cited in template
and instruction files are also listed in the PEST control file.

PESTCHEK is run using the command

pestchek case

where

case is the filename base of a PEST control file.

 ar1 1.21038
 ar2 1.51208
 ar3 2.07204
 ar4 2.94056
 ar5 4.15787
 ar6 5.77620
 ar7 7.78940
 ar8 9.99743
 ar9 11.8307
 ar10 12.3194
 ar11 10.6003
 ar12 7.00419
 ar13 3.44391
 ar14 1.58278
 ar15 1.10381
 ar16 1.03085
 ar17 1.01318
 ar18 1.00593
 ar19 1.00272

Example 10.1 An observation value file.

PEST Utilities 10-5

No filename extension should be provided here; an extension of “.pst” is added
automatically. This is the same filename base which should be provided to PEST on its
command line; see Section 5.1.2. PESTCHEK reads an identical dataset to PEST.

PESTCHEK writes any errors it encounters to the screen. If you wish, error messages can be
redirected to a file using the “>” symbol on the PEST command line. Thus to check the
dataset contained in the PEST control file, calib.pst, and the template and instruction files
cited therein, directing any error messages to the file errors.chk, invoke PESTCHEK using
the command

pestchek calib > errors.chk

If PESTCHEK finds one or a number of errors in your input dataset it is important that you
re-run PESTCHEK on the dataset after you have corrected the errors. This is because
PESTCHEK may not have read all of your input dataset on its first pass; depending on the
errors it finds, it may not be worthwhile (or possible) for PESTCHEK to read an input dataset
in its entirety once an error condition has been established. Hence, once you have rectified
any problems that PESTCHEK may have identified in your input dataset, you should submit
it to PESTCHEK again, being content that the data is fully correct and consistent only when
PESTCHEK explicitly informs you that this is the case.

If you wish, you can write a batch file which runs both PESTCHEK and PEST in sequence.
Because PESTCHEK terminates execution with a non-zero errorlevel setting should it detect
any errors, you can program the batch process to bypass the running of PEST unless the input
dataset is perfect. In this way, you can always be sure that PESTCHEK, rather than PEST, is
the first to detect any input data errors. A suitable batch file is shown in Example 10.2.

10.4 PESTGEN
Program PESTGEN generates a PEST control file. In most cases this file will need to be
modified before PEST is run, as PESTGEN generates default values for many of the PEST
input variables supplied on this file; it is probable that not all of these default values will be
appropriate for your particular problem.

PESTGEN is run using the command

pestgen case parfile obsfile

where

@ echo off
rem FILE RUNPEST.BAT
rem To run RUNPEST.BAT type the command “runpest case [/r] [/j]”,
rem where case is the filename base of the PEST control file, and
rem “/r” and “/j” are optional restart switches.
pestchek %1
if errorlevel 1 goto end
pest %1 %2
:end

Example 10.2 Running PESTCHEK and PEST as a batch process.

PEST Utilities 10-6

case is the case name. No filename extension should be supplied; PESTGEN automatically
adds the extension “.pst” to case in order to form the filename of the PEST control file which
it writes.

parfile is a parameter value file, and

obsfile is an observation value file.

A parameter value file is shown in Example 5.2; Example 10.1 shows an observation value
file. The former file must include all parameters used in the current case; these parameters
may be cited in one or a number of template files. Similarly, the observation value file must
provide the name and value for all observations used in the current problem; the
observations, too, may be cited on one or a number of instruction files. The observation
values provided in this file may be field/laboratory measurements or, if PEST is being run on
theoretical data, model-generated observation values. In the latter case program INSCHEK
may be used to generate the file; if there are multiple model output files, observation value
files generated on successive INSCHEK runs could be concatenated to form an appropriate
observation value file to provide to PESTGEN.

PESTGEN commences execution by reading the information contained in files parfile and
obsfile (see above), checking them for correctness and consistency. If there are any errors in
either of these files, PESTGEN lists these errors to the screen and terminates execution.
Alternatively, if these files are error-free, PESTGEN then generates a PEST control file.

Files parfile and obsfile provide PESTGEN with the names of all parameters and
observations which need to be listed in the PEST control file. They also provides PEST with
initial parameter values (these must be provided in the second column of the parameter value
file), the scale and offset for each parameter (in the third and fourth columns of the parameter
value file), the laboratory or field measurement set (in the second column of the observation
value file) and values for the variables PRECIS and DPOINT (on the first line of the
parameter value file). For all other variables listed in the PEST control file, PESTGEN uses
default values.

For the parameter and observation value files shown in Examples 5.2 and 10.1, the
PESTGEN-generated PEST control file is shown in Example 10.3.

PEST Utilities 10-7

Note that when viewing a PESTGEN-generated PEST control file on your screen, the
OFFSET values in the “parameter data” section of the file may not be visible as they are
written beyond the 80th column of the file; to bring them into view, move your editor’s
cursor over them.

Example 10.3 shows the default values used by PESTGEN in generating a PEST control file.
The following features, in particular, should be noted.

• PESTGEN assumes that PEST will be run in parameter estimation mode. Neither a
“predictive analysis” nor a “regularisation” section is included in the PEST control

pcf
* control data
restart estimation
 5 19 5 0 1
 1 1 single point 1 0 0
 5.0 2.0 0.3 0.03 10
 3.0 3.0 0.001
 0.1
 30 0.01 3 3 0.01 3
 1 1 1
* parameter groups
ro1 relative 0.01 0.0 switch 2.0 parabolic
ro2 relative 0.01 0.0 switch 2.0 parabolic
ro3 relative 0.01 0.0 switch 2.0 parabolic
h1 relative 0.01 0.0 switch 2.0 parabolic
h2 relative 0.01 0.0 switch 2.0 parabolic
* parameter data
ro1 none relative 1.00000 -1.00000E+10 1.00000E+10 ro1 1.0000 0.00000 1
ro2 none relative 40.0009 -1.00000E+10 1.00000E+10 ro2 1.0000 0.00000 1
ro3 none relative 1.00000 -1.00000E+10 1.00000E+10 ro3 1.0000 0.00000 1
h1 none relative 1.00000 -1.00000E+10 1.00000E+10 h1 1.0000 0.00000 1
h2 none relative 9.99978 -1.00000E+10 1.00000E+10 h2 1.0000 0.00000 1
* observation groups
obsgroup
* observation data
ar1 1.21038 1.0 obsgroup
ar2 1.51208 1.0 obsgroup
ar3 2.07204 1.0 obsgroup
ar4 2.94056 1.0 obsgroup
ar5 4.15787 1.0 obsgroup
ar6 5.77620 1.0 obsgroup
ar7 7.78940 1.0 obsgroup
ar8 9.99743 1.0 obsgroup
ar9 11.8307 1.0 obsgroup
ar10 12.3194 1.0 obsgroup
ar11 10.6003 1.0 obsgroup
ar12 7.00419 1.0 obsgroup
ar13 3.44391 1.0 obsgroup
ar14 1.58278 1.0 obsgroup
ar15 1.10381 1.0 obsgroup
ar16 1.03085 1.0 obsgroup
ar17 1.01318 1.0 obsgroup
ar18 1.00593 1.0 obsgroup
ar19 1.00272 1.0 obsgroup
* model command line
model
* model input/output
model.tpl model.inp
model.ins model.out
* prior information

Example 10.3 A PEST control file generated by PESTGEN.

PEST Utilities 10-8

file.

• PESTGEN generates a separate parameter group for each parameter; the name of the
group is the same as that of the parameter. For each of these groups derivatives are
calculated using a relative increment of 0.01, with no absolute lower limit provided
for this increment. At the beginning of the optimisation process, derivatives will be
calculated using the forward method, switching to the three-point “parabolic” method
on the iteration following that for which the objective function fails to undergo a
relative reduction of at least 0.1 (ie. PHIREDSWH). The derivative increment to be
used in implementing the “parabolic” method is twice the increment used in
implementing the forward method of derivatives calculation.

• No prior information is supplied.

• No parameters are tied or fixed; no parameters are log-transformed and changes to all
parameters are relative-limited (with a RELPARMAX value of 3.0). The upper bound
for each parameter is provided as 1.0E10, while the lower bound is -1.0E10. It is
strongly suggested that you modify these bounds to suit each parameter. It is also
recommended that you consider log-transforming some parameters for greater
optimisation efficiency; see Section 2.2.1. Note, however, that the lower bound of a
log-transformed parameter must be positive and that its changes must be factor-
limited.

• All observations are provided with a weight of 1.0.

• PESTGEN assumes that the model is run using the command “model”. It also assumes
that the model requires one input file, viz. model.inp, for which a template file
model.tpl is provided. It further assumes that all model-generated observations can be
read from one output file, viz. model.out, using the instructions provided in the
instruction file model.ins. You will almost certainly need to alter these names. If there
are, in fact, multiple model input and/or output files, don't forget to alter the variables
NTPLFLE and NINSFLE in the “control data” section of the PEST control file.

• The default values for all other variables can be read from Example 10.3.

Once you have made all the changes necessary to the PESTGEN-generated PEST control
file, you should check that your input dataset is complete and consistent using program
PESTCHEK. If PESTCHEK informs you that all is correct, then you are ready to run PEST.

10.5 PARREP
Program PARREP replaces initial parameter values as provided in a PEST control file by
another set of values, the latter being supplied in a PEST parameter value file.

Recall from Section 5.3.1 that in the course of the parameter estimation process PEST writes
a parameter value file every time it improves its parameter estimates. After a PEST run has
finished (either of its own accord or if it was manually halted), optimised parameter values
can be found in the parameter value file. The parameter value file possesses the same
filename base as the current case but has an extension of “.par”. Because it has such a simple

PEST Utilities 10-9

structure, a parameter value file can also be easily built by the user with the help of a text
editor.

PARREP is useful when commencing a new PEST run where an old run finished. An updated
PEST control file can be produced by replacing parameter values in the old file with the best
parameter values determined during the previous PEST run as recorded in the parameter
value file written during that run. Recommencing a PEST run in this way, rather than through
use of the “/r” or “/j” switches, allows a user to alter certain PEST control variables, fix or
tie certain parameters, or adjust PEST’s management of the parameter estimation process in
other ways, prior to re-commencement of the run.

PARREP is also useful when undertaking a single model run on the basis of a certain set of
parameters in order to calculate the objective function. Simply modify an existing PEST
control file using PARREP as described above, and set NOPTMAX to zero.

PARREP is run using the command:

parrep parfile pestfile1 pestfile2

where

parfile is the name of a parameter value file,
pestfile1 is the name of an existing PEST control file, and
pestfile2 is the name for the new PEST control file.

When PARREP replaces parameter values in the existing PEST control file by those read
from the parameter value file, it does not check that each parameter value lies between its
upper and lower bounds, that log-transformed parameters are positive, etc. Hence, especially
if using a manually-created parameter value file, it is, as always, a good idea to run
PESTCHEK before running PEST to ensure that all is consistent and correct.

10.6 JACWRIT
JACWRIT is a utility program which allows the user to inspect the Jacobian matrix computed
by PEST. Recall from Chapter 2 that the Jacobian matrix contains the derivative of each
model output for which there is a corresponding observation with respect to each parameter.

At the end of each optimisation iteration PEST records a binary file containing the Jacobian
matrix corresponding to “best” parameters so far attained during the optimisation process.
The definition of “best” depends on the aim of the optimisation process. When working in
parameter estimation mode the best parameters are those for which the lowest objective
function was obtained. When working in predictive analysis mode, they are those for which
the prediction was maximised/minimised compatible with the objective function being below
the user-supplied calibration threshold. When working in regularisation mode, the best
parameters are those for which the regularisation objective function is the least, provided that
the measurement objective function is below the user-supplied measurement objective
function limit. The name of the binary file in which the Jacobian matrix is stored is case.jco
where case is the filename base of the current PEST control file; “jco” stands for “Jacobian
optimised”.

PEST Utilities 10-10

The Jacobian file is stored in binary rather than text format to save space. To translate it to
text format, you must run JACWRIT by typing the command:-
jacwrit jacfile1 jacfile2

where

jacfile1 is the name of the binary Jacobian file written by PEST, and
jacfile2 is the name of the text file to which JACWRIT should write the Jacobian matrix in a
form which is fit for human consumption.

Note the following:-

• Parameter and observation names are listed in the text file written by JACWRIT so
that it becomes an easy matter to link a sensitivity (ie. a derivative) to a particular
parameter/observation pair.

• Only adjustable parameters are represented in the file written by JACWRIT; fixed and
tied parameters are not represented.

• The sensitivity of a parameter to which another parameter is tied reflects the fact that
this parameter “carries” at least one other parameter through the optimisation process.

• Derivatives reflect the transformation status of a parameter. Thus if a parameter is
log-transformed, the derivative with respect to the log of that parameter is presented.

10.7 PAR2PAR

10.7.1 General

On many occasions of model calibration there is a need to manipulate parameters before
providing them to a model. There can be a number of reasons for this; two of them are now
outlined.

10.7.1.1 Parameter Ordering

Suppose that a particular model has three parameters named infilt1, infilt2 and infilt3. For
purposes of illustration, let it be assumed that these parameters govern infiltration of water
into different parts of a catchment, in this case into subareas 1, 2 and 3 respectively. Soil
property data may suggest that infiltration increases with subarea index, that is that infilt1 <
infilt2 < infilt3. Thus, during the parameter estimation process, it would be desirable for the
lower bound of infilt2 to be the current value for infilt1, and for the lower bound of infilt3 to
be the current value of infilt2.

Unfortunately it would be very difficult to incorporate parameter-dependent bounds into the
PEST inversion algorithm. However an alternative path can be taken which accomplishes the
same thing. This alternative path consists of estimating infilt1 together with two other
parameters named infiltrat2 and infiltrat3 (“infiltrat” stands for “infiltration ratio”). These
latter two parameters are defined by the relationships:-

infiltrat2 = infilt2/infilt1 (10.1a)

PEST Utilities 10-11

and

infiltrat3 = infilt3/infilt2 (10.1b)

Desired infiltration parameter ordering relationships will be maintained if each of infiltrat2
and infiltrat3 is provided with a lower bound of 1.0 in the parameter estimation process
implemented by PEST.

In using this device to ensure that correct infiltration parameter ordering relationships are
maintained, PEST must “see” parameters infilt1, infiltrat2 and infiltrat3, while the model
must “see” parameters infilt1, infilt2 and infilt3. The necessary “parameter transformation”
process can be accomplished by running the utility program PAR2PAR as a model
preprocessor contained in a “composite model” run by PEST as a batch file. PAR2PAR
“receives” the current PEST-calculated values of infilt1, infiltrat2 and infiltrat3; it then
“transforms” these into values for infilt1, infilt2 and infilt3. Then it writes one or more model
input files (based on appropriate template files) containing the current values of these native
model parameters. Based on equations 10.1a and 10.1b, PAR2PAR must be “programmed” to
calculate infilt2 and infilt3 using the relationships:-

infilt2 = infilt1 * infiltrat2

infilt3 = infilt2 * infiltrat3

10.7.1.2 Seasonal Parameter Variations

Some model parameters show seasonal variation. For environmental models which simulate
water or crop-growth processes in agricultural areas, “crop factor” may be one such
parameter. Crop factor is also a parameter that (together with other parameters) often requires
adjustment through the calibration process in order that the model can replicate measured
crop water usage, observed crop growth, or some other system response for which historical
records are available.

Many models require that the crop factor be provided on a monthly basis. However while
monthly crop factors may indeed require estimation through the calibration process, it would
generally be unwise to attempt to estimate each monthly crop factor independently of every
other monthly crop factor through the calibration process, for this would ignore an inherent
relationship between these parameters, this being the fact that variation of crop factor with
season may show a regular (perhaps sinusoidal) pattern. To ignore this pattern in
parameterising the model would be to ignore an important facet of system behaviour.
Furthermore, in many model calibration contexts, it would be unlikely that 12 different
monthly crop factors could be independently estimated with any degree of uniqueness
because of the high degree of correlation that is likely to exist between these individual
parameters (especially where the data available for model calibration is limited).

For a case such as this, a suitable parameterisation strategy may be to estimate the mean
monthly crop factor, together with the amplitude and phase of the seasonal variation of the
crop factor about this mean. Thus twelve parameters are replaced with three. This will lend
stability to the parameter estimation process as it promulgates a more unique solution to it. In
implementing this strategy, PEST will “see” three parameters while the model will still “see”

PEST Utilities 10-12

the twelve parameters which it requires. The task of “transforming” the three parameters
“seen” by PEST to the twelve parameters “seen” by the model can be accomplished using
PAR2PAR as a model preprocessor, run by PEST just before the model on every occasion
that the model is run. Once again, this can be accomplished by including both of the
PAR2PAR and model executables in a batch file run by PEST as a “composite model”. On
the basis of the three parameters adjusted by PEST (named, for example, mean, amplitude
and phase), PAR2PAR will calculate the monthly crop factor parameters required by the
model (named, for example, crop1, crop2…crop12) using a series of relationships such as:-

crop1 = mean + amplitude * sin ((1 + phase)*2.0*3.142/12.0)

crop2 = mean + amplitude * sin((2 + phase)*2.0*3.142/12.0)

etc

In these equations phase is measured in months; as is explained below, the argument of the
sin function must be supplied in radians, where 2π radians is equal to a full cycle.

Seasonal parameter variation can be expressed in a number of different ways; use of the sin
function is just one of them. Another method would be to use “seasonal ratios”; in this case
only one parameter may require estimation, this being the factor by which all such ratios are
multiplied to achieve model calibration.

10.7.2 Using PAR2PAR

10.7.2.1 Running PAR2PAR

PAR2PAR is run using the command:-

par2par infile

where infile is a PAR2PAR input file which must be prepared by the user.

10.7.2.2 The PAR2PAR Input File

The structure of the PAR2PAR input file is shown in Example 10.4. An example of such a
file is provided in Example 10.5.

PEST Utilities 10-13

Example 10.4 Structure of the PAR2PAR input file.

Example 10.5. An example of a PAR2PAR input file.

A PAR2PAR input file must contain at least a “parameter data” section and a “template and
model input files” section. The “control data” section is optional; if it is omitted, the default
values of “single” and “point” are supplied for the variables PRECIS and DPOINT.

The “parameter data” section of the PAR2PAR input file provides the means whereby values
are assigned to a set of parameters. These values can be provided either by the direct
assignment of numbers, or through mathematical expressions. These expressions (which may
be of considerable complexity) may cite parameters whose values were assigned in previous
expressions.

The “template and model input files” section of the PAR2PAR input file provides the names
of template files together with the names of the model input files to which they correspond.
Once it has determined values for all parameters appearing on the left sides of the
expressions listed in the “parameter data” section of its input file, PAR2PAR writes these
parameter values to the nominated model input files using template files based on these
model input files (just like PEST does). Note the following:-

• Any parameter appearing in any of the template files listed in the “template and

* parameter data
PARNME = expression
PARNME = expression
.
.
* template and model input files
TEMPFLE INFLE
TEMPFLE INFLE
.
.
* control data
PRECIS DPOINT

* parameter data
infilt1 = 0.3456
infiltrat2 = 1.0453
infiltrat3 = 1.5432
infilt2= infilt1 * infiltrat2
infilt3 = infilt2 * infiltrat3
* template and model input files
model1.tpl model1.in
model2.tpl model2.in
* control data
single point

PEST Utilities 10-14

model input files” section of the PAR2PAR input file must be assigned a value in the
“parameter data” section of the PAR2PAR input file.

• If there is more than one template/model input file pair listed in the “template and
model input files” section of the PAR2PAR input file, any particular template file can
be cited more than once if desired. However each model input file can be cited only
once, for it would make no sense for a model input file generated on the basis of one
template file to be overwritten by another model input file generated on the basis of
the same or another template file.

If either of these rules are violated, PAR2PAR will inform you of this through an appropriate
error message.

All template files cited in the “template and model input files” section of the PAR2PAR input
file should be checked for correctness using TEMPCHEK. While PAR2PAR will detect and
report any errors that it finds in these files, it will only report the first error that it encounters;
then it will cease execution. TEMPCHEK, on the other hand, attempts to examine the
entirety of a template file, reporting all errors to the screen.

10.7.2.3 Parameter Relationships

The relationships by which parameter values are calculated from numbers, or from values
previously assigned to other parameters, may be mathematical expressions of complex form.
They can include any or all of the “*”, “/”, “+”, “-” and “^” operators as well as brackets.
(Note that the “^” operator raises the number in front of the “^” symbol to a power equal to
the number trailing the “^” symbol; this operation can also be designated using the “**”
symbol as in the FORTRAN programming language.) Mathematical operations of equal rank
are evaluated in the order “^” followed by “*” and “/”, followed by “+” and “-”, as is the
usual convention. This order can be overridden by the use of brackets.

The following mathematical functions are supported in expressions by which parameter
values are calculated – sin, cos, tan, asin, acos, atan, sinh, cosh, tanh, exp, log, log10, abs
and sqrt. Note the following rules governing use of these functions:-

• As is the FORTRAN convention, the arguments of the trigonometric functions sin,
cos and tan, and the values returned by their inverse functions asin, acos and atan, are
assumed to be in radians. There are 2π radians in a circle; thus 2π radians are equal to
360 degrees.

• The log function is to base e; for logarithms to base 10, use the log10 function.

• For some of the functions listed above, arguments must lie within a specific numerical
range (for example the argument of the log function must always be greater than
zero). If a function argument is provided which is outside of its legal range,
PAR2PAR will often trap the error and cease execution with an appropriate error
message. However in some rare instances the argument may “slip through” and a
compiler-generated error message will be supplied upon termination of PAR2PAR
execution.

PEST Utilities 10-15

The following rules apply when formulating mathematical expressions to calculate parameter
values.

• Expressions may contain both numbers and parameters. However where a parameter
is used, its value must have been calculated (or supplied) in a previous expression.

• As is the normal PEST convention, parameter names must be 12 characters or less in
length.

• Spaces can be placed next to operators, brackets and functions. However they cannot
appear within numbers, parameter names or function names.

Some examples of allowable mathematical expressions follow:-

trans5 = k5 * (top5 – bottom5)

pi = 3.14159

par3 = 3.4 * (4.5 + trans5 ^ (3 + sin(0.6)))

par4 = par3 / (pi + exp(5.0 + par3/trans5))

par5 = -(par1 + par2) * cosh(pi * trans5)

If an expression is long, it may be continued onto the next line by placing the “&” character
at the beginning of that line. Thus the expression:-

par5 = -(par1 + par2) * cosh(pi * trans5)

is equivalent to:-

par5 =

& -(par1+par2)

& * cosh(

& pi * trans5)

10.7.2.4 Generation of Model Input Files

Once it has calculated values for all parameters, PAR2PAR writes these values to one or
more model input files using templates of these files to govern parameter value placement.
Use of template files for writing model input files is fully discussed in Chapter 3 of this
manual. As is described in that chapter, slight variations of the way in which numbers
representing parameter values are written to model input files can be effected through use of
the PRECIS and DPOINT variables; values for these variables are supplied in the optional
“control data” section of a PAR2PAR input file. If PRECIS is set to “single”, numbers are
written to model input files using the “E” character for exponentiation. However if it is set to
“double”, the “D” character is used. Furthermore, if there is sufficient space, up to 23

PEST Utilities 10-16

characters can be used to record the value of the parameter instead of the usual maximum of
13. Setting the DPOINT variable to “nopoint” instructs PEST to write a parameter’s value to
a model input file without the decimal point if this can be accomplished through numerical
formatting, thereby gaining one extra significant figure of precision (more will be said about
precision shortly). As is stated above, the “control data” section of the PAR2PAR input file is
optional; if it is omitted, default values of “single” and “point” are supplied for PRECIS and
DPOINT respectively.

10.7.3 Using PAR2PAR with PEST

10.7.3.1 The Composite Model

As was discussed above, when used with PEST, PAR2PAR will normally be run as part of a
“composite model” encapsulated in a batch file. Thus whenever PEST runs the model, it first
runs PAR2PAR (and any other model preprocessors cited in the batch file), followed by the
model (followed by any model postprocessors cited in the batch file).

As for any other model executable program which uses parameters which require estimation
by PEST, a template file must be built, based on a PAR2PAR input file. Just before it runs
the model, PEST will then write current parameter values to the PAR2PAR input file using
the corresponding template file. An example of such a template file, based on the PAR2PAR
input file shown in Example 10.5, is provided in Example 10.6.

Example 10.6. A template for the PAR2PAR input file of Example 10.5.

Based on the template file of Example 10.6, before PEST runs the model it will replace the
strings “$infilt1$”, “$infiltrat2$”, and “$infiltrat3$” with the current values of these
parameters. Note that these parameters do not need to be named the same as the PAR2PAR
parameters to which values are assigned in the pertinent expressions in the PAR2PAR input
file. They could have been given any name at all; the same parameter names are used by both
PEST and PAR2PAR in this example simply as a matter of convenience. Furthermore,
parameter spaces in the template of a PAR2PAR input file do not need to be restricted in
their location to the right side of expressions comprised of a “=” symbol followed by a single
number. See, for example, the PAR2PAR input file and corresponding template file depicted
in Examples 10.7 and 10.8. These accomplish the same task as the files depicted in Examples
10.5 and 10.6.

ptf $
* parameter data
infilt1 = $infilt1 $
infiltrat2 = $infiltrat2$
infiltrat3 = $infiltrat3$
infilt2= infilt1 * infiltrat2
infilt3 = infilt2 * infiltrat3
* template and model input files
model.tpl model.in
* control data
single point

PEST Utilities 10-17

Example 10.7. A PAR2PAR input file.

Example 10.8. A template for the PAR2PAR input file of Example 10.7.

It is apparent that when using PAR2PAR as part of a composite model run by PEST there are
two sets of template files involved in the inversion process, viz. that used by PEST to write a
PAR2PAR input file, and those used by PAR2PAR to write model input files. These should
not be confused. PEST should never be instructed to use a template file to write a model
input file that is also cited in the “template and model input files” section of a PAR2PAR
input file. If this happens, the model input file generated by PEST will be overwritten by that
generated by PAR2PAR.

It often happens that only a few parameters required by a model need to be calculated by an
expression cited in a PAR2PAR input file; other model parameters can be estimated directly
by PEST. These latter parameters can simply be “passed through” PAR2PAR by assigning
them numerical values in the pertinent expressions in the PAR2PAR input file. Example 10.9
shows a PAR2PAR input file in which only parameter par8 is calculated through
manipulation of other parameters; Example 10.10 shows the corresponding template file of
the PAR2PAR input file. Parameters par1 to par5 are passed directly to the model through
the template file model.tpl of the model input file model.in. The template file model.tpl thus
cites all of parameters par1 to par5 as well as parameter par8. (It may also cite par6 and
par7.)

* parameter data
infilt1 = 0.3456
infilt2= infilt1 * 1.23983
infilt3 = infilt2 * 1.53953
* template and model input files
model.tpl model.in

ptf $
* parameter data
infilt1 = 0.3456
infilt2= infilt1 * $infiltrat2$
infilt3 = infilt2 * $infiltrat3$
* template and model input files
model.tpl model.in

PEST Utilities 10-18

Example 10.9. A PAR2PAR input file.

Example 10.10. A template file for the PAR2PAR input file of Example 10.9.

10.7.3.2 Numerical Precision

As is explained elsewhere in this manual, when PEST writes a number to a model input file
on the basis of a template file, it alters its internal representation of that number to account
for the fact that the number may be written to the model input file with less than the
maximum number of significant figures with which that number can be represented internally
within the computer. Thus when PEST calculates derivatives of model outputs with respect to
parameters using finite differences, the differences between incrementally-varied parameter
values will be exactly correct because both PEST and the model use exactly the same
parameter values.

The ability for PEST to compensate for limited parameter space widths on model input files
is lost when parameter values are written to those files using program PAR2PAR (because
PEST has no way of adjusting its internal representation of parameters based on PAR2PAR
outputs). Thus unless the formatting requirements of the model input file are such that it
allows model input parameters to be supplied with full numerical precision (which is
normally about 7 significant figures), slight errors will be incurred in the derivatives
calculation process. (Note that where a number is small or large enough for exponential
notation to be required for its representation, up to 13 characters may be required for the

* parameter data
par1 = 1.583745e-4
par2 = 5.395832e-1
par3 = 4.583924e-2
par4 = 5.389028e-5
par5 = 4.389428e-2
par6 = 3.559313e-1
par7 = 5.395355e-2
par8 = par6 * exp(-par7)
* template and model input files
model.tpl model.in

ptf $
* parameter data
par1 = $par1 $
par2 = $par2 $
par3 = $par3 $
par4 = $par4 $
par5 = $par5 $
par6 = $par6 $
par7 = $par7 $
par8 = par6 * exp(-par7)
* template and model input files
model.tpl model.in

PEST Utilities 10-19

representation of that number using 7 significant figures.) Imprecision in derivatives
calculation can have a profound effect on the outcome of an inversion process. Thus, if the
model permits it, you should make absolutely sure that the template files used by PAR2PAR
to write model input files use parameter space widths which are as large as the model will
tolerate (up to a maximum of the 13 characters if using single precision arithmetic, or 23
characters if using double precision arithmetic). If model input file formatting requirements
are too restrictive to allow a parameter value to be written without some loss of significance,
then you should at least be aware of the fact that use of PAR2PAR under these circumstances
has the potential to reduce the efficacy of PEST’s performance.

10.7.3.3 Intermediate Files

Before it runs the model PEST deletes all model output files that it knows about (ie. the
model output files cited in the PEST control file). Hence if the model fails to run, PEST will
not read old model output files produced on previous model runs, mistaking them for new
ones. Thus if PEST generates an error message saying that it cannot find a particular model
output file, this is a sure sign that, for some reason, the model failed to run. In most cases the
matter is then easily rectified by taking some simple measure such as altering the contents of
the “model command line” section of the PEST control file.

Where a model is comprised of multiple executable programs listed in a batch file, similar
considerations apply to “intermediate model files”, ie. to files generated by one or more of
the executable programs comprising the composite model and read by one or more
succeeding executable programs cited in the model batch file. If, for some reason, an
executable program which generates such an intermediate file fails to run, then later
executable programs of the composite model may read old intermediate files, mistaking them
for new ones. If this happens, model outputs will not reflect current parameter values; in fact,
because they are independent of current parameter values, PEST will probably declare that at
least some model outputs are insensitive with respect to some parameter values. This problem
can be avoided if commands are included in the model batch file to delete all intermediate
files before any of the executable programs comprising the model are run. If PAR2PAR is
one such executable program, then all model input files cited in the “template and model
input files” section of the PAR2PAR input file should be deleted prior to running PAR2PAR.
Example 10.11 shows an example of a model batch file in which this precaution is taken.

Example 10.11. A model batch file which includes PAR2PAR as one of the model
executable programs.

In the batch file depicted in Example 10.11, file par2par.in is the PAR2PAR input file. If it is
desired that screen output from all programs comprising the composite model (including the
model batch file itself) be suppressed so that the model’s screen output does not interfere

rem Model input files written by PAR2PAR are deleted.
del model1.in
del model2.in
rem PAR2PAR is run.
par2par par2par.in
rem The model is run.
model

PEST Utilities 10-20

with that of PEST, the batch file shown in Example 10.11 could be altered to that shown in
Example 10.12.

Example 10.12. The batch file of Example 10.11 with all screen output suppressed.

@echo off
rem Model input files written by PAR2PAR are deleted.
del model1.in > nul
del model2.in > nul
rem PAR2PAR is run.
par2par par2par.in > nul
rem The model is run.
model > nul

SENSAN 11-1

11. SENSAN

11.1 Introduction
In many modelling applications, an analysis of the sensitivity of particular model outputs to
particular model inputs must be performed. Such an analysis may be required as part of an
effort to increase a modeller’s understanding of the processes simulated by the model. Or it
may be the first step in a model calibration exercise whereby key system parameters are
identified.

SENSAN facilitates the sensitivity analysis process by allowing a modeller to automate the
tedious task of adjusting certain model inputs, running the model, reading the outputs of
interest, recording their values, and then commencing the whole cycle again. Using
SENSAN, a modeller can prepare for an unlimited number of model runs and then let the
computer undertake these runs overnight, over a weekend, or simply while he/she is doing
other things. SENSAN reads user-prepared parameter values and writes specified model
output values to files which can easily be imported to a spreadsheet for further processing.

If requested, a system command can be issued after each model run. For example a user may
wish to rename certain model output files after some model runs have been completed; hence
these model output files are not overwritten during subsequent model runs and are thus
available for later inspection.

SENSAN is model-independent. This means that it can be used to conduct a sensitivity
analysis in conjunction with any model. It achieves this by communicating with a model
through the model’s own input and output files. It uses an identical model interface protocol
to PEST, writing model input files on the basis of user-supplied templates, and reading output
files with the aid of a user-prepared instruction set. In fact, SENSAN communicates only
indirectly with a model, using the PEST utilities TEMPCHEK and INSCHEK to write and
read model files; these programs are run by SENSAN as “system calls”.

Like PEST, SENSAN runs a model through a command supplied by the user. There is no
reason why a “model” cannot be a batch file housing a number of commands. Thus a
“model” can consist of a series of executables, the outputs of one constituting the inputs to
another, or simply a number of executables which read different input files and generate
different output files. SENSAN can write parameter values to many input files and read
model outputs from many output files.

SENSAN is limited in the number of parameters and observations that it can handle, both
through the internal dimensioning of its own arrays and those belonging to TEMPCHEK and
INSCHEK which it runs. This will rarely pose a problem for it is in the nature of sensitivity
analysis that adjustable parameters do not number in the hundreds nor selected model
outcomes in the thousands. Nevertheless if either SENSAN, TEMPCHEK or INSCHEK
reports that it cannot allocate sufficient memory to commence or continue execution, or that
the maximum number of parameters or observations has been exceeded, contact Watermark
Numerical Computing for versions of SENSAN, TEMPCHEK and INSCHEK in which these
restrictions are lifted.

SENSAN 11-2

A comprehensive SENSAN input data checker named SENSCHEK is provided with
SENSAN. Its role is similar to that of PESTCHEK and should be run after all SENSAN input
data has been prepared, prior to running SENSAN itself.

11.2 SENSAN File Requirements

11.2.1 General

SENSAN requires four types of input file. The first two are the SENSAN control file and the
parameter variation file. The former file provides SENSAN with the structural details of a
particular sensitivity analysis. The latter provides SENSAN with the parameter values to be
used in the succession of model runs which it must undertake. The other two file types are
PEST template and instruction files. These latter two kinds of file are dealt with briefly first.

11.2.2 Template Files

Section 3.2 of this manual provides a detailed discussion of how PEST writes parameter
values to model input files.

After a user has prepared a template file prior to running PEST, he/she can check its integrity
using the PEST utility TEMPCHEK. As explained in Chapter 10, TEMPCHEK also provides
the functionality to generate a model input file on the basis of a template file and a
corresponding user-supplied list of parameter values. Rather than reproduce this functionality
within SENSAN, SENSAN simply runs TEMPCHEK whenever it wishes to prepare a model
input file on the basis of a set of parameter values. Thus it is essential that the directory in
which the executable file tempchek.exe resides is either the current directory or is a directory
cited in the PATH environment variable.

You can provide SENSAN with the name of a single template file in order that it can
generate a single model input file. Alternatively you may provide SENSAN with the names
of many template files in order to generate multiple input files prior to running the model. In
either case, before it runs the model SENSAN writes a parameter value file using the current
set of parameter values as provided in the parameter variation file (see below). Then
SENSAN runs TEMPCHEK for each model input file which must be produced. It then runs
the model.

Before running SENSAN you should always check the integrity of all template files which
you supply to it by running TEMPCHEK yourself outside of SENSAN.

11.2.3 Instruction Files

Instruction files are discussed in Section 3.3 of this manual. Model-generated numbers can be
read from one or many model output files as long as at least one instruction file is provided
for each model output file. The integrity of an instruction file can be checked using the PEST
utility INSCHEK described in Section 10.2. INSCHEK is also capable of actually reading
values from a model output file on the basis of a user-supplied instruction file. In order to
avoid duplication of this functionality, SENSAN runs INSCHEK to read model output files
after it has run the model. Hence while a user must supply SENSAN with the instruction files

SENSAN 11-3

required to read one or more model output files, it is actually INSCHEK which reads these
files; SENSAN then reads the “observation value files” written by INSCHEK in order to
ascertain current model outcome values. Because SENSAN must run INSCHEK at least once
every time it runs the model, it is essential that the executable file inschek.exe reside either in
the current directory or within a directory cited in the PATH environment variable.

Before running SENSAN, you should check the integrity of all instruction files which you
supply to it by running INSCHEK yourself outside of SENSAN.

11.2.4 The Parameter Variation File

SENSAN’s task is to run a model as many times as a user requires, providing the model with
a user-specified set of parameter values on each occasion. As discussed above, the
parameters which are to be varied from model run to model run are identified on one or a
number of template files. The values which these parameters must assume on successive
model runs are provided to SENSAN in a “parameter variation file”, an example of which is

presented below.

The file shown in Example 11.1 provides 6 sets of values for 5 parameters; the parameter
names appear in the top row. As usual, a parameter name must be twelve characters or less in
length. The same parameter names must be cited on template files provided to SENSAN. In
fact, if there is a naming discrepancy between the parameters cited in the parameter
variation file and those cited in the template files supplied to SENSAN, parameters cited in
the parameter variation file which are absent from any template file(s) will not be provided
with updated values from model run to model run. This will manifest itself on the SENSAN
output files as a total lack of sensitivity for some parameters named in the parameter
variation file. A comprehensive checking program named SENSCHEK (see below) has the
ability to detect such inconsistencies in the SENSAN input dataset. Hence SENSCHEK
should always be run prior to running SENSAN.

The second and subsequent rows of a parameter variation file contain parameter values for
SENSAN to use on successive model runs. A separate model run will be undertaken for each
such row. A parameter variation file can possess as many rows as a user desires; hence
SENSAN can be set up to undertake thousands of model runs if this is considered necessary
(as it may be in Monte Carlo simulation).

In many sensitivity analyses, a user is interested in the effect of varying parameters, either
individually or in groups, from certain “base” values. In such cases, parameter base values
should appear on the second line of the parameter variation file immediately under the
parameter names. As will be discussed below, SENSAN produces two output files in which

dep1 dep2 res1 res2 res3
1.0 10.0 5.0 2.0 10.0
2.0 10.0 5.0 2.0 10.0
1.0 11.0 5.0 2.0 10.0
1.0 10.0 6.0 2.0 10.0
1.0 10.0 5.0 3.0 10.0
1.0 10.0 5.0 2.0 11.0

Example 11.1 A parameter variation file.

SENSAN 11-4

variations from “base value outputs” are recorded, “base value outputs” being defined as
model outputs calculated on the basis of base parameter values.

Items on each line of a parameter value file can be space, comma or tab-delimited.

11.2.5 SENSAN Control File

It is recommended, though it is not essential, that the SENSAN control file be provided with
a filename extension of “.sns”. Use of this default extension avoids the need to type in the
entire SENSAN control filename when running either SENSAN or SENSCHEK.

Example 11.2 shows a SENSAN control file. Example 11.3 shows the structure of the
SENSAN control file. As is apparent, the SENSAN control file resembles, to some extent,
the PEST control file. Like the PEST control file, the SENSAN control file must begin with a
three-character code; viz. “scf”, identifying it as a SENSAN control file. Like the PEST
control file, the SENSAN control file is divided into sections by lines beginning with the “*”
character. And like the PEST control file, the SENSAN control file provides information to
SENSAN through the values taken by certain input variables, many of which are also used by
PEST. Where such variables are, indeed, used by PEST, they are provided with identical
names to the corresponding PEST variables.

scf
* control data
noverbose
5 19
2 3 single point
* sensan files
parvar.dat
out1.dat
out2.dat
out3.dat
* model command line
model > nul
* model input/output
ves.tp1 ves1.inp
ves.tp2 ves2.inp
ves1.ins ves1.out
ves2.ins ves2.out
ves3.ins ves3.out

Example 11.2 A SENSAN control file.

SENSAN 11-5

The role of each SENSAN input variable is now discussed.

11.2.6 Control Data

SCREENDISP

SCREENDISP is a character variable which can take either one of two possible values. These
values are “noverbose” and “verbose”. In the former case, when SENSAN runs TEMPCHEK
and INSCHEK it redirects all of the screen output from these programs to the “nul” file;
hence the user is not aware that they are running. In the latter case, TEMPCHEK and
INSCHEK output is directed to the screen in the usual fashion.

Once you have set up a SENSAN run and ensured that everything is working correctly, a
nicer screen display is obtained by using the “noverbose” option. In this case the user should
ensure that the model likewise produces no screen output by redirecting its output to the
“nul” file using, for example, the command

model > nul

to run the model. If SENSAN is thus left to produce the only screen output, the user can
monitor progress and detect any SENSAN error messages if they are written to the screen.

NPAR

This is the number of parameters. It must agree with the number of parameters cited in the
template file(s) used by SENSAN. It must also agree with the number of parameters named in
the parameter variation file provided to SENSAN.

NOBS

NOBS is the number of “observations”, ie. the number of model outcomes used in the
sensitivity analysis process. It must agree with the number of observations cited in the
instruction file(s) provided to SENSAN.

scf
* control data
SCREENDISP
NPAR NOBS
NTPLFLE NINSFLE PRECIS DPOINT
* sensan files
VARFLE
ABSFLE
RELFLE
SENSFLE
* model command line
write the command which SENSAN must use to run the model
* model input/output
TEMPFLE INFLE
(one such line for NTPLFLE template files)
INSFLE OUTFLE
(one such line for NINSFLE instruction files)

Example 11.3 Structure of the SENSAN control file.

SENSAN 11-6

NTPFLE

The number of template files to be used by SENSAN. For each template file there must be a
corresponding model input file; see below. Note that a given template file can be used to
write more than one model input file; however two templates cannot write the same model
input file.

NINSFLE

The number of instruction files used by SENSAN to read model outcomes. For each
instruction file there must be a matching model output file. Note that the same instruction file
cannot read more than one model output file (observation values would be overwritten);
however two different instruction files can read the same model output file.

PRECIS

PRECIS is a character variable which must take either the value “single” or “double”. It
determines whether single or double precision protocol is used to represent a very large or
very small number, or a number in a wide parameter space; see Section 3.2.6 for more
details. The value “single” is usually appropriate.

DPOINT

DPOINT must be supplied as either “point” or “nopoint”. In the latter case the decimal point
is omitted if there is a tight squeeze of a parameter value into a parameter space. Use “point”
if at all possible, for some models make assumptions regarding the location of a missing
decimal point. See Section 3.2.6 for more details.

11.2.7 SENSAN Files

VARFLE

VARFLE is the name of the parameter variation file for the current model run. The number
of parameters cited in this file must agree with the value of NPAR cited in the “control data”
section of the SENSAN input file.

ABSFLE RELFLE and SENSFLE

The names of the three SENSAN output files. Contents of these files are discussed below.

11.2.8 Model Command Line

Provide the command that you would normally use to run the model. Remember that you can
enter the name of a batch file here to run a model consisting of multiple executables. To
prevent screen output from occurring during execution of batch file commands (if desired)
you can disable echoing of each batch file command using the “@” character and the “echo
off” command. Also, model screen output can be redirected to the nul file. See Example 11.4.

SENSAN 11-7

Care should be taken if SENSAN is executing in the “noverbose” mode for it then appends
the string “> nul” to the command recorded in the “model command line” section of its
input file. If the command already involves output redirection to a file using the “>” symbol,
this may become confounded through use of the further “>” symbol supplied by SENSAN to
redirect command output to the “nul” file.

11.2.9 Model Input/Output

TEMPFLE

TEMPFLE is the name of a template file used to write a model input file.

INFLE

The name of a model input file corresponding to the template file preceding it in the
SENSAN control file.

INSFLE

INSFLE is the name of a PEST instruction file.

OUTFLE

The name of the model output file read by the instruction file whose name precedes it in the
SENSAN control file.

11.2.10 Issuing a System Command from within SENSAN

SENSAN allows a user to issue a system command after each model run. A system command
is a direction to the operating system, and is implemented by the system just as if the
command were typed at the screen prompt. The command can be an operating system
command such as “copy” or “del”; or it can be the name of a user-supplied executable
program or batch file.

The system command to be run after any particular model run should be written to the
parameter variation file following the parameter values pertinent to that model run. In many
cases the command will simply be the “copy” command, ensuring that model output files are
stored under different names before they are overwritten during subsequent model runs.
Example 11.5 shows such a case.

@echo off
model1 > nul
model2 > nul

Example 11.4. A batch file serving as a model; all screen output has been disabled.

SENSAN 11-8

In Example 11.5 the model run by SENSAN produces a file called model.out. After each
model run this file is copied to a different file whose name is associated with that run. These
files can later be inspected or processed in a fitting manner.

SENSAN assumes that any characters following the NPAR numbers representing the NPAR
parameter values for a particular run constitute a system command which it duly delivers to
the operating system after the model has run. SENSAN takes no responsibility for incorrect
commands; nor does it check whether the system has properly interpreted and executed the
command. It simply reads the next set of parameters and undertakes the next model run after
control has been returned back to it from the operating system after the latter has been
provided with the command.

Care should be taken if SENSAN is executing in the “noverbose” mode, for then the string
“> nul” is added to any command appearing in the parameter variation file. This may cause
problems if a command already uses the “>” symbol to redirect command output to a file.

11.3 SENSCHEK

11.3.1 About SENSCHEK

Once all SENSAN input data has been prepared, and before running SENSAN, SENSCHEK
should be run in order to verify that the entire SENSAN input dataset is correct and
consistent. SENSCHEK reads all SENSAN input files, ie. the SENSAN control file, the
parameter variation file, as well as all template and instruction files. It checks all of these
files for correct syntax and for consistency between them. Thus, for example, if the number
of observations cited in all instruction files differs from the value supplied for NOBS in the
SENSAN control file, or if values are provided for parameters in the parameter variation file
which are not cited in any template file, SENSCHEK will detect the error and write an
appropriate error message to the screen.

Though SENSAN itself carries out some error checking, it has not been programmed to carry
out extensive consistency checks in the way that SENSCHEK does. In fact SENSAN may
run happily if provided with certain erroneous datasets; however SENSAN’s results under
such conditions will be misleading. Thus it is most important that SENSCHEK be run prior to
SENSAN, once all SENSAN input files have been prepared.

11.3.2 Running SENSCHEK

SENSCHEK is run using the command

dep1 dep2 res1 res2 res3
1.0 10.0 5.0 2.0 10.0 copy model.out model1.out
2.0 10.0 5.0 2.0 10.0 copy model.out model2.out
1.0 11.0 5.0 2.0 10.0 copy model.out model3.out
1.0 10.0 6.0 2.0 10.0 copy model.out model4.out
1.0 10.0 5.0 3.0 10.0 copy model.out model5.out
1.0 10.0 5.0 2.0 11.0 copy model.out model6.out

Example 11.5. A parameter variation file for a SENSAN run in which system
commands are run after the model.

SENSAN 11-9

senschek infile

where infile is the name of the SENSAN control file. If the latter possesses an extension of
“.sns”, then this extension can be omitted from the filename in the same manner that the
“.pst” extension can be omitted from the name of the PEST control file when running PEST
and PESTCHEK.

SENSCHEK writes its error messages to the screen. It is important to note that if
SENSCHEK detects certain errors early in the SENSAN control file it may not proceed with
its checking of the remainder of this file, nor of the template and instruction files cited in the
SENSAN control file, nor of the parameter variation file. Thus it is important to ensure that
once a SENCHEK-identified error has been rectified, SENSCHEK is run again. Only when
SENSCHEK explicitly informs the user that no errors have been detected in the entire
SENSAN input dataset is it safe to run SENSAN.

11.4 Running SENSAN

11.4.1 SENSAN Command Line

SENSAN is run using the command

sensan infile

where infile is the name of a SENSAN control file. If the latter possesses an extension of
“.sns” it is not necessary to include this extension in the SENSAN command line, for
SENSAN automatically appends “.sns” to a filename supplied without extension.

It is important to ensure before SENSAN is run that the executable files tempchek.exe and
inschek.exe are either in the current directory, or are in a directory cited in the PATH
environment variable. As is mentioned above, SENSAN runs both of these programs in the
course of its execution, the first to generate model input files and the second to read model
output files.

11.4.2 Interrupting SENSAN Execution

To interrupt SENSAN type <Ctl-C>.

11.5 Files Written by SENSAN

11.5.1 SENSAN Output Files

SENSAN produces three output files, each of which is easily imported into a spreadsheet for
subsequent analysis. In each of these files the first NPAR columns contain the parameter
values supplied to SENSAN in the parameter variation file. The subsequent NOBS columns
pertain to the NOBS model outcomes (ie. “observations”) cited in the instruction file(s)
supplied to SENSAN. The first row of each of these output files contains parameter and
observation names.

The last NOBS entries on each line of the first SENSAN output file (ABSFLE) simply list

SENSAN 11-10

the NOBS model outcomes read from the model output file(s) after the model was run using
the parameter values supplied as the first NPAR entries of the same line.

The second SENSAN output file (RELFLE) lists the relative differences between observation
values on second and subsequent data lines of the ABSFLE output file and observation
values cited on the first data line. Hence if the first data line (ie. the line following the
parameter name line) of the parameter variation file lists parameter base values, the second
SENSAN output file lists the variations of model outcome values relative to model outcome
base values. If, for a particular model outcome, Ob represents the base value, and Op

represents the value for a certain set of alternative parameter values, then the value written to
the RELFLE output file for that model outcome and parameter set is:

O O

O
p b

b

−
(11.1)

Note that if Ob is zero, a value of 1035 is written to RELFLE as an indicator of this condition.

The third SENSAN output file (SENSFLE) provides model outcome “sensitivities” with
respect to parameter variations from their base values. As usual, parameter base values are
assumed to reside on the first data line of the parameter variation file. Sensitivity for a
particular outcome is calculated as the difference between that model outcome and the
pertinent model outcome base value, divided by the difference between the current parameter
set and the parameter base values. The latter is calculated as the L2 norm, ie. the square root
of the sum of squared differences between a current parameter set and the base parameter set.
Thus if only a single parameter p differs from the base set, the sensitivity for a particular
observation O is defined as:

O O

p p
b

b

−
−

(11.2)

where Ob and pb are model outcome and parameter base values and O and p are the model
outcome and parameter values pertaining to a particular model run. Hence if NPAR+1
parameter sets are provided to SENSAN, where the first set contains parameter base values
and the subsequent NPAR sets contain parameter values identical to the base values except
that each parameter in turn is varied from the base value by an incremental amount, then the
last NPAR rows and NOBS columns on the SENSAN sensitivity output file, SENSFLE,
approximates the transpose of the Jacobian matrix.

Note that if p - pb in equation 11.2 is equal to zero, then SENSAN writes the corresponding
sensitivity as 1035, except for the first data line (assumed to be the base value line) where all
sensitivities are provided as 0.0. Note also that the L2 norm can only be positive. However
when only a single parameter is varied, the sign of that variation is taken into account,
resulting in a negative denominator for equation 11.2 if p < pb.

11.5.2 Other Files used by SENSAN

As has already been discussed, SENSAN uses programs TEMPCHEK and INSCHEK to
prepare model input files and read model output files. SENSAN writes a parameter value file

SENSAN 11-11

for the use of TEMPCHEK, naming this file t###.par. This filename should be avoided when
naming other files.

INSCHEK writes the values of the observations which it reads from a model output file to the
observation value file instruct.obf where instruct is the filename base of the instruction file
provided to INSCHEK. Hence for any instruction file provided to SENSAN, use of a file
with the same filename base but with an extension of “.obf” will result in that file being
overwritten.

11.6 Sensitivity of the Objective Function
SENSAN allows a user to undertake many model runs without user intervention. The
sensitivity of certain model outputs to certain parameters can be tested. However SENSAN
does not compute an objective function because it does not read an observation dataset, and
hence cannot compare model outputs with corresponding observations to calculate residuals.

However once all PEST input files have been prepared for a particular case, SENSAN can be
used in conjunction with PEST to study the dependence of the objective function on certain
parameters. Where there are only two parameters, this can be used to contour the objective
function in parameter value space.

A SENSAN control file implementing this is shown in Example 11.6.

Note the following points:-

• There can be as many parameters as you like but only one observation. This should be
the initial value of phi as read from the PEST run record file; PEST writes this value
after it has carried out just one model run.

• In the PEST control file the value of NOPTMAX should be set to zero. Hence PEST
runs the model only once before it terminates execution.

• There is only one template file and one instruction file.

• The template file is built from the PEST control file. Parameters adjusted by
SENSAN are initial parameter values as listed on the PEST control file.

scf
* control data
verbose
6 1
1 1 single point
* sensan files
parvar.dat
out1.txt
out2.txt
out3.txt
* model command line
pest ves4
* model input/output
pst.tpl ves4.pst
rec.ins ves4.rec

Example 11.6 A SENSAN control file with PEST as the model.

SENSAN 11-12

• SENSAN’s observation file is the run record file for the PEST case.

• As in normal SENSAN operation, supply parameter values to be used by SENSAN
through a parameter variation file.

• Use the single window version of PEST rather than Parallel PEST.

The instruction set by which the PEST control file is read is shown below (the observation
name is “phi”).

pif $
$(ie phi)$ $=$!phi!

This instruction set simply instructs SENSAN to read the PEST run record file until it
encounters the string “(ie phi)” followed by “=”, and then to read the observation named
“phi” as a non-fixed observation following that.

11.7 SENSAN Error Checking and Run-Time Problems
As has already been discussed, SENSAN does not carry out extensive error checking.
Comprehensive SENSAN input data error checking can be undertaken using SENSCHEK.
Hence if there are any problems encountered in SENSAN execution, or if there are any
suspicions regarding the numbers recorded on any of its output files, SENSCHEK should be
run immediately if it has not already been run.

If SENSCHEK has not been used to verify an input dataset and SENSAN finds an error in a
parameter variation file (such as an unreadable parameter value) it will not terminate
execution. Instead, SENSAN reports the error to the screen and moves on to the next
parameter set. However it writes the offending line of the parameter variation file to its three
output files. If a trailing system command is present on this line, this too will be written to the
SENSAN output files; however the command is not executed. Naturally model outcome
values are not written to the SENSAN output files because they cannot be calculated in these
circumstances.

It is possible that model execution will fail for some parameter value sets supplied by the
user. SENSAN ensures that old model output files are deleted before the model is run so that,
should this occur, out-of-date model outcome values are not read as current values. If, after
the model has been run, a certain model output file is not found, SENSAN reports this
condition to the screen, records the current set of parameter values to its output files, and
moves on to the next parameter set. If a model run terminates prematurely for a particular
parameter set and all model outcomes cannot be read, INSCHECK (run by SENSAN) will
fail to produce an observation value file (which SENSAN reads to ascertain model outcome
values). Under these circumstances SENSAN reports to the screen that it cannot find an
INSCHEK-generated observation value file, records the parameter values to its output file
and moves on to the next parameter set.

Another reason why SENSAN may report that it cannot open a “temporary observation file”
(ie. an INSCHEK-generated file) is that it was unable to run INSCHEK and/or TEMPCHEK
because their directories were not cited in the PATH environment variable. Alternatively, it
may not have been able to run the model for the same reason.

SENSAN 11-13

If a parameter appears to be totally insensitive on SENSAN output files, make sure that it has
been provided with the same name in the parameter variation file as that provided for this
same parameter in any template file in which it appears. If parameter names are not identical
between these two file types, some parameter values as supplied to SENSAN in the
parameter variation file cannot be written to model input file(s). (Note, however, that such an
error will be detected and recorded by SENSCHEK.)

When undertaking a SENSAN run for the first time, it is a good idea to set SCREENDISP to
“verbose” so that TEMPCHEK and INSCHEK can report what they are doing to the screen.
After any errors have been corrected, SCREENDISP can then be set to “noverbose” for
routine SENSAN usage. Similarly, model output should not be directed to the nul file until it
is verified that SENSAN (through TEMPCHEK) is able to build correct input files for it.
Failure in this regard will normally result in a model-generated error message. Conversely, if
SENSAN or INSCHEK indicate a failure to read the model output file(s), a search should be
made for a model-generated error message.

If running SENSAN in “verbose” mode for cases where there are multiple template files, the
user may notice a message similar to the following scroll past on the screen:

Warning: parameter "ro1" from parameter value file t###.par not cited in
template file ves.tp2.

This is of no concern, for it is simply TEMPCHEK informing the user that it has been
provided with a parameter value file (ie. t###.par written by SENSAN) that contains the
values of more parameters than are cited on any one template file.

11.8 An Example
Included in the pestex subdirectory of the directory into which PEST was installed are the
files required to run the soil clod shrinkage example discussed in Chapter 12 of this manual.
Also included in this subdirectory are three files not discussed in Chapter 12. These are
twofit.sns a SENSAN control file, out1.ins an instruction file identical to out.ins discussed in
Chapter 12, and parvar.dat a parameter variation file.

An inspection of file twofit.sns reveals that this SENSAN control file assumes the same
number of parameters and observations as the PEST control file twofit.pst. As the parameter
variation file parvar.dat reveals, parameter names are identical for the two cases. Also
identical for the two cases are the template and instructions files; however the instruction file
for the SENSAN example is named out1.ins instead of out.ins in order to avoid out.obf (used
in the PEST example of Chapter 12) being overwritten when SENSAN runs INSCHEK.

Five parameter sets are provided in parvar.dat, requiring that five model runs be undertaken.
After the third model run has been completed the model output file out.dat is copied to file
out.kp for safekeeping until later inspection.

Before running SENSAN make sure that the PEST directory is cited in the PATH
environment variable (so that SENSAN can run TEMPCHEK and INSCHEK). Run
SENSCHEK using the command:

senschek twofit

SENSAN 11-14

After verifying that there are no errors or inconsistencies in the SENSAN input dataset, run
SENSAN using the command:

sensan twofit

After SENSAN has completed execution, inspect files out1.txt, out2.txt and out3.txt, the three
SENSAN output files. You may also wish to verify that file out.kp exists, this being a record
of out.dat generated on the third model run.

An Example 12-1

12. An Example

12.1 Parameter Estimation

12.1.1 Laboratory Data

This section takes you, step by step, through an example which demonstrates the application
of PEST to a practical problem. Once PEST has been installed on your computer, the files
cited in this chapter can be found in the pestex subdirectory of the main PEST directory.

Table 12.1 shows the results of an experiment in which the specific volume of a soil clod (the
reciprocal of its bulk density) is measured at a number of water contents as the clod is
desiccated through oven heating. The data are plotted in Figure 12.1; see also file soilvol.dat.
We wish to fit two straight lines to this data. In soil physics parlance, the straight line
segment of low slope fitted through the points of low water content is referred to as the
“residual shrinkage” segment, whereas the segment covering the remainder of the data (with
a slope near unity) is referred to as the “normal shrinkage” segment. (Actually, another
segment of low slope is often present at high moisture contents, this being the “structural
shrinkage” segment; this segment is not apparent in the data plotted in Figure 12.1.)

0.0 0.2 0.4 0.6
Water content (cu m/Mg)

0.4

0.6

0.8

1.0

S
pe

ci
fic

 v
ol

um
e

(c
u

m
/M

g)

Figure 12.1 Soil clod shrinkage data.

An Example 12-2

water content (m3/Mg) specific volume (m3/Mg)

0.052

0.068

0.103

0.128

0.172

0.195

0.230

0.275

0.315

0.332

0.350

0.423

0.488

0.501

0.521

0.520

0.531

0.534

0.548

0.601

0.626

0.684

0.696

0.706

0.783

0.832

Table 12.1 Soil clod shrinkage data.

12.1.2 The Model

Before we can use PEST there must be a model. We will list the model program in a moment;
first we present the model algorithm.

Figure 12.2 shows two intersecting line segments. Let the slope of the first segment be s1 and
that of the second segment be s2. Let the intercept of the first segment on the y-axis be y1 and
the x-coordinate of the point of intersection of the two line segments be xc. The equation for
the two-line system is

y = s1 x + y1 x ≤ xc

y = s2 x + (s1 - s2) xc + y1 x > xc (12.1)

where x is the water content and y represents the soil clod specific volume.

A simple FORTRAN program can be written based on this concept; a listing is provided in
Example 12.1 (see also file twoline.for in the pestex subdirectory). Program TWOLINE
begins by reading an input file named in.dat which supplies it with values for s1, s2, y1 and xc,
as well as the water contents (ie. x values in equation 12.1) at which soil clod specific
volumes are required. TWOLINE writes a single output file (named out.dat) listing both
water contents and the specific volumes calculated for these water contents. Example 12.2
shows a typical TWOLINE input file, while Example 12.3 shows a corresponding TWOLINE

An Example 12-3

output file. An executable version of TWOLINE (viz. twoline.exe) is provided in the pestex
subdirectory of the PEST directory.

x

y

s
1

s
2

y
1

x
c

Figure 12.2 Parameters of the two line model.

An Example 12-4

We would like TWOLINE to calculate specific volumes at water contents corresponding to
our experimental dataset as set out in Table 12.1. The input file of Example 12.2 ensures that
this will, indeed, occur. Hence TWOLINE is now our system model. We would like PEST to
adjust the parameters of this model such that the discrepancies between laboratory and
model-generated specific volumes are as small as possible. The parameters in this case are
the four line parameters, viz. s1, s2, y1 and xc. Now that our model is complete, our next task
is to prepare the TWOLINE-PEST interface.

program twoline

integer*4 i,nx
real*4 s1,s2,y1,xc
real*4 x(50),y(50)

open(unit=20,file='in.dat')

c read the line parameters

read(20,*) s1,s2
read(20,*) y1
read(20,*) xc

c read the abscissae at which there are measurement values

read(20,*) nx
do 100 i=1,nx
read(20,*) x(i)

100 continue
close(unit=20)

c evaluate y for each x

do 200 i=1,nx
if(x(i).le.xc) then
 y(i)=s1*x(i)+y1
else
 y(i)=s2*x(i)+(s1-s2)*xc+y1
end if

200 continue

c write the y values to the output file

open(unit=20,file='out.dat')
do 300 i=1,nx
write(20,*) x(i),y(i)

300 continue
close(unit=20)

end

Example 12.1 A listing of program TWOLINE.

An Example 12-5

12.1.3 Preparing the Template File

First a template file must be prepared. This is easily accomplished by copying the file in.dat
listed in Example 12.2 to the file in.tpl and modifying this latter file in order to turn it into a
PEST template file. Example 12.4 shows the resulting template file; the value of each of the
line parameters has been replaced by an appropriately named parameter space, and the “ptf”
header line has been added to the top of the file. Because TWOLINE reads all parameters
using free field format, the width of each parameter space is not critical; however where two
parameters are found on the same line, they must be separated by a space. A parameter
space width of 13 characters is employed in file in.tpl in order to use the maximum
precision available for representing single precision numbers. As discussed in Section 3.2.5,
while PEST does not insist that parameters be written with maximum precision to model
input files, it is a good idea nevertheless.

0.3 0.8
0.4
0.3
13
0.052
0.068
0.103
0.128
0.172
0.195
0.230
0.275
0.315
0.332
0.350
0.423
0.488

Example 12.2 A TWOLINE input file in.dat

 0.520000E-01 0.415600
 0.680000E-01 0.420400
 0.103000 0.430900
 0.128000 0.438400
 0.172000 0.451600
 0.195000 0.458500
 0.230000 0.469000
 0.275000 0.482500
 0.315000 0.502000
 0.332000 0.515600
 0.350000 0.530000
 0.423000 0.588400
 0.488000 0.640400

Example 12.3 A TWOLINE output file out.dat

An Example 12-6

Now that in.tpl has been prepared, it should be checked using program TEMPCHEK; run
TEMPCHEK using the command

tempchek in.tpl

Example 12.5 shows file in.pmt, written by TEMPCHEK, in which all parameters cited in file
in.tpl are listed. By copying file in.pmt to in.par and adding parameter values, scales and
offsets to the listed parameter names, as well as values for the character variables PRECIS
and DPOINT, we can create a PEST parameter value file. Example 12.6 shows such a file;
because this file will shortly be used with program PESTGEN to generate a PEST control
file, the values supplied for each of the parameters are the initial parameter values to be used
in the optimisation process.

At this stage TEMPCHEK should be run again using the command

tempchek in.tpl in.dat in.par

ptf #
s1 # # s2
y1
xc
13
0.052
0.068
0.103
0.128
0.172
0.195
0.230
0.275
0.315
0.332
0.350
0.423
0.488

Example 12.4 The template file in.tpl

 s1
 s2
 y1
 xc

Example 12.5 File in.pmt

single point
 s1 0.3 1.0 0.0
 s2 0.8 1.0 0.0
 y1 0.4 1.0 0.0
 xc 0.3 1.0 0.0

Example 12.6 File in.par

An Example 12-7

(“in.par” can be omitted if you wish, for this is the default parameter value filename
generated automatically by TEMPCHEK from the template filename.) When invoked with
this command, TEMPCHEK generates file in.dat, the TWOLINE input file, using the
parameter values provided in file in.par; you should then run TWOLINE, making sure that it
reads this file correctly.

12.1.4 Preparing the Instruction File

Next the instruction file should be prepared. This can be easily accomplished by writing the
instructions shown in Example 12.7 to file out.ins using a text editor. Using this instruction
set all model-generated observations are read as semi-fixed observations; while they could
have been read as fixed observations, we may have been unsure of just how wide a number
can ever get in the second column of file out.dat (for example if a number becomes negative,
very large or very small).

Program INSCHEK should now be used to check that file out.ins contains a legal instruction
set. Run INSCHEK using the command

inschek out.ins

If no errors are encountered you should then run INSCHEK again, this time directing it to
read a TWOLINE output file using the instruction set; use the command

inschek out.ins out.dat

INSCHEK will produce a file named out.obf listing the values it reads from file out.dat for
the observations cited in file out.ins; see Example 12.8.

pif #
l1 (o1)19:26
l1 (o2)19:26
l1 (o3)19:26
l1 (o4)19:26
l1 (o5)19:26
l1 (o6)19:26
l1 (o7)19:26
l1 (o8)19:26
l1 (o9)19:26
l1 (o10)19:26
l1 (o11)19:26
l1 (o12)19:26
l1 (o13)19:26

Example 12.7 The instruction file out.ins

An Example 12-8

12.1.5 Preparing the PEST Control File

The PEST-TWOLINE interface is now complete as PEST can now generate a TWOLINE
input file and read a TWOLINE output file. The next step is to generate a PEST control file
through which PEST is provided with an appropriate set of optimisation control variables and
in which the laboratory measurements of specific volume are provided. First copy file out.obf
to file measure.obf. Then replace the value of each model-generated observation with the
corresponding value from Table 12.1, ie. with the appropriate laboratory measurement; see
Example 12.9. Then run PESTGEN using the command:-

pestgen twofit in.par measure.obf

PESTGEN generates a PEST control file named twofit.pst; see Example 12.10. File twofit.pst
should now be edited as some of the default values used by PESTGEN in writing this file are
not appropriate to our problem. In particular, our model is run using the command “twoline”,
not “model”; the filenames listed in the “model input/output” section of twofit.pst need to be
altered as well. Once you have made these changes (Example 12.11 lists that part of twofit.pst
to which the alterations have been made), preparation for the PEST run is complete. It would
be a very good idea to make some other adjustments to twofit.pst as well, such as providing
more appropriate upper and lower bounds for each of the parameters. However, at the risk of
leading you into bad habits, this will not be done.

 o1 0.415600
 o2 0.420400
 o3 0.430900
 o4 0.438400
 o5 0.451600
 o6 0.458500
 o7 0.469000
 o8 0.482500
 o9 0.502000
 o10 0.515600
 o11 0.530000
 o12 0.588400
 o13 0.640400

Example 12.8 File out.obf

 o1 0.501
 o2 0.521
 o3 0.520
 o4 0.531
 o5 0.534
 o6 0.548
 o7 0.601
 o8 0.626
 o9 0.684
 o10 0.696
 o11 0.706
 o12 0.783
 o13 0.832

Example 12.9 File measure.obf

An Example 12-9

As a final check that the entire PEST input dataset is complete, correct and consistent, you
should run program PESTCHEK using the command

pestchek twofit

If all is correct, you can now run PEST using the command:-

pest twofit

pcf
* control data
restart estimation
 4 13 4 0 1
 1 1 single point 1 0 0
 5.0 2.0 0.3 0.03 10
 3.0 3.0 0.001
 0.1
 30 0.01 3 3 0.01 3
 1 1 1
* parameter groups
s1 relative 0.01 0.0 switch 2.0 parabolic
s2 relative 0.01 0.0 switch 2.0 parabolic
y1 relative 0.01 0.0 switch 2.0 parabolic
xc relative 0.01 0.0 switch 2.0 parabolic
* parameter data
s1 none relative 0.300000 -1.00000E+10 1.00000E+10 s1 1.0000 0.000 1
s2 none relative 0.800000 -1.00000E+10 1.00000E+10 s2 1.0000 0.000 1
y1 none relative 0.400000 -1.00000E+10 1.00000E+10 y1 1.0000 0.000 1
xc none relative 0.300000 -1.00000E+10 1.00000E+10 xc 1.0000 0.000 1
* observation groups
obsgroup
* observation data
o1 0.501000 1.0 obsgroup
o2 0.521000 1.0 obsgroup
o3 0.520000 1.0 obsgroup
o4 0.531000 1.0 obsgroup
o5 0.534000 1.0 obsgroup
o6 0.548000 1.0 obsgroup
o7 0.601000 1.0 obsgroup
o8 0.626000 1.0 obsgroup
o9 0.684000 1.0 obsgroup
o10 0.696000 1.0 obsgroup
o11 0.706000 1.0 obsgroup
o12 0.783000 1.0 obsgroup
o13 0.832000 1.0 obsgroup
* model command line
model
* model input/output
model.tpl model.inp
model.ins model.out
* prior information

Example 12.10 The PESTGEN-generated control file twofit.pst

* model command line
twoline
* model input/output
in.tpl in.dat
out.ins out.dat

Example 12.11 Altered section of twofit.pst

An Example 12-10

A run record file twofit.rec will be written by PEST in the pestex subdirectory; so too will file
twofit.par containing the optimised parameter set. Figure 12.3 shows the lines of best fit
superimposed on the laboratory data.

0.0 0.2 0.4 0.6
Water content (cu m/Mg)

0.4

0.6

0.8

1.0
S

pe
ci

fic
 v

ol
um

e
(c

u
m

/M
g)

Figure 12.3 Soil clod shrinkage data with lines of best fit superimposed.

12.2 Predictive Analysis

12.2.1 Obtaining the Model Prediction of Maximum Likelihood

Files for this example can be found in the \papestex directory of the PEST directory after
installation. This example builds on the soil clod shrinkage example discussed in the previous
section.

Based on the dataset supplied with the example, PEST lowers the objective function to a
value of 6.71E-4 when estimating values for the model parameters. Best fit parameter values
are listed in Table 12.2.

An Example 12-11

After PEST is run in parameter estimation mode, best-fit model parameters can be found in
file twofit.par. Insert these into the model input file in.dat by running TEMPCHEK as
follows:-
tempchek in.tpl in.dat twofit.par

If the value for specific volume at a water content of 0.4 is of particular interest to us, this can
now be easily calculated with our calibrated “model”. An appropriate TWOLINE input file
in2.dat is provided; this is easily prepared from the new in.dat file created using
TEMPCHEK by alteration with a text editor in conformity with the expectations of program
TWOLINE. As the first two lines of this file contain parameter values to be used by
TWOLINE, it was necessary to run TEMPCHEK first to ensure that the parameter values
contained in this file were the optimal parameter values.

As TWOLINE expects a file named in.dat, in2.dat must be copied to in.dat before
TWOLINE is run. But before doing this, copy the existing in.dat to in1.dat for safekeeping.

After running program TWOLINE (by typing “twoline” at the screen prompt) open file
out.dat to obtain the model-predicted specific volume. It should be 0.756. This is thus our
best estimate of the soil clod specific volume at a water content of 0.4.

12.2.2 The Composite Model

Before undertaking predictive analysis, we must construct a “composite model” comprised of
the model run under calibration conditions followed by the model run under prediction
conditions. This model must be encompassed in a batch file; an appropriate file named
model.bat is supplied. Example 12.12 shows a printout of model.bat.

Parameter PEST-estimated value

s1 0.238

s2 0.963

y1 0.497

xc 0.174

Table 12.2. Optimised parameter values for soil clod shrinkage example.

An Example 12-12

The batch file is divided into three parts. In the second part the model is run under calibration
conditions. First the “calibration input file” in1.dat is copied to the expected TWOLINE
input file in.dat. TWOLINE is then run and its output file out.dat is copied to another file
OUT1.DAT for safekeeping.

The process is then repeated in the third part of file model.bat for the predictive model run. In
this case in2.dat is the model input file and out2.dat is the model output file.

The first part of the batch file model.bat illustrates a procedure that is recommended in the
construction of all composite models. In this section of the batch file all intermediate files
used or produced during execution of the composite model are deleted. Recall that PEST
deletes all model output files (that it knows about) before it runs the model. In this way it is
ensured that if, for some reason, the model does not run, then old model output files are not
mistaken for new ones. Thus if the model fails to run an error condition will be encountered
and PEST will cease execution with an appropriate error message. However in a composite
model there are likely to be intermediate files which are generated by one model to be read
by another. If any part of a composite model fails to execute, the ensuing part of the
composite model must be prevented from executing on the basis of intermediate files
generated during previous model runs. This can be ensured by deleting all such intermediate
files.

The first line of the batch file model.bat prevents the operating system from echoing batch
file commands to the screen. This relieves screen clutter when the model is run under the
control of PEST in the same window as PEST. To assist in this process screen output from
all commands is directed to the nul file instead of the screen. To find out more about batch
files, see the DOS help file on your Windows CD.

To satisfy yourself that the composite model runs correctly, type:-
model

at the screen prompt. Inspect the model output files out1.dat and out2.dat. (You may wish to
delete the “@echo off” line and remove “> nul” from each command line before you run the
model in order to see the appropriate model commands scroll past on the screen as they are

@echo off

rem Intermediate files are deleted

del in.dat
del out.dat

rem First the model is run under calibration conditions.

copy in1.dat in.dat > nul
twoline > nul
copy out.dat out1.dat > nul

rem Next the model is run under predictive conditions.

copy in2.dat in.dat > nul
twoline > nul
copy out.dat out2.dat > nul

Example 12.12. A batch file encompassing a composite model.

An Example 12-13

executed.)

12.2.3 The PEST Control File

We would now like to obtain the maximum possible value for the soil specific volume at a
water content of 0.4 compatible with the model being calibrated against our laboratory
dataset. Let us do this by assuming that the model can still be considered to be calibrated if
the objective function under calibration conditions is as high as 5.0E-3; this is thus the value
assigned to the variable PD0.

The PEST control file used in the parameter estimation process was named twofit.pst. This
file should be copied to file twofit1.pst and the following alterations made (actually this has
already been done for you).

1. Replace the word “estimation” with the word “prediction” on the third line of this file.

2. When undertaking a predictive analysis run there is an extra observation, this being
the model prediction. Hence the number of observations (ie. NOBS) must be
increased from “13” to “14” on the 4th line of file twofit1.pst.

3. There will now be two observation groups, so alter the 5th entry on line 4 of file
twofit1.pst (ie. NOBSGP) to “2”.

4. There are now two model input files and two model output files, so alter the first two
entries on the 5th line of file twofit1.pst (ie. NTPLFLE and NINSFLE) to “2” and “2”
respectively.

5. In the “observation groups” section of the PEST control file add the observation
group “predict”.

6. In the “observation data” section of the PEST control file add an extra observation
named “o14”. Assign this to the observation group “predict”. Provide whatever
observation value and weight that you like, as these are ignored by PEST when run in
predictive analysis mode. It is probably best to make both of these 0.0, just in case
you wish to run PEST later using the same file in parameter estimation mode; by
assigning the weight as zero, the “prediction observation” will contribute nothing to
the objective function if that occurs.

7. Alter the model command line to “model.bat” in the “model command line” section of
the new PEST control file.

8. The two model input files are named in1.dat and in2.dat; the first is used for the
calibration component of the composite model, the second is used for the predictive
component of the composite model. A PEST template file already exists for the first
model input file (ie. in.tpl). We will introduce a new template file for the second
model input file shortly; it will be called in2.tpl. So alter the model input filename to
in1.dat on the first line of the “model command line” section of file twofit1.pst; then
add another line underneath this comprised of the entries “in2.tpl” and “in2.dat”.

9. The model output files are named out1.dat and out2.dat; the first is produced by the

An Example 12-14

calibration component of the composite model while the second is produced by the
predictive component of the composite model. A PEST instruction file already exists
for the first model output file (ie. out.ins). We will introduce a new instruction file for
the second one shortly; it will be called out2.ins. So alter the model output filename to
“out1.dat” on the third line of the “model command line” section of file twofit1.pst;
then add another line underneath this comprised of the entries “out2.ins” and
“out2.dat”.

10. Add a “predictive analysis” section to file twofit1.pst. Because we wish to maximise
the prediction, NPREDMAXMIN is assigned the value of 1. As mentioned above,
PD0 is 5.0E-3. Set PD1 to 5.2E-3 and set PD2 to be twice as high as PD0, ie. 1.0E-2.
Variables governing operation of the Marquardt lambda, the switching from two point
to three point derivatives calculation, and the termination of execution will be set in
relative rather than absolute terms, so set ABSPREDLAM, ABSPREDSWH and
ABSPREDSTP to 0.0. RELPREDLAM, RELPREDSWH and RELPREDSTP should
be set to their recommended values of .005, .05 and .005 respectively.
NPREDNORED and NPREDSTP should be set at their recommended values of 4 and
4. Contrary to the advice provided in Chapter 6, we will not conduct a line search for
each Marquardt lambda, so set the control variables INITSCHFAC, MULSHFAC and
NSEARCH to 1.0, 2.0 and 1 respectively.

12.2.4 Template and Instruction Files

Inspect files in2.tpl and out2.ins provided with the example files. These are, respectively, a
template file for in2.dat and an instruction file to read the single prediction observation from
file out2.dat.

Notice how parameter spaces for each of the four parameters involved in the predictive
analysis process appear in both of files in.tpl and in2.tpl. This is because these parameter
values are used by the model under both calibration and prediction conditions. Prior to
running the composite model they must be written to both sets of input files (together with
other data specific to each component of the composite model).

12.2.5 Running PEST

Before running PEST, run PESTCHEK to check that the entire input dataset is consistent and
correct. At the screen prompt type:-
pestchek twofit1

Then run PEST using the command:-
pest twofit1

There are two things to watch as PEST executes. The first is the value of the objective
function and the second is the value of the prediction. Both of these are written to the screen
on every occasion that PEST calculates a parameter upgrade vector (these are easily seen
when running PEST if screen output from the composite model is disabled as discussed
earlier). The objective function (ie. phi) hovers around 5.0E-3 as it should (though values on
either side of this are recorded). The value of the prediction slowly rises from iteration to
iteration. Note that information written to the screen during the course of PEST’s execution is

An Example 12-15

also recorded in the PEST run record file (in this case twofit1.rec).

When PEST ceases execution, open file twofit1.rec and go to the bottom of the file. Near the
bottom of the file it is written that PEST achieved a maximum prediction value of 0.786 for a
corresponding objective function value of 5.16E-3. This is a little above our target value of
5.0E-3, but is accepted due to the action of PD1. However due to the rather subjective way in
which an objective function value is selected at which the model is said to be “calibrated”
this matters little.

While inspecting the run record file, notice how observation “o14” is not listed with other
observations in the section of this file which tabulates observed values, corresponding model-
generated values and residuals. This is because observation “o14” is in fact the prediction,
PEST recognising it as such because it is the only observation assigned to the observation
group “predict”.

Figure 12.4 shows a plot of the line segments calculated on the basis of the parameters
derived by PEST during the above predictive analysis process. The fit is not too bad, though
obviously not as good as that obtained on the basis of best fit parameters.

0.0 0.2 0.4 0.6
Water content (cu m/Mg)

0.4

0.6

0.8

1.0

S
pe

ci
fic

 v
ol

um
e

(c
u

m
/M

g)

Figure 12.4. Soil clod shrinkage data with line segments superimposed.

In the present instance, the “worst case” model prediction of 0.786 is not too different from
the “most likely” model prediction of 0.756. This is comforting to know. It is a frightening
fact that in many instances of environmental modelling the worst case prediction can be
hugely different from that calculated using parameters corresponding to the objective
function minimum. It is under these circumstances that predictive analysis becomes an
absolute necessity.

Frequently Asked Questions 13-1

13. Frequently Asked Questions

13.1 PEST
When I run PEST with certain older models, a message pops up asking me if I would like to
run the model in MS-DOS mode. How can I prevent this from happening?

Click with your right mouse button on the bar at the top of the DOS window in which you are
running PEST and choose “properties” from the pop-up menu. In the “program/advanced”
section of the pop-up dialogue box uncheck the “Suggest MS-DOS mode as necessary” box.
To prevent this from ever happening again, click on the model icon in Windows Explorer
with the right mouse button and alter its properties in similar fashion.

When I run PEST with a certain model a message pops up telling me that the computer is
about to enter MS-DOS mode and that I must close all other programs. How can I prevent
this from happening?

Click on the model icon in Windows Explorer as described above. This time uncheck the
“MS-DOS” mode box.

I am having trouble running PEST in WINDOWS NT and/or WINDOWS 2000. Sometimes a
command line window just disappears.

See Section 13.3 below.

13.2 Parallel PEST
Can a slave be introduced part of the way through a Parallel PEST run?

As presently programmed, no. All incidences of PSLAVE must begin execution before
PEST. A slave can drop out of the Parallel PEST optimisation process, or its execution can be
terminated (eg. by hitting <Ctl-C>) and PEST will simply carry on without it as long as there
are other slaves to carry out model runs. However if this slave is then re-started, PEST will
not recognise it. Even if you start a slave just after PEST has started, before it has actually
undertaken any model runs, PEST will still not recognise it as it must be started before PEST
commences execution.

Our office network is such that we have a single server to which all of our individual
machines have access as drive O. Our machines are not able to communicate individually
with each other in a peer-to-peer sense. What is the best way to set up Parallel PEST under
these circumstances?

Install the model on each machine. Create as many subdirectories on drive O: as there are
slaves, calling these subdirectories, for example, sub1, sub2, etc. On each slave machine
make one such directory the current working directory, making sure to use a different
subdirectory in each case. Make sure the model can run from that subdirectory once PEST-
generated input files are placed there (ie. do a “dummy” model run on each slave machine

Frequently Asked Questions 13-2

using normal model input files placed in each of the sub1, sub2, etc. subdirectories). Then
start up PSLAVE on each slave machine (one of which will also probably be the machine
running PEST).

The PEST template and instruction files can reside in any directory on the master machine.
However for each slave, Parallel PEST should be informed that model input files and model
output files reside in the sub1, sub2 etc. subdirectory appropriate to that slave. Each such
subdirectory should also be cited as a slave subdirectory for the purposes of writing the signal
files listed in Table 9.1. Once the Parallel PEST run management file has been constructed
accordingly, Parallel PEST can be started and should run without problems.

If the slave and model working directories are on a server’s disk, is not the server running
the model?

No, the model is run by the machine from which PSLAVE is launched irrespective of
whether the current working directory is on the current machine’s disk, or on a disk
belonging to another machine. Similarly, even if the model executable resides on another
machine’s disk, the model is run by the machine from which the model run command is
issued; this is the machine running PSLAVE, for it is PSLAVE which issues the command to
run the model. If the model executable resides on another machine, then it has to be loaded
into the current machine’s memory across the network prior to execution.

Do I have to install the model executable on each slave machine?

Not at all. If a single model executable is accessible through the network by all slave
machines then it can be run from each slave machine without having to install it on any of
them. The disadvantage of this scheme, however, is that if the model executable is large,
reloading it to each slave machine every time that slave runs the model may be a slow
process on heavily-used networks. The contribution that this makes to network traffic may
result in a user having to employ a higher value for WAIT than would otherwise be the case,
further slowing down Parallel PEST’s operations. However with disk caching, these
problems may be mitigated somewhat.

When I came to work one morning after Parallel PEST had been running all night, one of my
slaves had ceased carrying out model runs, displaying instead the following prompt:

Sharing violation reading drive C
Abort, Retry, Fail?

Why did this happen?

This message was sent by the operating system, not by PSLAVE. The model was probably
trying to read an input file that had not yet been closed by PEST, or PEST was trying to read
a model output file that had not yet been closed by the model. Theoretically, such things
should not happen. However on busy machines connected to busy networks it may take some
time for one process on a particular machine to get the message that a file has been closed by
a process running on another machine. To prevent this error from happening increase the
value of WAIT, the length (in seconds) of the pause made by PSLAVE and PEST at certain
strategic stages of run management and data exchange.

Can PSLAVE run a batch file containing multiple executables as the model, just like PEST

Frequently Asked Questions 13-3

can?

Yes. However make sure that either the full directory of each executable is included within
its name as cited in the batch file, or that the directory containing each executable is cited in
the PATH environment variable on the machines from which the model is run.

Can PEST and PPEST be used interchangeably?

Yes, all versions of PEST use identical template and instruction files, and an identical PEST
control file.

Parallel PEST terminated execution with an error message to the effect that it could not find
the model output file. What could be wrong? Furthermore, it waited an unduly long time
after commencement of execution to inform me of this.

If Parallel PEST encounters any problems whatsoever in reading a model output file (for
example premature termination of the file, data errors, poor instructions or file not present), it
tries to read the file three times at 30 second intervals in order to be sure that the problems
are not network-related. If, after making three attempts to read the file, it is still unsuccessful,
it reports the error to the screen and terminates execution.

If a model output file cannot be found then either the model did not write it, the model did
not run, or an erroneous name was provided for the model output file in the Parallel PEST
run management file. In the first case, a poor parameter set may have been provided to the
model, resulting in a model run-time error being generated before the model wrote any data
to its output file. Or perhaps model input files were misnamed in the Parallel PEST run
management file. Alternatively, if the model did not run, the model command line, as
provided to PSLAVE, may have been inappropriate. To find out more about the cause of the
problem, ascertain the name of the slave where the trouble occurred (this should be apparent
from the PEST error message issued on termination of its execution); then shut down that
slave and run the model from the slave working directory using the same command as that
used by PSLAVE and watch what happens. But before doing this, check that the model
output files are not, in fact present after all. If they are, then they must have been misnamed
in the Parallel PEST run management file.

If, after following the steps outlined above, the reason for the problem is still not apparent,
increase the value of the WAIT variable and try running Parallel PEST again.

13.3 PEST and Windows NT
A few problems have been encountered when using PEST and Parallel PEST with
WINDOWS NT and WINDOWS 2000. The problems are not caused by PEST. However this
is not much consolation if PEST does not perform correctly.

Problems encountered include the following.

• A command line window used by PEST or PSLAVE closes in the middle of a model
run.

Frequently Asked Questions 13-4

• PEST reports that it cannot find a model output file when the model output file is
actually present.

• In a composite model written as a batch file and containing a number of executables
run in succession, one of the executable programs is not actually executed on one
particular model run.

The problems are particularly frustrating because they occur so rarely. Thus PEST may run
happily for hours when, suddenly, one of the above conditions occurs. Any one of them will
cause immediate termination of execution.

In many cases where these problems have been encountered it has been found that the
problem was rectified by re-compiling the model source code using a modern compiler. Old
compilers used DOS memory extenders (some of which had a memory leakage bug) to gain
access to all of a machine’s memory; very old compilers generated 16 bit executables and
used no extender at all. WINDOWS NT/2000 does not work well with either of these.

If the problem persists, make sure that the latest service pack has been installed. Also, see if
use of the command rather than the cmd command interpreter (and vice versa) makes any
difference.

Index

Index
! ! ...3-22
&... 3-14, 3-25, 4-26
() ...3-21
[] ...3-19
<... 1-4, 3-1
>..1-4, 5-22, 10-1, 10-3, 10-5
ABSFLE ...11-6, 11-10
ABSPREDLAM ..6-14
ABSPREDSTP ..6-15
ABSPREDSWH ..6-15
Adjustable parameters ...1-6
ASCII files... 1-4, 3-2, 3-10, 4-22
AUTOEXEC.BAT...1-1
Batch..10-19
Batch file .. 3-2, 4-21, 10-5
Best fit method.. 2-28, 2-32, 5-26
Binary files ... 3-2, 3-10, 4-22
Calibration ...1-2
Central derivatives.........1-8, 2-26, 2-28, 2-29, 4-10, 4-15
Column numbers.. 3-18, 3-20
Continuation character..................................... 3-25, 4-26
Control data ...4-4
Control file.....................1-12, 4-1, 5-24, 10-4, 10-5, 12-8
Control variables.. 5-24, 5-25
Correlation coefficient matrix............................ 2-3, 4-17
Covariance... 2-15, 5-39
Covariance matrix..................................... 2-3, 4-17, 5-36
Critical point ..6-3
Cursor .. 3-14, 3-23
Decimal point .. 3-7, 4-6
Degrees of freedom..2-3
DERCOM ..4-19
DERINC .. 2-29, 5-24
DERINCLB 2-29, 4-14, 5-24, 5-26
DERINCMUL .. 2-29, 4-15, 5-24
Derivatives.. 2-27, 4-13, 8-8
DERMTHD .. 2-29, 4-16, 5-24
Distributed parameters.........................1-1, 1-5, 2-27, 3-8
DPOINT 3-6, 4-6, 5-16, 5-31, 10-2, 11-6
Dual calibration ...6-6
Dummy group..4-13
Dummy observation... 3-13, 3-24
EDIT..3-25
Eigenvalues.. 2-3, 5-36
Eigenvectors ... 2-3, 4-17, 5-36
Errorlevel ...10-5
Excitations ...1-1
FACORIG.. 2-22, 4-10
FACPARMAX2-21, 4-9, 5-10, 5-28, 5-33
Factor-limited parameters 2-22, 4-9, 5-10, 5-29
Fixed observations ...3-19
Fixed parameters..4-17
FORCEN .. 2-29, 4-15, 5-11
Formatted input..3-5
FORTRAN.. 3-5, 3-7, 3-20
Forward derivatives1-8, 2-27, 2-29, 4-10, 4-15

FRACPHIM ... 7-7, 7-9
Frozen parameters..................................... 2-20, 4-8, 5-11
Gradient vector .. 2-8, 2-20
Hemstitching.. 2-8, 5-27
ICOR... 5-21
ICOV... 5-21
IEIG .. 5-21
IFLETYP .. 9-8
INCTYP.. 2-29, 4-14, 5-26
INFLE .. 4-24, 11-7
Initial parameter values...............................1-7, 2-7, 4-18
INITSCHFAC... 6-14
INSCHEK1-12, 3-26, 5-31, 10-3, 12-7
INSFLE... 11-7
Instability ..2-5, 4-9, 5-27
Installation .. 1-1
Instruction files 1-7, 4-6, 4-24, 10-3, 12-7
Instructions... 1-7, 10-3
Interpretation... 1-2
Interrupt .. 1-11
JACFILE.. 4-6, 8-7
Jacobian .. 1-13
Jacobian matrix 2-6, 2-27, 4-15, 5-9, 5-35
JACWRIT .. 1-13, 10-9
LAMBDA ... 5-33
Line ... 6-14
Line advance ... 3-15
Linear models ... 1-7
List-directed input.. 3-5, 12-5
Log least squares... 4-21
Logarithmic transformation2-19, 2-30, 4-17, 4-25, 5-12,

5-27
Marker delimiter ... 3-14
Markers ... 3-11
Marquardt lambda.................. 2-10, 4-7, 5-10, 5-24, 5-27
Matrix ... 5-21
Measurement.. 2-13, 7-4
Measurements ...3-1, 3-9, 4-20
MESSFILE... 4-6, 8-7
Model .. 8-9
Model input files .. 4-24, 10-1
Model output files 3-9, 4-24, 10-3
Model zones.. 3-9
Model-calculated ... 2-32, 8-1
Model-generated errors ... 5-23
Model-generated observations2-1, 2-6, 2-31, 3-1, 3-9, 5-

31, 10-6
MULSCHFAC .. 6-14
Multiple... 8-6
na .. 5-9
NFLETYP... 9-10
NINSFLE...4-6, 4-24, 9-10, 11-6
NOBS... 4-5, 11-5
NOBSGP... 4-5
Non-fixed observations ... 3-21
Nonlinear models 2-6, 2-32, 4-10

Index

Nonuniqueness.. 2-5, 5-27, 6-3
NOPTMAX 2-26, 4-11, 5-24, 5-40
Normal matrix.................................... 2-7, 2-10, 4-5, 5-27
NPAR .. 4-5, 11-5
NPARGP ...4-5
NPHINORED ... 2-25, 4-12, 5-24
NPHISTP.. 2-25, 4-12, 5-11
NPREDMAXMIN ... 6-12, 6-15
NPREDNORED ..6-15
NPRIOR .. 4-5, 4-24
NRELPAR.. 2-26, 4-12, 5-24
NSEARCH...6-14
NSLAVE ... 9-8, 9-9
NTPFLE .. 9-10, 11-6
NTPLFLE ..4-6
NUMCOM... 4-6, 8-7
NUMLAM... 4-8, 5-24
OBGNME..4-21
Objective function1-7, 2-2, 2-6, 2-10, 2-25, 4-8, 4-20, 5-

9, 5-11, 5-25, 6-5, 11-11
Observation..4-27
Observation groups..4-20
Observation value file............................. 10-4, 10-6, 12-7
Observations ..1-6, 2-1, 3-1, 3-9
OBSNME...4-20
OBSVAL ...4-20
OFFSET................................2-20, 4-19, 5-16, 5-29, 10-2
OUTFLE..11-7
Outside points ..2-28
Over-parameterisation ...5-39
PAR2PAR...1-13, 10-10
Parabolic method 2-28, 2-32, 5-26
Parallel PEST.. 5-1, 9-1, 13-1
Parameter ...10-14
Parameter bounds...4-18
Parameter correlation.................................. 2-3, 2-5, 5-12
Parameter factor...4-25
Parameter groups 2-27, 2-29, 4-13
Parameter hold file...5-32
Parameter increments.............................. 4-14, 5-26, 5-28
Parameter sensitivity file ...5-16
Parameter space ... 3-4, 3-6
Parameter upgrade vector2-7, 2-10, 2-20, 2-21, 2-22, 2-

24
Parameter value file 5-16, 10-1, 10-6, 12-6
Parameter variation file..11-3
Parameters ... 1-1, 1-5
PARCHGLIM.. 2-21, 4-18
Parent parameter 1-5, 2-19, 4-17, 4-19
PARGP ..4-19
PARGPNME ...4-14
PARLBND... 2-19, 4-18
PARNME... 4-17, 4-25
PARREP .. 1-12, 5-39, 5-40, 10-8
PARTIED ..4-19
PARTRANS .. 2-19, 4-17
PARUBND .. 2-19, 4-19
PARVAL1 ...4-18
PATH... 4-21, 5-23
PD0..6-12
PD1..6-13

PD2 ... 6-13
PEST control file .. 6-10
PEST.STP ... 5-23
PESTCHEK 1-12, 3-26, 4-1, 9-12, 10-4, 12-9
PESTGEN..1-12, 4-1, 10-5, 12-8
PESTMODE ... 6-12
PEST-to-model .. 2-32, 8-4
Phi .. 5-11, 5-25
PHIMACCEPT ... 7-6
PHIMLIM ... 7-6
PHIRATSUF.. 4-7, 5-24
PHIREDLAM .. 4-8, 5-24
PHIREDSTP2-25, 4-12, 5-11, 5-24
PHIREDSWH ... 2-29, 4-10, 5-11
PIFAC ... 4-25
PILBL ... 4-25
PIVAL... 4-26
Post-processing ... 5-36
PPAUSE.. 1-11, 5-23, 9-13
PPEST.. 5-1, 9-13
PRECIS.................................... 3-6, 4-6, 5-16, 10-2, 11-6
Precision 2-31, 3-4, 3-6, 4-6, 4-22, 5-9
Predictive Analysis ... 6-1
Primary marker ... 3-14
Prior information article.. 4-24
Prior information equation .. 4-25
Prior information label .. 4-25
PSLAVE ... 9-3, 9-12, 13-2
PSTOP .. 1-11, 5-23, 9-13
PSTOPST.. 1-11, 5-23, 9-13
PUNPAUSE... 1-11, 5-23
Reference variance.. 2-5
Regularisation 1-10, 2-13, 2-26, 7-1, 7-5
Relative-limited parameters2-22, 4-9, 5-10, 5-29
RELFLE... 11-6, 11-10
RELPARMAX....................... 2-21, 4-9, 5-10, 5-28, 5-33
RELPARSTP .. 2-26, 4-12, 5-24
RELPREDLAM.. 6-14
RELPREDSTP.. 6-15
RELPREDSWH.. 6-15
Residuals.................................. 2-4, 2-8, 4-20, 4-32, 5-37
Residuals file... 5-20
Restart switch.. 5-1
RLAMBDA1.. 4-7, 5-29
RLAMFAC4-7, 5-11, 5-24, 5-29
Rotation... 2-16
Roundoff errors........... 2-27, 2-29, 4-15, 4-22, 5-25, 5-27
RSTFLE.. 4-4
Run.. 7-10
Run management file .. 9-7
Run record file ... 1-9, 5-2
Run-time errors .. 3-25, 5-1
SCALE...2-20, 4-19, 5-16, 10-2
SCREENDISP... 11-5
Secondary marker .. 3-16, 3-24
Section headers ... 4-3
Semi-fixed observations.. 3-20
SENSAN.. 1-13, 11-1
SENSAN Control File... 11-4
SENSCHEK.. 11-8
SENSFLE... 11-6, 11-10

Index

Sensitivity ..5-16
Sensitivity analysis ..5-13
Sharing violation....................................... 9-9, 9-17, 13-2
SLAVDIR..9-9
Slave .. 9-3, 9-4
Smoothing..7-2
Standard deviation ...5-14
Tab...3-18
Taylor's theorem ..2-6
TEMPCHEK... 1-12, 3-9, 10-1
TEMPFLE ... 4-24, 11-7
Template files 1-5, 3-1, 4-6, 4-24, 10-1, 12-5
Terminal input ...3-1
Terminal output ...3-10
Tied parameters .. 1-5, 4-17, 4-19
User interaction.. 5-25, 5-31
VARFLE..11-6
Variance...5-14
WAIT... 9-9, 9-17
WEIGHT ... 4-20, 4-26
Weights.. 1-7, 2-6, 4-20, 4-26
WFFAC ...7-8
WFINIT ...7-7
WFMAX..7-7
WFMIN ...7-7
WFTOL ...7-8
Whitespace .. 3-18, 3-23
WINDOWS ... 3-25, 13-1

	Structure Bookmarks
	
	
	
	PEST
	Model-Independent Parameter Estimation
	Watermark Numerical Computing

	Acknowledgments
	Acknowledgments
	Some of the improvements made to PEST documented in this manual were carried out whileI was employed as a Research Scientist at the University of Idaho, Idaho Falls. Also, while Ioccupied that position, I was able to devote a considerable amount of time to writing softwareto expedite PEST’s usage in the calibration and predictive analysis of surface water models.Much of this software is now part of the PEST Surface Water Utilities Suite.
	I wish to publicly acknowledge my gratitude to the University of Idaho for providing me withthe time and resources necessary to carry out this important work.
	Disclaimer
	The user of this software accepts and uses it at his/her own risk.
	The author does not make any expressed of implied warranty of any kind with regard to thissoftware. Nor shall the author be liable for incidental or consequential damages with orarising out of the furnishing, use or performance of this software.

	Preface to First Edition
	Preface to First Edition
	This document describes the use of PEST, a model-independent parameter optimiser.
	Nonlinear parameter estimation is not new. Many books and papers have been devoted to thesubject; subroutines are available in many of the well-known mathematical subroutinelibraries; many modelling packages from all fields of science include parameter estimation asa processing option; most statistical and data-analysis packages allow curve-fitting to a user-supplied data set. However in order to take advantage of the nonlinear parameter estimationfacilities offered by this software, you must either underta
	While PEST has some similarities to existing nonlinear parameter estimation software (ituses a powerful, yet robust, estimation technique that has been extensively tested on a widerange of problem types), it has been designed according to a very different philosophy. Whatis new about PEST is that it allows you to undertake parameter estimation and/or datainterpretation using a particular model, without the necessity of having to make any changesto that model at all. Thus PEST adapts to an existing model, yo
	As far as I know, PEST is unique. Because of its versatility and its ability to meet themodeller “where he or she is at”, rather than requiring the modeller to reformulate his/herproblem to suit the optimisation process, I believe that PEST will place the nonlinearparameter estimation method into the hands of a wider range of people than has hitherto beenpossible, and will allow its application to a wider range of problem types than ever before. Isincerely hope that this will result in a significant enhance
	However you should be aware that nonlinear parameter estimation can be as much of an artas it is a science. PEST, or any other parameter estimator, can only be used to complementyour own efforts in understanding a system and inferring its parameters. It cannot act as asubstitute for discernment; it cannot extract more information from a dataset than the inherentinformation content of that dataset. Furthermore, PEST will work differently with differentmodels. There are many adjustments which you can make to
	So I urge you to take the time to understand the contents of this manual before using PEST tointerpret real-world data. In this way you will maximise your chances of using PESTsuccessfully. Experience has shown that for some difficult or “messy” models, the setting ofa single control variable can make the difference between PEST working for that model ornot. Once the correct settings have been determined, PEST can then be used with that modelforevermore, maybe saving you days, perhaps weeks, of model calibr
	So “good luck” in your use of PEST; I hope that it provides a quantum leap in your ability tocalibrate models and interpret field and laboratory data.
	John Doherty
	February, 1994
	Preface to Second Edition
	Since the first version of PEST was released in early 1994 it has been used all over the worldby scientists and engineers working in many different fields, including biology, geophysics,geotechnical, mechanical, aeronautical and chemical engineering, ground and surface waterhydrology and other fields. Through the use of PEST in model calibration and datainterpretation, many PEST users have been able to use their models to much greateradvantage than was possible when such tasks were attempted manually by tri
	This second edition of the PEST manual coincides with the release of version 3.5 of PEST.Some of the enhancements that were included in this new PEST have arisen out of my ownexperience in the application of PEST to the calibration of large and complex models. Othershave been included at the suggestion of various PEST users, some of whom are applyingPEST in unique and interesting situations. For those already familiar with PEST a briefsummary of new features follows.
	A version of PEST called “Parallel PEST” has been created. This allows PEST to run amodel on different machines across a PC network, thereby reducing overall optimisation timeenormously.
	By popular demand, parameter, observation, parameter group and prior information namescan now be up to 8 characters in length. The previous limit of 4 characters per name was setas a memory conservation strategy, a matter of diminishing concern as computing hardwarecontinues to improve.
	Observations can now be collected into groups and the contribution made to the objectivefunction by each group reported through the optimisation process. This information isextremely helpful in the assignment of weights to different measurement types.
	PEST no longer ceases execution with an error message if a parameter has no effect onobservations; rather it simply holds the offending parameter at its initial value.
	PEST can be asked to run a model only once and then terminate execution. In this way PESTcan be used simply for objective function calculation. Alternatively, it can be asked to run themodel only as many times as is necessary in order to calculate the parameter covariancematrix and related statistics based on initial parameter estimates.
	Two new programs have been added to the PEST suite. These are SENSAN, a model-independent sensitivity analyser, and PARREP, a utility that facilitates the commencement ofa new PEST run using parameter values generated on a previous PEST run.
	However by far the most important changes to PEST are the improved capabilities that itoffers for user intervention in the parameter estimation process. Every time that it calculatesthe Jacobian matrix, PEST now stores it on file for possible later use. It records on anotherfile the overall sensitivity of each parameter, this being defined as the magnitude of thevector comprising the column of the Jacobian matrix pertaining to that parameter divided bythe number of observations. Thus, at any stage of the op
	At any stage of the optimisation process a user can request that certain, troublesome,parameters be held at their current values. Such parameters can be demarcated eitherindividually, or according to whether their sensitivity drops below a certain threshold in thecourse of the parameter estimation process. Alternatively, a user can request that the x leastsensitive parameters within a certain group be held while the parameter upgrade vector iscalculated, where x is supplied by the user according to his/her
	Calculation of the parameter upgrade vector can now be repeated. Thus if a user thinks thatPEST could have done a better job of lowering the objective function during a certainoptimisation iteration, he/she can halt PEST execution, instruct PEST to hold certainparameters at current values, and ask PEST to calculate the parameter upgrade vector again.This can be done without the need to re-calculated the Jacobian matrix (the most time-consuming part of PEST’s operations) because the latter is stored every ti
	As an aid to identification of recalcitrant parameters, PEST now records the parameters thatunderwent maximum factor and relative changes during any parameter upgrade event, theseoften being the parameters that create problems.
	It is important to note that even though PEST has changed somewhat and includes a numberof new and powerful features, file protocols used with previous versions of PEST areidentical to those used by the latest version of PEST, with one exception; this is the additionof observation group data to the PEST control file. However the new version of PEST is ableto recognise a PEST control file written for an older PEST version, and will read it withoutcomplaint, assigning a dummy group name to all observations.
	PEST has stood the test of time. When it was initially released it offered entirely newpossibilities for model calibration and data interpretation. Slowly but surely the PEST userbase is expanding as more and more scientists and engineers are realising the benefits thatcan be gained through the use of these possibilities. The latest version of PEST, whichincludes Parallel PEST and the options for user intervention briefly outlined above, allowsthe use of PEST to be extended to the calibration of large and c
	John Doherty
	October, 1998
	Preface to the Third Edition
	Production of the third edition of the PEST manual coincides with the release of Version 4.01of PEST, also known as PEST2000. The principal addition to PEST functionalityencapsulated in PEST2000 is the provision of predictive analysis capabilities to complementPEST’s existing parameter estimation capabilities.
	With the increasing use of nonlinear parameter estimation techniques in model calibration,there is a growing realisation among modellers of the extent of nonuniqueness associatedwith parameter values derived through the model calibration process. This realisation isaccompanied by a growing desire to examine the effect of parameter nonuniqueness on theuncertainty of predictions made by calibrated models. The importance of quantifyingpredictive uncertainty cannot be understated. It can be argued that model pa
	The concept of a “prediction” can be broadened to describe PEST’s use in those fields whereparameter estimation is an end in itself. This is especially the case in the geophysical contextwhere PEST is used to infer earth properties from measurements made at the surface and/ordown a number of boreholes. In this case it would appear that model parameters (asdetermined through the nonlinear parameter estimation process) are of overridingimportance, and indeed that the concept of a “model prediction” is inappli
	The term “predictive analysis” as used in this manual describes the task of calculating theeffect of parameter uncertainty, as estimated through the calibration process, on predictiveuncertainty. A number of methods have been documented for undertaking such an analysis,for example Monte-Carlo methods and linear uncertainty propagation. However unlike mostother methods, the PEST predictive analysis algorithm relies on no assumptions concerningthe linearity of a model or the probability distribution associate
	It is hoped that the use of PEST’s predictive analyser will allow modellers from all fields ofscience and engineering to make yet another quantum leap in the productive use of computersimulation models in whatever field of study they are currently engaged.
	John DohertyOctober, 1999
	Preface to the Fourth Edition
	Production of the fourth edition of the PEST manual marks two important milestones in thedevelopment of PEST. The first of these is the addition of advanced and powerfulregularisation functionality underpinning the release of version 5.0 of PEST, otherwiseknown as PEST-ASP (“ASP” stands for “Advanced Spatial Parameterisation”). The second isPEST’s change in status from that of a commercial product to that of a public domainpackage.
	Over the last few years the continued development of PEST has focussed on its ability towork successfully with complex, highly-parameterised models. First there was PEST’s user-intervention functionality, this allowing the user to hold troublesome parameters (normallyinsensitive and/or highly correlated parameters) at their current values so that the parameterestimation process could proceed without the damaging effects that these parameters have onthat process. The second was the incorporation of PEST’s no
	The decision to place PEST in the public domain was not taken lightly. However two factorsmade the decision almost impossible to avoid. One of these was the advent of competing,public domain software which, while not having anything like the functionality of PEST, isnevertheless highly visible and has US government auspice. The other consideration was of amore philanthropic nature. My instincts tell me that the biggest issue in environmentalmodelling over the next decade will be that of predictive uncertain
	Other new features found in PEST-ASP that were not available in previous versions of PESTinclude the following.
	All names pertaining to parameters, parameter groups, observations, observationgroups and prior information items can now be up to twelve characters in length.
	Prior information items must now be assigned to observation groups.
	Uncertainties in observations and prior information equations used in the inversionprocess can now be expressed in terms of covariance matrices, rather than simply interms of weights.
	If derivatives of model outputs with respect to adjustable parameters can be calculatedby the model, rather than by PEST through the use of finite differences, then PESTcan use these derivatives if they are supplied to it through a file written by the model.
	Different commands can be used to run the model for different purposes for which themodel is used by PEST (viz. testing parameter upgrades, calculating derivatives withrespect to different parameters, etc).
	PEST can now send “messages” to a model, allowing the model to adjust certainaspects of its behaviour depending on the purpose for which it is run by PEST.
	PEST stores the Jacobian matrix corresponding to the best set of parameters achievedup to any stage of the parameter estimation process in a special binary file which isupdated as the parameter estimation process proceeds. A new utility program namedREADJAC re-writes the Jacobian matrix in text format for user-inspection.
	PEST prints out a more comprehensive suite of information on composite parametersensitivities than was available in previous versions.
	A new utility named PAR2PAR has been added to the PEST suite. This is a“parameter preprocessor” which allows the user to manipulate parameters accordingto mathematical equations of arbitrary complexity before these parameters aresupplied to the model.
	John Doherty
	January, 2002
	Bugs
	In the unlikely event that you discover a bug in PEST, please report it to me, John Doherty, atthe following email address:-
	jdoherty@gil.com.au

	Table of Contents
	Table of Contents
	1. Introduction...1-1
	1. Introduction...1-1
	1.1 Installation...1-1
	1.2 The PEST Concept..1-1
	1.2.1 A Model’s Data Requirements..1-1
	1.2.2 The Role of PEST...1-2
	1.3 What Pest Does...1-3
	1.4 An Overview of PEST..1-4
	1.4.1 Parameter Definition and Recognition..1-5
	1.4.2 Observation Definition and Recognition...1-6
	1.4.3 The Parameter Estimation Algorithm...1-7
	1.4.4 Predictive Analysis..1-9
	1.4.5 Regularisation..1-10
	1.5 How to Use PEST...1-11
	1.5.1 The Two Versions of PEST..1-11
	1.5.2 PEST Utilities..1-12
	1.5.3 Parameter Preprocessing...1-13
	1.5.4 Sensitivity Analysis...1-13
	1.6 This Manual..1-14
	2. The PEST Algorithm..2-1
	2.1 The Mathematics of PEST..2-1
	2.1.1 Parameter Estimation for Linear Models..2-1
	2.1.2 Observation Weights...2-4
	2.1.3 The Use of Prior Information in the Parameter Estimation Process...................2-5
	2.1.4 Nonlinear Parameter Estimation...2-6
	2.1.5 The Marquardt Parameter..2-8
	2.1.6 Scaling...2-9
	2.1.7 Determining the Marquardt Lambda...2-10
	2.1.8 Optimum Length of the Parameter Upgrade Vector...2-10
	2.1.9 Predictive Analysis..2-11
	2.1.10 Regularisation..2-13
	2.1.11 Use of an Observation Covariance Matrix..2-15
	2.1.12 Goodness of Fit...2-18
	2.2 PEST’s Implementation of the Method..2-18
	2.2.1 Parameter Transformation...2-19
	2.2.2 Fixed and Tied Parameters..2-19
	2.2.3 Upper and Lower Parameter Bounds..2-19
	2.2.4 Scale and Offset..2-20
	2.2.5 Parameter Change Limits..2-21
	2.2.6 Damping of Parameter Changes..2-23
	2.2.7 Temporary Holding of Insensitive Parameters..2-24
	2.2.8 Components of the Objective Function...2-24
	2.2.9 Termination Criteria..2-25
	2.2.10 Operation in Predictive Analysis Mode..2-26
	2.2.11 Operation in Regularisation Mode..2-26
	2.3 The Calculation of Derivatives...2-27
	2.3.1 Forward and Central Differences..2-27
	2.3.2 Parameter Increments for Derivatives Calculation...2-28
	2.3.3 How to Obtain Derivatives You Can Trust...2-31
	2.3.4 Model-Calculated Derivatives..2-32
	2.4 Bibliography..2-32
	2.4.1 Literature Cited in the Text...2-32
	2.4.2 Some Further Reading...2-33
	3. The Model-PEST Interface..3-1
	3.1 PEST Input Files...3-1
	3.2 Template Files...3-1
	3.2.1 Model Input Files..3-1
	3.2.2 An Example...3-2
	3.2.3 The Parameter Delimiter...3-4
	3.2.4 Parameter Names...3-4
	3.2.5 Setting the Parameter Space Width...3-4
	3.2.6 How PEST Fills a Parameter Space with a Number...3-6
	3.2.7 Multiple Occurrences of the Same Parameter...3-8
	3.2.8 Preparing a Template File...3-9
	3.3 Instruction Files...3-9
	3.3.1 Precision in Model Output Files...3-10
	3.3.2 How PEST Reads a Model Output File..3-10
	3.3.3 An Example Instruction File...3-11
	3.3.4 The Marker Delimiter..3-13
	3.3.5 Observation Names...3-13
	3.3.6 The Instruction Set..3-13
	3.3.7 Making an Instruction File..3-25
	4. The PEST Control File..4-1
	4.1 The Role of the PEST Control File...4-1
	4.2 Construction Details..4-1
	4.2.1 The Structure of the PEST Control File..4-1
	4.2.2 Control Data..4-4
	4.2.3 Parameter Groups..4-13
	4.2.4 Parameter Data - First Part..4-16
	4.2.5 Parameter Data - Second Part..4-19
	4.2.6 Observation Groups...4-20
	4.2.7 Observation Data...4-20
	4.2.8 Model Command Line...4-21
	4.2.9 Model Input/Output...4-23
	4.2.10 Prior Information...4-24
	4.3 Observation Covariances..4-27
	4.3.1 Using an Observation Covariance Matrix Instead of Weights..........................4-27
	4.3.2 Supplying the Observation Covariance Matrix to PEST..................................4-28
	4.3.3 PEST Outputs..4-30
	5. Running PEST...5-1
	5.1 How to Run PEST...5-1
	5.1.1 Checking PEST’s Input Data..5-1
	5.1.2 Versions of PEST..5-1
	5.2 The PEST Run Record..5-2
	5.2.1 An Example...5-2
	5.2.2 Echoing the Input Data Set..5-9
	5.2.3 The Parameter Estimation Record...5-9
	5.2.4 Optimised Parameter Values and Confidence Intervals....................................5-12
	5.2.5 Observations and Prior Information..5-13
	5.2.6 Objective Function..5-13
	5.2.7 Correlation Coefficient..5-13
	5.2.8 Analysis of Residuals..5-13
	5.2.9 The Parameter Covariance Matrix..5-14
	5.2.10 The Correlation Coefficient Matrix...5-14
	5.2.11 The Normalised Eigenvector Matrix and the Eigenvalues.............................5-15
	5.3 Other PEST Output Files..5-15
	5.3.1 The Parameter Value File..5-15
	5.3.2 The Parameter Sensitivity File..5-16
	5.3.3 Observation Sensitivity File..5-19
	5.3.4 The Residuals File...5-20
	5.3.5 The Matrix File..5-21
	5.3.6 Other Files...5-21
	5.3.7 PEST’s Screen Output...5-22
	5.3.8 Run-time Errors...5-22
	5.4 Stopping and Restarting PEST..5-23
	5.4.1 Interrupting PEST Execution..5-23
	5.4.2 Restarting PEST with the “/r” Switch...5-24
	5.4.3 Restarting PEST with the “/j” Switch...5-25
	5.5 If PEST Won't Optimise..5-25
	5.5.1 General..5-25
	5.5.2 Derivatives are not Calculated with Sufficient Precision.................................5-26
	5.5.3 High Parameter Correlation..5-26
	5.5.4 Inappropriate Parameter Transformation..5-27
	5.5.5 Highly Nonlinear Problems...5-28
	5.5.6 Discontinuous Problems..5-28
	5.5.7 Parameter Change Limits Set Too Large or Too Small....................................5-28
	5.5.8 Poor Choice of Initial Parameter Values...5-29
	5.5.9 Poor Choice of Initial Marquardt Lambda..5-29
	5.5.10 Observations are Insensitive to Initial Parameter Values...............................5-30
	5.5.11 Parameter Cannot be Written with Sufficient Precision.................................5-31
	5.5.12 Incorrect Instructions..5-31
	5.5.13 Upgrade Vector Dominated by Insensitive Parameters..................................5-31
	5.6 User Intervention...5-31
	5.6.1 An Often-Encountered Cause of Aberrant PEST Behaviour............................5-31
	5.6.2 Fixing the Problem..5-32
	5.6.3 The Parameter Hold File...5-32
	5.6.4 Re-calculating the Parameter Upgrade Vector..5-35
	5.6.5 Maximum Parameter Change..5-36
	5.7 PEST Postprocessing..5-36
	5.7.1 General..5-36
	5.7.2 Parameter Values...5-36
	5.7.3 Parameter Statistics...5-36
	5.7.4 Residuals...5-37
	5.7.5 Over-Parameterisation...5-39
	5.7.6 Covariance Matrix for Best-Fit Parameters..5-39
	5.7.7 Model Outputs based on Optimal Parameter Values..5-40
	6. Predictive Analysis..6-1
	6.1 The Concept..6-1
	6.1.1 What Predictive Analysis Means..6-1
	6.1.2 Some Solutions..6-3
	6.1.3 The “Critical Point”...6-3
	6.1.4 Dual Calibration..6-6
	6.1.5 Predictive Analysis Mode...6-7
	6.2 Working with PEST in Predictive Analysis Mode...6-10
	6.2.1 Structure of the PEST Control File...6-10
	6.2.2 PEST Variables used for Predictive Analysis...6-12
	6.3 An Example...6-16
	7. Regularisation..7-1
	7.1 About Regularisation..7-1
	7.1.1 General..7-1
	7.1.2 Smoothing as a Regularisation Methodology...7-2
	7.1.3 Theory...7-3
	7.2 Implementation in PEST...7-4
	7.2.1 Regularisation Mode...7-4
	7.2.2 The Observation Group “Regul”...7-4
	7.3 Preparing for a PEST Run in Regularisation Mode..7-5
	7.3.1 The PEST Control File - “Control Data” Section...7-5
	7.3.2 The PEST Control File - Observation Groups..7-5
	7.3.3 Control File - “Regularisation” Section..7-5
	7.3.4 The Control Variable FRACPHIM...7-8
	7.4 Working with PEST in Regularisation Mode...7-9
	7.4.1 Run-Time Information..7-9
	7.4.2 Composite Parameter Sensitivities..7-11
	7.4.3 Post-Run Information..7-11
	7.5 Other Considerations Related to Regularisation...7-12
	7.5.1 Using PEST in Two Different Modes...7-12
	7.5.2 Initial Parameter Values..7-13
	7.6 Two Examples of Regularisation..7-13
	7.6.1 A Layered Half-Space...7-13
	7.6.2 A Heterogeneous Aquifer..7-15
	8. Model-Calculated Derivatives...8-1
	8.1 General..8-1
	8.2 Externally-Supplied Derivatives...8-1
	8.2.1 The External Derivatives File...8-1
	8.2.2 File Management...8-2
	8.2.3 File Format..8-2
	8.2.4 Derivatives Type...8-3
	8.2.5 Use of Derivatives Information...8-3
	8.2.6 Tied Parameters...8-4
	8.2.7 Name of the Derivatives File..8-4
	8.2.8 Predictive Analysis Mode...8-4
	8.2.9 Parallel PEST..8-4
	8.3 Sending a Message to the Model..8-4
	8.4 Multiple Command Lines...8-6
	8.5 External Derivatives and the PEST Control File..8-6
	8.5.1 General..8-6
	8.5.2 “Control Data” Section..8-6
	8.5.3 “Parameter Data” Section..8-7
	8.5.4 “Derivatives Command Line” Section..8-8
	8.5.5 “Model Command Line” Section..8-9
	8.6 An Example...8-9
	9. Parallel PEST...9-1
	9.1 Introduction...9-1
	9.1.1 General..9-1
	9.1.2 Parallelisation of the Jacobian Matrix Calculation Process................................9-1
	9.1.3 Parallelisation of the Marquardt Lambda Testing Process.................................9-2
	9.1.4 A Warning...9-3
	9.1.5 Installing Parallel PEST..9-3
	9.2. How Parallel PEST Works...9-3
	9.2.1 Model Input and Output Files...9-3
	9.2.2 The PEST Slave Program..9-4
	9.2.3 Running the Model on Different Machines...9-5
	9.2.4 Communications between Parallel PEST and its Slaves.....................................9-6
	9.2.5 The Parallel PEST Run Management File..9-7
	9.2.6 More on Partial Parallelisation of the Marquardt Lambda Testing Process.....9-11
	9.3. Using Parallel PEST...9-12
	9.3.1 Preparing for a Parallel PEST Run..9-12
	9.3.2 Starting the Slaves...9-12
	9.3.3 Starting PEST..9-13
	9.3.4 Re-Starting Parallel PEST...9-13
	9.3.5 Parallel PEST Errors...9-14
	9.3.6 Losing Slaves..9-14
	9.3.7 The Parallel PEST Run Management Record File..9-15
	9.3.8 Running PSLAVE on the Same Machine as Parallel PEST.............................9-17
	9.3.9 Running Parallel PEST on a Multi-Processor Machine....................................9-17
	9.3.10 The Importance of the WAIT Variable...9-17
	9.3.11 If PEST will not Respond..9-18
	9.3.12 The Model...9-19
	9.4 An Example...9-19
	9.5 Frequently Asked Questions...9-19
	10. PEST Utilities..10-1
	10.1 TEMPCHEK...10-1
	10.2 INSCHEK...10-3
	10.3 PESTCHEK...10-4
	10.4 PESTGEN...10-5
	10.5 PARREP..10-8
	10.6 JACWRIT...10-9
	10.7 PAR2PAR...10-10
	10.7.1 General..10-10
	10.7.2 Using PAR2PAR...10-12
	10.7.3 Using PAR2PAR with PEST..10-16
	11. SENSAN..11-1
	11.1 Introduction...11-1
	11.2 SENSAN File Requirements...11-2
	11.2.1 General..11-2
	11.2.2 Template Files...11-2
	11.2.3 Instruction Files...11-2
	11.2.4 The Parameter Variation File..11-3
	11.2.5 SENSAN Control File...11-4
	11.2.6 Control Data..11-5
	11.2.7 SENSAN Files...11-6
	11.2.8 Model Command Line...11-6
	11.2.9 Model Input/Output...11-7
	11.2.10 Issuing a System Command from within SENSAN......................................11-7
	11.3 SENSCHEK..11-8
	11.3.1 About SENSCHEK...11-8
	11.3.2 Running SENSCHEK..11-8
	11.4 Running SENSAN..11-9
	11.4.1 SENSAN Command Line...11-9
	11.4.2 Interrupting SENSAN Execution..11-9
	11.5 Files Written by SENSAN..11-9
	11.5.1 SENSAN Output Files..11-9
	11.5.2 Other Files used by SENSAN...11-10
	11.6 Sensitivity of the Objective Function..11-11
	11.7 SENSAN Error Checking and Run-Time Problems...11-12
	11.8 An Example...11-13
	12. An Example...12-1
	12.1 Parameter Estimation..12-1
	12.1.1 Laboratory Data...12-1
	12.1.2 The Model...12-2
	12.1.3 Preparing the Template File..12-5
	12.1.4 Preparing the Instruction File..12-7
	12.1.5 Preparing the PEST Control File...12-8
	12.2 Predictive Analysis...12-10
	12.2.1 Obtaining the Model Prediction of Maximum Likelihood............................12-10
	12.2.2 The Composite Model...12-11
	12.2.3 The PEST Control File..12-13
	12.2.4 Template and Instruction Files..12-14
	12.2.5 Running PEST...12-14
	13. Frequently Asked Questions..13-1
	13.1 PEST...13-1
	13.2 Parallel PEST..13-1
	13.3 PEST and Windows NT..13-3
	Index..

	Introduction
	Introduction
	1.1 Installation
	Installation instructions are provided on the printed sheet accompanying this manual; followthese instructions to transfer PEST executable and support files to your machine’s hard disk.
	Your autoexec.bat should be modified before you run PEST; the PEST directory must beadded to the PATH statement.
	1.2 The PEST Concept
	1.2.1 A Model’s Data Requirements
	There is a mathematical model for just about everything. Computer programs have beenwritten to describe the flow of water in channels, the flow of electricity in conductors ofstrange shape, the growth of plants, the population dynamics of ants, the distribution of stressin the hulls of ships and on and on. Modelling programs generally require data of four maintypes. These are:
	Fixed data. These data define the system; for example in a ground water model theshape of the aquifer is fixed, as are the whereabouts of any extraction and injectionbores.
	Parameters. These are the properties of the system; parameters for a ground watermodel include the hydraulic conductivity and storage capacity of the rocks throughwhich the water flows, while for a stress model parameters include the elasticconstants of the component materials. A model may have many parameters, eachpertaining to one particular attribute of the system which affects its response to aninput or excitation. In spatial models a particular system property may vary fromplace to place; hence the par
	Excitations. These are the quantities which “drive” the system, for example climaticdata in a plant growth model, and the source and location of electric current inelectromagnetic boundary-value problems. Like parameters, excitations may havespatial dependence.
	Control data. These data provide settings for the numerical solution method bywhich the system equations are solved. Examples are the specifications of a finiteelement mesh, the convergence criteria for a preconditioned conjugate gradient matrixequation solver, and so on.
	The distinction between these different data types may not always be clear in a particularcase.
	The purpose of a mathematical model is to produce numbers. These numbers are the model’spredictions of what a natural or man-made system will do under a certain excitation regime.It is for the sake of these numbers that the model was built, be it a ten line program involvinga few additions and subtractions, or a complex numerical procedure for the solution ofcoupled sets of nonlinear partial differential equations.
	Where a model simulates reality it often happens that the model-user does not know whatreality is; in fact models are often used to infer reality by comparing the numbers that theyproduce with numbers obtained from some kind of measurement. Thus if a model’sparameter and/or excitation data are “tweaked”, or adjusted, until the model producesnumbers that compare well with those yielded by measurement, then perhaps it can beassumed that the excitations or parameters so obtained have actually told us something
	1.2.2 The Role of PEST
	PEST is all about using existing models to infer aspects of reality that may not be amenableto direct measurement. In general its uses fall into three broad categories. These are:
	Interpretation. In this case an experiment is set up specifically to infer someproperty of a system, often by disturbing or exiting it in some way. A model is used torelate the excitations and system properties to quantities that can actually bemeasured. An interpretation method may then be based on the premise that if theexcitation is known it may be possible to estimate the system properties from themeasurement set. Alternatively, if system properties are known it may be possible touse the model to infer
	Calibration. If a natural or man-made system is subject to certain excitations, andnumbers representing these same excitations are supplied to a model for that system,it may be possible to adjust the model’s parameters until the numbers which itgenerates correspond well with certain measurements made of the system which itsimulates. If so, it may then be possible to conclude that the model will represent thesystem’s behaviour adequately as the latter responds to other excitations as well -excitations which
	Predictive Analysis. Once a parameter set has been determined for which modelbehaviour matches system behaviour as well as possible, it is then reasonable to askwhether another parameter set exists which also results in reasonable simulation by themodel of the system under study. If this is the case, an even more pertinent question iswhether predictions made by the model with the new parameter set are different.Depending on the system under study and the type of model being used to study thissystem, the ram
	The purpose of PEST (which is an acronym for Parameter ESTimation) is to assist in datainterpretation, model calibration and predictive analysis. Where model parameters and/orexcitations need to be adjusted until model-generated numbers fit a set of observations asclosely as possible then, provided certain continuity conditions are met (see the next section),PEST should be able to do the job. PEST will adjust model parameters and/or excitationsuntil the fit between model outputs and laboratory or field obse
	Thus PEST, as a nonlinear parameter estimator, can exist independently of any particularmodel, yet can be used to estimate parameters and/or excitations, and carry out variouspredictive analysis tasks, for a wide range of model types. Thus PEST can turn just about anyexisting computer model, be it a home-made model based on an analytical solution to asimple physical problem, a semi-empirical description of some natural process, or asophisticated numerical solver for a complex boundary-value problem, into a
	1.3 What Pest Does
	Models produce numbers. If there are field or laboratory measurements corresponding tosome of these numbers, PEST can adjust model parameter and/or excitation data in order thatthe discrepancies between the pertinent model-generated numbers and the correspondingmeasurements are reduced to a minimum. It does this by taking control of the model andrunning it as many times as is necessary in order to determine this optimal set of parametersand/or excitations. You, as the model user, must inform PEST of where t
	For PEST to take control of an existing model in this fashion in order to optimise itsparameters and/or excitations, certain conditions must be met. These are as follows:
	While a model may read many input files, some of which may be binary and some ofwhich may be ASCII, the file or files containing those excitations and/or parameterswhich PEST is required to adjust must be ASCII (ie. text) files.
	While a model may write many output files, some of which may be binary and someof which may be ASCII, the file or files containing those model outcomes whichcomplement field or laboratory measurements must be ASCII (ie. text) files.
	The model must be capable of being run using a system command, and of requiringno user intervention to run to completion (see below for further details).
	PEST uses a nonlinear estimation technique known as the Gauss-Marquardt-Levenberg method. The strength of this method lies in the fact that it can generallyestimate parameters using fewer model runs than any other estimation method, adefinite bonus for large models whose run times may be considerable. However themethod requires that the dependence of model-generated observation counterparts onadjustable parameters and/or excitations be continuously differentiable.
	PEST must be provided with a set of input files containing the data which it needs in order toeffectively take control of a particular model. Specifications for these files will be describedlater in the manual; their preparation is a relatively simple task. Amongst the data which mustbe supplied to PEST is the name of the model of which it must take control. In the simplestcase, this may be the name of a single executable file, ie. a program that simulates a systemfor which parameterisation or excitation es
	Models which receive their data directly from the user through keyboard entry and write theirresults directly to the screen can also be used with PEST. Keyboard inputs can be typedahead of time into a file, and the model directed to look to this file for its input data using the“<” symbol on the model command line; likewise model screen output can be redirected to afile using the “>” symbol. PEST can then be instructed to alter parameters and/or excitationson the input file and read numbers matching observa
	PEST can be used with models written in any programming language; they can be home-made or bought. You do not need to have the source code or know much about the internalworkings of the model. Models can be small and fast, finishing execution in the blink of aneye, or they can be large and slow, taking minutes or even hours to run; it does not matter toPEST.
	1.4 An Overview of PEST
	PEST can be subdivided into three functionally separate components whose roles are:
	parameter and/or excitation definition and recognition,
	observation definition and recognition, and
	the nonlinear estimation and predictive analysis algorithm.
	Though the workings of PEST will be described in detail in later chapters, these threecomponents are discussed briefly so that you can become acquainted with PEST’scapabilities.
	1.4.1 Parameter Definition and Recognition
	From this point on, the single word “parameter” is used to describe what has hitherto beenreferred to as “parameters and/or excitations”.
	Of the masses of data of all types that may reside on a model’s input files, those numbersmust be identified which PEST is free to alter and optimise. Fortunately, this is a simpleprocess which can be carried out using input file “templates”. If a model requires, forexample, five input files, and two of these contain parameters which PEST is free to adjust,then a template file must be prepared for each of the two input files containing adjustableparameters. To construct a template file, simply start with a
	PEST template files can be constructed from model input files using any text editor. They canbe checked for syntactical correctness and consistency using the utility programsPESTCHEK and TEMPCHEK.
	An important point to note about template files is that a given parameter (identified by aunique name of up to twelve characters in length) can be referenced once or many times. Thefact that it can be referenced many times may be very useful when working with largenumerical models. For example, a finite-difference model may be used to calculate theelectromagnetic fields within a half-space, the half-space being subdivided into a number ofzones of constant electrical conductivity. The model may need to be su
	On a particular PEST run a parameter can remain fixed if desired. Thus, while the parametermay be identified on a template file, PEST will not adjust its value from that which yousupply at the beginning of the parameter estimation process. Another feature is that one or anumber of parameters can be “tied” to a “parent” parameter. In this case, though all such tiedparameters are identified on template files, only the parent parameter is actually optimised;the tied parameters are simply varied with this param
	PEST requires that upper and lower bounds be supplied for adjustable parameters (ie.parameters which are neither fixed not tied); this information is vital to PEST, for it informsPEST of the range of permissible values that a parameter can take. Many models producenonsensical results, or may incur a run-time error, if certain inputs transgress permissibledomains. For example, parameters such as electrical conductivity and solute concentrationshould never be provided with negative values. Also, if a paramete
	For many models it has been found that if the logarithms of certain parameters are optimised,rather than the parameters themselves, the rate of convergence to optimal parameter valuescan be considerably hastened; PEST allows such logarithmic transformation of selectedparameters.
	Often there is some information available from outside of the parameter estimation processabout what value a parameter should take. Alternatively, you may know that the sum ordifference of two or more parameters (or their product or quotient in the case oflogarithmically-transformed parameters) should assume a certain value. PEST allows you toincorporate such prior information into the estimation process by increasing the value of theobjective function (ie. the sum of squared deviations between model and ob
	Finally, parameters adjusted by PEST can be scaled and offset with respect to the parametersactually used by the model. Thus you may wish to subtract 273.15 from an absolutetemperature before writing that temperature to a model input file which requires Celciusdegrees; or you may wish to negate a model parameter which never becomes positive so thatit can be log-transformed by PEST for greater optimisation efficiency.
	1.4.2 Observation Definition and Recognition
	From this point onwards, those numbers on a model output file for which there arecorresponding “real-world” values to which they must be matched will be referred to simplyas “observations”. Of the masses of data produced by a model, only a handful of numbersmay actually be “observations”. For example, a population dynamics model may calculatepopulation figures on a daily basis, yet measurements may only have been taken every week.In this case most of the model’s output data will be redundant from the point
	In order to peruse a model output file and read the observation values calculated by themodel, PEST must be provided with a set of instructions. Unfortunately, the template conceptused for model input files will not work for model output files as the latter may change fromrun to run, depending on parameter values. However, if a person is capable of locating apertinent model output amongst the other data on a model output file, then so too is acomputer. As it turns out, the instruction set by which this can
	PEST requires, then, that for each model output file which must be opened and perused forobservation values, an instruction file be provided detailing how to find those observations.This instruction file can be prepared using any text editor. It can be checked for syntacticalcorrectness and consistency using the utility programs PESTCHEK and INSCHEK.
	Once interfaced with a model, PEST’s role is to minimise the weighted sum of squareddifferences between model-generated observation values and those actually measured in thelaboratory or field; this sum of weighted, squared, model-to-measurement discrepancies isreferred to as the “objective function”. The fact that these discrepancies can be weightedmakes some observations more important than others in determining the optimisationoutcome. Weights should be inversely proportional to the standard deviations o
	Like parameters, you must provide each observation with a name of up to twelve charactersin length; PEST uses this name to provide you with information about that observation.
	1.4.3 The Parameter Estimation Algorithm
	The Gauss-Marquardt-Levenberg algorithm used by PEST is described in detail in the nextchapter. For linear models (ie. models for which observations are calculated from parametersthrough a matrix equation with constant parameter coefficients), optimisation can beachieved in one step. However for nonlinear problems (most models fall into this category),parameter estimation is an iterative process. At the beginning of each iteration therelationship between model parameters and model-generated observations is
	At the beginning of a PEST run you must supply a set of initial parameter values; these arethe values that PEST uses at the start of its first optimisation iteration. For many problemsonly five or six optimisation iterations will be required for model calibration or datainterpretation. In other cases convergence will be slow, requiring many more optimisationiterations. Often a proper choice of whether and what parameters should be logarithmicallytransformed has a pronounced effect on optimisation efficiency
	Derivatives of observations with respect to parameters are calculated using finite differences.During every optimisation iteration the model is run once for each adjustable parameter, asmall user-supplied increment being added to the parameter value prior to the run. Theresulting observation changes are divided by this increment in order to calculate theirderivatives with respect to the parameter. This is repeated for each parameter. This techniqueof derivatives calculation is referred to as the method of “
	Derivatives calculated in this way are only approximate. If the increment is too large theapproximation will be poor; if the increment is too small roundoff errors will detract fromderivatives accuracy. Both of these effects will degrade optimisation performance. To combatthe problem of derivatives inaccuracy, PEST allows derivatives to be calculated using themethod of “central differences”. Using this method, two model runs are required to calculatea set of observation derivatives with respect to any param
	It is normally best to commence an optimisation run using the more economical forwarddifference method, allowing PEST to switch to central differences when the going gets tough.PEST will make the switch automatically according to a criterion which you supply to it priorto the commencement of the run.
	PEST’s implementation of the Gauss-Marquardt-Levenberg method is extremely flexible;many aspects of it can be varied to suite the problem at hand, allowing you to optimisePEST’s performance for your particular model. How you do this is described later in thismanual. In the course of the estimation process PEST writes what it is doing to the screen; itsimultaneously writes a more detailed run record to a file. You can pause PEST execution atany time to inspect its outputs in detail; when you have finished lo
	As it calculates derivatives, PEST records the sensitivity of each parameter with respect tothe observation dataset to a file which is continuously available for inspection. If it is judgedthat PEST’s performance is being inhibited by the behaviour of certain parameters (normallythe most insensitive ones) during the optimisation process, these parameters can betemporarily held at their current values while PEST calculates a suitable upgrade for the restof the parameters. If desired, PEST can be requested to
	At the end of the parameter estimation process (the end being determined either by PEST orby you) PEST writes a large amount of useful data to its run record file. PEST records theoptimised value of each adjustable parameter together with that parameter’s 95% confidenceinterval. It tabulates the set of field measurements, their optimised model-calculatedcounterparts, the difference between each pair, and certain functions of these differences.(These are also recorded on a special file ready for immediate im
	1.4.4 Predictive Analysis
	When used to calibrate a model (the traditional use of PEST), PEST is asked to minimise anobjective function comprised of the sum of weighted squared deviations between certainmodel outcomes and their corresponding field-measured counterparts. When undertaking thistask, PEST is run in “parameter estimation mode”.
	It is a sad fact of model usage that there are often many different sets of parameter values forwhich the objective function is at its minimum or almost at its minimum. Thus there aremany different sets of parameters which could be considered to calibrate a model. A questionthat then arises is: “if I use different sets of parameter values when using the model to makepredictions (all of these sets being considered to calibrate the model), will I get differentvalues for key model outcomes?”. This question can
	Most aspects of PEST usage in predictive analysis mode are identical to PEST’s usage inparameter estimation mode. In particular, bounds can be placed on adjustable parameters, oneparameter can be tied to another, parameters can be logarithmically transformed for greaterproblem linearity, troublesome parameters can be temporarily held while the parameterupgrade vector is re-calculated, etc. However the end-point of the iterative solution process isno longer a minimised objective function; it is a maximised o
	Once a key model prediction has been identified, it is also possible to ask another importantquestion of PEST. The question is, “is it possible to find a parameter set for which the keymodel prediction is a certain value while still maintaining the calibration objective function ator below the acceptable calibration limit?” This is similar to the question that is answered byrunning PEST in predictive analysis mode. However it differs slightly from that question inthat a maximum or minimum prediction is no l
	1.4.5 Regularisation
	In its broadest sense, “regularisation” is a term used to describe the process whereby a largenumber of parameters can be simultaneously estimated without incurring the numericalinstability that normally accompanies parameter nonuniqueness. Numerical stability isnormally achieved through the provision of “supplementary information” to the parameterestimation process. Such “supplementary information” often takes the form of preferredvalues for parameters, or for relationships between parameters. Thus if, for
	A problem that arises when using such supplementary information as part of a traditionalparameter estimation exercise is the determination of how much notice should be taken ofthis information in comparison to the notice taken of the observation dataset against whichthe model is being calibrated. If the supplementary information is given too much weight inthe parameter estimation process the observation dataset may be ignored. On the other hand,if it is given too little weight, the stabilization potential o
	PEST’s regularisation functionality is useful in many types of modelling – particularly wheremany different parameters must be estimated for complex systems. It is particularly useful inestimating values for parameters which describe the spatial distribution of some propertyover a two- or three-dimensional model domain, for example a ground water or geophysicalmodel. The user is no longer required to subdivide the model domain into a small number ofzones of piecewise parameter constancy. Rather, a large num
	PEST’s regularisation functionality can also be useful when calibrating a number of modelssimultaneously (for example rainfall-runoff models in different watersheds). PEST can beasked to preferentially estimate identical values for the same parameter types in the differentmodel domains. Differences in parameter values estimated through the regularised multi-model calibration process will then be present because they must be present if all of themodels are to match their corresponding field measurements well
	1.5 How to Use PEST
	The PEST suite is comprised of two versions of PEST and six utility programs for buildingand checking PEST input files. A sensitivity analyser and a parameter preprocessor are alsosupplied with PEST. All of these programs are command-line driven programs, ie. they canbe run from a command-line window by typing the name of the appropriate executable at thescreen prompt. Note, however, that they are all true WINDOWS executables.
	A suite of utility programs is also available to enhance the use of PEST in certain modellingcontexts. See, for example, the PEST Ground Water and Surface Water Modelling Utilities.
	1.5.1 The Two Versions of PEST
	The two variants of PEST are the “single window” version of PEST and “Parallel PEST”.
	In the single window version of PEST (which is run through the “pest” command), the modelshares the same window as PEST, with the result that screen output generated by the model isinterspersed with that generated by PEST (unless the former is re-directed to a nul file - seelater).
	Parallel PEST (which is run through the “ppest” command) is able to run multiple instancesof a model in parallel, either in different command-line windows on the same machine, or ondifferent (networked) machines. By undertaking simultaneous model runs, enormous savingsin overall optimisation time can be made, particularly when calibrating large and complexmodels. Preparation for a Parallel PEST run requires the creation of an extra input file; also aslave program (PSLAVE) must be run on each machine on whic
	PEST execution can be interrupted or stopped at any time. To do this, run one of theprograms PPAUSE, PUNPAUSE, PSTOP or PSTOPST to achieve the desired effect.
	1.5.2 PEST Utilities
	PEST requires three types of input file. These are:
	template files, one for each model input file which PEST must write prior to a modelrun,
	instruction files, one for each model output file which PEST must read after a modelrun, and
	a PEST control file which “brings it all together”, supplying PEST with the names ofall template and instruction files together with the model input/output files to whichthey pertain. It also provides PEST with the model name, parameter initial estimates,field or laboratory measurements to which model outcomes must be matched, priorparameter information, and a number of PEST variables which control theimplementation of the Gauss-Marquardt-Levenberg method.
	You must prepare the template and instruction files yourself. This can be easily done using atext editor; full details are provided in Chapter 3 of this manual. After you have prepared atemplate file, you can use program TEMPCHEK to check that it has no syntax errors.Furthermore, if you supply TEMPCHEK with a set of parameter values, it will write a modelinput file on the basis of the template file which you have just prepared. You can then runyour model, making sure that it reads the input file correctly.
	INSCHEK does for instruction files what TEMPCHEK does for template files. INSCHEKchecks that an instruction file is syntactically correct and consistent. Then, if you wish,INSCHEK will read a model output file using the directives contained in the instruction file,listing the values of all observations cited in the instruction file as read from the model outputfile. In this way you can be sure, prior to running PEST, that PEST will read a model outputfile correctly.
	Like template and instruction files, the PEST control file can be prepared using a text editor.However it is generally easier to prepare it using program PESTGEN. PESTGEN generates aPEST control file using parameter and observation names cited in template and instructionfiles which have already been built. However, as it uses default values for all variables whichcontrol PEST execution, you will probably need to make some changes to a PESTGEN-generated PEST control file (usually not too many) in order to tu
	After all PEST input files have been prepared (viz. the PEST control file and all template andinstruction files) you can use program PESTCHEK to check that the entire PEST inputdataset contained in these files is consistent and complete.
	Once PEST has been run and an improved parameter set obtained, you may wish to build anew PEST control file using the improved parameter estimates as initial estimates for anotherrun. This may occur if you wish to alter some facet of the model, add prior information, altera PEST variable or two, etc. prior to continuing with the optimisation process. ProgramPARREP allows you to replace initial parameter values as recorded on a PEST control filewith those recorded in a “parameter value file”, the latter (hav
	If you wish to generate a file containing the sensitivity of each model output for which thereis a corresponding field or laboratory measurement with respect to each adjustable parameter,use the JACWRIT utility program. JACWRIT translates a binary file (written by PEST)containing this useful information into ASCII format for easy user inspection.
	Note that because PEST input files are simple text files, for which full construction detailsare provided in this manual, they can be prepared by other software, for example by a texteditor or by a program that you may write yourself in order to automate PEST file generationfor a specific application. Thus, if you wish, you can integrate PEST into your modellingsuite so that model parameter estimation becomes as straightforward as modelling itself.
	1.5.3 Parameter Preprocessing
	Sometimes it is useful to undertake complex mathematical operations on model parametersbefore actually providing them to the model. This can help the parameter estimation processin a number of ways. For example, appropriate parameter transformation may render a modelmore linear with respect to one or more of its parameters; in other circumstances thecalculation of “secondary parameters” (eg. monthly variation of a particular model inputtype) from a smaller number of “primary parameters” which describe the s
	1.5.4 Sensitivity Analysis
	SENSAN (which stands for “SENSitivity Analysis”) is a command-line program whichprovides the capability to carry out multiple model runs without user intervention, usingdifferent parameter values for each run. Thus a computer can be kept busy all nightundertaking successive model runs, with key model outputs from each run being recorded ina format suitable for easy later analysis using a spreadsheet or other data processing package.Any or all model output files for specific model runs can also be stored in
	SENSAN uses the same model interface protocol as PEST does, ie. parameter values aresupplied to a model through model input file templates, and key model-generated numbersare read from model output files using an instruction set. In addition, a special “SENSANcontrol file” must be built, informing SENSAN of the names of all template, instruction andmodel input/output files, the model command line, and the parameter values that must beused for each model run.
	SENSAN is accompanied by a checking program named SENSCHEK. The role andoperation of SENSCHEK are very similar to those of PESTCHEK, viz. it checks allSENSAN input data to verify that it is consistent and correct. SENSCHEK reads a SENSANcontrol file, as well as all template and instruction files cited therein. If any errors orinconsistencies are detected, appropriate messages are written to the screen.
	Note that SENSAN and SENSCHEK are both true WINDOWS executables.
	1.6 This Manual
	This introduction has provided an overview of the capabilities and components of PEST.However to get the most out of PEST you should take the time to read this manual in itsentirety. Parameter estimation is a “tricky business” and will not work unless you know whatyou are doing. If PEST does not appear to be able to calibrate your model or turn your modelinto a powerful data interpretation package, the chances are that you are misusing it. Thus,even though it may be heavy going, you should pay particular at
	Chapter 3 discusses the interface between PEST and your model, describing how to makePEST template and instruction files. Chapter 4 teaches you how to write a PEST control fileand discusses the effects that different control settings have on PEST’s performance. Chapter5 tells you how to run PEST; it also discusses problems that may arise as PEST executes, andhow best to overcome them. Chapter 6 discusses predictive analysis while Chapter 7discusses regularisation. Both or these aspects of parameterisation f
	Chapter 8 discusses an advanced aspect of PEST’s performance, viz. its ability to usederivatives calculated by the model instead of calculating them itself through the process offinite parameter differences. In most cases of PEST usage the modeller need not be toofamiliar with the contents of this chapter, for it is only in special circumstances that PEST isable to take advantage of the fact that the model is able to supply it with “externally-calculated derivatives”.
	Parallel PEST is described in Chapter 9, while Chapter 10 details the PEST utilities,TEMPCHEK, INSCHEK, PESTCHEK, PESTGEN, PARREP, JACWRIT and PAR2PAR.
	Chapter 11 discusses the sensitivity analyser SENSAN, together with its utility programSENSCHEK. Chapter 12 presents an example of the use of PEST in solving a practical data-interpretation problem. Chapter 13 answers some frequently asked questions.

	The PEST Algorithm
	The PEST Algorithm
	This chapter discusses the mathematical foundations of the PEST nonlinear parameterestimation algorithm and the means by which this theory has been implemented in theconstruction of the powerful parameter optimiser which is PEST. However the discussion isbrief and no proofs are presented. The reader is referred to the limited bibliography at the endof the chapter for a number of books which treat the subject in much greater detail.
	2.1 The Mathematics of PEST
	2.1.1 Parameter Estimation for Linear Models
	Let us assume that a natural or man-made system can be described by the linear equation
	Xb = c(2.1)
	In equation 2.1 X is a m × n matrix, ie. it is a matrix with m rows and n columns. Theelements of X are constant and hence independent of the elements of b, a vector of order nwhich, we assume, holds the system parameters. c is a vector of order m containing numberswhich describe the system’s response to a set of excitations embodied in the matrix X, andfor which we can obtain corresponding field or laboratory measurements by which to inferthe system parameters comprising b. (Note that for many problems to
	The word “observations” will be used to describe the elements of the vector c even though cis, in fact, generated by the model. This is because most models generate a wealth of data forwhich we may have only a handful of corresponding field measurements on which to baseour estimates of the system properties. Hence, as we include in the vector c only those modeloutcomes for which there are complementary laboratory or field measurements, it isappropriate to distinguish them from the remainder of the model out
	Let it be assumed that the elements of X are all known. For most models these elements willinclude the effects of such things as the system dimensions, physical, chemical or otherconstants which are considered immutable, independent variables such as time and distanceetc. For example, equation 2.1 may represent the response of the system at different times,where the response at time p is calculated using the equation
	xp1 b1 + xp2 b2 + + xpn bn = cp(2.2)
	where xpi is the element of X found at its p’th row and i’th column. As X has m rows, thereare m such equations, one for each of m different times. Hence for any p, at least one of thexpi depends on time.
	Suppose that m is greater than n, ie. we are capable of observing the system response (andhence providing elements for the vector c) at more times than there are parameters in thevector b. Common sense tells us that we should be able to use the elements of c to infer theelements of b.
	Unfortunately we cannot do this by recasting equation 2.1 as another matrix equation with bon the right-hand side, as X is not a square matrix and hence not directly invertible. But youmay ask “Have we not made a rod for our own back by measuring the system response atmore times than there are parameter values, ie. elements of b?” If b was of the same order asc, X would indeed be a square matrix and may well be invertible. If so, it is true that anequation could be formulated which solves for the elements o
	Actually, as intuition should readily inform us, redundancy of information is a bonus ratherthan a problem, for it allows us to determine not just the elements of b, but some othernumbers which describe how well we can trust the elements of b. This “trustworthiness” is based on the consistency with which the m experimental measurements satisfy the mequations expressed by equation 2.1 when the n optimal parameter values are substituted forthe elements of b.
	We define this optimal parameter set as that for which the sum of squared deviations betweenmodel-generated observations and experimental observations is reduced to a minimum; thesmaller is this number (referred to as the “objective function”) the greater is the consistencybetween model and observations and the greater is our confidence that the parameter setdetermined on the basis of these observations is the correct one. Expressing thismathematically, we wish to minimise Φ, where Φ is defined by the equat
	Φ = (c - Xb)t(c - Xb),(2.3)
	and c now contains the set of laboratory or field measurements; the “t” superscript indicatesthe matrix transpose operation. It can be shown that the vector b which minimises Φ ofequation 2.3 is given by
	b = (XtX)-1Xtc.(2.4)
	Provided that the number of observations m equals or exceeds the number of parameters n,the matrix equation 2.4 provides a unique solution to the parameter estimation problem.Furthermore, as the matrix (XtX) is positive definite under these conditions, the solution isrelatively easy to obtain numerically.
	The vector b expressed by equation 2.4 differs from b of equation 2.1 (the equation whichdefines the system) in that the former is actually an estimate of the latter because c nowcontains measured data. In fact, b of equation 2.4 is the “best linear unbiased” estimator ofthe set of true system parameters appearing in equation 2.1. As an estimator, it is oneparticular realisation of the n-dimensional random vector b calculated, through equation 2.4,from the m-dimensional random vector c of experimental obser
	σ2 = Φ/(m - n)(2.5)
	where (m - n), the difference between the number of observations and the number ofparameters to be estimated, represents the number of “degrees of freedom” of the parameterestimation problem. Equation 2.5 shows that σ2 is directly proportional to the objectivefunction and thus varies inversely with the goodness of fit between experimental data and themodel-generated observations calculated on the basis of the optimal parameter set. It canfurther be shown that C(b), the covariance matrix of b is given by
	C(b) = σ2(XtX)-1(2.6)
	Notice that, even though the elements of c are assumed to be independent (so that thecovariance matrix of c contains only diagonal elements, all equal to σ2 in the present case),C(b) is not necessarily a diagonal matrix. In fact, in many parameter estimation problemsparameters are strongly correlated, the estimation process being better able to estimate one ora number of linear combinations of the parameters than the individual parameters themselves.In such cases some parameter variances (parameter variance
	There are two matrices, both of which are derived from the parameter covariance matrixC(b), which better demonstrate parameter correlation than C(b) itself. The first is thecorrelation coefficient matrix whose elements ρij are calculated as
	σσσρjjiiijij=(2.7)
	where σij represents the element at the i’th row and j’th column of C(b). The diagonalelements of the correlation coefficient matrix are always 1; off-diagonal elements rangebetween -1 and 1. The closer are these off-diagonal elements to 1 or -1, the more highly arethe respective parameters correlated.
	The second useful matrix is comprised of columns containing the normalised eigenvectors ofthe covariance matrix C(b). If each eigenvector is dominated by one element, individualparameter values may be well resolved by the estimation process. However if predominancewithin each eigenvector is shared between a number of elements (especially for thoseeigenvectors whose eigenvalues are largest), the corresponding parameters are highlycorrelated. See Section 5.2.11 for further details.
	2.1.2 Observation Weights
	The discussion so far presupposes that all observations carry equal weight in the parameterestimation process. However this will not always be the case as some measurements may bemore prone to experimental error than others.
	Another problem arises where observations are of more than one type. For example equation2.1 may represent a plant growth model; you may have a set of biomass and soil moisturecontent measurements which you would like to use to estimate some parameters for themodel. However the units for these two quantities are different (kg/ha and dimensionlessrespectively); hence the numbers used to represent them may be of vastly differentmagnitude. Under these circumstances the quantity represented by the larger number
	This problem can be overcome if a weight is supplied with each observation; the larger theweight pertaining to a particular observation the greater the contribution that the observationmakes to the objective function. If the observation weights are housed in an m-dimensional,square, diagonal matrix Q whose i’th diagonal element qii is the square of the weight wiattached to the i’th observation, equation 2.3 defining the objective function is modified asfollows:
	Φ = (c - Xb)t Q(c - Xb)(2.8a)
	or, to put it another way,
)rw(=2iim=1i∑Φ(2.8b)
	where ri (the i’th residual) expresses the difference between the model outcome and theactual field or laboratory measurement for the i’th observation. If observation weights arecorrectly assigned, it can be shown that equation 2.8a is equivalent to
	Φ = (c - Xb)t P-1(c - Xb)(2.9)
	where
	P (= Q-1) = C(c)/σ2(2.10)
	C(c) represents the covariance matrix of the m-dimensional observation random vector c ofwhich our measurement vector is a particular realisation. Because Q is a diagonal matrix, sotoo is P, its elements being the reciprocals of the corresponding elements of Q. Theassumption of independence of the observations is maintained through insisting that Q (andhence P) have diagonal elements only, the elements of Q being the squares of the observationweights. These weights can now be seen as being inversely proport
	The quantity σ2 is known as the reference variance; if all observation weights are unity itrepresents the variance of each experimental measurement. If the weights are not all unity themeasurement covariance matrix is determined from equation 2.10 with σ2 given by equation2.5 and Φ given by equation 2.8.
	With the inclusion of observation weights, equation 2.4 by which the system parametervector is estimated becomes
	b = (XtQX)-1XtQc(2.11)
	while equation 2.6 for the parameter covariance matrix becomes
	C(b) =σ2(XtQX)-1(2.12)
	2.1.3 The Use of Prior Information in the Parameter Estimation Process
	It often happens that we have some information concerning the parameters that we wish tooptimise, and that we obtained this information independently of the current experiment. Thisinformation may be in the form of other, unrelated, estimates of some or all of theparameters, or of relationships between parameters expressed in the form of equation 2.2. It isoften useful to include this information in the parameter estimation process both for thephilosophical reason that it is a shame to withhold it, and beca
	Parameter estimates will also be nonunique if there are less observations then there areparameters; equation 2.11 is not solvable under these conditions as the matrix XtQX issingular. (Note that PEST will, nevertheless, calculate parameter estimates for reasonsdiscussed later in this chapter.) However the inclusion of prior information, beingmathematically equivalent to taking extra measurements, may alter the numericalpredominance of parameters over observations and thus provide the system with the ability
	Prior information is included in the estimation algorithm by simply adding rows containingthis information to the matrix equation 2.1. This information must be of a suitable type to beincluded in equation 2.1; both simple equality, and linear relationships of the type describedby equation 2.2 are acceptable. A weight must be included with each article of priorinformation, this weight being inversely proportional to the standard deviation of the righthand side of the prior information equation, the constant
	It is sometimes helpful to view the inclusion of prior parameter information in the estimationprocess as the introduction of one or more “penalty functions”. The aim of the estimationprocess is to lower the objective function defined by equation 2.8 to its minimum possiblevalue; this is done by adjusting parameter values until a set is found for which the objectivefunction can be lowered no further. If there is no prior information, the objective function isdefined solely in terms of the discrepancies betwe
	2.1.4 Nonlinear Parameter Estimation
	Most models are nonlinear, ie. the relationships between parameters and observations are notof the type expressed by equations 2.1 and 2.2. Nonlinear models must be “linearised” inorder that the theory presented so far can be used in the estimation of their parameters.
	Let the relationships between parameters and model-generated observations for a particularmodel be represented by the function M which maps n-dimensional parameter space into m-dimensional observation space. For reasons which will become apparent in a moment, werequire that this function be continuously differentiable with respect to all model parametersfor which estimates are sought. Suppose that for the set of parameters comprising the vectorb0 the corresponding set of model-calculated observations (gener
	c0 = M(b0).(2.13)
	Now to generate a set of observations c corresponding to a parameter vector b that differsonly slightly from b0, Taylor’s theorem tells us that the following relationship isapproximately correct, the approximation improving with proximity of b to b0:
	c = c0 + J(b - b0)(2.14)
	where J is the Jacobian matrix of M, ie. the matrix comprised of m rows (one for eachobservation), the n elements of each row being the derivatives of one particular observationwith respect to each of the n parameters. To put it another way, Jij is the derivative of the i’thobservation with respect to the j’th parameter. Equation 2.14 is a linearisation of equation2.13.
	We now specify that we would like to derive a set of model parameters for which the model-generated observations are as close as possible to our set of experimental observations in theleast squares sense, ie. we wish to determine a parameter set for which the objective functionΦ defined by
	Φ = (c - c0 - J(b - b0))tQ (c - c0 - J(b - b0))(2.15)
	is a minimum, where c in equation 2.15 now represents our experimental observation vector.Comparing equation 2.15 with equation 2.8, it is apparent that the two are equivalent if cfrom equation 2.8a is replace by (c - c0) of equation 2.15 and b from equation 2.8a is replacedby (b - b0) from equation 2.15. Thus we can use the theory that has been presented so far forlinear parameter estimation to calculate the parameter upgrade vector (b - b0) on the basis ofthe vector (c - c0) which defines the discrepancy
	u = (JtQJ)-1JtQ(c - c0)(2.16)
	and equation 2.12 for the parameter covariance matrix becomes
	C(b) = σ2(JtQJ)-1(2.17)
	The linear equations represented by the matrix equation 2.16 are often referred to as the“normal equations”. The matrix (JtQJ) is often referred to as the “normal matrix”.
	Because equation 2.14 is only approximately correct, so too is equation 2.16; in other words,the vector b defined by adding the parameter upgrade vector u of equation 2.16 to the currentparameter values b0 is not guaranteed to be that for which the objective function is at itsminimum. Hence the new set of parameters contained in b must then be used as a startingpoint in determining a further parameter upgrade vector, and so on until, hopefully, we arriveat the global Φ minimum. This process requires that an
	It is an unfortunate fact in working with nonlinear problems, that a global minimum in theobjective function may be difficult to find. For some models the task is made no easier by thefact that the objective function may even possess local minima, distinct from the globalminimum. Hence it is always a good idea to supply an initial parameter set b0 that youconsider to be a good approximation to the true parameter set. A suitable choice for the initialparameter set can also reduce the number of iterations nec
	Parameter #1Parameter #2Contours of equalobjective function valueInitial parameter estimates
	Figure 2.1 Iterative improvement of initial parameter values toward the global objectivefunction minimum.
	2.1.5 The Marquardt Parameter
	Equation 2.16 forms the basis of nonlinear weighted least squares parameter estimation. Itcan be rewritten as
	u = (JtQJ)-1JtQr(2.18)
	where u is the parameter upgrade vector and r is the vector of residuals for the currentparameter set.
	Let the gradient of the objective function Φ in parameter space be denoted by the vector g.The i’th element of g is thus defined as
	b=gii∂Φ∂(2.19)
	ie. by the partial derivative of the objective function with respect to the i’th parameter. Theparameter upgrade vector cannot be at an angle of greater than 90 degrees to the negative ofthe gradient vector. If the angle between u and -g is greater than 90 degrees, u would have acomponent along the positive direction of the gradient vector and movement along u wouldthus cause the objective function to rise, which is the opposite of what we want. However, inspite of the fact that -g defines the direction of
	Parameter #1Parameter #2Contours ofequal objectivefunction valueInitialparameterestimates
	Figure 2.2 The phenomenon of “hemstitching”.
	Nevertheless, most parameter estimation problems benefit from adjusting u such that it is alittle closer to the direction of -g in the initial stages of the estimation process.Mathematically, this can be achieved by including in equation 2.18 the so-called “Marquardtparameter”, named after Marquardt (1963), though the use of this parameter was, in fact,pioneered by Levenberg (1944). Equation 2.18 becomes
	u = (JtQJ + αI)-1JtQr(2.20)
	where α is the Marquardt parameter and I is the n × n identity matrix.
	It can be shown that the gradient vector g can be expressed as
	g = -2JtQr(2.21)
	It follows from equations 2.20 and 2.21 that when α is very high the direction of uapproaches that of the negative of the gradient vector; when α is zero, equation 2.20 isequivalent to equation 2.18. Thus for the initial optimisation iterations it is often beneficialfor α to assume a relatively high value, decreasing as the estimation process progresses andthe optimum value of Φ is approached. The manner in which PEST decides on a suitablevalue for α for each iteration is discussed in Section 2.1.7.
	2.1.6 Scaling
	For many problems, especially those involving different types of observations and parameterswhose magnitudes may differ greatly, the elements of J can be vastly different in magnitude.This can lead to roundoff errors as the upgrade vector is calculated through equation 2.20.Fortunately, this can be circumvented to some extent through the use of a scaling matrix S.Let S be a square, n × n matrix with diagonal elements only, the i’th diagonal element of Sbeing given by
	Sii = (JtQJ)ii-1/2(2.22)
	Introducing S into equation 2.20 the following equation can be obtained for S-1u:
	S-1u = ((JS)tQJS + αStS)-1(JS)tQr(2.23)
	It can be shown that although equation 2.23 is mathematically equivalent to equation 2.20 itis numerically far superior.
	If α is zero, the matrix (JS)tQJS + αStS has all its diagonal elements equal to unity. For anon-zero α the diagonal elements of (JS)tQJS + αStS will be greater than unity, though ingeneral they will not be equal. Let the largest element of αStS be denoted as λ, referred tohenceforth as the “Marquardt lambda”. Then the largest diagonal element of the scalednormal matrix (JS)tQJS + αStS of equation 2.23 will be 1 + λ.
	2.1.7 Determining the Marquardt Lambda
	PEST requires that the user supply an initial value for λ. During the first optimisationiteration PEST solves equation 2.23 for the parameter upgrade vector u using that user-supplied λ. It then upgrades the parameters, substitutes them into the model, and evaluatesthe resulting objective function. PEST then tries another λ, lower by a user-supplied factorthan the initial λ. If Φ is lowered, λ is lowered yet again. However if Φ was raised byreducing λ below the initial λ, then λ is raised above the initial
	At the next iteration PEST repeats the procedure, using as its starting λ either the λ from theprevious iteration that provided the lowest Φ (if λ needed to be raised from its initial value toachieve this Φ) or the previous iteration’s best λ reduced by the user-supplied factor. In mostcases this process results in an overall lowering of λ as the estimation process progresses.
	Testing the effects of a few different λ’s in this manner requires that PEST undertake a fewextra model runs per optimisation iteration; however this process makes PEST very “robust”.If the optimisation procedure appears to be “bogged”, the adjustments made to λ in thisfashion often result in the determination of a parameter upgrade vector that gets the processmoving again.
	2.1.8 Optimum Length of the Parameter Upgrade Vector
	Inclusion of the Marquardt parameter in equation 2.23 has the desired effect of rotating theparameter upgrade vector u towards the negative of the gradient vector. However while thedirection of u may now be favourable, its magnitude may not be optimum.
	Under the linearity assumption used in deriving all equations presented so far, it can beshown that the optimal parameter adjustment vector is given by βu, where u is determinedusing equation 2.23 and β is calculated as
)w(w)c-c(= 2iim=1ii2i0iim=1iγγβ∑∑(2.24)
	where, once again, the vector c represents the experimental observations, c0 represents theircurrent model-calculated counterparts, wi is the weight pertaining to observation i, and γi isgiven by
	bcu = j0ijnj=1i∂∂∑γ(2.25a)
	ie.
	γ = Ju(2.25b)
	where J represents the Jacobian matrix once again. If b0 holds the current parameter set thenew, upgraded set is calculated using the equation
	b = b0 + βu(2.26)
	2.1.9 Predictive Analysis
	Let X represent the action of a linear model under calibration conditions. Let b represent theparameter vector for this model, while c is a vector of field or laboratory observations forwhich there are model-generated counterparts. As is explained in Section 2.1.2, whencalibrating a model, it is PEST’s task to minimise an objective function defined as
	Φ = (c – Xb)tQ(c – Xb)
	where Q is the “cofactor matrix”, a diagonal matrix whose elements are the squares ofobservation weights.
	Let Z represent the same linear model under predictive conditions. Thus the action of themodel when used in predictive mode can be represented by the equation
	d = d = Zb(2.27)
	where d is a 1 × 1 vector (ie. a scalar, d) representing a single model outcome (ie. prediction).Naturally, when run in predictive mode, the model operates on the same parameter vector asthat on which it operates in calibration mode, ie. b.
	The aim of predictive analysis is to maximise (minimise) d while “keeping the modelcalibrated”. d will be maximised (minimised) when the objective function associated with blies on the Φmin + δ contour. Φmin is the lowest achievable value of the objective function,while δ is an acceptable increment to the objective function minimum such that the modelcan be considered calibrated as long as the objective function is less than Φmin + δ; see thediscussion in Chapter 6 for further details. Thus the predictive a
	Find b such as to maximise (minimise)
	Zb(2.28a)
	subject to
	(c – Xb)tQ(c – Xb) = Φ0(2.28b)
	where
	Φ0 = Φmin + δ(2.28c)
	It can be shown that the solution to this problem is
	()λ−=−2t1TZQcXQXXb(2.29a)
	where λ is defined by the equation
	()()ZQXXZQcXQXXQXcQcc1ttt1ttt0221−−+−Φ=λ(2.29b)
	Where predictive analysis is carried out for a nonlinear model the same equations are used.However in this case X is replaced by the model Jacobian matrix J, and a parameter upgradevector is calculated instead of a solution vector. The solution process is then an iterative onein which the true solution is approached by repeated calculation of an upgrade vector basedon repeated linearisation of the problem through determination of the Jacobian matrix. Forfurther details see Cooley and Vecchia (1987) and Vecc
	Use of the Marquardt lambda in solving the nonlinear parameter estimation problem isdiscussed above. Its use in solving the nonlinear predictive analysis problem is very similar.As in the parameter estimation problem, PEST continually adjusts the Marquardt lambdathrough the solution process such that its value is optimal at all stages of this process.
	As a further numerical measure to solve the predictive analysis problem for a nonlinearmodel, PEST undertakes a line search in the direction of the parameter upgrade vector todetermine the point at which this vector crosses the Φ0 contour. See Chapter 6 for furtherdetails.
	2.1.10 Regularisation
	The theory which underpins PEST’s regularisation functionality bears some resemblance tothat which underpins its predictive analysis functionality. As is explained in Section 2.1.2,when calibrating a model it is PEST’s task to minimise an objective function defined as
	Φm = (c – Xb)tQm(c – Xb)(2.30a)
	The “m” subscript introduced to the left side of equation 2.30, which is otherwise equivalentto equation 2.8, denotes the fact that the objective function is comprised of the sum ofweighted squared differences between model outputs and field measurements (the “m” standsfor “measurement”). The vector c is comprised of field measurements, while the vector b iscomprised of the parameters which must be estimated. As has already been mentioned, Qm isa diagonal matrix whose elements are the squares of measurement
	We wish to impose the requirement that a “regularisation objective function” Φr be alsominimised by the parameter set which is estimated by PEST. Φr is defined by the equation
	Φr = (d – Zb)tQr(d – Zb)(2.30b)
	where Qr is a diagonal matrix comprised of the squares of weights assigned to the various“regularisation observations” which collectively comprise the vector d. The relationships bywhich the model-generated counterparts to these “observations” are calculated from theparameter values (constituting the vector b) are encapsulated in the matrix Z. (Note that ifthese relationships are not linear, a linear approximation to them can be calculated by takingderivatives with respect to parameters in the same way that
	When working in “regularisation mode”, PEST’s task is to minimise Φr while ensuring thatΦm is “suitably low”. Such a “suitably low” value will normally be slightly above theminimum value for Φm that could have been achieved if regularisation conditions had notbeen imposed. It is the user’s responsibility to select this value; it will be denoted as Φml (ie.the “limiting measurement objective function”). It is this ability which PEST gives the user toindicate in advance of the parameter estimation process the
	 Φm ≤ Φml
	or, in practice, that
	Φm = Φml(2.31)
	because a decrease in Φr will nearly always require an increase in Φm where parameter valuesare close to optimum.
	The constrained minimisation problem described above can be formulated as anunconstrained minimisation problem through the use of a Lagrange multiplier γ. Thus, withregularisation constraints imposed, the parameterisation problem consists in determining theelements of the vector b (ie. the values of the adjustable parameters) which minimise the“total” objective function Φt defined by the equation:
	 Φt = Φr + γΦm(2.32)
	while simultaneously finding the value for γ which causes equation 2.31 to be satisfied.
	As was mentioned above, this problem is somewhat similar to the predictive analysisproblem discussed in the previous section in that one function is minimised (in this case theregularisation objective function) while the objective function based on field or laboratorymeasurements is held at some upper limit selected by the user below which the model isdeemed to be calibrated.
	An inspection of equation 2.32 reveals that the regularisation problem can be viewed from aslightly different angle. It can be formulated as a traditional nonlinear parameter estimationproblem which attempts to estimate the parameter set b that provides the best fit between aset of observations and corresponding model outputs, with the observations consisting ofboth “measurement observations” and “regularisation observations”. The Lagrange multiplierγ can then be considered as a factor by which to multiply
	Φ = µΦt = µΦr + Φm(2.33)
	where µ is the reciprocal of γ. With the objective function defined in this way, the reciprocalof the Lagrange multiplier can be seen to be equivalent to a “regularisation weight factor”, ie.the factor by which all “regularisation observations” are multiplied in formulation of theoverall objective function, now defined as Φ. Once again, the value of µ must be such thatequation 2.31 is satisfied.
	When undertaking problem regularisation, PEST minimises the objective function Φ definedby equation 2.33. During each optimisation iteration it calculates the regularisation weightfactor µ that results in equation 2.31 being satisfied. It does this using an iterative procedurebased on linearised model and regularisation conditions. Once µ has been determined, allregularisation weights (ie. weights assigned by the user to the regularisation observations) aremultiplied by this factor; a parameter upgrade vect
	2.1.11 Use of an Observation Covariance Matrix
	In the theory presented in Section 2.1.2, the squares of user-supplied observation weightscomprise the elements of the diagonal matrix Q (often referred to as the “cofactor matrix”).The inverse of Q is proportional to the covariance matrix of the observations, the constant ofproportionality being the “reference variance”. Because Q is a diagonal matrix, so too is theobservation covariance matrix.
	The use of observation weights in calculating the objective function is based on the premisethat observations are independent, ie. that the “uncertainty” pertaining to any one observationbears no relationship to the “uncertainty” pertaining to any other observation. In practice,observation “uncertainty” in a calibration context is determined by the level of misfitbetween these observations and corresponding model outputs, ie. by the model-to-measurement residuals calculated at the end of the inversion proce
	The theory underpinning the use of observation weights presented in Section 2.1.2 is alsoapplicable to the use of an observation covariance matrix in place of individual observationweights if the “cofactor matrix” Q is calculated as the inverse of a user-supplied observationcovariance matrix. Note however that, as was mentioned above, a user-supplied observationcovariance matrix can only be considered as proportional to the true observation covariancematrix; the latter can be determined after the inversion
	Use of PEST’s regularisation functionality does not preclude use of a covariance matrix tocharacterise either or both of measurement and regularisation observations. However whenPEST is used in this mode the covariance matrix supplied for the regularisation observationsmust be separate from that supplied for the measurement observations. If a covariance matrixis provided for the regularisation observations, PEST will calculate a “weight factor” bywhich to multiply the “regularisation cofactor matrix” Qr (ca
	The remainder of this section describes the theory behind PEST’s accommodation of the useof one or more observation covariance matrices in place of observation weights tocharacterise the uncertainty associated with groups of measurements and/or prior informationequations. However, as the implementation of this theory within PEST takes place “behindthe scenes”, it is not essential to the use of PEST that this theory be fully understood.
	Let c be a vector whose elements are stochastic variables, i.e. numbers with a randomcomponent. For the purposes of the present discussion, consider that the elements of c are theset of measurements to be used in the calibration process. Suppose that these measurementsare statistically dependent on each other, and thus that the uncertainties associated with themmust be represented by a covariance matrix rather than by a set of individual variances.Suppose that the covariance matrix associated with the eleme
	Because C is a covariance matrix, it must be positive definite (which means that it is alsosymmetric). Let R be a matrix whose columns are comprised of the normalised eigenvectorsof C. It is easily shown that
	Rt = R-1(2.34)
	ie. that the transpose of R is also its inverse. Now let us introduce another stochastic vector d,calculable from the vector c using the relationship
	d = Rtc(2.35)
	It is easy to show that the covariance matrix of d (which will be named D) can be calculatedfrom the covariance matrix of c (ie. C) using the relationship
	D = RtCR(2.36)
	and that D is a diagonal matrix whose elements are equal to the eigenvalues of C. This is avery important relationship, for it expresses the fact that through a simple rotationaltransformation of the original stochastic vector c, another stochastic vector d can be obtainedwhose elements are statistically independent. Hence if the “rotated” observation vector d isused as a basis for parameter estimation instead of the original observation vector c, weightscan be used in the inversion equations instead of a c
	Equation 2.11 describes how optimised parameter values (as encapsulated in the vector b) arecalculated from measurements (ie. the vector c) for a linear model. (For the sake ofsimplicity, the present discussion is restricted to a linear model; the theory is easily extendedto a nonlinear model using the methodology presented above.) The equation (repeated fromequation 2.11) is
	b = (XtQX)-1XtQc(2.37)
	If the elements of the measurement vector c are not statistically independent, then thecofactor matrix Q of equation 2.37 has non-diagonal elements and, as is explained above, isproportional to the inverse of the covariance matrix of c.
	It is not too difficult to show that the vector of optimised parameter values b can also becalculated using the equation
	b = (YtTY)-1YtTd(2.38)
	where d is given by equation 2.35, and Y is calculated from the model matrix X using theequation
	Y = RtX(2.39)
	The matrix T in equation 2.38 is related to the inverse of the matrix D (the covariance matrixof d) by the same constant of proportionality that occurs in the relationship between thematrix Q of equation 2.37 and the inverse of the matrix C (the covariance matrix of c).Equation 2.38 thus demonstrates that the vector b can be calculated from the rotatedmeasurement vector d using exactly the same mathematics as that used to compute b fromthe non-rotated measurement vector c, provided that the model matrix X i
	The relationship between the parameter covariance matrix C(b) and the observation cofactormatrix Q is expressed by equation 2.12, which is repeated below:-
	C(b) =σ2(XtQX)-1(2.40)
	Recall that σ2 is the “reference variance”. Equation 2.40 is applicable whether weights or acovariance matrix are used to specify observation uncertainties, ie. whether Q is a diagonalmatrix or not. It is easily shown that the parameter covariance matrix can also be calculatedfrom the rotated observation cofactor matrix T using the formula
	C(b) =σ2(YtTY)-1(2.41)
	Recall that T is diagonal because rotation of the vector c to yield the vector d results in anuncorrelated set of stochastic variables.
	It can also be shown that calculation of the objective function using equation 2.8a isequivalent to calculating it using the equation
	Φ = (d - Yb)t T(d - Yb)(2.42)
	Once again, calculations made using equation 2.42 are based on the use of a rotatedobservation dataset, (ie. the vector d) complemented by a rotated model matrix vector (ie. thematrix Y) and a rotated, diagonal, cofactor matrix T.
	2.1.12 Goodness of Fit
	When it is being used in parameter estimation mode, PEST aims to lower the objectivefunction as far as it can be lowered. When used in predictive analysis mode, PEST aims tomaximise or minimise a specified prediction while maintaining the model in a calibratedstate, ie. while ensuring that the objective function rises no higher than a specified level.When working in regularisation mode PEST aims to maximise adherence to a certain“regularisation condition” (by minimising a regularisation objective function)
	Another measure of goodness of fit is provided by the correlation coefficient as defined inCooley and Naff (1990). Unlike the objective function, the correlation coefficient isindependent of the number of observations involved in the parameter estimation process, andof the absolute levels of uncertainty associated with those observations. Hence use of thismeasure of goodness of fit allows the results of different parameter estimation exercises to bedirectly compared.
	The correlation coefficient R is calculated as
	()()()()()()[]2/1∑∑∑−−−−−−=ooiiooiiiiiioioiiimcwmcwmcwmcwmcwmcwR(2.43)
	where:-
	ci is the i’th observation value,
	c0i is the model-generated counterpart to the i’th observation value,
	m is the mean value of weighted observations,
	mois the mean of weighted model-generated counterparts to observations, and
	wiis the weight associated with the i’th observation (or “rotated observation” if acovariance matrix is used to specify observation uncertainty instead ofindividual observation weights).
	Generally R should be above 0.9 for the fit between model outputs and observations to beacceptable (Hill, 1998).
	2.2 PEST’s Implementation of the Method
	So far, this chapter has discussed the theory behind PEST, viz. the method of weighted leastsquares and its application to nonlinear parameter estimation and predictive analysis. Theremainder of this chapter discusses the ways in which the least squares method has beenimplemented in PEST to provide a general, robust, parameter estimation and predictiveanalysis package that is useable across a wide range of model types.
	2.2.1 Parameter Transformation
	PEST allows for the logarithmic transformation of some or all parameters. It often happensthat if PEST (or any other parameter estimation program) is asked to estimate the log of aparameter, rather than the parameter itself, the process is much faster and more stable than itwould otherwise be; however sometimes the opposite can occur.
	PEST requires that each parameter be designated, in the PEST control file, as untransformed,log-transformed, fixed or tied; the latter two options will be discussed shortly. If a parameteris log-transformed, any prior information pertaining to that parameter must pertain to the log(to base 10) of that parameter. Also, elements of the covariance, correlation coefficient andeigenvector matrices calculated by PEST pertaining to that parameter refer to the log of theparameter rather than to the parameter itsel
	You should never ask PEST to logarithmically transform a parameter with a negative or zeroinitial value, or a parameter that may become negative or zero in the course of the estimationprocess. Hence a log-transformed parameter must be supplied with a positive lower bound(see below).
	PEST is informed if a parameter is log-transformed through the parameter variablePARTRANS in the PEST control file; see Section 4.2.4. Note that more complex parametertransformations can be undertaken using the parameter preprocessor PAR2PAR; see Section10.7.
	2.2.2 Fixed and Tied Parameters
	A parameter can be identified in a template file (see Chapter 3) yet take no part in theparameter estimation process. In this case it must be declared as “fixed” so that its value doesnot vary from that assigned to it as its initial estimate in the PEST control file.
	PEST allows one or more parameters to be tied (ie. linked) to a “parent” parameter. PESTdoes not estimate a value for a tied parameter; rather it adjusts the parameter during theestimation process such that it maintains the same ratio with its parent parameter as thatprovided through the initial estimates of the respective parameters. Thus tied parameters“piggyback” on their parent parameters. Note that a parameter cannot be tied to a parameterwhich is either fixed, or tied to another parameter itself.
	PEST is informed whether a parameter is fixed or tied through the parameter variablePARTRANS in the PEST control file; see Section 4.2.4.
	2.2.3 Upper and Lower Parameter Bounds
	As well as supplying an initial estimate for each parameter, you are also required to supplyparameter upper and lower bounds. These bounds define the maximum and minimum valueswhich a parameter is allowed to assume during the optimisation process. They are providedthrough the parameter variables PARLBND and PARUBND in the PEST control file.
	It is important that upper and lower parameter bounds be chosen wisely. For many modelsparameters can lie only within certain well-defined domains determined by the theory onwhich the model is based. In such cases model-generated floating-point errors may result ifPEST is not prevented from adjusting a parameter to a value outside its allowed domain. Forexample if, at some stage during a model run, the logarithm or square root of a particularparameter is taken, then that parameter must be prevented from eve
	In some cases, where a large number of parameters are being estimated based on a largenumber of measurements, PEST may try to force a fit between model and measurements byadjusting some parameters to extremely large or extremely small values (especially if themeasured values upon which the estimation process is based are not altogether consistent).Such extremely large or small values may, depending on the model, result in floating pointerrors or numerical convergence difficulties. Again, carefully chosen pa
	If a parameter upgrade vector u is determined which would cause one or more parameters tomove beyond their bounds, PEST adjusts u such that this does not occur, placing suchparameters at their upper or lower bounds. On later iterations, special treatment is thenprovided for parameters which are at their allowed limits. If the components of both theupgrade vector and the negative of the gradient vector pertaining to a parameter at its upperor lower limit are such as to take the parameter out of bounds, then
	The strength of this strategy is that it allows PEST to search along the boundaries of theparameter domain for the smallest Φ to which it has access when the global minimum of Φlies outside of the parameter domain, beyond PEST’s reach.
	At the beginning of each new optimisation iteration all temporarily-frozen parameters arefreed to allow them to move back inside the allowed parameter domain if solution of equation2.23 deems this necessary. The stepwise, temporary freezing of parameters is then repeatedas described above.
	2.2.4 Scale and Offset
	For every parameter you must supply a scale and offset (variables SCALE and OFFSET inthe PEST control file). Before writing a parameter value to a model input file, PESTmultiplies this value by the scale and adds the offset.
	The scale and offset variables can be very convenient in some situations. For example, in aparticular model a certain parameter may have a non-zero base level; you may wish toredefine the parameter as the actual parameter minus this base level. Elevation may be such aparameter. If a reference elevation is subtracted from the true, model-required elevation, theresult may be thickness; this may be a more “natural” parameter for PEST to optimise thanelevation. In particular it may make more sense to express a
	The scale variable is equally useful. A model parameter may be such that it can only take onnegative values; such a parameter cannot be log-transformed. However if a new parameter isdefined as the negative of the model-required parameter, PEST can optimise this newparameter, log-transforming it if necessary to enhance optimisation efficiency. Just before itwrites the parameter to a model input file, PEST multiplies it by its SCALE variable (-1 inthis case) so that the model receives the parameter it expects
	If you do not wish a parameter to be scaled and offset, enter its scale as 1 and its offset aszero.
	It should be stressed that PEST is oblivious to a parameter’s scale and offset until themoment it writes its value to a model input file. It is at this point (and only this point) that itfirst multiplies by the scale and then adds the offset; the scale and offset take no other part inthe parameter estimation process. Note also that fixed and tied parameters must each besupplied with a scale and offset, just like their adjustable (log-transformed anduntransformed) counterparts.
	2.2.5 Parameter Change Limits
	As has already been discussed, no parameter can be adjusted by PEST above its upper boundor below its lower bound. However, there is a further limit on parameter changes, determinedby the amount by which a parameter is permitted to change in any one optimisation iteration.
	If the model under PEST’s control exhibits reasonably linear behaviour, the updatedparameter set determined by equations 2.23, 2.24, and 2.26 will result in a lowering of theobjective function. However if the model is highly nonlinear, the parameter upgrade vectorβu may “overshoot” the objective function minimum, and the new value of Φ may actuallybe worse than the old one. This is because equations 2.23 and 2.24 are based on a linearityassumption which may not extend as far into parameter space from the cu
	To obviate the possibility of overshoot, it is good practice to place a reasonable limit on themaximum change that any adjustable parameter is allowed to undergo in any oneoptimisation iteration. Such limits may be of two types, viz. “relative” and “factor”. Youmust inform PEST, through the parameter variable PARCHGLIM on the PEST control file,which type of change limit applies to each adjustable parameter. Two other PEST inputvariables, RELPARMAX and FACPARMAX, provide the maximum allowed relative andfacto
	Let f represent the user-defined maximum allowed parameter factor change for factor-limitedparameters (ie. FACPARMAX); f must be greater than unity. Then if b0 is the value of aparticular factor-limited parameter at the beginning of an optimisation iteration, the value bof this same parameter at the beginning of the next optimisation iteration will lie between thelimits
	b0/f ≤ b ≤ fb0(2.44a)
	if b0 is positive, and
	fb0 ≤ b ≤ b0/f(2.44b)
	if b0 is negative. Note that if a parameter is subject to factor-limited changes, it can neverchange sign.
	Let r represent the user-defined maximum allowed relative parameter change for all relative-limited parameters (ie. RELPARMAX); r can be any positive number. Then if b0 is the valueof a particular relative-limited parameter at the beginning of an optimisation iteration, itsvalue b at the beginning of the next optimisation iteration will be such that
	b - b0/b0 ≤ r(2.45)
	In this case, unless r is less than or equal to unity, a parameter can, indeed, change sign.However there may be a danger in using a relative limit for some types of parameters in thatif r is 1 or greater, b may fall to a minute fraction of b0 (or even to zero), withouttransgressing the parameter change limit. For some types of parameters in some models thiswill be fine; in other cases a parameter factor change of this magnitude may significantlytransgress model linearity limits.
	In implementing the conditions set by equations 2.44 and 2.45, PEST limits the magnitude ofthe parameter upgrade vector βu such that neither of these equations is violated. Naturally, ifonly one type of parameter change limit is featured in a current PEST run (ie. parameters areall factor-limited or are all relative-limited) only the pertinent one of these equations willneed to be obeyed.
	If, in the course of an optimisation run, PEST assigns to a parameter a value which is verysmall in comparison with its initial value, then either of equations 2.44 or 2.45 may place anundue restriction on subsequent parameter adjustments. Thus if b0 for one parameter is verysmall, the changes to all parameters may be set intolerably small so that equation 2.44 orequation 2.45 is obeyed for this one parameter. To circumvent this problem, PEST providesanother input variable, FACORIG, which allows the user to
	It should be noted that problems such as those described above incurred by parameters withlow absolute values can also be prevented from occurring by providing such parameters witha suitable OFFSET value, accompanied by appropriate lower/upper bounds that prevent themfrom being assigned such troublesome values.
	2.2.6 Damping of Parameter Changes
	Parameter over-adjustment and any resulting oscillatory behaviour of the parameterestimation process is further mitigated by the “damping” of potentially oscillatory parameterchanges. The method used by PEST is based on a technique described by Cooley (1983) andused by Hill (1992). To see how it works, suppose that a parameter upgrade vector βu hasjust been determined using equations 2.23, 2.24 and 2.26. Suppose, further, that this upgradevector causes no parameter values to exceed their bounds, and that al
	For relative-limited parameters, let the parameter undergoing the proposed relative change ofgreatest magnitude be parameter i; let its proposed relative change be pi. For factor-limitedparameters which are not log-transformed, define qj for parameter j as
	qj = βuj /(fbj - bj)if uj and bj have the same sign, and
	(2.46)
	qj = βuj /(bj - bj /f)if uj and bj have the opposite sign
	where bj is the current value for the j’th parameter and f is the maximum allowed factorchange for all factor-limited parameters. Let the parameter for which the absolute value of qis greatest be parameter l, and let q for this parameter be ql . Finally, let the log-transformedparameter for which the absolute value of βu is greatest be parameter k, and let the elementof βu pertaining to this parameter be βuk. Let i0, l0, k0, p0i, q0l and β0u0k define these samequantities for the previous iteration except th
	s1 = pi /p0iif i = i0;
	s1 = 0otherwise,(2.47a)
	s2 = ql /q0lif l = l0;
	s2 = 0otherwise, and(2.47b)
	s3 = βuk /β0u0kif k = k0;
	s3 = 0otherwise.(2.47c)
	Let s be the minimum of s1, s2 and s3 and define ρ as:
	ρ = (3 + s)/(3 + s)if s ≥ -1(2.48a)
	ρ = 1/(2s)otherwise.(2.48b)
	Then oscillatory behaviour of the parameter estimation process can be mitigated by defininga new parameter upgrade vector v by
	v = ρβu(2.49)
	2.2.7 Temporary Holding of Insensitive Parameters
	The possibility of a parameter estimation process running smoothly and efficiently decreaseswith the number of parameters being estimated. In highly parameterised problems someparameters are likely to be relatively insensitive in comparison with other parameters. As aresult of their insensitivity, PEST may decide that large changes are required for their valuesif they are to make any contribution to reducing the objective function. However, as isexplained in Section 2.2.5, limits are set on parameter change
	If a parameter is particularly insensitive, it may dominate the parameter upgrade vector, ie.the magnitude of the change calculated by PEST for this parameter may be far greater thanthat calculated for any other parameter. When its change has been relative- or factor-limitedin accordance with the user-supplied settings for RELPARMAX or FACPARMAX (and themagnitude of the parameter upgrade vector has thus been considerably reduced), otherparameters (including far more sensitive ones) may not change much at al
	This phenomenon can be avoided by temporarily holding troublesome parameters at theircurrent value for an iteration or two. Such parameters are then not involved in the calculationof the parameter upgrade vector and hence do not get the chance to have an adverse impacton it. Offending parameters can be identified as those undergoing the maximum relative- orfactor-limited changes during a particular optimisation iteration where this maximum changeis equal to RELPARMAX or FACPARMAX, or as those parameters who
	PEST records the “composite sensitivity” of each parameter (ie. the magnitude of the columnof the Jacobian matrix pertaining to that parameter modulated by the weight attached to eachobservation divided by the number of observations, or Vii/m where Vii is the inverse of Siidefined in equation 2.22 and m is the number of observations - see equation 5.1), to a“parameter sensitivity file”, this file being updated during every optimisation iteration. Thoseparameters with the lowest sensitivities are the most li
	2.2.8 Components of the Objective Function
	As has already been discussed, the objective function is calculated as the squared sum ofweighted residuals (including prior information). If is often of interest to know whatcontribution certain observations, or groups of observations, make to the objective function.This is possible through the use of “observation groups”. Each observation, and each item ofprior information, must be assigned to a group; the number and names of such groups arespecified by the user.
	The ability to calculate the contribution made by individual observations, or groups ofobservations to the objective function is useful in situations where the user wishes thatdifferent types of information contribute an approximately equal amount to the value of theobjective function. This ensures that no observation groupings are either “drowned” by otherinformation, or dominate the inversion process.
	2.2.9 Termination Criteria
	PEST updates parameters using equations derived on the basis of a linearity assumptionwhich is not met if the model is nonlinear. Nevertheless, by iteratively updating theparameters in accordance with these equations as many times as is necessary, an optimalparameter set will mostly be obtained in the end. When working in parameter estimationmode the optimal set of parameters is that set for which the objective function is at itsminimum.
	PEST uses a number of different criteria to determine when to halt this iterative process. Notethat only one of them (zero-valued objective function) is a guarantee that the objectivefunction minimum has been obtained. In difficult circumstances, any of the other terminationcriteria could be satisfied when the objective function is well above its minimum andparameters are far from optimal. Nevertheless, in most cases these termination criteria do,indeed, signify convergence of the adjustable parameters to t
	There are two indicators that either the objective function is at, or very close to, its minimum,or that further PEST execution is unlikely to get it there. The first is the behaviour of theobjective function itself. If it has been reduced very little, or not at all, over a number ofsuccessive iterations, the time has come to cease execution. The exact criteria determiningthis kind of termination are set through PEST input variables PHIREDSTP, NPHISTP andNPHINORED. If the lowest NPHISTP Φ’s achieved in all
	The second indicator of either convergence to the objective function minimum, or of theunlikelihood of achieving it, is the behaviour of the adjustable parameters. If successiveiterations are effecting little change in parameter values, there is probably little to gain incontinuing with PEST execution. Input variables RELPARSTP and NRELPAR set the exactcriterion; if the largest relative parameter change over the last NRELPAR iterations has beenRELPARSTP or less, PEST will not proceed to the next iteration.
	The input variable NOPTMAX sets an upper limit on the number of optimisation iterationswhich PEST carries out. PEST will terminate execution after NOPTMAX iterations, nomatter what the current status of the objective function or of the parameter values.
	Other termination criteria are set internally. As has already been mentioned, PEST willterminate the optimisation process if it calculates a parameter set for which the objectivefunction is zero. Also, if the gradient of the objective function with respect to all parametersis zero, or if a zero-valued parameter upgrade vector is determined, or if all parameters aresimultaneously at their limits and the parameter upgrade vector points out of bounds, PESTwill take its deliberations no further (unless it is cu
	2.2.10 Operation in Predictive Analysis Mode
	Most aspects of PEST’s operation when undertaking predictive analysis are identical to itsoperation when undertaking parameter estimation, including the use of parameter bounds,relative and factor change limits, switching to the use of three-point derivatives calculation,prior information, the linking and fixing of parameters, the holding of parameters,logarithmic transformation, etc. All termination criteria that are used in parameter estimationmode also apply to PEST’s use in predictive analysis mode. How
	As is explained in Section 6.1.5, if the initial parameter estimates supplied to PEST at thecommencement of a predictive analysis run are a long way from optimum (ie. the initialobjective function is far above Φ0 of equation 2.28), PEST will work in parameter estimationmode until it is able to “sniff” the Φ0 contour. The transition to predictive analysis mode as itapproaches this contour is a gradual one, unseen by the user.
	2.2.11 Operation in Regularisation Mode
	Within each optimisation iteration PEST’s task when working in regularisation mode isidentical to its task when working in parameter estimation mode, ie. it must minimise anobjective function using a linearised version of the model encapsulated in a Jacobian matrix.However just before calculating the parameter upgrade vector, PEST calculates theappropriate “regularisation weight factor” to use for that iteration. This is the factor by whichall of the weights pertaining to regularisation information are mult
	Use of PEST in regularisation mode is fully described in Chapter 7 of this manual. As isdiscussed in that Chapter, the user is required to supply a few extra control variables togovern PEST’s operation in this mode. One of these is the “target measurement objectivefunction” (ie. Φml of equation 2.31). Other variables govern the procedure by which µ ofequation 2.33 is calculated, and allow slight changes to be made to the criteria that governtermination of a PEST run.
	2.3 The Calculation of Derivatives
	2.3.1 Forward and Central Differences
	The ability to calculate the derivatives of all observations with respect to all adjustableparameters is fundamental to the Gauss-Marquardt-Levenberg method of parameterestimation; these derivatives are stored as the elements of the Jacobian matrix. Because PESTis independent of any model of which it takes control, it cannot calculate these derivativesusing formulae specific to the model. Hence it must evaluate the derivatives itself usingmodel-generated observations calculated on the basis of incrementally
	Accuracy in derivatives calculation is fundamental to PEST’s success in optimisingparameters. Experience has shown that the most common cause of PEST’s failure to find theglobal minimum of the objective function in parameter space is the presence of roundofferrors incurred in the calculation of derivatives. Fortunately, on most occasions, this problemcan be circumvented by a wise choice of those input variables which determine how PESTevaluates derivatives for a particular model.
	The PEST input variables affecting derivatives calculation pertain to parameter “groups”. Inthe PEST control file, each parameter must be assigned to such a parameter group. Theassignment of derivative variables to groups, rather than to individual parameters, introducessavings in memory and complexity. Furthermore, in many instances, parameters naturally fallinto one or more categories; for example if the domain of a two- or three-dimensional spatialmodel is subdivided into zones of constant parameter valu
	The simplest way to calculate derivatives is through the method of forward differences. Tocalculate derivatives in this manner, PEST varies each parameter in turn by adding anincrement to its current value (unless the current parameter value is at its upper bound, inwhich case PEST subtracts the increment), runs the model, reads the altered, model-generated observations and then approximates the derivative of each observation with respectto the incrementally-varied parameter as the observation increment div
	If the parameter increment is properly chosen (see below), this method can work well.However it is often found that as the objective function minimum is approached, attainmentof this minimum requires that parameters be calculated with greater accuracy than thatafforded by the method of forward differences. Thus PEST also allows for derivatives to becalculated using three parameter values and corresponding observation values rather thantwo, as are used in the method of forward differences. Experience shows t
	PEST uses one of three methods to calculate central derivatives. In the first or “outsidepoints” method, the two outer parameter values (ie. that for which an increment has beenadded and that for which an increment has been subtracted) are used in the same finite-difference type of calculation as is used in the forward difference method. This method yieldsmore accurate derivative values than the forward difference method because the (unused)current parameter value is at the centre of the finite difference i
	If the central method of derivatives calculation is used for all parameters, each optimisationiteration requires that at least twice as many model runs be carried out than there areadjustable parameters. If the central method is used for some parameters and the forwardmethod for others, the number of model runs will lie somewhere between the number ofadjustable parameters and twice the number of adjustable parameters
	2.3.2 Parameter Increments for Derivatives Calculation
	Because of the importance of reliable derivatives calculation, PEST provides considerableflexibility in the way parameter increments are chosen. Mathematically, a parameterincrement should be as small as possible so that the finite-difference method (or one of itsthree-point variants) provides a good approximation to the derivative in a theoretical sense(remember that the derivative is defined as the limit of the finite difference as the incrementapproaches zero). However, if the increment is made too small
	There are three PEST input variables, viz. INCTYP, DERINC and DERINCLB by which youcan set the manner in which increments are calculated for the members of a particularparameter group. INCTYP determines the type of increment to use, for which there are threeoptions, viz. “absolute”, “relative” and “rel_to_max”. If the increment type for a parametergroup is “absolute”, the increment used for all parameters in the group is supplied as theinput variable DERINC; this increment is added (and subtracted for centr
	A further measure to protect against the occurrence of near-zero increments for “relative” and“rel_to_max” increment types is provided through the PEST group input variableDERINCLB. This variable contains a standby absolute increment which can be used in placeof the “relative” or “rel_to_max” increment if the increment calculated for a particularparameter using either of these latter methods falls below the absolute increment valuecontained in DERINCLB.
	The group input variable FORCEN determines whether derivatives for the parameters of aparticular group are calculated using the forward-difference method, the central-differencemethod or both; FORCEN can be designated as “always_2”, “always_3” or “switch”. If it issupplied as “always_2”, derivatives calculation is through forward differences for allparameters within the group throughout the estimation process; if it is “always_3”, central(ie. three-point) derivatives will be used for the entirety of the est
	Two group input variables pertain specifically to the calculation of derivatives using thecentral method, viz. variables DERINCMUL and DERMTHD. The latter variable must beone of “outside_pts”, “parabolic” or “best_fit”; this determines the method of centralderivatives calculation to be used by PEST, the three options having already been discussed. The variable DERINCMUL contains the increment multiplier; this is the value by whichDERINC is multiplied when it is used to evaluate increments for any of the thr
	For increments calculated using the “relative” and “rel_to_max” methods, the variableDERINCLB has the same role in central derivatives calculation as it does in forwardderivatives calculation, viz. to place a lower limit on the increment absolute value. Note,however, that DERINCLB is not multiplied by DERINCMUL when derivatives arecalculated using the central method.
	If a parameter is log-transformed then it is wise that its increment be calculated using the“relative” method, though PEST does not insist on this.
	As PEST reads the data contained in its input control file, it will object if a parameterincrement (either read directly as “absolute” or calculated from initial parameter values as“relative” or “rel_to_max”) exceeds the range of values allowed for that parameter (asdefined by the parameter’s upper and lower bounds) divided by 3.2, as the increment is thentoo large compared with the width of the parameter domain. However should this eventualityarise later in the course of the estimation process (as may happ
	When choosing an increment for a parameter, care must be taken to ensure that the parametercan be written to the model input file with sufficient precision to distinguish an incrementedparameter value from one which has not been incremented. Thus, for example, if a modelinput file template is such that a particular parameter value must be written to a space whichis four characters wide, and if the increment type for that parameter is “absolute” and theincrement value is 0.0001 while the current parameter va
	It should be pointed out that PEST writes a parameter value to a model input file with themaximum possible precision, given the parameter field width provided in the pertinenttemplate file. Also, for the purposes of derivatives calculation, PEST adjusts a parameterincrement to be exactly equal to the difference between a current parameter value and theincremented value of that parameter as represented (possibly with limited precision) in themodel input file, as read by the model.
	2.3.3 How to Obtain Derivatives You Can Trust
	Reliability of derivatives calculation can suffer if the model which you are trying toparameterise does not write its outcomes to its output file using many significant figures. Ifyou have any control over the precision with which a model writes its output data, you shouldrequest that the maximum possible precision of representation be used. Although PEST willhappily attempt an optimisation on the basis of limited-precision model-generatedobservations, its ability to find an objective function minimum decre
	If a model is comprised of multiple sub-model executables run by PEST through a batch file,then you should also ensure that numbers are transferred between these various sub-modelswith maximum precision. Thus every sub-model comprising the composite model shouldrecord numbers to those of its output files which are read by other sub-models with maximumnumerical precision.
	Many models calculate their outcomes using one or a combination of numericalapproximations to differential equations, for example the finite-difference method, finite-element method, boundary element method etc. Problems which are continuous in spaceand/or time are approximated by discrete representations of the same problem in order thatthe partial differential equation(s) describing the original problem can be cast as a matrixequation of high order. The matrix equation is often solved by an iterative tech
	If a numerical model of this type is to be used with PEST, it is essential that any variablesgoverning the numerical solution procedure be set in favour of precision over time. Althoughthe model run-time may be much greater as a result, it would be false economy to givereduced computation time precedence over output precision. Accurate derivatives calculationdepends on accurate calculation of model outcomes. If PEST is trying to estimate modelparameters on the basis of imprecise model-generated observations
	Even after you have instructed the model to write to its output file with as much precision aspossible, and you have adjusted the model’s solution settings for greatest precision, model-generated observations may still be “granular” in that the relationship between theseobservations and the model parameters may be “bumpy” rather than continuous. In this caseit may be wise to set parameter increments larger than you normally would. If a parameterincrement is set too small PEST may calculate a local, erroneou
	2.3.4 Model-Calculated Derivatives
	As has been discussed above, the calculation of derivatives by finite differences is both time-consuming and numerically intensive. If a model can calculate derivatives of its outputs withrespect to its adjustable parameters itself, use of these derivatives is normally extremelybeneficial to the parameter estimation process. This is a result of the greater accuracy withwhich a model can normally calculate its own derivatives (especially if these are calculatedusing analytical equations), and the likelihood
	Chapter 8 of this manual describes the mechanism by which PEST can receive derivativescalculated internally by a model. In summary, this kind of model-PEST interaction requiresthat the model generate a file in which these derivatives are recorded. Because the calculationof derivatives by the model may place an extra computational burden on the model’sshoulders, it is sometimes necessary that the model be run in a slightly different manner whencalculating derivatives from that in which it is run when underta
	As is also described in Chapter 8 there will be some situations (especially those involvingcalibration and predictive analysis for complex models) in which it is possible for a model tocalculate some of its derivatives but not others. In cases such as this, PEST can accept thosederivatives from the model which the model is capable of calculating, while computing theremaining derivatives itself by the traditional method of finite differences.
	2.4 Bibliography
	2.4.1 Literature Cited in the Text
	Cooley, R.L., 1983. Some new procedures for numerical solution of variably saturated flowproblems. Water Resources Research, v19, no. 5, p1271-1285.
	Cooley, R.L. and Naff, R.L., 1990. Regression modeling of ground-water flow: U.S.Geological Survey Techniques in Water-Resources Investigations, book 3, chap B4, 232p.
	Cooley, R.L. and Vecchia, A.V., 1987. Calculation of nonlinear confidence and predictionintervals for ground-water flow models. Water Resources Bulletin. Vol. 23, No. 4, pp581-599.
	Hill, M. C., 1992. A Computer Program (MODFLOWP) for Estimating Parameters of aTransient, Three-Dimensional, Ground-Water Flow Model using Nonlinear Regression. U. S.Geological Survey Open-File Report 91-484.
	Hill, M.C., 1998. Methods and Guidelines for Effective Model Calibration. U.S. GeologicalSurvey Water-Resources Investigations Report 98-4005.
	Marquardt, D. W., 1963. An algorithm for least-squares estimation of nonlinear parameters.Journal of the Society of Industrial and Applied Mathematics, v11, no. 2, p431-441.
	Levenberg, K., 1944. A method for the solution of certain non-linear problems in leastsquares. Q. Appl. Math., v. 2, p164-168.
	Vecchia, A.V. and Cooley, R.L., 1987. Simultaneous confidence and prediction intervals fornonlinear regression models with application to a ground water flow model. Water ResourcesResearch, vol. 23, no. 7, pp1237-1250.
	2.4.2 Some Further Reading
	Bard, Jonathon, 1974. Nonlinear parameter estimation. Academic Press, NY. 341p.
	Koch, K., 1988. Parameter Estimation and Hypothesis Testing in Linear Models. Springer-Verlag, Berlin. 377p.
	Mikhail, E. M., 1976. Observations and Least Squares. IEP, NY. 497p.
	Nash, J. C. and Walker-Smith, M., 1987. Nonlinear Parameter Estimation; an IntegratedSystem in Basic. Marcel Dekker Inc., Monticello, NY. 493p.

	The Model-PEST Interface
	The Model-PEST Interface
	3.1 PEST Input Files
	PEST requires three types of input file. These are:
	template files, one for each model input file on which parameters are identified,
	instruction files, one for each model output file on which model-generatedobservations are identified, and
	an input control file, supplying PEST with the names of all template and instructionfiles, the names of the corresponding model input and output files, the problem size,control variables, initial parameter values, measurement values and weights, etc.
	This chapter describes the first two of these file types in detail; the PEST control file isdiscussed in Chapter 4. Template files and instruction files can be written using a general-purpose text editor following the specifications set out in this chapter. Once built, they can bechecked for correctness and consistency using the utility programs TEMPCHEK, INSCHEKand PESTCHEK; these programs are described in Chapter 10 of this manual.
	Note that in this and other chapters of this manual, the word “observations” is used to denotethose particular model outcomes for which there are corresponding laboratory or field data.For clarity, these numbers are often referred to as “model-generated observations” todistinguish them from their laboratory- or field-acquired counterparts which are referred to as“measurements” or “laboratory or field observations”.
	3.2 Template Files
	3.2.1 Model Input Files
	Whenever PEST runs a model, as it must do many times in the course of the optimisationprocess, it must first write parameter values to the model input files which hold them.Whether the model is being run to calculate the objective function arising from user-suppliedinitial parameter values, to test a parameter upgrade, or to calculate the derivatives ofobservations with respect to a particular parameter, PEST provides a set of parameter valueswhich it wants the model to use for that particular run. The only
	Some models read some or all of their data from the terminal, the user being required tosupply these data items in response to model prompts. This can also be done through a file. Ifyou write to a file the responses which you would normally supply to a model through theterminal, you can “redirect” these responses to the model using the “<” symbol on the modelcommand line. Thus if your model is run using the command “model”, and you type yourresponses in advance to the file file.inp, then you (and PEST) can
	model < file.inp
	If file.inp contains parameters which PEST must optimise, a template can be built for it as ifit were any other model input file.
	A model may read many input files; however a template is needed only for those input fileswhich contain parameters requiring optimisation. PEST does not need to know about any ofthe other model input files.
	PEST can only write parameters to ASCII (ie. text) input files. If a model requires a binaryinput file, you must write a program which translates data written to an ASCII file to binaryform. The translator program, and then the model, can be run in sequence by listing them in abatch file which PEST runs as the model. The ASCII input file to the translator program willthen become a model input file, for which a template is required.
	A model input file can be of any length. However PEST insists that it be no more than 2000characters in width. The same applies to template files. It is suggested that template files beprovided with the extension “.tpl” in order to distinguish them from other types of file.
	3.2.2 An Example
	A template file receives its name from the fact that it is simply a replica of a model input fileexcept that the space occupied by each parameter in the latter file is replaced by a sequenceof characters which identify the space as belonging to that parameter.
	Consider the model input file shown in Example 3.1; this file supplies data to a programwhich computes the “apparent resistivity” on the surface of a layered half-space for differentsurface electrode configurations. Suppose that we wish to use this program (ie. model) toestimate the properties for each of three half-space layers from apparent resistivity datacollected on the surface of the half-space. The parameters for which we want estimates arethe resistivity and thickness of the upper two layers and the
	MODEL INPUT FILE
	3, 19 no. of layers, no. of spacings
	1.0, 1.0 resistivity, thickness: layer 1
	40.0, 20.0 resistivity, thickness: layer 2
	5.0 resistivity: layer 3
	1.0 electrode spacings
	1.47
	2.15
	3.16
	4.64
	6.81
	10.0
	14.9
	21.5
	31.6
	46.4
	68.1
	100
	149
	215
	316
	464
	681
	1000
	Example 3.1 A model input file.
	ptf #
	MODEL INPUT FILE
	3, 19no. of layers, no. of spacings
	#res1 #,#t1 # resistivity, thickness: layer 1
	#res2 #,#t2 # resistivity, thickness: layer 2
	#res3 # resistivity: layer 3
	1.0electrode spacings
	1.47
	2.15
	3.16
	4.64
	6.81
	10.0
	14.9
	21.5
	31.6
	46.4
	68.1
	100
	149
	215
	316
	464
	681
	1000
	Example 3.2 A template file.
	3.2.3 The Parameter Delimiter
	As Example 3.2 shows, the first line of a template file must contain the letters “ptf” followedby a space, followed by a single character (“ptf” stands for “PEST template file”). Thecharacter following the space is the “parameter delimiter”. In a template file, a “parameterspace” is identified as the set of characters between and including a pair of parameterdelimiters. When PEST writes a model input file based on a template file, it replaces allcharacters between and including these parameter delimiters by
	You must choose the parameter delimiter yourself; however your choice is restricted in thatthe characters [a-z], [A-Z] and [0-9] are invalid. The parameter delimiter character mustappear nowhere within the template file except in its capacity as a parameter delimiter, forwhenever PEST encounters that character in a template file it assumes that it is defining aparameter space.
	3.2.4 Parameter Names
	All parameters are referenced by name. Parameter references are required both in templatefiles (where the locations of parameters on model input files are identified) and on the PESTcontrol file (where parameter initial values, lower and upper bounds and other informationare provided). Parameter names can be from one to twelve characters in length, anycharacters being legal except for the space character and the parameter delimiter character.Parameter names are case-insensitive.
	Each parameter space is defined by two parameter delimiters; the name of the parameter towhich the space belongs must be written between the two delimiters.
	If a model input file is such that the space available for writing a certain parameter is limited,the parameter name may need to be considerably less than twelve characters long in orderthat both the name and the left and right delimiters can be written within the limited spaceavailable. The minimum allowable parameter space width is thus three characters, onecharacter for each of the left and right delimiters and one for the parameter name.
	3.2.5 Setting the Parameter Space Width
	In general, the wider is a parameter space (up to a certain limit - see below), the better PESTlikes it, for numbers can be represented with greater precision in wider spaces than they canbe in narrower spaces. However, unlike the case of model-generated observations wheremaximum precision is crucial to obtaining useable derivatives, PEST can adjust to limitedprecision in the representation of parameters on model input files, as long as enoughprecision is employed such that a parameter value can be distingu
	Generally models read numbers from the terminal or from an input file in either of two ways,viz. from specified fields, or as a sequence of numbers, each of which may be of any length;in FORTRAN the latter method is often referred to as “free field” input. If the model uses theformer method, then somewhere within the model program the format (ie. field specification)for data entry is defined for every number which must be read in this fashion.
	The FORTRAN code of Example 3.3 directs a program to read five real numbers. The firstthree are read using a format specifier, whereas the last two are read in free field fashion.
	The relevant part of the input file may be as illustrated in Example 3.4.
	Notice how no whitespace or comma is needed between numbers which are read using a fieldspecifier. The format statement labelled “100” in Example 3.3 directs that variable A be readfrom the first 10 positions on the line, that variable B be read from the next 10 positions, andthat variable C be read from the 10 positions thereafter. When the program reads any of thesenumbers it is unconcerned as to what characters lie outside of the field on which its attentionis currently focussed. However the numbers to b
	Suppose all of variables A to E are model parameters, and that PEST has been assigned thetask of optimising them. For convenience we provide the same names for these parameters asare used by the model code (this, of course, will not normally be the case). The templatefragment corresponding to Example 3.4 may then be as set out in Example 3.5. Notice howthe parameter space for each of parameters A, B and C is 10 characters wide, and that theparameter spaces abut each other in accordance with the expectations
	READ(20,100) A,B,C
	100FORMAT(3F10.0)
	READ(20,*) D,E
	Example 3.3 Formatted and free field input.
	 6.32 1.42E-05123.456789
	34.567, 1.2E17
	Example 3.4 Numbers read using the code of Example 3.3
	# A ## B ## C #
	# D #, # E #
	Example 3.5 Fragment of a template file corresponding to Example 3.4
	Parameters D and E are treated very differently to parameters A, B and C. As Example 3.3shows, the model simply expects two numbers in succession. If the spaces for parameters Dand E appearing in Example 3.5 are replaced by two numbers (each will be 13 characterslong) the model’s requirement for two numbers in succession separated by whitespace or acomma will have been satisfied, as will PEST’s preference for maximum precision.
	Comparing Examples 3.4 and 3.5, it is obvious that the spaces for parameters D and E on thetemplate file are greater than the spaces occupied by the corresponding numbers on the modelinput file from which the template file was constructed; the same applies for the parameterspaces defined in Example 3.2 pertaining to the model input file of Example 3.1. In mostcases of template file construction, a model input file will be used as the starting point. Insuch a file, numbers read using free field input will of
	Similarly, numbers read through field-specifying format statements may not occupy the fullfield width in a model input file from which a template file is being constructed (eg. variableA in Example 3.4). In such a case you should, again, expand the parameter space beyond theextent of the number (normally to the left of the number only) until the space coincides withthe field defined in the format specifier with which the model reads the number. (If you arenot sure of this field because the model manual does
	3.2.6 How PEST Fills a Parameter Space with a Number
	PEST writes as many significant figures to a parameter space as it can. It does this so thateven if a parameter space must be small in order to satisfy the input field requirements of amodel, there is still every chance that a parameter value can be distinguished from itsincrementally-varied counterpart so as to allow proper derivatives calculation with respect tothat parameter. Also, as has already been discussed, even though PEST adjusts its internalrepresentation of a parameter value to the precision wit
	Two user-supplied control variables, PRECIS and DPOINT affect the manner in which PESTwrites a parameter value to a parameter space. Both of these variables are provided to PESTthrough the PEST control file; see Section 4.2.2 for details. PRECIS is a character variablewhich must be supplied as either “single” or “double”. It determines whether single or doubleprecision protocol is to be observed in writing parameter values; unless a parameter space isgreater than 13 characters in width it has no bearing on
	If a model’s input data fields are small, and there is nothing you can do about it, every effortmust be made to “squeeze” as much precision as possible into the limited parameter spacesavailable. PEST will do this anyway, but it may be able to gain one or more extra significantfigures if it does not need to include a decimal point in a number if the decimal point isredundant. Thus if a parameter space is 5 characters wide and the current value of theparameter to which this field pertains is 10234.345, PEST
	By assigning the string “nopoint” to the PEST control variable DPOINT, you can instructPEST to omit the decimal point in the representation of a number if it can. However thisshould be done with great caution. If the model is written in FORTRAN and numbers areread using free field input, or using a field width specifier such as “(F6.0)” or “(E8.0)”, thedecimal point is not necessary. However in other cases the format specifier will insert its owndecimal point (eg. for specifiers such as “(F6.2)”), or enforc
	Note that if a parameter space is 13 characters wide or greater and PRECIS is set to “single”,PEST will include the decimal point regardless of the setting of “DPOINT”, for there are nogains to be made in precision through leaving it out. Similarly, if PRECIS is set to “double”,no attempt is made to omit a decimal point if the parameter space is 23 characters wide ormore.
	Table 3.1 shows how the setting of DPOINT affects the representation of the number12345.67. In examining this table, remember that PEST writes a number in such a way thatthe maximum possible precision is “squeezed” into each parameter space.
	As explained below, a template file may contain multiple spaces for the same parameter. Insuch a case, PEST will write the parameter value to all those spaces using the minimumparameter space width specified for that particular parameter; for the wider spaces thenumber will be right-justified, with spaces padded on the left. In this way a consistentparameter value is written to all spaces pertaining to the one parameter.
	3.2.7 Multiple Occurrences of the Same Parameter
	Large numerical models which calculate the variation of some scalar or vector over two orthree-dimensional space may require on their input files large amounts of system propertydata written in the form of two- or three-dimensional arrays. For example, a finite-differenceground water model may read arrays representing the distribution of hydraulic conductivity,storage coefficient, and other aquifer properties over the modelled area, each element withineach array pertaining to one rectangular, finite-differe
	If it is required that field measurements be used to infer system properties (using models suchas these to link these properties to system response) certain assumptions regarding thevariation in space of the distributed parameters must be made. A common assumption is thatthe model domain is “zoned”. According to this assumption the system is subdivided into anumber of areas or volumes in each of which a certain physical property is constant. Hencewhile the input arrays will still contain hundreds, maybe tho
	 Table 3.1 Representations of the number 12345.67
	parameter space width
	parameter space width
	(characters)
	DPOINT
	“point”
	“nopoint”
	8
	7
	6
	5
	4
	3
	2
	 12345.67
	 12345.7
	 12346.
	 1.2e4
	 1.e4

	 **
	 12345.67
	 12345.7
	 12346.
	 12346
	 12e3
	 1e4
	 **

	It is a simple matter to construct a PEST template file for a model such as this. Firstly preparefor a model run in the usual way. Using the model preprocessor, assign n different values fora particular property to each of the n different model zones, writing the model input arrays tothe model input files in the usual manner. Then, using the “search and replace” facility of atext editor, edit the model input file such that each occurrence within a particular array of thenumber representing the property of a
	The occurrence of multiple incidences of the same parameter is not restricted to the one file.If a model has multiple input files, and if a particular parameter which you would like tooptimise appears on more than one of these files, then at least one space for this parameterwill appear on more than one template file. PEST passes no judgement on the occurrence ofparameters within template files or across template files. However it does require that eachparameter cited in the PEST control file (see Chapter 4
	3.2.8 Preparing a Template File
	Preparation of a template file is a simple procedure. For most models it can be done in amatter of moments using a text editor to replace parameter values on a typical model inputfile by their respective parameter space identifiers.
	Once a template file has been prepared, it can be checked for correctness using the utilityprogram TEMPCHEK; see Chapter 10. TEMPCHEK also has the ability to write a modelinput file on the basis of a template file and a user-supplied list of parameter values. If youthen run your model, providing it with such a TEMPCHEK-prepared input file, you canverify that the model will have no difficulties in reading input files prepared by PEST.
	3.3 Instruction Files
	Of the possibly voluminous amounts of information that a model may write to its outputfile(s), PEST is interested in only a few numbers, viz. those numbers for which correspondingfield or laboratory data are available and for which the discrepancy between model outputand measured values must be reduced to a minimum in the weighted least squares sense.These particular model-generated numbers are referred to as “observations” or “model-generated observations” in the discussion which follows (in order to disti
	For every model output file containing observations, you must provide an instruction filecontaining the directions which PEST must follow in order to read that file. Note that if amodel output file is more than 2000 characters in width PEST will be unable to read it;however a model output file can be of any length.
	Some models write some or all of their output data to the terminal. You can redirect thisscreen output to a file using the “>” symbol and teach PEST how to read this file using amatching instruction file in the usual manner.
	It is suggested that instruction files be provided with the extension “.ins” in order todistinguish them from other types of file.
	3.3.1 Precision in Model Output Files
	As was discussed in the previous chapter, if there are any model input variables which allowyou to vary the precision with which its output data are written, they should be adjusted formaximum output precision. Unlike parameter values, for which precision is important but notessential, precision in the representation of model-generated observations is crucial. TheGauss-Marquardt-Levenberg method of nonlinear parameter estimation, upon which thePEST algorithm is based, requires that the derivative of each ob
	3.3.2 How PEST Reads a Model Output File
	PEST must be instructed on how to read a model output file and identify model-generatedobservations. For the method to work, model output files containing observations must betext files; PEST cannot read a binary file. If your model produces only binary files, you willneed to write a simple program which reads this binary data and rewrites it in ASCII form;PEST can then read the ASCII file for the observations it needs. Note that, as described inSection 4.2.8, when PEST runs a model, this “model” can actual
	Unfortunately, observations cannot be read from model output files using the templateconcept. This is because many models cannot be relied upon to produce an output file ofidentical structure on each model run. For example, a model which calculates the stressregime in an aircraft wing may employ an iterative numerical solution scheme for whichdifferent numbers of iterations are required to achieve numerical convergence depending onthe boundary conditions and material properties supplied for a particular run
	So instead of using an output file template, you must provide PEST with a list of instructionson how to find observations on an output file. Basically, PEST finds observations on a modeloutput file in the same way that a person does. A person runs his/her eye down the filelooking for something which he/she recognises - a “marker”; if this marker is properlyselected, observations can usually be linked to it in a simple manner. For example, if you arelooking for the outcome of the above stress model’s deliber
	STRESS CALCULATED AT FINITE ELEMENT NODES: ELAPSED TIME = 100 MSEC
	A particular outcome for which you have a corresponding experimental measurement maythen be found, for example, between character positions 23 and 30 on the 4th line followingthe above marker, or as the 5th item on the 3rd line after the marker, etc. Note that for simplemodels, especially “home-made”, single-purpose models where little development time hasbeen invested in highly descriptive output files, no markers may be necessary, the defaultinitial marker being the top of the file.
	Markers can be of either primary or secondary type. PEST uses a primary marker as it scansthe model output file line by line, looking for a reference point for subsequent observationidentification or further scanning. A secondary marker is used for a reference point as asingle line is examined from left to right.
	3.3.3 An Example Instruction File
	Example 3.6 shows an output file written by the model whose input file appears in Example3.1. Suppose that we wish to estimate the parameters appearing in the template file ofExample 3.2 (ie. the resistivities of the three half-space layers and the thicknesses of theupper two) by comparing apparent resistivities generated by the model with a set of apparentresistivities provided by field measurement. Then we need to provide instructions to PEST onhow to read each of the apparent resistivities appearing in E
	SCHLUMBERGER ELECTRIC SOUNDING
	Apparent resistivities calculated using the linear filter method
	electrode spacing apparent resistivity
	 1.00 1.21072
	 1.47 1.51313
	 2.15 2.07536
	 3.16 2.95097
	 4.64 4.19023
	 6.81 5.87513
	 10.0 8.08115
	 14.7 10.8029
	 21.5 13.8229
	 31.6 16.5158
	 46.4 17.7689
	 68.1 16.4943
	 100. 12.8532
	 147. 8.79979
	 215. 6.30746
	 316. 5.40524
	 464. 5.15234
	 681. 5.06595
	 1000. 5.02980
	Example 3.6 A model output file.
	pif @
	@electrode@
	l1 [ar1]21:27
	l1 [ar2]21:27
	l1 [ar3]21:27
	l1 [ar4]21:27
	l1 [ar5]21:27
	l1 [ar6]21:27
	l1 [ar7]21:27
	l1 [ar8]21:27
	l1 [ar9]21:27
	l1 [ar10]21:27
	l1 [ar11]21:27
	l1 [ar12]21:27
	l1 [ar13]21:27
	l1 [ar14]21:27
	l1 [ar15]21:27
	l1 [ar16]21:27
	l1 [ar17]21:27
	l1 [ar18]21:27
	l1 [ar19]21:27
	Example 3.7 A PEST instruction file.
	3.3.4 The Marker Delimiter
	The first line of a PEST instruction file must begin with the three letters “pif” which stand for“PEST instruction file”. Then, after a single space, must follow a single character, the markerdelimiter. The role of the marker delimiter in an instruction file is not unlike that of theparameter delimiter in a template file. Its role is to define the extent of a marker; a markerdelimiter must be placed just before the first character of a text string comprising a markerand immediately after the last character
	You can choose the marker delimiter character yourself; however your choice is limited. Amarker delimiter must not be one of the characters A - Z, a - z, 0 - 9, !, [,], (,), :, or &; thechoice of any of these characters may result in confusion, as they may occur elsewhere in aninstruction file in a role other than that of marker delimiter. Note that the character youchoose as the marker delimiter should not occur within the text of any markers as this, too,will cause confusion.
	3.3.5 Observation Names
	In the same way that each parameter must have a unique name, so too must each observationbe provided with a unique name. Like a parameter name, an observation name must betwelve characters or less in length. These twelve characters can be any ASCII charactersexcept for [,], (,), or the marker delimiter character.
	As discussed above, a parameter name can occur more than once within a parameter templatefile; PEST simply replaces each parameter space in which the name appears with the currentvalue of the pertinent parameter. However the same does not apply to an observation name.Every observation is unique and must have a unique observation name. In Example 3.6,observations are named “ar1”, “ar2” etc. These same observation names must also be cited inthe PEST control file where measurement values and weights are provid
	There is one observation name, however, to which these rules do not apply, viz. the dummyobservation name “dum”. This name can occur many times, if necessary, in an instructionfile; it signifies to PEST that, although the observation is to be located as if it were a normalobservation, the number corresponding to the dummy observation on the model output file isnot actually matched with any laboratory or field measurement. Hence an observation named“dum” must not appear in the PEST control file where measure
	3.3.6 The Instruction Set
	Each of the available PEST instructions is now described in detail. When creating your owninstruction files, the syntax provided for each instruction must be followed exactly. If anumber of instruction items appear on a single line of an instruction file, these items must beseparated from each other by at least one space. Instructions pertaining to a single line on amodel output file are written on a single line of a PEST instruction file. Thus the start of anew instruction line signifies that PEST must rea
	PEST reads a model output file in the forward (top-to-bottom) direction, looking to theinstructions in the instruction file to tell it what to do next. Instructions should be written withthis in mind; an instruction cannot direct PEST to “backtrack” to a previous line on the modeloutput file. Also, because PEST processes model output file lines from left to right, aninstruction cannot direct PEST backwards to an earlier part of a model output file line thanthe part of the line to which its attention is curr
	Primary Marker
	Unless it is a continuation of a previous line, each instruction line must begin with either oftwo instruction items, viz. a primary marker or a line advance item. The primary marker hasalready been discussed briefly. It is a string of characters, bracketed at each end by a markerdelimiter. If a marker is the first item on an instruction line, then it is a primary marker; if itoccurs later in the line, following other instruction items, it is a secondary marker, theoperation of which will be discussed below
	On encountering a primary marker in an instruction file PEST reads the model output file,line by line, searching for the string between the marker delimiter characters. When it findsthe string it places its “cursor” at the last character of the string. (Note that this cursor isnever actually seen by the PEST user; it simply marks the point where PEST is at in itsprocessing of the model output file.) This means that if any further instructions on the sameinstruction line as the primary marker direct PEST to
	Note that if there are blank characters in a primary (or secondary) marker, exactly the samenumber of blank characters is expected in the matching string on the model output file.
	Often, as in Example 3.7, a primary marker will be part or all of some kind of header or label;such a header or label often precedes a model’s listing of the outcomes of its calculations andthus makes a convenient reference point from which to search for the latter. It should benoted, however, that the search for a primary marker is a time-consuming process as each lineof the model output file must be individually read and scanned for the marker. Hence if thesame observations are always written to the same
	A primary marker may be the only item on a PEST instruction line, or it may precede anumber of other items directing further processing of the line containing the marker. In theformer case the purpose of the primary marker is simply to establish a reference point forfurther downward movement within the model output file as set out in subsequent instructionlines.
	Primary markers can provide a useful means of navigating a model output file. Consider theextract from a model output file shown in Example 3.8 (the dots replace one or a number oflines not shown in the example in order to conserve space). The instruction file extract shownin Example 3.9 provides a means to read the numbers comprising the third solution vector.Notice how the “SOLUTION VECTOR” primary marker is preceded by the “PERIOD NO.3” primary marker. The latter marker is used purely to establish a refe
	Line Advance
	The syntax for the line advance item is “ln” where n is the number of lines to advance; notethat “l” is “el”, the twelfth letter of the alphabet, not “one”. The line advance item must bethe first item of an instruction line; it and the primary marker are the only two instructionitems which can occupy this initial spot. As was explained above, the initial item in aninstruction line is always a directive to PEST to move at least one line further in its perusal ofthe model output file (unless it is a continua
	.
	.
	TIME PERIOD NO. 1 --->
	.
	.
	SOLUTION VECTOR:
	 1.43253 6.43235 7.44532 4.23443 91.3425 3.39872
	.
	.
	TIME PERIOD NO. 2 --->
	.
	.
	SOLUTION VECTOR
	 1.34356 7.59892 8.54195 5.32094 80.9443 5.49399
	.
	.
	TIME PERIOD NO. 3 --->
	 .
	.
	SOLUTION VECTOR
	 2.09485 8.49021 9.39382 6.39920 79.9482 6.20983
	Example 3.8 Extract from a model output file.
	pif *
	.
	.
	PERIOD NO. 3
	SOLUTION VECTOR
	l1 (obs1)5:10 (obs2)12:17 (obs3)21:28 (obs4)32:37 (obs5)41:45
	& (obs6)50:55
	.
	.
	Example 3.9 Extract from an instruction file.
	Normally a line advance item is followed by other instructions. However if the line advanceitem is the only item on an instruction line this does not break any syntax rules.
	In Example 3.6 model-calculated apparent resistivities are written on subsequent lines. Hencebefore reading each observation, PEST is instructed to move to the beginning of a new lineusing the “l1” line advance item; see Example 3.7.
	If a line advance item leads the first instruction line of a PEST instruction file, the referencepoint for line advance is taken as a “dummy” line just above the first line of the model outputfile. Thus if the first instruction line begins with “l1”, processing of the model output filebegins on its first line; similarly, if the first instruction line begins with “l8”, processing ofthe model output file begins at its eighth line.
	Secondary Marker
	A secondary marker is a marker which does not occupy the first position of a PESTinstruction line. Hence it does not direct PEST to move downwards on the model output file(though it can be instrumental in this - see below); rather it instructs PEST to move its cursoralong the current model output file line until it finds the secondary marker string, and to placeits cursor on the last character of that string ready for subsequent processing of that line.
	Example 3.10 shows an extract from a model output file while Example 3.11 shows theinstructions necessary to read the potassium concentration from this output file. A primarymarker is used to place the PEST cursor on the line above that on which the calculatedconcentrations are recorded for the distance in which we are interested. Then PEST isdirected to advance one line and read the number following the “K:” string in order to find anobservation named “kc”; the exclamation marks surrounding “kc” will be di
	.
	.
	DISTANCE = 20.0: CATION CONCENTRATIONS:-
	Na: 3.49868E-2 Mg: 5.987638E-2 K: 9.987362E-3
	.
	.
	Example 3.10 Extract from a model output file.
	A useful feature of the secondary marker is illustrated in Examples 3.12 and 3.13 of a modeloutput file extract and a corresponding instruction file extract, respectively. If a particularsecondary marker is preceded only by other markers (including, perhaps, one or a number ofsecondary markers and certainly a primary marker), and the text string corresponding to thatsecondary marker is not found on a model output file line on which the previous markers'strings have been located, PEST will assume that it has
	It is important to note that if any instruction items other than markers precede an unmatchedsecondary marker, PEST will assume that the mismatch is an error condition and abortexecution with an appropriate error message.
	pif ~
	.
	.
	~DISTANCE = 20.0~
	l1 ~K:~ !kc!
	.
	.
	Example 3.11 Extract from an instruction file.
	.
	.
	TIME STEP 10 (13 ITERATIONS REQUIRED) STRESS --->
	X = 1.05 STRESS = 4.35678E+03
	X = 1.10 STRESS = 4.39532E+03
	.
	.
	TIME STEP 10 (BACK SUBSTITUTION) STRAIN --->
	X = 1.05 STRAIN = 2.56785E-03
	X = 1.10 STRAIN = 2.34564E-03
	.
	.
	Example 3.12 Extract from a model output file.
	Whitespace
	The whitespace instruction is similar to the secondary marker in that it allows the user tonavigate through a model output file line prior to reading a non-fixed observation (seebelow). It directs PEST to move its cursor forwards from its current position until itencounters the next blank character. PEST then moves the cursor forward again until it findsa nonblank character, finally placing the cursor on the blank character preceding thisnonblank character (ie. on the last blank character in a sequence of b
	Consider the model output file line represented below:
	MODEL OUTPUTS: 2.89988 4.487892 -4.59098 8.394843
	The following instruction line directs PEST to read the fourth number on the above line:
	%MODEL OUTPUTS:% w w w w !obs1!
	The instruction line begins with a primary marker, allowing PEST to locate the above line onthe model output file. After this marker is processed the PEST cursor rests on the “:”character of “OUTPUTS:”, ie. on the last character of the marker string. In response to thefirst whitespace instruction PEST finds the next whitespace and then moves its cursor to theend of this whitespace, ie. just before the “2” of the first number on the above model outputfile line. The second whitespace instruction moves the cur
	Tab
	The tab instruction places the PEST cursor at a user-specified character position (ie. columnnumber) on the model output file line which PEST is currently processing. The instructionsyntax is “tn” where n is the column number. The column number is obtained by countingcharacter positions (including blank characters) from the left side of any line, starting at 1.Like the whitespace instruction, the tab instruction can be useful in navigating through amodel output file line prior to locating and reading a non-
	pif %
	.
	.
	%TIME STEP 10% %STRAIN%
	l1 %STRAIN =% !str1!
	l1 %STRAIN =% !str2!
	.
	.
	Example 3.13 Extract from an instruction file.
	TIME(1): A = 1.34564E-04, TIME(2): A = 1.45654E-04, TIME(3): A = 1.54982E-04
	The value of A at TIME(3) could be read using the instruction line:
	l4 t60 %=% !a3!
	Here it is assumed that PEST was previously processing the fourth line prior to the above linein the model output file; the marker delimiter character is assumed to be “%”.Implementation of the “t60” instruction places the cursor on the “:” following the “TIME(3)”string, for the colon is in the sixtieth character position of the above line. PEST is thendirected to find the next “=” character. From there it can read the last number on the aboveline as a non-fixed observation (see below).
	Fixed Observations
	An observation reference can never be the first item on an instruction line; either a primarymarker or line advance item must come first in order to place PEST’s cursor on the line onwhich one or more observations may lie. If there is more than one observation on a particularline of the model output file, these observations must be read from left to right, backwardmovement along any line being disallowed.
	Observations can be identified in one of three ways. The first way is to tell PEST that aparticular observation can be found between, and including, columns n1 and n2 on the modeloutput file line on which its cursor is currently resting. This is by far the most efficient way toread an observation value because PEST does not need to do any searching; it simply reads anumber from the space identified. Observations read in this way are referred to as “fixedobservations”.
	Example 3.14 shows how the numbers listed in the third solution vector of Example 3.8 canbe read as fixed observations. The instruction item informing PEST how to read a fixedobservation consists of two parts. The first part consists of the observation name enclosed insquare brackets, while the second part consists of the first and last columns from which toread the observation. Note that no space must separate these two parts of the observationinstruction; PEST always construes a space in an instruction fi
	Reading numbers as fixed observations is useful when the model writes its output in tabularform using fixed-field-width specifiers. However you must be very careful when specifyingthe column numbers from which to read the number. The space defined by these columnnumbers must be wide enough to accommodate the maximum length that the number willoccupy in the course of the many model runs that will be required for PEST to optimise themodel’s parameter set; if it is not wide enough, PEST may read only a truncat
	pif *
	.
	.
	PERIOD NO. 3
	SOLUTION VECTOR
	l1 [obs1]1:9 [obs2]10:18 [obs3]19:27 [obs4]28:36 [obs5]37:45
	& [obs6]46:54
	.
	.
	Example 3.14 Extract from an instruction file.
	Where a model writes its results in the form of an array of numbers, it is not an uncommonoccurrence for these numbers to abut each other. Consider, for example, the followingFORTRAN code fragment:
	A=1236.567
	B=8495.0
	C=-900.0
	WRITE(10,20) A,B,C
	20FORMAT(3(F8.3))
	The result will be
	1236.5678495.000-900.000
	In this case there is no choice but to read these numbers as fixed observations. (Both of thealternative ways to read an observation require that the observation be surrounded by eitherwhitespace or a string that is invariant from model run to model run and can thus be used as amarker.) Hence to read the above three numbers as observations A, B and C the following instruction line may be used:
	l1 [A]1:8 [B]9:16 [C]17:24
	If an instruction line contains only fixed observations there is no need for it to contain anywhitespace or tabs; nor will there be any need for a secondary marker, (unless the secondarymarker is being used in conjunction with a primary marker in determining which modeloutput file line the PEST cursor should settle on - see above). This is because these items arenormally used for navigating through a model output file line prior to reading a non-fixedobservation (see below); such navigation is not required
	Semi-Fixed Observations
	Example 3.9 demonstrates the use of semi-fixed observations. Semi-fixed observations aresimilar to fixed observations in that two numbers are provided in the pertinent instructionitem, the purpose of these numbers being to locate the observation’s position by columnnumber on the model output file. However, in contrast to fixed observations, these numbersdo not locate the observation exactly. When PEST encounters a semi-fixed observationinstruction it proceeds to the first of the two nominated column numbers
	Like a fixed observation, the instruction to read a semi-fixed observation consists of twoparts, viz. the observation name followed by two column numbers, the latter being separatedby a colon; the column numbers must be in ascending order. However for semi-fixedobservations, the observation name is enclosed in round brackets rather than square brackets.Again, there must be no space separating the two parts of the semi-fixed observationinstruction.
	Reading a number as a semi-fixed observation is useful if you are unsure how large therepresentation of the number could stretch on a model output file as its magnitude growsand/or diminishes in PEST-controlled model runs; it is also useful if you do not knowwhether the number is left or right justified. However you must be sure that at least part ofthe number will always fall between (and including) the two nominated columns and that,whenever the number is written and whatever its size, it will always be s
	As for fixed observations, it is normally not necessary to have secondary markers, whitespaceand tabs on the same line as a semi-fixed observation, because the column numbers providedwith the semi-fixed observation instruction determine the location of the observation on theline. As always, observations must be read from left to right on any one instruction line;hence if more than one semi-fixed observation instruction is provided on a single PESTinstruction line, the column numbers pertaining to these obse
	For the case illustrated in Examples 3.6 and 3.7, all the fixed observations could have beenread as semi-fixed observations, with the difference between the column numbers eitherremaining the same or being reduced to substantially smaller than that shown in Example 3.7.However it should be noted that it takes more effort for PEST to read a semi-fixedobservation than it does for it to read a fixed observation as PEST must establish for itself theextent of the number that it must read.
	After PEST has read a semi-fixed observation its cursor resides at the end of the numberwhich it has just read. Any further processing of the line must take place to the right of thatposition.
	Non-Fixed Observations
	Examples 3.11 and 3.13 demonstrate the use of non-fixed observations. A non-fixedobservation instruction does not include any column numbers because the number whichPEST must read is found using secondary markers and/or other navigational aids such aswhitespace and tabs which precede the non-fixed observation on the instruction line.
	If you do not know exactly where, on a particular model output file line, a model will writethe number corresponding to a particular observation, but you do know the structure of thatline, then you can use this knowledge to navigate your way to the number. In the PESTinstruction file, a non-fixed observation is represented simply by the name of the observationsurrounded by exclamation marks; as usual, no spaces should separate the exclamation marksfrom the observation name as PEST interprets spaces in an in
	When PEST encounters a non-fixed observation instruction it first searches forward from itscurrent cursor position until it finds a non-blank character; PEST assumes this character isthe beginning of the number representing the non-fixed observation. Then PEST searchesforward again until it finds either a blank character, the end of the line, or the first characterof a secondary marker which follows the non-fixed observation instruction in the instructionfile; PEST assumes that the number representing the n
	Consider the output file fragment shown in Example 3.15. The species populations atdifferent times cannot be read as either fixed or semi-fixed observations because the numbersrepresenting these populations cannot be guaranteed to fall within a certain range of columnnumbers on the model output file because “iterative adjustment” may be required in thecalculation of any such population. Hence we must find our way to the number using anothermethod; one such method is illustrated in Example 3.16.
	.
	.
	SPECIES POPULATION AFTER 1 YEAR = 1.23498E5
	SPECIES POPULATION AFTER 2 YEARS = 1.58374E5
	SPECIES POPULATION AFTER 3 YEARS (ITERATIVE ADJUSTMENT REQUIRED)= 1.78434E5
	SPECIES POPULATION AFTER 4 YEARS = 2.34563E5
	.
	.
	Example 3.15 Extract from a model output file.
	A primary marker is used to move the PEST cursor to the first of the lines shown in Example3.15. Then, noting that the number representing the species population always follows a “=”character, the “=” character is used as a secondary marker. After it processes a secondarymarker, the PEST cursor always resides on the last character of that marker, in this case onthe “=” character itself. Hence after reading the “=” character, PEST is able to process the!sp1! instruction by isolating the string “1.23498E5” in
	After it reads the model-calculated value for observation “sp1”, PEST moves to the nextinstruction line. In accordance with the “l1” instruction, PEST reads into its memory the nextline of the model output file. It then searches for a “=” character and reads the numberfollowing this character as observation “sp2”. This procedure is then repeated forobservations “sp3” and “sp4”.
	Successful identification of a non-fixed observation depends on the instructions preceding it.The secondary marker, tab and whitespace instructions will be most useful in this regard,though fixed and semi-fixed observations may also precede a non-fixed observation;remember that in all these cases PEST places its cursor over the last character of the string ornumber it identifies on the model output file corresponding to an instruction item, beforeproceeding to the next instruction.
	Consider the model output file line shown below as a further illustration of the use of non-fixed observations.
	4.33 -20.3 23.392093 3.394382
	If we are interested in the fourth of these numbers but we are unsure as to whether thenumbers preceding it might not be written with greater precision in some model runs (hencepushing the number in which we are interested to the right), then we have no alternative butto read the number as a non-fixed observation. However if the previous numbers vary frommodel run to model run, we cannot use a secondary marker either; nor can a tab be used.Fortunately, whitespace comes to the rescue, with the following inst
	l10 w w w !obs1!
	Here it is assumed that, prior to reading this instruction, the PEST cursor was located on the10th preceding line of the model output file. As long as we can be sure that no whitespacewill ever precede the first number, there will always be three incidences of whitespacepreceding the number in which we are interested. However, if it happens that whitespace mayprecede the first number on some occasions, while on other occasions it may not, then we canread the first number as a dummy observation as shown belo
	pif *
	.
	.
	SPECIES *=* !sp1!
	l1 *=* !sp2!
	l1 *=* !sp3!
	l1 *=* !sp4!
	.
	.
	Example 3.16 Extract from an instruction file.
	l10 !dum! w w w !obs1!
	As was explained previously, the number on the model output file corresponding to anobservation named “dum” is not actually used; nor can the name “dum” appear in the“observation data” section of the PEST control file (see the next chapter). The use of thisname is reserved for instances like the present case where a number must be read in order tofacilitate navigation along a particular line of the model output file. The number is readaccording to the non-fixed observation protocol, for only observations of
	An alternative to the use of whitespace in locating the observation “obs1” in the aboveexample could involve using the dummy observation more than once. Hence the instructionline below would also enable the number representing “obs1” to be located and read:
	l10 !dum! !dum! !dum! !obs1!
	However had the numbers in the above example been separated by commas instead ofwhitespace, the commas should have been used as secondary markers in order to find “obs1”.
	A number not surrounded by whitespace can still be read as a non-fixed observation with theproper choice of secondary markers. Consider the model output file line shown below:
	SOIL WATER CONTENT (NO CORRECTION)=21.345634%
	It may not be possible to read the soil water content as a fixed observation because the “(NOCORRECTION)” string may or may not be present after any particular model run. Reading itas a non-fixed observation appears troublesome as the number is neither preceded norfollowed by whitespace. However a suitable instruction line is
	l5 *=* !sws! *%*
	Notice how a secondary marker (viz. *%*) is referenced even though it occurs after theobservation we wish to read. If this marker were not present, a run-time error would occurwhen PEST tries to read the soil water content because it would define the observation stringto include the “%” character and, naturally, would be unable to read a number from a stringwhich includes non-numeric characters. However by including the “%” character as asecondary marker after the number representing the observation “sws”,
	The fact that there is no whitespace between the “=” character and the number we wish toread causes PEST no problems either. After processing of the “=” character as a secondarymarker, the PEST processing cursor falls on the “=” character itself. The search for the firstnon-blank character initiated by the !sws! instruction terminates on the very next characterafter the “=”, viz. the “2” character. PEST then accepts this character as the left boundary ofthe string from which it must read the soil moisture c
	After PEST has read a non-fixed observation, it places its cursor on the last character of theobservation number. It can then undertake further processing of the model output file line toread further non-fixed, fixed or semi-fixed observations, or process navigational instructionsas directed.
	Continuation
	You can break an instruction line between any two instructions by using the continuationcharacter, “&”, to inform PEST that a certain instruction line is actually a continuation of theprevious line. Thus the instruction file fragment
	l1 %RESULTS% %TIME (4)% %=% !obs1! !obs2! !obs3!
	is equivalent to
	l1
	& %RESULTS%
	& %TIME (4)%
	& %=%
	& !obs1!
	& !obs2!
	& !obs3!
	For both these fragments, the marker delimiter is assumed to be “%”. Note that thecontinuation character must be separated from the instruction which follows it by at least onespace.
	3.3.7 Making an Instruction File
	An instruction file can be built using a text editor. This is particularly easy in the WINDOWSenvironment where you can open two command-line windows, one to view a model outputfile, and the other to write the instruction file. If the viewing program is a text editor whichdisplays cursor line and column numbers, the job is even easier; note that the text editor,EDIT, provides these numbers. Furthermore, with the help of the WINDOWS clipboardfacility, you can easily copy markers from a model output file to a
	You must always exercise caution in building an instruction set to read a model output file,especially if navigational instructions such as markers, whitespace, tabs and dummyobservations are used. PEST will always follow your instructions to the letter, but it may notread the number you intend if you get an instruction wrong. If PEST tries to read anobservation but does not find a number where it expects to find one, a run-time error willoccur. PEST will inform you of where it encountered the error and of
	Included in the PEST suite are two programs which can be used to verify that instruction fileshave been built correctly. Program PESTCHEK, when checking all PEST input data forerrors and inconsistencies prior to a PEST run, reads all the instruction files cited in a PESTcontrol file (see the next chapter) ensuring that no syntax errors are present in any of thesefiles. Program INSCHEK, on the other hand, checks a single PEST instruction file for syntaxerrors. If an instruction file is error-free, INSCHEK ca

	The PEST Control File
	The PEST Control File
	4.1 The Role of the PEST Control File
	Once all the template and instruction files have been prepared for a particular case, a “PESTcontrol file” must be prepared which “brings it all together”. Unlike template and instructionfiles, for which there is no naming convention, there are some conventions associated withthe name of the PEST control file. In particular, the file must have an extension of “.pst”. Itsfilename base is referred to as the PEST “case name”; PEST uses this same filename base forthe files which it generates in the course of it
	Many of the data items in the PEST control file are used to “tune” PEST’s operation to thecase in hand; such items include parameter change limits, parameter transformation types,termination criteria etc. As is further discussed in Chapter 5, before using PEST on a real-world problem, you may wish to use it to estimate parameters for a case where your “field”data are, in fact, model-generated; in this way you know the answers that PEST shouldachieve. Through a careful examination of the PEST run record file
	The PEST control file can be built in one of two ways. It can be easily prepared using a texteditor following the directions provided in this chapter. Alternatively, you can use the PESTutility, PESTGEN, to generate a PEST control file for your current case using default inputvariables; this file can then be modified as you see fit using a text editor. In either case thePEST control file can be checked for correctness and consistency using the utility programPESTCHEK.
	Note also that some of the programs of the PEST Ground Water and Surface Water Utilitiescan be used to write a PEST control file.
	4.2 Construction Details
	4.2.1 The Structure of the PEST Control File
	The PEST control file consists of integer, real and character variables. Its construction detailsare set out in Example 4.1, where variables are referenced by name. A sample PEST controlfile is provided in Example 4.2. Note that the PEST control file demonstrated in these twoexamples pertains to the use of PEST in “parameter estimation mode” (the most usual case ofPEST usage). Use of PEST in “predictive analysis mode” is described in Chapter 6 while useof PEST in “regularisation mode” is described in Chapt
	pcf
	* control data
	RSTFLE PESTMODE
	NPAR NOBS NPARGP NPRIOR NOBSGP
	NTPLFLE NINSFLE PRECIS DPOINT NUMCOM JACFILE MESSFILE
	RLAMBDA1 RLAMFAC PHIRATSUF PHIREDLAM NUMLAM
	RELPARMAX FACPARMAX FACORIG
	PHIREDSWH
	NOPTMAX PHIREDSTP NPHISTP NPHINORED RELPARSTP NRELPAR
	ICOV ICOR IEIG
	* parameter groups
	PARGPNME INCTYP DERINC DERINCLB FORCEN DERINCMUL DERMTHD
	(one such line for each of the NPARGP parameter groups)
	* parameter data
	PARNME PARTRANS PARCHGLIM PARVAL1 PARLBND PARUBND PARGP SCALE OFFSET DERCOM
	(one such line for each of the NPAR parameters)
	PARNME PARTIED
	(one such line for each tied parameter)
	* observation groups
	OBGNME
	(one such line for each observation group)
	* observation data
	OBSNME OBSVAL WEIGHT OBGNME
	(one such line for each of the NOBS observations)
	* model command line
	write the command which PEST must use to run the model
	* model input/output
	TEMPFLE INFLE
	(one such line for each model input file containing parameters)
	INSFLE OUTFLE
	(one such line for each model output file containing observations)
	* prior information
	PILBL PIFAC * PARNME + PIFAC * log(PARNME) ... = PIVAL WEIGHT OBGNME
	(one such line for each of the NPRIOR articles of prior information)
	Example 4.1 Construction details of the PEST control file.
	A PEST control file must begin with the letters “pcf” for “PEST control file”. Scatteredthrough the file are a number of section headers. These headers always follow the sameformat, viz. an asterisk followed by a space followed by text. When preparing a PEST controlfile, these headers must be written exactly as set out in Examples 4.1 and 4.2; however ifthere is no prior information, the “prior information” header can be omitted.
	pcf
	* control data
	restart estimation
	5 19 2 2 4
	1 1 single point 1 0 0
	5.0 2.0 0.4 0.03 10
	3.0 3.0 1.0e-3
	.1
	30 .01 3 3 .01 3
	1 1 1
	* parameter groups
	ro relative .001 .00001 switch 2.0 parabolic
	h relative .001 .00001 switch 2.0 parabolic
	* parameter data
	ro1 fixed factor 0.5 .1 10 none 1.0 0.0 1
	ro2 log factor 5.0 .1 10 ro 1.0 0.0 1
	ro3 tied factor 0.5 .1 10 ro 1.0 0.0 1
	h1 none factor 2.0 .05 100 h 1.0 0.0 1
	h2 log factor 5.0 .05 100 h 1.0 0.0 1
	ro3 ro2
	* observation groups
	group_1
	group_2
	group_3
	group_4
	* observation data
	ar1 1.21038 1.0 group_1
	ar2 1.51208 1.0 group_1
	ar3 2.07204 1.0 group_1
	ar4 2.94056 1.0 group_1
	ar5 4.15787 1.0 group_1
	ar6 5.77620 1.0 group_1
	ar7 7.78940 1.0 group_2
	ar8 9.99743 1.0 group_2
	ar9 11.8307 1.0 group_2
	ar10 12.3194 1.0 group_2
	ar11 10.6003 1.0 group_2
	ar12 7.00419 1.0 group_2
	ar13 3.44391 1.0 group_2
	ar14 1.58279 1.0 group_2
	ar15 1.10380 1.0 group_3
	ar16 1.03086 1.0 group_3
	ar17 1.01318 1.0 group_3
	ar18 1.00593 1.0 group_3
	ar19 1.00272 1.0 group_3
	* model command line
	ves
	* model input/output
	ves.tp1 ves.inp
	ves.ins ves.out
	* prior information
	pi1 1.0 * h1 = 2.0 3.0 group_4
	pi2 1.0 * log(ro2) + 1.0 * log(h2) = 2.6026 2.0 group_4
	Example 4.2 A PEST control file.
	On each line of the PEST control file, variables must be separated from each other by at leastone space. Real numbers can be supplied with the minimum precision necessary to representtheir value; the decimal point does not need to be included if it is redundant. Ifexponentiation is required, this can be accomplished with either the “d” or “e” symbol; note,however, that all real numbers are stored internally by PEST as double precision numbers.
	The data which must reside in the PEST control file is now discussed in detail section bysection. Refer to Example 4.1 for the location within the PEST control file of each inputvariable discussed below.
	4.2.2 Control Data
	The data provided in the “control data” section of the PEST control file are used to setinternal array dimensions, tune the optimisation algorithm to the problem at hand, and setsome data output options.
	RSTFLE
	This character variable must be assigned one of two possible values, viz. “restart” or“norestart”. (Note that for this, and other character variables in the PEST control file, PEST iscase insensitive.) If it takes the value “restart”, PEST will dump the contents of many of itsdata arrays to a binary file (named case.rst where case is the current case name) at thebeginning of each optimisation iteration; this allows PEST to be restarted later if execution isprematurely terminated. If subsequent PEST executio
	If the RSTFLE variable is set to “norestart”, PEST will not intermittently dump its array orJacobian data; hence a later re-commencement of execution after premature termination isimpossible.
	PESTMODE
	This character variable must be supplied as either “estimation”, “prediction” or“regularisation”. If set to “estimation” PEST will run in parameter estimation mode (itstraditional mode of operation); if set to “prediction” PEST will run in predictive analysismode; if set to “regularisation” PEST will run in regularisation mode.
	If PEST is run in predictive analysis mode, you must ensure that the PEST control filecontains a “predictive analysis” section. You must also ensure that there are at least twoobservation groups, one of which is named “predict”, and that the “predict” group has justone observation. See Chapter 6 for further details.
	If PEST is run in regularisation mode you must ensure that the PEST control file contains a“regularisation” section. You must also ensure that there are at least two observation groups,one of which is named “regul”. See Chapter 7 for further details.
	Note that if PESTMODE is supplied as “estimation” there is no need to include a “predictiveanalysis” section or a “regularisation” section in the PEST control file.
	NPAR
	This is the total number of parameters used for the current PEST case, including adjustable,fixed and tied parameters; NPAR must be supplied as an integer.
	NOBS
	This integer variable represents the total number of observations used in the current case.Note that, when counting the number of observations to evaluate NOBS, any dummyobservations (see Chapter 3) that may be referenced in one or a number of instruction filesare ignored.
	NPARGP
	This is the number of parameter groups; parameter groups are discussed in detail below.NPARGP is an integer variable.
	NPRIOR
	NPRIOR, another integer variable, is the number of articles of prior information that youwish to include in the parameter estimation process. If there are no articles of priorinformation, NPRIOR must be zero.
	In general, you should ensure that the number of adjustable parameters is less than or equal tothe number of observations for which there are non-zero weights plus the number of articlesof prior information for which there are non-zero weights. If this is not the case the PEST“normal” matrix of equation 2.16 will not be positive definite (in fact it will be singular) anda unique solution to the parameter estimation problem will not achievable. NeverthelessPEST will probably still determine a parameter vecto
	NOBSGP
	NOBSGP, another integer variable, is the number of observation groups used in the currentcase. Each observation and each prior information equation must be assigned to anobservation group (they can all be assigned to the same group if desired). When PESTevaluates the objective function it also evaluates the contribution made to the objectivefunction by the observations and prior information equations belonging to each group.
	NTPLFLE
	This is an integer variable, informing PEST of the number of model input files which containparameters; PEST must write each of these files prior to a model run. As there must be onetemplate file for each such model input file, NTPLFLE is also equal to the number oftemplate files which PEST must use in writing the current parameter set.
	A model may have many input files; however PEST is concerned only with those which itneeds to rewrite prior to each model run, ie. those for which there are template files. Asexplained later, a single template file may, under some circumstances, be used to write morethan one model input file. In such a case you must treat each template file - model input filepair separately in determining NTPLFLE.
	NINSFLE
	This is the number of instruction files. There must be one instruction file for each modeloutput file containing model-generated observations which PEST uses in the determination ofthe objective function. (In some circumstances, a single model output file may be read bymore than one instruction file; however each instruction file - model output file pair is treatedseparately in determining NINSFLE).
	PRECIS
	PRECIS is a character variable which must be either “single” or “double”. If it is supplied toPEST as “single”, PEST writes parameters to model input files using single precisionprotocol; ie. parameter values will never be greater than 13 characters in length (even if theparameter space allows for a greater length) and the exponentiation character is “e”. IfPRECIS is supplied as “double”, parameter values are written to model input files usingdouble precision protocol; the maximum parameter value length is
	DPOINT
	This character variable must be either “point” or “nopoint”. If DPOINT is provided with thevalue “nopoint” PEST will omit the decimal point from representations of parameter valueson model input files if the decimal point is redundant, thus making room for the use of oneextra significant figure. If DPOINT is supplied as “point”, PEST will ensure that the decimalpoint is always present. See Section 3.2.6.
	NUMCOM, JACFILE and MESSFILE
	These variables are used to control the manner in which PEST can obtain derivatives directlyfrom the model if these are available; see Chapter 8. For normal operation these should be setat 1, 0 and 0 respectively.
	RLAMBDA1
	This real variable is the initial Marquardt lambda. As discussed in Section 2.1.7, PESTattempts parameter improvement using a number of different Marquardt lambdas during anyone optimisation iteration; however, in the course of the overall parameter estimationprocess, the Marquardt lambda generally gets smaller. An initial value of 1.0 to 10.0 isappropriate for most models, though if PEST complains that the normal matrix is not positivedefinite, you will need to provide a higher initial Marquardt lambda.
	As explained in Section 2.1.7, for high values of the Marquardt lambda the parameterestimation process approximates the steepest-descent method of optimisation. While thelatter method is inefficient and slow if used for the entirety of the optimisation process, itoften helps in getting the process started, especially if initial parameter estimates are poor.
	The Marquardt lambda used by PEST is subject to user-alteration midway through theoptimisation process. See Section 5.6 for further details.
	RLAMFAC
	RLAMFAC, a real variable, is the factor by which the Marquardt lambda is adjusted; seeSection 2.1.7. RLAMFAC must be greater than 1.0. When PEST reduces lambda it dividesby RLAMFAC; when it increases lambda it multiplies by RLAMFAC. PEST reduces lambdaif it can. However if the normal matrix is not positive definite or if a reduction in lambdadoes not lower the objective function, PEST has no choice but to increase lambda.
	PHIRATSUF
	During any one optimisation iteration, PEST may calculate a parameter upgrade vector usinga number of different Marquardt lambdas. First it lowers lambda and, if this is unsuccessfulin lowering the objective function, it then raises lambda. If, at any stage, it calculates anobjective function which is a fraction PHIRATSUF or less of the starting objective functionfor that iteration, PEST considers that the goal of the current iteration has been achieved andmoves on to the next optimisation iteration. Thus P
	Φij/Φi-1 ≤ PHIRATSUF(4.1)
	where Φi-1 is the lowest objective function calculated for optimisation iteration i-1 (and hencethe starting value for optimisation iteration i) and Φij is the objective function correspondingto a parameter set calculated using the j’th Marquardt lambda tested during optimisationiteration i.
	PHIRATSUF (which stands for “phi ratio sufficient”) is a real variable for which a value of0.3 is often appropriate. If it is set too low, model runs may be wasted in search of anobjective function reduction which it is not possible to achieve, given the linearapproximation upon which the optimisation equations of Chapter 2 are based. If it is set toohigh, PEST may not be given the opportunity of refining lambda in order that its valuecontinues to be optimal as the parameter estimation process progresses.
	PHIREDLAM
	If a new/old objective function ratio of PHIRATSUF or less is not achieved as theeffectiveness of different Marquardt lambdas in lowering the objective function are tested,PEST must use some other criterion in deciding when it should move on to the nextoptimisation iteration. This criterion is partly provided by the real variable PHIREDLAM.
	The first lambda that PEST employs in calculating the parameter upgrade vector during anyone optimisation iteration is the lambda inherited from the previous iteration, possiblyreduced by a factor of RLAMFAC (unless it is the first iteration, in which case RLAMBDA1is used). Unless, through the use of this lambda, the objective function is reduced to less thanPHIRATSUF of its value at the beginning of the iteration, PEST then tries another lambda,less by a factor of RLAMFAC than the first. If the objective f
	(Φij-1 - Φij)/Φij-1 ≤ PHIREDLAM(4.2)
	where Φij is the objective function value calculated during optimisation iteration i using thej’th trial lambda, PEST moves on to iteration i+1.
	A suitable value for PHIREDLAM is often around 0.01. If it is set too large, the criterion formoving on to the next optimisation iteration is too easily met and PEST is not given theopportunity of adjusting lambda to its optimal value for that particular stage of the parameterestimation process. On the other hand if PHIREDLAM is set too low, PEST will test toomany Marquardt lambdas on each optimisation iteration when it would be better off startingon a new iteration.
	NUMLAM
	This integer variable places an upper limit on the number of lambdas that PEST can testduring any one optimisation iteration. It should normally be set between 5 and 10. For caseswhere parameters are being adjusted near their upper or lower limits, and for which someparameters are consequently being frozen (thus reducing the dimension of the problem inparameter space) experience has shown that a value closer to 10 may be more appropriatethan one closer to 5; this gives PEST a greater chance of adjusting to
	RELPARMAX and FACPARMAX
	As was explained in Section 2.2.5, there should be some limit placed on the amount by whichparameter values are allowed to change in any one optimisation iteration. If there is no limit,parameter adjustments could regularly “overshoot” their optimal values, causing aprolongation of the estimation process at best, and instability with consequential estimationfailure at worst; the dangers are greatest for highly nonlinear problems.
	PEST provides two input variables which can be used to limit parameter adjustments; theseare RELPARMAX and FACPARMAX, both real variables. RELPARMAX is the maximumrelative change that a parameter is allowed to undergo between optimisation iterations,whereas FACPARMAX is the maximum factor change that a parameter is allowed toundergo. Any particular parameter can be subject to only one of these constraints; ie. aparticular parameter must be either relative-limited or factor-limited in its adjustments.Paramet
	The relative change in parameter b between optimisation iterations i-1 and i is defined as
	(bi-1 - bi)/bi-1(4.3)
	If parameter b is relative-limited, the absolute value of this relative change must be less thanRELPARMAX. If a parameter upgrade vector is calculated such that the relative adjustmentfor one or more relative-limited parameters is greater than RELPARMAX, the magnitude ofthe upgrade vector is reduced such that this no longer occurs.
	The factor change for parameter b between optimisation iterations i-1 and i is defined as
	bi-1 /biif bi-1 > bi , or
	bi /bi-1if bi > bi-1(4.4)
	If parameter b is factor-limited, this factor change (which either equals or exceeds unityaccording to equation 4.4) must be less than FACPARMAX. If a parameter upgrade vector iscalculated such that the factor adjustment for one or more factor-limited parameters is greaterthan FACPARMAX, the magnitude of the upgrade vector is reduced such that this no longeroccurs.
	Whether a parameter should be relative-limited or factor-limited depends on the parameter.However you should note that a parameter can be reduced from its current value right downto zero for a relative change of only 1; as described in Section 2.2.5 it may then take manyiterations to re-adjust upwards, this causing serious inefficiencies in the parameter estimationprocess. If you wish to limit the extent of its downward movement during any one iteration toless than this, you may wish to set RELPARMAX to, fo
	It is important to note that a factor limit will not allow a parameter to change sign. Hence if aparameter must be free to change sign in the course of the optimisation process, it must berelative-limited; furthermore RELPARMAX must be set at greater than unity or the changeof sign will be impossible. Thus the utility program PESTCHEK (see Chapter 10) will notallow you to declare a parameter as factor-limited, or as relative-limited with the relativelimit of less than 1, if its upper and lower bounds are of
	Suitable values for RELPARMAX and FACPARMAX can vary enormously between cases.For highly non-linear problems, these values are best set low. If they are set too low,however, the estimation process can be very slow. An inspection of the PEST run record willoften reveal whether you have set these values too low, for PEST records the maximumparameter factor and relative changes on this file at the end of each optimisation iteration. Ifthese changes are always at their upper limits and the estimation process is
	If you are unsure of how to set these parameters, a value of 5 for each of them is oftensuitable. In cases of extreme nonlinearity, be prepared to set them much lower. Note,however, that FACPARMAX can never be less than 1; RELPARMAX can be less than 1 aslong as no parameter’s upper and lower bounds are of opposite sign.
	Values assigned to RELPARMAX and FACPARMAX can be adjusted in the course of theoptimisation process through the user-intervention functionality discussed in Section 5.6.
	FACORIG
	If, in the course of the estimation process, a parameter becomes very small, the relative orfactor limit to subsequent adjustment of this parameter may severely hamper its growth backto higher values, resulting in very slow convergence to an objective function minimum.Furthermore, for the case of relative-limited parameters which are permitted to change sign,it is possible that the denominator of equation 4.3 could become zero.
	To obviate these possibilities, choose a suitable value for the real variable, FACORIG. If theabsolute value of a parameter falls below FACORIG times its original value, then FACORIGtimes its original value is substituted for the denominator of equation 4.3. For factor-limitedparameters, a similar modification to equation 4.4 applies. Thus the constraints that apply to agrowth in absolute value of a parameter are lifted when its absolute value has become lessthan FACORIG times its original absolute value. H
	FACORIG must be greater than zero. A value of 0.001 is often suitable.
	PHIREDSWH
	The derivatives of observations with respect to parameters can be calculated using eitherforward differences (involving two parameter-observation pairs) or one of the variants of thecentral method (involving three parameter-observation pairs) described in Section 2.3. Asdiscussed below, you must inform PEST through the variables FORCEN and DERMTHDwhich method is to be used for the parameters belonging to each parameter group.
	Using the variable FORCEN, you may wish to decree that, for a particular parameter group,derivatives will first be calculated using the forward difference method and later, when PESTis faltering in its attempts to reduce the objective function, calculated using one of the centralmethods. Alternatively, you may direct that no such switching take place, the forward orcentral method being used at all times for the parameters belonging to a particular group. Inthe former case you must provide PEST with a means
	If the relative reduction in the objective function between successive optimisation iterationsis less than PHIREDSWH, PEST will make the switch to three-point derivatives calculationfor those parameter groups for which the character variable FORCEN has the value “switch”;thus if, for the i’th iteration
	(Φi-1 - Φi)/Φi-1 ≤ PHIREDSWH(4.5)
	(where Φi is the objective function calculated on the basis of the upgraded parameter setdetermined in the i’th iteration), PEST will use central derivatives in iteration i+1 (and allsucceeding iterations) for all parameter groups for which FORCEN is “switch”. A value of0.1 is often suitable for PHIREDSWH. If it is set too high, PEST may make the switch tothree-point derivatives calculation before it needs to; the result will be that more model runswill be required to fill the Jacobian matrix than are reall
	NOPTMAX
	The input variables on the ninth line of the PEST control file set the termination criteria forthe parameter estimation process. These are the criteria by which PEST judges that theoptimisation process has been taken as far as it can go. These should be set such that eitherparameter convergence to the optimal parameter set has been achieved, or it has becomeobvious that continued PEST execution will not bear any fruits.
	The first number required on this line is the integer variable NOPTMAX. This sets themaximum number of optimisation iterations that PEST is permitted to undertake on aparticular parameter estimation run. If you want to ensure that PEST termination is triggeredby other criteria, more indicative of parameter convergence to an optimal set or of the futilityof further processing, you should set this variable very high. A value of 20 to 30 is oftenappropriate.
	Two possible settings for NOPTMAX have special significance. If NOPTMAX is set to 0,PEST will not calculate the Jacobian matrix. Instead it will terminate execution after just onemodel run. This setting can thus be used when you wish to calculate the objective functioncorresponding to a particular parameter set and/or to inspect observation residualscorresponding to that parameter set.
	If NOPTMAX is set to –1, PEST will terminate execution immediately after it has calculatedthe Jacobian matrix for the first time. The parameter covariance, correlation coefficient andeigenvector matrices will be written to the run record file, and parameter sensitivities will bewritten to the sensitivity file; these are based on the initial parameter set supplied in thePEST control file.
	PHIREDSTP and NPHISTP
	PHIREDSTP is a real variable whereas NPHISTP is an integer variable. If, in the course ofthe parameter estimation process, there have been NPHISTP optimisation iterations for which
	(Φi - Φmin)/Φi ≤ PHIREDSTP(4.6)
	(Φi being the objective function value at the end of the i’th optimisation iteration and Φminbeing the lowest objective function achieved to date), PEST will consider that theoptimisation process is at an end.
	For many cases 0.01 and 4 are suitable values for PHIREDSTP and NPHISTP respectively.However you must be careful not to set NPHISTP too low if the optimal values for someparameters are near or at their upper or lower bounds (as defined by the parameter variablesPARLBND and PARUBND discussed below). In this case it is possible that the magnitude ofthe parameter upgrade vector may be curtailed over one or a number of optimisationiterations to ensure that no parameter value overshoots its bound. The result may
	NPHINORED
	If PEST has failed to lower the objective function over NPHINORED successive iterations, itwill terminate execution. NPHINORED is an integer variable; a value of 3 or 4 is oftensuitable.
	RELPARSTP and NRELPAR
	If the magnitude of the maximum relative parameter change between optimisation iterationsis less than RELPARSTP over NRELPAR successive iterations, PEST will cease execution.The relative parameter change between optimisation iterations for any parameter is calculatedusing equation 4.3. PEST evaluates this change for all adjustable parameters at the end ofeach optimisation iteration, and determines the relative parameter change with the highestmagnitude. If this maximum relative change is less than RELPARSTP
	All adjustable parameters, whether they are relative-limited or factor-limited, are involved inthe calculation of the maximum relative parameter change. RELPARSTP is a real variablefor which a value of 0.01 is often suitable. NRELPAR is an integer variable; a value of 2 or 3is normally satisfactory.
	ICOV, ICOR and IEIG
	As is explained in Section 5.3.5, at the end of each optimisation iteration PEST writes a“matrix file” containing the covariance and correlation coefficient matrices, as well as theeigenvectors and eigenvalues of the covariance matrix based on current parameter values.The settings of the ICOV, ICOR and IEIG variables determine which (if any) of these dataare recorded on the matrix file. A setting of 1 for each of these variables will result in thecorresponding data being recorded on the matrix file. On the
	4.2.3 Parameter Groups
	Each adjustable parameter (ie. each parameter which is neither fixed nor tied) must belong toa parameter group; the group to which each such parameter belongs is supplied through theparameter input variable PARGP (see below). Each parameter group must possess a uniquename of twelve characters or less.
	The PEST input variables that define how derivatives are calculated pertain to parametergroups rather than to individual parameters. Thus derivative data does not need to be enteredindividually for each parameter; however, if you wish, you can define a group for everyparameter and set the derivative variables for each parameter separately. In many casesparameters fall neatly into separate groups which can be treated similarly in terms ofcalculating derivatives. For example in Example 4.2, which is a PEST co
	A tied or fixed parameter can be a member of a group; however, as derivatives are notcalculated with respect to such parameters, the group to which these parameters belong is ofno significance (except, perhaps, in calculating the derivative increment for adjustable groupmembers if the increment type is “rel_to_max” - see below). Alternatively, fixed or tiedparameters can be assigned to the dummy group “none”. If any group name other than“none” is cited for any parameter input variable PARGP in the “paramete
	As Example 4.1 shows, one line of data must be supplied for each parameter group. Sevenentries are required in each such line; the requirements for these entries are now discussed indetail.
	PARGPNME
	This is the parameter group name; all PEST names (viz. parameter, observation, priorinformation and group names) are case-insensitive and must be a maximum of twelvecharacters in length. If derivative data is provided for a group named by PARGPNME, it isnot essential that any parameters belong to that group. However if, in the “parameter data”section of the PEST control file, a parameter is declared as belonging to a group that is notfeatured in the “parameter groups” section of the PEST control file, an er
	Note that derivative variables cannot be defined for the group “none” as this is a dummygroup name, reserved for fixed and tied parameters for which no derivatives information isrequired.
	INCTYP and DERINC
	INCTYP is a character variable which can assume the values “relative”, “absolute” or“rel_to_max”. If it is “relative”, the increment used for forward-difference calculation ofderivatives with respect to any parameter belonging to the group is calculated as a fraction ofthe current value of that parameter; that fraction is provided as the real variable DERINC.However if INCTYP is “absolute” the parameter increment for parameters belonging to thegroup is fixed, being again provided as the variable DERINC. Alt
	Thus if INCTYP is “relative” and DERINC is 0.01 (a suitable value in many cases), theincrement for each group member for each optimisation iteration is calculated as 0.01 timesthe current value of that member. However if INCTYP is “absolute” and DERINC is 0.01,the parameter increment is the same for all members of the group over all optimisationiterations, being equal to 0.01. If INCTYP is “rel_to_max” and DERINC is again 0.01, theincrement for all group members is the same for any one optimisation iteratio
	If a group contains members which are fixed and/or tied you should note that the values ofthese parameters are taken into account when calculating parameter increments using the“rel_to_max” option.
	For the “relative” and “rel_to_max” options, a DERINC value of 0.01 is often appropriate.However no suggestion for an appropriate DERINC value can be provided for the “absolute”increment option; the most appropriate increment will depend on parameter magnitudes.
	DERINCLB
	If a parameter increment is calculated as “relative” or “rel_to_max”, it is possible that it maybecome too low if the parameter becomes very small or, in the case of the “rel_to_max”option, if the magnitude of the largest parameter in the group becomes very small. Aparameter increment becomes “too low” if it does not allow reliable derivatives to becalculated with respect to that parameter because of roundoff errors incurred in thesubtraction of nearly equal model-generated observation values.
	To circumvent this possibility, an absolute lower bound can be placed on parameterincrements; this lower bound will be the same for all group members, and is provided as theinput variable DERINCLB. Thus if a parameter value is currently 1000.0 and it belongs to agroup for which INCTYP is “relative”, DERINC is 0.01, and DERINCLB is 15.0, theparameter increment will be 15.0 instead of 10.0 calculated on the basis of DERINC alone. Ifyou do not wish to place a lower bound on parameter increments in this fashion
	Note that if INCTYP is “absolute”, DERINCLB is ignored.
	FORCEN
	The character variable FORCEN (an abbreviation of “FORward/CENtral”) determineswhether derivatives for group members are calculated using forward differences, one of thevariants of the central difference method, of whether both alternatives are used in the courseof an optimisation run. It must assume one of the values “always_2”, “always_3” or “switch”.
	If FORCEN for a particular group is “always_2”, derivatives for all parameters belonging tothat group will always be calculated using the forward difference method; as explained inSection 2.3, filling of the columns of the Jacobian matrix corresponding to members of thegroup will require as many model runs as there are adjustable parameters in the group. IfFORCEN is provided as “always_3”, the filling of these same columns will require twice asmany model runs as there are parameters within the group; howeve
	Experience has shown that in most instances the most appropriate value for FORCEN is“switch”. This allows speed to take precedence over accuracy in the early stages of theoptimisation process when accuracy is not critical to objective function improvement, andaccuracy to take precedence over speed later in the process when realisation of a (normallysmaller) objective function improvement requires that derivatives be calculated with as muchaccuracy as possible, especially if parameters are highly correlated
	DERINCMUL
	If derivatives are calculated using one of the three-point methods, the parameter increment isfirst added to the current parameter value prior to a model run, and then subtracted prior toanother model run. In some cases it may be desirable to increase the value of the incrementfor this process over that used for forward difference derivatives calculation. The realvariable DERINCMUL allows you to achieve this. If three-point derivatives calculation isemployed, the value of DERINC is multiplied by DERINCMUL;
	As discussed in Section 2.3.3, for many models the relationship between observations andparameters, while being in theory continuously differentiable, is often “granular” whenexamined under the microscope, this granularity being a by-product of the numerical solutionscheme used by the model. In such cases the use of parameter increments which are too smallmay lead to highly inaccurate derivatives calculation, especially if the two or three sets ofparameter-observation pairs used in a particular derivative c
	Whenever the central method is employed for derivatives calculation, DERINC is multipliedby DERINCMUL, no matter whether INCTYP is “absolute”, “relative” or “rel_to_max”, andwhether FORCEN is “always_3” or “switch”. If you do not wish the increment to beincreased, you must provide DERINCMUL with a value of 1.0. Alternatively, if for somereason you wish the increment to be reduced if three-point derivatives calculation isemployed, you should provide DERINCMUL with a value of less than 1.0. Experience showsth
	DERMTHD
	There are three variants of the central (ie. three-point) method of derivatives calculation; eachmethod is described in Section 2.3. If FORCEN for a particular parameter group is“always_3” or “switch”, you must inform PEST which three-point method to use. This isaccomplished through the character variable DERMTHD which must be supplied as“parabolic”, “best_fit” or “outside_pts”. If FORCEN is “always_2”, you must still provideone of these three legal values for DERMTHD; however for such a parameter group, th
	4.2.4 Parameter Data - First Part
	For every parameter cited in a PEST template file, up to ten pieces of information must beprovided in the PEST control file. Conversely, every parameter for which there is informationin the PEST control file must be cited at least once in a PEST template file.
	The “parameter data” section of the PEST control file is divided into two parts; in the firstpart a line must appear for each parameter. In the second part, a little extra data is suppliedfor tied parameters (viz. the name of the parameter to which each such tied parameter islinked). If there are no tied parameters the second part of the “parameter data” section of thePEST control file is omitted.
	Each item of parameter data is now discussed in detail; refer to Example 4.1 for thearrangement on the PEST control file of the PEST input variables discussed below.
	PARNME
	This is the parameter name. Each parameter name must be unique and of twelve characters orless in length; the name is case insensitive.
	PARTRANS
	PARTRANS is a character variable which must assume one of four values, viz. “none”,“log”, “fixed” or “tied”.
	If you wish that a parameter be log-transformed throughout the estimation process, the value“log” must be provided. As discussed in Section 2.2.1, logarithmic transformation of someparameters may have a profound affect on the success of the parameter estimation process. Ifa parameter is log-transformed PEST optimises the log of the parameter rather than theparameter itself. Hence the column of the Jacobian matrix pertaining to that parameteractually contains derivatives with respect to the log of the parame
	Experience has shown repeatedly that log transformation of at least some parameters canmake the difference between a successful parameter estimation run and an unsuccessful one.This is because, in many cases, the linearity approximation on which each PEST optimisationiteration is based holds better when certain parameters are log-transformed. However cautionmust be exercised when designating parameters as log-transformed. A parameter which canbecome zero or negative in the course of the parameter estimation
	If a parameter is fixed, taking no part in the optimisation process, PARTRANS must besupplied as “fixed”. If a parameter is linked to another parameter, this is signified by aPARTRANS value of “tied”. In the latter case the parameter takes only a limited role in theestimation process. However the parameter to which the tied parameter is linked (this“parent” parameter must be neither fixed nor tied itself) takes an active part in the parameterestimation process; the tied parameter simply “piggy-backs” on the
	If a parameter is neither fixed nor tied, and is not log-transformed, the parametertransformation variable PARTRANS must be supplied as “none”.
	Note that if a particular parameter estimation problem will benefit from a more complexparameter transformation type than logarithmic, this can be accomplished using theparameter preprocessor PAR2PAR; see Section 10.7 for further details.
	PARCHGLIM
	This character variable is used to designate whether an adjustable parameter is relative-limited or factor-limited; see Section 2.2.5 and the discussion of the input variablesRELPARMAX and FACPARMAX above. PARCHGLIM must be provided with one of twopossible values, viz. “relative” or “factor”. For tied or fixed parameters this variable has nosignificance.
	PARVAL1
	PARVAL1, a real variable, is a parameter’s initial value. For a fixed parameter, this valueremains invariant during the optimisation process. For a tied parameter, the ratio ofPARVAL1 to the parent parameter’s PARVAL1 sets the ratio between these two parametersto be maintained throughout the optimisation process. For an adjustable parameterPARVAL1 is the parameter’s starting value which, together with the starting values of allother adjustable parameters, is successively improved during the optimisation pro
	To enhance optimisation efficiency, you should choose an initial parameter value which isclose to what you think will be the parameter’s optimised value. However you should notethe following repercussions of choosing an initial parameter value of zero.
	A parameter cannot be subject to change limits (see the discussion on RELPARMAX and FACPARMAX) during the first optimisation iteration if its value at the start ofthat iteration is zero. Furthermore FACORIG cannot be used to modify the action ofRELPARMAX and FACPARMAX for a particular parameter throughout theoptimisation process, if that parameter’s original value is zero.
	A relative increment for derivatives calculation cannot be evaluated during the firstiteration for a parameter whose initial value is zero. If the parameter belongs to agroup for which derivatives are, in fact, calculated as “relative”, a non-zeroDERINCLB variable must be provided for that group.
	If a parameter has an initial value of zero, the parameter can be neither a tied nor aparent parameter as the tied:parent parameter ratio cannot be calculated.
	PARLBND and PARUBND
	These two real variables represent a parameter’s lower and upper bounds respectively. Foradjustable parameters the initial parameter value (PARVAL1) must lie between these twobounds. However for fixed and tied parameters the values you provide for PARLBND andPARUBND are ignored. (The upper and lower bounds for a tied parameter are determined bythe upper and lower bounds of the parameter to which it is tied and by the ratio between thetied and parent parameters.)
	PARGP
	PARGP is the name of the group to which a parameter belongs. As discussed already, aparameter group name must be twelve characters or less in length and is case-insensitive.
	As derivatives are not calculated with respect to fixed and tied parameters, PEST provides adummy group name of “none” to which such tied and fixed parameters can be allocated. Notethat it is not obligatory to assign such parameters to this dummy group; they can be assignedto another group if you wish. However, any group other than “none” which is cited in the“parameter data” section of the PEST control file must be properly defined in the “parametergroups” section of this file.
	SCALE and OFFSET
	Just before a parameter value is written to a model input file (be it for initial determination ofthe objective function, derivatives calculation or parameter upgrade), it is multiplied by thereal variable SCALE, after which the real variable OFFSET is added. The use of these twovariables allows you to redefine the domain of a parameter. Because they operate on theparameter value “at the last moment” before it is written to the model input file, they take nopart in the estimation process; in fact they can “
	bp = (bm - o)/s(4.7)
	Here bp is the parameter optimised by PEST, bm is the parameter seen by the model, while sand o are the scale and offset for that parameter. If you wish to leave a parameter unaffectedby scale and offset, enter the SCALE as 1.0 and the OFFSET as 0.0.
	DERCOM
	Unless using PEST’s external derivatives functionality (see Chapter 8), this variable shouldbe set to 1.
	4.2.5 Parameter Data - Second Part
	The second part of the “parameter data” section of the PEST control file consists of one linefor each tied parameter; if there are no tied parameters, the second part of the “parameterdata” section must be omitted.
	Each line within the second part of the “parameter data” section of the PEST control fileconsists of two entries. The first is PARNME, the parameter name. This must be the name ofa parameter already cited in the first part of the “parameter data” section, and for which thePARTRANS variable was assigned the value “tied”. The second entry on the line, thecharacter variable PARTIED, must hold the name of the parameter to which the first-mentioned parameter is tied, ie. the “parent parameter” of the first-menti
	Note that PEST allows you to link as many tied parameters as you wish to a single parentparameter. However a tied parameter can, naturally, be linked to only one parent parameter.
	4.2.6 Observation Groups
	In the “observation groups” section of the PEST control file a name is supplied for everyobservation group. Like all other names used by PEST, observation group names must be oftwelve characters or less in length and are case insensitive. A name assigned to oneobservation group must not be assigned to any other observation group.
	Observation group names are written one to a line. NOBSGP such names must be provided,where NOBSGP is listed on the fourth line of the PEST control file. If PEST is running inpredictive analysis mode one of these group names must be “predict”. If it is running inregularisation mode one of these group names must be “regul”.
	4.2.7 Observation Data
	For every observation cited in a PEST instruction file there must be one line of data in the“observation data” section of the PEST control file. Conversely, every observation for whichdata is supplied in the PEST control file must be represented in an instruction file.
	Each line within the “observation data” section of the PEST control file must contain fouritems. Each of these four items is discussed below; refer to Example 4.1 for the arrangementof these items.
	OBSNME
	This is a character variable containing the observation name. As discussed in Section 3.3.5,an observation name must be twelve characters or less in length. Observation names are case-insensitive, but must be unique to each observation.
	OBSVAL
	OBSVAL, a real variable, is the field or laboratory measurement corresponding to a model-generated observation. It is PEST’s role to minimise the difference between this number andthe corresponding model-calculated number (the difference being referred to as the“residual”) over all observations by adjusting parameter values until the sum of squaredweighted residuals (ie. the objective function) is at a minimum.
	WEIGHT
	This is the weight attached to each residual in the calculation of the objective function. Themanner in which weights are used in the parameter estimation process is discussed in Section2.1.2. An observation weight can be zero if you wish (meaning that the observation takes nopart in the calculation of the objective function), but it must not be negative.
	If observations are all of the same type, weights can be used to discriminate between field orlaboratory measurements which you can “trust” and those with whom a greater margin ofuncertainty is associated; the trustworthy measurements should be given a greater weight.Weights should, in general, be inversely proportional to measurement standard deviations.
	If observations are of different types, weights are vital in setting the relative importance ofeach measurement type in the overall parameter estimation process. For example, a groundwater model simulating pollution plume growth and decay within an aquifer may produceoutputs of ground water head and pollutant concentration. Field measurements of both ofthese quantities may be available over a certain time period. If both sets of measurements areto be used in the model calibration process they must be proper
	Some parameter estimation packages offer a “log least squares” option whereby the objectivefunction is calculated as the sum of squared deviations between the logarithms of themeasurements and the logarithms of their respective model-generated counterparts. Note that,provided the linearity assumption upon which the estimation process is based is reasonablywell met, it can be shown that the same effect can be achieved by providing a set of weightsin which each weight is inversely proportional to the measurem
	OBGNME
	OBGNME is the name of the observation group to which the observation is assigned. Whenrecording the objective function value on the run record file, PEST lists the contributionmade to the objective function by each observation group. It is good practice to assignobservations of different type to different observation groups. In this way the user is in aposition to adjust observation weights in order that one measurement type does not dominateover another in the inversion process by virtue of a vastly greate
	The observation group name supplied here must be one of the group names listed in the“observation groups” section of the PEST control file.
	4.2.8 Model Command Line
	This section of the PEST control file supplies the command which PEST must use to run themodel. The command line may be simply the name of an executable file, or it may be thename of a batch file containing a complex sequence of steps. Note that you may include thepath name in the model command line which you provide to PEST if you wish. If PEST is tobe successful in running the model, then either the model must be in the current directory, itsfull path must be provided, or the PATH environment variable mu
	Consider the case of a finite difference model for the stress field surrounding a tunnel. Theinput file may be very complicated, involving one or a number of large two or three-dimensional arrays. While parameters can be written to such files using appropriatetemplates, you may prefer a different approach. Perhaps you wish to estimate rock propertieswithin a small number of zones whose boundaries are known, these zones collectivelycovering the entire model domain. Furthermore, as is often the case, you may
	Similarly the model output file may be voluminous; in fact, often models of this kind writetheir data to binary files rather than ASCII files, relying on the user’s postprocessing softwareto make sense of the abundance of model-generated information. You may have apostprocessing program which interpolates the model-generated stress array to the locationsof your stress sensors. In this case PEST should read the postprocessor output file rather thanthe model output file.
	Hence to use PEST in the parameterisation of the above stress-field model, a suitable modelcommand line may be
	stress
	where stress.bat is a batch file containing the following sequence of commands
	prestres
	stres3d
	postres
	Here PRESTRES and POSTRES are the model pre- and postprocessors respectively;STRES3D is the stress model itself.
	You can get even more complicated than this if you wish. For example, a problem that canarises in working with large numerical models is that they do not always converge to asolution according to the model convergence criteria which you, the user, must supply. Thepopular United States Geological Survey ground water model, MODFLOW, requires avariable HCLOSE which determines the precision with which heads are calculated by itspreconditioned conjugate gradient matrix solution package. As discussed in Section 2
	One solution to this problem may be to set HCLOSE high enough such that convergencefailure will never occur. However this may result in mediocre PEST performance because ofinaccurate derivatives calculation. A better solution would be to recode MODFLOW slightlysuch that it reads HCLOSE from a tiny file called hclose.dat, and such that, if it terminatesexecution because of solution convergence failure, it does so with a non-zero errorlevelsetting of, say, 100. (See a DOS manual or help file for a description
	(Note that there are alternative, simpler solutions to the MODFLOW convergence problemdiscussed here; the purpose of this example is to demonstrate the type of batch processingthat may be useful as a PEST model run.)
	The variations on the content of a model batch file are endless. You can call one modelfollowed by another, then by another. The third model may or may not require the outputs ofthe other two. PEST may read observations from the files generated by all the models or justfrom the file(s) generated by the last. Another possibility is that the model batch file may callthe same model a number of times, running it over different historical time periods so thatmeasurements made through all these time periods can b
	4.2.9 Model Input/Output
	In this section of the PEST control file you must relate PEST template files to model inputfiles and PEST instruction files to model output files. You will already have informed PESTof the respective numbers of these files through the PEST control variables NTPLFLE andNINSFLE. See Example 4.1 for the structure of the “model input/output” section of the PESTcontrol file.
	For each model input file - PEST template file pair there should be a line within the “modelinput/output” section of the PEST control file containing two entries, viz. the charactervariables TEMPFLE and INFLE. The first of these is the name of a PEST template file whilethe second is the name of the model input file to which the template file is matched.Pathnames should be provided for both the template file and the model input file if they donot reside in the current directory. Construction details for temp
	@echo off
	rem Set hclose to a suitably low value
	SETORIG
	rem Now run the model
	:model
	MODFLOW
	rem Did MODFLOW converge?
	if errorlevel 100 goto adjust
	goto end
	rem Multiply HCLOSE by 2
	:adjust
	HMUL
	rem Now run model
	goto model
	:end
	Example 4.3 A batch file called by PEST as the model.
	It is possible for a single template file to be linked to more than one model input file. (Thismay occur if the same model is being run over more than one historical time period andparameter data for the model resides in a different file from excitation data.) A separate linemust be provided for each such pair of files in the “model input/output” section of the PESTcontrol file. A model input file cannot be linked to more than one template file.
	As explained in Chapter 3, a model may have many input files. However PEST only needs toknow about those that contain parameters.
	The second part of the “model input/output” section of the PEST control file containsinstruction file - model output file pairs. There should be one line for each of NINSFLE suchpairs, the value of NINSFLE having been provided to PEST in the “control data” section ofthe PEST control file. Pathnames must be provided for both instruction files and modeloutput files if they do not reside in the current directory. Construction details for instructionfiles are provided in Chapter 3 of this manual.
	A single model output file may be read by more than one instruction file; perhaps you wish toextract the values for observations of different types from the model output file usingdifferent instruction files. However any particular observation can only ever be referencedonce; hence a particular instruction file cannot be matched to more than one model outputfile.
	4.2.10 Prior Information
	If the value of NPRIOR provided in the “control data” section of the PEST control file is notzero, PEST expects NPRIOR articles of prior information.
	Prior information is written to this section of the PEST control file in a manner not unlike theway in which you would write it down on paper yourself; however certain strict protocolsmust be observed. Refer to Example 4.2 for an instance of a PEST control file containingprior information.
	Each item on a prior information line must be separated from its neighbouring items by atleast one space. Each new article of prior information must begin on a new line. No priorinformation line is permitted to exceed 300 characters in length; however a continuationcharacter (“&” followed by a space at the start of a line) allows you to write a lengthy priorinformation article to several successive lines.
	Prior information lines must adhere to the syntax set out in Example 4.1. The protocol isrepeated here for ease of reference.
	Each prior information article must begin with a prior information label (the charactervariable PILBL in Example 4.4). Like all other names used by PEST, this label must be nomore than twelve characters in length, is case insensitive, and must be unique to each priorinformation article.
	Following the prior information label is the prior information equation. To the left of the “=”sign there are one or more combinations of a factor (PIFAC) plus parameter name(PARNME), with a “log” prefix to the parameter name if appropriate. PIFAC and PARNMEare separated by a “*” character (which must be separated from PIFAC and PARNME by atleast one space) signifying multiplication. All parameters referenced in a prior informationequation must be adjustable parameters; ie. you must not include any fixed or
	The parameter factor must never be omitted. Suppose, for example, that a prior informationequation consists of only a single term, viz. that an untransformed, adjustable parameternamed “par1” has a preferred value of 2.305, and that you would like PEST to include thisinformation in the optimisation process with a weight of 1.0. If this article of priorinformation is given the label “pi1”, the pertinent prior information line can be written as
	pi1 1.0 * par1 = 2.305 1.0 pr_info
	If you had simply written
	pi1 par1 = 2.305 1.0 pr_info
	PEST would have objected with a syntax error.
	If a parameter is log-transformed, you must provide prior information pertinent to the log ofthat parameter, rather than to the parameter itself. Furthermore, the parameter name must beplaced in brackets and preceded by “log” (note that there is no space between “log” and thefollowing opening bracket). Thus, in the above example, if parameter “par1” is log-transformed, the prior information article should be rewritten as
	pi1 1.0 * log(par1) = .362671 1.0 pr_info
	Note that logs are taken to base 10. Though not illustrated, you will also need to review theweight which you attach to this prior information article by comparing the extent to whichyou would permit the log of “par1” to deviate from 0.362671 with the extent to which model-generated observations are permitted to deviate from their corresponding measurements.
	The left side of a prior information equation can be comprised of the sum and/or difference ofa number of factor-parameter pairs of the type already illustrated; these pairs must beseparated from each other by a “+” or “-” sign, with a space to either side of the sign. Forexample:
	PILBL PIFAC * PARNME + PIFAC * log(PARNME) ... = PIVAL WEIGHT OBGNME
	(one such line for each of the NPRIOR articles of prior information)
	Example 4.4 The syntax of a prior information line.
	pi2 1.0 * par2 + 3.43435 * par4 - 2.389834 * par3 = 1.09e3 3.00 group_pr
	Prior information equations which include log-transformed parameters must express arelationship between the logs of those parameters. For example if you would like the ratiobetween the estimated values of parameters “par1” and “par2” to be about 40.0, the priorinformation article may be written as
	pi3 1.0 * log(par1) - 1.0 * log(par2) = 1.60206 2.0 group_pr
	To the right of the “=” sign of each article of prior information are two real variables and acharacter variable viz. PIVAL, WEIGHT and OBGNME. The first of these is the value of theright side of the prior information equation. The second is the weight assigned to the articleof prior information in the parameter estimation process. As for observation weights, theprior information weight should ideally be inversely proportional to the standard deviation ofthe prior information value (PIVAL); it can be zero i
	The final item on each line of prior information must be the observation group to which theprior information belongs. Recall that each observation, and each element of priorinformation, cited in a PEST control file must be assigned to an observation group. In thecourse of carrying out the parameter estimation process, PEST calculates the contributionmade to the objective function by each such observation group. The name of any observationgroup to which an item of prior information is assigned, must also be
	When writing articles of prior information you should note that no two prior informationequations should say the same thing. Thus the following pair of prior information lines isillegal:
	pi1 2.0 * log(par1) + 2.5 * log(par2) - 3.5 * log(par3) = 1.342 1.00 obgp1
	pi2 4.0 * log(par1) + 5.0 * log(par2) - 7.0 * log(par3) = 2.684 1.00 obgp2
	If you wish to break a single prior information article into more than one line, use thecontinuation character “&”. This must be placed at the beginning of each continuation line,separated from the item which follows it by a space. The line break must be placed betweenindividual items of a prior information article; not within an item. Thus the following linesconvey the same information as does the first of the above pair of prior information lines:
	pi1
	& 2.0
	& *
	& log(par1)
	& +
	& 2.5
	& *
	& log(par2)
	& -
	& 3.5
	& *
	& log(par3)
	& =
	& 1.342
	& 1.00
	& obgp1
	However the following prior information article is illegal because of the break between “log”and “par2":
	pi1 2.0 * log(par1) + 2.5 * log
	& (par2) - 3.5 * log(par3) = 1.342 1.00 obgp1
	4.3 Observation Covariances
	4.3.1 Using an Observation Covariance Matrix Instead of Weights
	As was discussed in Section 2.1.2, the use of observation weights in calculating the objectivefunction is based on the premise that observations are independent, ie. that the “uncertainty”pertaining to any one observation bears no relationship to the “uncertainty” pertaining to anyother observation. However if residuals are likely to show consistency over space and/or timefor certain observation types, then it may not be appropriate to assume statisticalindependence of these observation types. In such cases
	Use of an observation covariance matrix can be particularly useful when prior information isemployed in the inversion process, especially if this prior information comprises the“regularisation observations” used by PEST when running in regularisation mode. In manycases involving spatially-distributed parameters, individual parameter values, or thedifferences between individual parameter values, may exhibit some degree of distance-dependent correlation (perhaps expressed by a variogram). In this case it may
	Observation correlation may be important in other situations as well. For example considerthe case where, for a particular ground water model, the extent of outflow from the groundwater domain into two neighbouring reaches of a stream is used in the model calibrationprocess. Consider also (as often occurs in practice) that the total outflow into both of theneighbouring reaches can be more accurately measured than the outflow into each individualreach. However it may be considered desirable for a particular
	 4.3.2 Supplying the Observation Covariance Matrix to PEST
	The design of PEST is such that if PEST is supplied with a covariance matrix, that matrixmust pertain to a specific observation group. Because prior information items can also beassigned to one or more observation groups, this allows a covariance matrix to be suppliedfor a group of prior information items, just as it can for a group of observations.
	More than one covariance matrix can be supplied to PEST for use in the parameter estimationprocess. In fact a covariance matrix can be supplied for every observation group. However,more often than not it will be supplied for only one or two such groups, with weights beingused for the remainder of the groups. Example 4.5 shows a simple PEST control file in whichtwo covariance matrices are supplied, one for the observation group “obsgp1” and the otherfor the observation group “obsgp2”, the latter being used f
	The following rules must be obeyed when using one or more observation covariance matricesin a PEST run.
	The name of a text file containing an observation covariance matrix (or rather, amatrix related to an observation covariance matrix by an unknown constant ofproportionality), can be provided in the PEST control file following the name of theobservation group to which the matrix pertains in the “observation groups” section ofthe PEST control file; in Example 4.5 the names of these observation covariancematrix files are cov1.dat and cov2.dat.
	A covariance matrix file must contain a square symmetric matrix of dimension n,where n is the number of observations belonging to the observation group to whichthe covariance matrix pertains. Thus every observation belonging to the pertinentobservation group must be involved in the covariance matrix. Example 4.6 illustratesa covariance matrix file.
	All diagonal elements of the covariance matrix must be positive. While the matrixshould, theoretically, be positive definite to qualify as a covariance matrix, asymmetric matrix will be acceptable. However the matrix must be such that it ispossible to calculate eigenvectors and eigenvalues for that matrix without incurringnumerical difficulties (this will rarely be a problem).
	Elements of the covariance matrix, as represented in the covariance matrix file, mustbe space or comma-delimited. A line of this matrix can wrap around to the next line ifit is too long. However each row of the matrix must begin on a new line.
	Whether or not a covariance matrix is supplied for a particular observation group,weights must still be supplied for members of that group in the “observation data”section of the PEST control file. However these weights will be ignored by PEST(including a weight of zero that may be assigned to a certain observation in order to“take it out” of the parameter estimation process).
	Observation groups used for prior information and those used for actual observationsmust be separate when one or more covariance matrices are supplied for use in theinversion process. Thus a particular observation group cannot have members whichare both observations and prior information equations.
	At the end of the inversion process the true covariance matrices pertaining to variousobservation groups can be calculated from user-supplied covariance matrices throughmultiplication by the reference variance determined through the parameter estimation process(ie. σ2 of equation 2.5). Recall from Section 2.1.2 that variances and covariances representedin covariance matrices supplied to PEST by the user will be related to true observationvariances and covariances by a constant of proportionality that is unk
	4.3.3 PEST Outputs
	When one or more observation covariance matrices are supplied to PEST as part of its inputdataset, PEST’s output dataset is a little different from that which is recorded if no covariancematrices are supplied. While PEST outputs are treated in detail in the next chapter, thesedifferences are now briefly outlined.
	4.3.3.1 Echoing of Covariance Matrices
	Before undertaking the parameter estimation process, PEST records much of the informationthat it reads from the PEST control file to its run record file. This information includes thecontents of any covariance matrix files that are supplied to it in its input dataset.
	When echoing observation weights to its run record file, the weights supplied forobservations belonging to an observation group for which a covariance matrix has beensupplied are not recorded, for these weights are not used in the inversion process. Rather, thecharacter string “Cov. Mat.” is recorded in place of the pertinent weights to remind the userthat an observation covariance matrix is used in their stead.
	4.3.3.2 Objective Function
	Calculation of the objective function, and of the contribution to the objective function madeby various observation groups, takes account of the fact that a covariance matrix is suppliedfor at least one group of observations.
	4.3.3.3 Residuals
	Measurements, together with their model-generated counterparts calculated on the basis ofbest-fit parameters, are tabulated at the end of the run record file; observation weights arealso tabulated with this data. For those observations which are associated with a covariancematrix, the character string “Cov. Mat.” replaces the observation weight in this table, thisindicating, once again, that the latter are ignored in all calculations pertaining to theseobservations undertaken by PEST.
	At the end of the parameter estimation process PEST records measurements, their model-generated counterparts, residuals, observation weights, and a number of functions of these ina “residuals file”. The format of this file is such that the data contained therein is suitable forimportation into a spreadsheet for further mathematical analysis. Where tabulated functionsof those observations for which a covariance matrix is supplied involve observation weights,these functions are not calculated and recorded by
	If at least one observation covariance matrix is supplied in its input dataset, PEST records anadditional residuals file called a “rotated residuals file”. This has the same filename base asthe ordinary residuals file (ie. the filename base of the PEST control file), but is given anextension of “.rsr”. Whereas the normal residuals file tabulates measurements, their model-generated counterparts, the residuals calculated therefrom, and various functions of thesequantities (see Section 5.3.4), the rotated resi
	Where a covariance matrix is supplied for only a few of the many observations used in theparameter estimation process, most of the entries in the rotated residuals file will be the sameas those found in the normal residuals file. However entries pertaining to observation groupsfor which a covariance matrix is supplied will be different. Because a new set of “rotatedobservations” is calculated for members of this group, the user-assigned names for theoriginal observations are no longer applicable. Hence when
	4.3.3.4 Analysis of Residuals
	PEST calculates and records a number of basic statistics pertaining to optimised residuals tothe end of its run record file. Due to the fact that these statistics are calculated on the basis ofweighted residuals, rather than the residuals themselves, PEST calculates them using rotatedresiduals rather than true residuals for those observation groups for which a covariancematrix is supplied. The fact that rotated residuals, rather than direct residuals, are used in thiscalculation is recorded on the run recor

	Running PEST
	Running PEST
	5.1 How to Run PEST
	5.1.1 Checking PEST’s Input Data
	PEST’s input file requirements have been discussed in detail in the previous two chapters.Before submitting these files to PEST for a parameter estimation run, you should check thatall information contained in them is syntactically correct and consistent. This can be doneusing the utility programs PESTCHEK, TEMPCHEK and INSCHEK described in Chapter 10of this manual.
	PEST carries out some checking of its input dataset itself; if there are any syntax errors inany of these input files, or if some of the data elements are of the incorrect type (for examplereal instead of integer, integer instead of character), PEST will cease execution with anappropriate error message. However PEST does not carry out extensive consistency checks,as the coding required to achieve this would take up too much memory, this memory beingreserved for array storage for PEST and, possibly, the mode
	5.1.2 Versions of PEST
	As explained in Chapter 1, there are two versions of PEST. Each can be run by typing thename of the pertinent executable file at the command prompt.
	PEST
	The “single window” version of PEST (contained in the pest.exe executable program) is thesimpler version of PEST to use. In this version of PEST, the model and PEST share the samewindow. Hence screen output from one will cause screen output from the other to scroll awayout of sight.
	The single window version of PEST is run using the command
	pest case [/r] [/j]
	where case is the filename base of the PEST control file (PEST automatically adds theextension “.pst”) and “/r” or “/j” is an optional restart switch.
	PPEST
	PPEST is Parallel PEST, the operation of which is fully described in Chapter 9. ParallelPEST is contained in the ppest.exe executable. When a user runs Parallel PEST, he/she mustalso run one or a number of “slaves” which, in turn, run the model. These slaves can resideon the same machine as Parallel PEST, or on other machine(s) with which the PEST machineis networked. Because model runs can be undertaken simultaneously on different machinesduring calculation of the Jacobian matrix, the savings in overall op
	Parallel PEST is a little more complex to run than the single window version of PESTbecause an extra PEST input file (called the “run management file”) must be prepared. Also,as well as starting PEST, the user must also start each of the slaves. However it is more thanworth the extra trouble where model run times are large and adjustable parameters are many.
	While Parallel PEST was built for the purpose of running a model simultaneously on anumber of different machines across a network, it can also be used to run a single instance ofthe model on a single machine. Doing this has the advantage that the model and PESToperate in different windows; hence the screen output of one does not interfere with thescreen output of the other.
	Parallel PEST is run using the command
	ppest case [/r] [/j]
	where case is the filename base of the PEST control file (PPEST automatically adds theextension “.pst”) and “/r” and “/j” are optional restart switches.
	For more information on running Parallel PEST, see Chapter 9 and the “Frequently AskedQuestions” in Chapter 13.
	5.2 The PEST Run Record
	5.2.1 An Example
	As PEST executes, it writes a detailed record of the parameter estimation process to filecase.rec, where case is the filename base of the PEST control file to which it is directedthrough the PEST command line. Example 5.1 shows such a run record file; the PEST controlfile corresponding to Example 5.1 is that shown in Example 4.2. Note that this example doesnot demonstrate a very good fit between measurements and model outcomes calculated onthe basis of the optimised parameter set. This is because it was fab
	Example 5.1 A PEST run record file; Example 4.2 shows the corresponding PESTcontrol file.
	 PEST RUN RECORD: CASE manual
	Case dimensions:-
	 Number of parameters : 5
	 Number of adjustable parameters : 3
	 Number of parameter groups : 2
	 Number of observations : 19
	 Number of prior estimates : 2
	Model command line:-
	ves
	Model interface files:-
	 Templates:
	 ves.tp1
	 for model input files:
	 ves.inp
	 (Parameter values written using single precision protocol.)
	 (Decimal point always included.)
	 Instruction files:
	 ves.ins
	 for reading model output files:
	 ves.out
	Derivatives calculation:-
	Param Increment Increment Increment Forward or Multiplier Method
	group type low bound central (central) (central)
	 ro relative 1.0000E-03 1.0000E-05 switch 2.000 parabolic
	 h relative 1.0000E-03 1.0000E-05 switch 2.000 parabolic
	Parameter definitions:-
	Name Trans- Change Initial Lower Upper Group
	 formation limit value bound bound
	ro1 fixed na 0.500000 na na none
	ro2 log factor 5.00000 0.100000 10.0000 ro
	ro3 tied to ro2 na 0.500000 na na ro
	h1 none factor 2.00000 5.000000E-02 100.000 h
	h2 log factor 5.00000 5.000000E-02 100.000 h
	Name Scale Offset
	ro1 1.00000 0.000000
	ro2 1.00000 0.000000
	ro3 1.00000 0.000000
	h1 1.00000 0.000000
	h2 1.00000 0.000000
	Prior information:-
	Prior info Factor Parameter Prior Weight
	name information
	 pi1 1.00000 * h1 = 2.00000 3.000
	 pi2 1.00000 * log[ro2] +
	 1.00000 * log[h2] = 2.60260 2.000
	Prior Info Name Observation Group
	 pi1 group_4
	 pi2 group_4
	Observations:-
	Observation name Observation Weight Group
	 ar1 1.21038 1.000 group_1
	 ar2 1.51208 1.000 group_1
	 ar3 2.07204 1.000 group_1
	 ar4 2.94056 1.000 group_1
	 ar5 4.15787 1.000 group_1
	 ar6 5.77620 1.000 group_1
	 ar7 7.78940 1.000 group_2
	 ar8 9.99743 1.000 group_2
	 ar9 11.8307 1.000 group_2
	 ar10 12.3194 1.000 group_2
	 ar11 10.6003 1.000 group_2
	 ar12 7.00419 1.000 group_2
	 ar13 3.44391 1.000 group_2
	 ar14 1.58279 1.000 group_2
	 ar15 1.10380 1.000 group_3
	 ar16 1.03086 1.000 group_3
	 ar17 1.01318 1.000 group_3
	 ar18 1.00593 1.000 group_3
	 ar19 1.00272 1.000 group_3
	Inversion control settings:-
	 Initial lambda : 5.0000
	 Lambda adjustment factor : 2.0000
	 Sufficient new/old phi ratio per iteration : 0.40000
	 Limiting relative phi reduction between lambdas : 3.00000E-02
	 Maximum trial lambdas per iteration : 10
	 Maximum factor parameter change (factor-limited changes) : 3.0000
	 Maximum relative parameter change (relative-limited changes) : na
	 Fraction of initial parameter values used in computing
	 change limit for near-zero parameters : 1.00000E-03
	 Relative phi reduction below which to begin use of
	 central derivatives : 0.10000
	 Relative phi reduction indicating convergence : 0.10000E-01
	 Number of phi values required within this range : 3
	 Maximum number of consecutive failures to lower phi : 3
	 Maximum relative parameter change indicating convergence : 0.10000E-01
	 Number of consecutive iterations with minimal param change : 3
	 Maximum number of optimisation iterations : 30
	 OPTIMISATION RECORD
	INITIAL CONDITIONS:
	Sum of squared weighted residuals (ie phi) = 523.8
	Contribution to phi from observation group “group_1” = 127.3
	Contribution to phi from observation group “group_2” = 117.0
	Contribution to phi from observation group “group_3” = 185.2
	Contribution to phi from observation group “group_4” = 94.28
	 Current parameter values
	 ro1 0.500000
	 ro2 5.00000
	 ro3 0.500000
	 h1 2.00000
	 h2 5.00000
	OPTIMISATION ITERATION NO. : 1
	 Model calls so far : 1
	 Starting phi for this iteration: 523.8
	 Contribution to phi from observation group “group_1”: 127.3
	 Contribution to phi from observation group “group_2”: 117.0
	 Contribution to phi from observation group “group_3”: 185.2
	 Contribution to phi from observation group “group_4”: 94.28
	 Lambda = 5.000 ----->
	 phi = 361.4 (0.69 of starting phi)
	 Lambda = 2.500 ----->
	 phi = 357.3 (0.68 of starting phi)
	 No more lambdas: relative phi reduction between lambdas less than 0.0300
	 Lowest phi this iteration: 357.3
	 Current parameter values Previous parameter values
	 ro1 0.500000 ro1 0.500000
	 ro2 10.0000 ro2 5.00000
	 ro3 1.00000 ro3 0.500000
	 h1 1.94781 h1 2.00000
	 h2 10.4413 h2 5.00000
	 Maximum factor parameter change: 2.088 [h2]
	 Maximum relative parameter change: 1.088 [h2]
	OPTIMISATION ITERATION NO. : 2
	 Model calls so far : 6
	 Starting phi for this iteration: 357.3
	 Contribution to phi from observation group “group_1”: 77.92
	 Contribution to phi from observation group “group_2”: 103.8
	 Contribution to phi from observation group “group_3”: 121.3
	 Contribution to phi from observation group “group_4”: 54.28
	 Lambda = 1.250 ----->
	 parameter "ro2" frozen: gradient and update vectors out of bounds
	 phi = 252.0 (0.71 of starting phi)
	 Lambda = 0.6250 ----->
	 phi = 243.6 (0.68 of starting phi)
	 Lambda = 0.3125 ----->
	 phi = 235.9 (0.66 of starting phi)
	 Lambda = 0.1563 ----->
	 phi = 230.1 (0.64 of starting phi)
	 No more lambdas: relative phi reduction between lambdas less than 0.0300
	 Lowest phi this iteration: 230.1
	 Current parameter values Previous parameter values
	 ro1 0.500000 ro1 0.500000
	 ro2 10.0000 ro2 10.0000
	 ro3 1.00000 ro3 1.00000
	 h1 1.41629 h1 1.94781
	 h2 31.3239 h2 10.4413
	 Maximum factor parameter change: 3.000 [h2]
	 Maximum relative parameter change: 2.000 [h2]
	OPTIMISATION ITERATION NO. : 3
	 Model calls so far : 13
	 Starting phi for this iteration: 230.1
	 Contribution to phi from observation group “group_1”: 29.54
	 Contribution to phi from observation group “group_2”: 84.81
	 Contribution to phi from observation group “group_3”: 91.57
	 Contribution to phi from observation group “group_4”: 24.17
	 All frozen parameters freed
	 Lambda = 7.8125E-02 ----->
	 parameter "ro2" frozen: gradient and update vectors out of bounds
	 phi = 89.49 (0.39 of starting phi)
	 No more lambdas: phi is now less than 0.4000 of starting phi
	 Lowest phi this iteration: 89.49
	 Current parameter values Previous parameter values
	 ro1 0.500000 ro1 0.500000
	 ro2 10.0000 ro2 10.0000
	 ro3 1.00000 ro3 1.00000
	 h1 0.472096 h1 1.41629
	 h2 34.3039 h2 31.3239
	 Maximum factor parameter change: 3.000 [h1]
	 Maximum relative parameter change: 0.6667 [h1]
	OPTIMISATION ITERATION NO. : 4
	 Model calls so far : 17
	 Starting phi for this iteration: 89.49
	 Contribution to phi from observation group “group_1”: 9.345
	 Contribution to phi from observation group “group_2”: 34.88
	 Contribution to phi from observation group “group_3”: 21.57
	 Contribution to phi from observation group “group_4”: 23.69
	 All frozen parameters freed
	 Lambda = 3.9063E-02 ----->
	 parameter "ro2" frozen: gradient and update vectors out of bounds
	 phi = 79.20 (0.89 of starting phi)
	 Lambda = 1.9531E-02 ----->
	 phi = 79.19 (0.88 of starting phi)
	 No more lambdas: relative phi reduction between lambdas less than 0.0300
	 Lowest phi this iteration: 79.19
	 Current parameter values Previous parameter values
	 ro1 0.500000 ro1 0.500000
	 ro2 10.0000 ro2 10.0000
	 ro3 1.00000 ro3 1.00000
	 h1 0.157365 h1 0.472096
	 h2 44.2189 h2 34.3039
	 Maximum factor parameter change: 3.000 [h1]
	 Maximum relative parameter change: 0.6667 [h1]
	OPTIMISATION ITERATION NO. : 5
	 Model calls so far : 22
	 Starting phi for this iteration: 79.19
	 Contribution to phi from observation group “group_1”: 6.920
	 Contribution to phi from observation group “group_2”: 22.45
	 Contribution to phi from observation group “group_3”: 14.88
	 Contribution to phi from observation group “group_4”: 34.94
	 All frozen parameters freed
	 Lambda = 9.7656E-03 ----->
	 parameter "ro2" frozen: gradient and update vectors out of bounds
	 phi = 64.09 (0.81 of starting phi)
	 Lambda = 4.8828E-03 ----->
	 phi = 64.09 (0.81 of starting phi)
	 Lambda = 1.9531E-02 ----->
	 phi = 64.09 (0.81 of starting phi)
	 No more lambdas: relative phi reduction between lambdas less than 0.0300
	 Lowest phi this iteration: 64.09
	 Current parameter values Previous parameter values
	 ro1 0.500000 ro1 0.500000
	 ro2 10.0000 ro2 10.0000
	 ro3 1.00000 ro3 1.00000
	 h1 0.238277 h1 0.157365
	 h2 42.4176 h2 44.2189
	 Maximum factor parameter change: 1.514 [h1]
	 Maximum relative parameter change: 0.5142 [h1]
	OPTIMISATION ITERATION NO. : 6
	 Model calls so far : 28
	 Starting phi for this iteration: 64.09
	 Contribution to phi from observation group “group_1”: 6.740
	 Contribution to phi from observation group “group_2”: 18.98
	 Contribution to phi from observation group “group_3”: 10.53
	 Contribution to phi from observation group “group_4”: 27.84
	 All frozen parameters freed
	 Lambda = 1.9531E-02 ----->
	 parameter "ro2" frozen: gradient and update vectors out of bounds
	 phi = 63.61 (0.99 of starting phi)
	 Lambda = 9.7656E-03 ----->
	 phi = 63.61 (0.99 of starting phi)
	 No more lambdas: relative phi reduction between lambdas less than 0.0300
	 Lowest phi this iteration: 63.61
	 Relative phi reduction between optimisation iterations less than 0.1000
	 Switch to central derivatives calculation
	 Current parameter values Previous parameter values
	 ro1 0.500000 ro1 0.500000
	 ro2 10.0000 ro2 10.0000
	 ro3 1.00000 ro3 1.00000
	 h1 0.265320 h1 0.238277
	 h2 42.2249 h2 42.4176
	 Maximum factor parameter change: 1.113 [h1]
	 Maximum relative parameter change: 0.1135]h1]
	OPTIMISATION ITERATION NO. : 7
	 Model calls so far : 33
	 Starting phi for this iteration: 63.61
	 Contribution to phi from observation group “group_1”: 3.679
	 Contribution to phi from observation group “group_2”: 32.58
	 Contribution to phi from observation group “group_3”: 0.111
	 Contribution to phi from observation group “group_4”: 27.24
	 All frozen parameters freed
	 Lambda = 4.8828E-03 ----->
	 parameter "ro2" frozen: gradient and update vectors out of bounds
	 phi = 63.59 (1.00 of starting phi)
	 Lambda = 2.4414E-03 ----->
	 phi = 63.59 (1.00 of starting phi)
	 Lambda = 9.7656E-03 ----->
	 phi = 63.59 (1.00 of starting phi)
	 No more lambdas: relative phi reduction between lambdas less than 0.0300
	 Lowest phi this iteration: 63.59
	 Current parameter values Previous parameter values
	 ro1 0.500000 ro1 0.500000
	 ro2 10.0000 ro2 10.0000
	 ro3 1.00000 ro3 1.00000
	 h1 0.261177 h1 0.265320
	 h2 42.2006 h2 42.2249
	 Maximum factor parameter change: 1.016 [h1]
	 Maximum relative parameter change: 1.5615E-02 [h1]
	 Optimisation complete: the 3 lowest phi's are within a relative distance
	 of eachother of 1.000E-02
	 Total model calls: 42
	 OPTIMISATION RESULTS
	Adjustable parameters ----->
	Parameter Estimated 95% percent confidence limits
	 value lower limit upper limit
	 ro2 10.0000 0.665815 150.192
	 h1 0.261177 -1.00256 1.52491
	 h2 42.2006 0.467914 3806.02
	Note: confidence limits provide only an indication of parameter uncertainty.
	 They rely on a linearity assumption which may not extend as far in
	 parameter space as the confidence limits themselves - see PEST manual.
	Tied parameters ----->
	Parameter Estimated value
	 ro3 1.00000
	Fixed parameters ----->
	Parameter Fixed value
	 ro1 0.500000
	Observations ----->
	Observation Measured Calculated Residual Weight Group
	 value value
	 ar1 1.21038 1.64016 -0.429780 1.000 group_1
	 ar2 1.51208 2.25542 -0.743340 1.000 group_1
	 ar3 2.07204 3.03643 -0.964390 1.000 group_1
	 ar4 2.94056 3.97943 -1.03887 1.000 group_1
	 ar5 4.15787 5.04850 -0.890630 1.000 group_1
	 ar6 5.77620 6.16891 -0.392710 1.000 group_1
	 ar7 7.78940 7.23394 0.555460 1.000 group_2
	 ar8 9.99743 8.12489 1.87254 1.000 group_2
	 ar9 11.8307 8.72551 3.10519 1.000 group_2
	 ar10 12.3194 8.89590 3.42350 1.000 group_2
	 ar11 10.6003 8.40251 2.19779 1.000 group_2
	 ar12 7.00419 6.96319 4.100000E-02 1.000 group_2
	 ar13 3.44391 4.70412 -1.26021 1.000 group_2
	 ar14 1.58279 2.56707 -0.984280 1.000 group_2
	 ar15 1.10380 1.42910 -0.325300 1.000 group_3
	 ar16 1.03086 1.10197 -7.111000E-02 1.000 group_3
	 ar17 1.01318 1.03488 -2.170000E-02 1.000 group_3
	 ar18 1.00593 1.01498 -9.050000E-03 1.000 group_3
	 ar19 1.00272 1.00674 -4.020000E-03 1.000 group_3
	Prior information ----->
	Prior Provided Calculated Residual Weight Group
	information value value
	 pi1 2.00000 0.261177 1.73882 3.000 group_4
	 pi2 2.60260 2.62532 -2.271874E-02 2.000 group_4
	See file TEMP3.RES for more details of residuals in graph-ready format.
	See file TEMP3.SEO for composite observation sensitivities.
	Objective Function ----->
	 Sum of squared weighted residuals (ie phi) = 63.59
	 Contribution to phi from observation group "group_1" = 3.686
	 Contribution to phi from observation group "group_2" = 32.58
	 Contribution to phi from observation group "group_3" = 0.1115
	 Contribution to phi from observation group “group_4” = 27.21
	Correlation Coefficient ----->
	 Correlation coefficient = 0.9086
	Analysis of residuals ----->
	 All residuals:-
	 Number of residuals with non-zero weight = 21
	 Mean value of non-zero weighted residuals = -0.4399
	 Maximum weighted residual [observation "ar13"] = 1.260
	 Minimum weighted residual [observation "pi1"] = -5.216
	 Standard variance of weighted residuals = 3.533
	 Standard error of weighted residuals = 1.880
	 Note: the above variance was obtained by dividing the objective
	 function by the number of system degrees of freedom (ie. number of
	 observations with non-zero weight plus number of prior information
	 articles with non-zero weight minus the number of adjustable parameters.)
	 If the degrees of freedom is negative the divisor becomes
	 the number of observations with non-zero weight plus the number of
	 prior information items with non-zero weight.
	 Residuals for observation group "group_1":-
	 Number of residuals with non-zero weight = 6
	 Mean value of non-zero weighted residuals = 0.7424
	 Maximum weighted residual [observation "ar4"] = 1.038
	 Minimum weighted residual [observation "ar6"] = 0.3916
	 "Variance" of weighted residuals = 0.6144
	 "Standard error" of weighted residuals = 0.7838
	 Note: the above "variance" was obtained by dividing the sum of squared
	 residuals by the number of items with non-zero weight.
	 Residuals for observation group "group_2":-
	 Number of residuals with non-zero weight = 8
	 Mean value of non-zero weighted residuals = -1.119
	 Maximum weighted residual [observation "ar13"] = 1.260
	 Minimum weighted residual [observation "ar10"] = -3.424
	 "Variance" of weighted residuals = 4.072
	 "Standard error" of weighted residuals = 2.018
	 Note: the above "variance" was obtained by dividing the sum of squared
	 residuals by the number of items with non-zero weight.
	 Residuals for observation group "group_3":-
	 Number of residuals with non-zero weight = 5
	 Mean value of non-zero weighted residuals = 8.6256E-02
	 Maximum weighted residual [observation "ar15"] = 0.3254
	 Minimum weighted residual [observation "ar19"] = 4.0200E-03
	 "Variance" of weighted residuals = 2.2300E-02
	 "Standard error" of weighted residuals = 0.1493
	 Note: the above "variance" was obtained by dividing the sum of squared
	 residuals by the number of items with non-zero weight.
	Residuals for observation group "group_4":-
	 Number of residuals with non-zero weight = 2
	 Mean value of non-zero weighted residuals = -2.585
	 Maximum weighted residual [observation "pi2"] = 4.5451E-02
	 Minimum weighted residual [observation "pi1"] = -5.216
	 "Variance" of weighted residuals = 13.61
	 "Standard error" of weighted residuals = 3.689
	 Note: the above "variance" was obtained by dividing the sum of squared
	 residuals by the number of items with non-zero weight.
	Covariance Matrix ----->
	 ro2 h1 h2
	ro2 0.3136 4.8700E-03 -0.4563
	h1 4.8700E-03 0.3618 1.3340E-02
	h2 -0.4563 1.3340E-02 0.8660
	Correlation Coefficient Matrix ----->
	 ro2 h1 h2
	ro2 1.000 1.4457E-02 -0.8756
	h1 1.4457E-02 1.000 2.3832E-02
	h2 -0.8756 2.3832E-02 1.000
	Normalized eigenvectors of covariance matrix ----->
	 Vector_1 Vector_2 Vector_3
	ro2 -0.8704 -3.6691E-02 -0.4909
	h1 3.5287E-02 -0.9993 1.2121E-02
	h2 -0.4910 -6.7718E-03 0.8711
	Eigenvalues ----->
	 5.6045E-02 0.3621 1.123
	The various sections of the PEST run record file are now discussed in detail.
	5.2.2 Echoing the Input Data Set
	PEST commences execution by reading all its input data. As soon as this is read, it echoesmost of this data to the run record file. Hence the first section of this file is simply arestatement of most of the information contained in the PEST control file. Note that theletters “na” stand for “not applicable”; in Example 5.1, “na” is used a number of times toindicate that a particular PEST input variable has no effect on the optimisation process. Thus,for example, the type of change limit for parameter “ro1” i
	It is possible that the numbers cited for a parameter’s initial value and for its upper and lowerbounds will be altered slightly from that supplied in the PEST control file. This will onlyoccur if the space occupied by this parameter in a model input file is insufficient to representany of these numbers to the same degree of precision with which they are cited in the PESTcontrol file. The fact that PEST adjusts its internal representations of parameter values suchthat they are expressed with the same degree
	5.2.3 The Parameter Estimation Record
	After echoing its input data, PEST calculates the objective function arising out of the initialparameter set; it records this initial objective function value on the run record file togetherwith the initial parameter values themselves. Then it starts the estimation process in earnest,beginning with the first optimisation iteration. After calculating the Jacobian matrix PESTattempts objective function improvement using one or more Marquardt lambdas. As it doesthis, it records the corresponding objective func
	During the first iteration of Example 5.1, PEST tests two Marquardt lambdas; because the second lambda results in an objective function fall of less than 0.03 (ie. PHIREDLAM)relative to the first one tested, PEST does not test any further lambdas. Instead it progressesto the next optimisation iteration after listing both the updated parameter values as well asthose from which the updated parameter set was calculated, viz. those at the commencementof the optimisation iteration. Note that the only occasion on
	At the end of each optimisation iteration PEST records either two or three (depending on theinput settings) very important pieces of information; in the case of Example 5.1 it is two.These are the maximum factor parameter change and the maximum relative parameterchange. As was discussed in previous chapters, each adjustable parameter must be designatedas either factor-limited or relative-limited; in Example 5.1 all adjustable parameters arefactor-limited with a factor limit of 3.0. A suitable setting for th
	The recording of the maximum factor and relative parameter changes at the end of eachiteration allows you to judge whether you have set these vital variables (ie. FACPARMAXand RELPARMAX) wisely. In the present case only the maximum factor change is neededbecause no parameters are relative-limited; the maximum relative parameter change isrecorded, however, because one of the termination criteria involves the use of relativeparameter changes. Note that had some of the parameters in Example 5.1 been relative-l
	The PEST run record of Example 5.1 shows that in iteration 2, one of the parameters, viz.“h2”, incurs the maximum allowed factor change, thus limiting the magnitude of theparameter upgrade vector. In optimisation iterations 3 and 4, parameter “h1” limits themagnitude of the parameter upgrade vector through incurring the maximum allowedparameter factor change. It is possible that convergence for this case would have beenachieved much faster if FACPARMAX on the PEST control file were set higher than 3.0.
	At the beginning of the second optimisation iteration, parameter “ro2” is at its upper bound.After calculating the Jacobian matrix and formulating and solving equation 2.23, PESTnotices that parameter “ro2” does not wish to move back into its domain; so it temporarilyfreezes this parameter at its upper bound and calculates an upgrade vector solely on the basisof the remaining adjustable parameters. The two-step process by which PEST judges whetherto freeze a parameter which is at its upper or lower limit is
	In the third optimisation iteration only a single Marquardt lambda is tested, the objectivefunction having been lowered to below 0.4 times its starting value for that iteration throughthe use of this single lambda; 0.4 is the user-supplied value for the PEST control variablePHIRATSUF.
	During the fifth optimisation iteration three lambdas are tested. The second results in araising of the objective function over the first (though this is not apparent in the run recordbecause “phi”, the objective function, is not written with sufficient precision to show it), soPEST tests a lambda which is higher than the first. For the case illustrated in Example 5.1,when lambda is raised or lowered it is adjusted using a factor of 2.0, this being the user-supplied value for the PEST control variable RLAMF
	At the end of optimisation iteration 6 PEST calculates that the relative reduction in theobjective function from that achieved in iteration 5 is less that 0.1; ie. it is less than the user-supplied value for the PEST control variable PHIREDSWH. Hence, as the input variableFORCEN for at least one parameter group (both groups in the present example) is set to“switch”, PEST records the fact that it will be using central differences to calculatederivatives with respect to the members of those groups from now on
	The optimisation process of Example 5.1 is terminated at the end of optimisation iteration 7,after the lowest 3 (ie. NPHISTP) objective function values are within a relative distance of0.01 (ie. PHIREDSTP) of each other.
	Note that where PEST lists the current objective function value at the start of the optimisationprocess and at the start of each optimisation iteration, it also lists the contribution made to theobjective function by each observation group (including the observation group “group_4”comprised solely of prior information). This is valuable information, for if a user notices thatone particular group is either dominating the objective function or is not “seen” as a result ofdominance by another contributor, he/s
	5.2.4 Optimised Parameter Values and Confidence Intervals
	After completing the parameter estimation process, PEST prints the outcomes of this processto the third section of the run record file. First it lists the optimised parameter values. It doesthis in three stages; the adjustable parameters, then the tied parameters and, finally, any fixedparameters. PEST calculates 95% confidence limits for the adjustable parameters. However,you should note carefully the following points about confidence limits.
	Confidence limits can only be obtained if the covariance matrix has been calculated.If, for any reason, it has not been calculated (eg. because JtQJ of equation 2.17 couldnot be inverted) confidence limits will not be provided.
	As noted in the PEST run record itself, parameter confidence limits are calculated onthe basis of the same linearity assumption which was used to derive the equations forparameter improvement implemented in each PEST optimisation iteration. If theconfidence limits are large they will, in all probability, extend further into parameterspace than the linearity assumption itself. This will apply especially tologarithmically-transformed parameters for which the confidence intervals cited in thePEST run record ar
	No account is taken of parameter upper and lower bounds in the calculation of 95%confidence intervals. Thus an upper or lower confidence limit can lie well outside aparameter’s allowed domain. In Example 5.1, the upper confidence limits for both“ro2” and “h2” lie well above the allowed upper bounds for these parameters, asprovided by the parameter input variable PARUBND for each of these parameters;similarly the lower confidence limit for parameter “h1” lies below its lower bound(PARLBND) of 0.05. PEST does
	The parameter confidence intervals are highly dependent on the assumptionsunderpinning the model. If the model has too few parameters to accurately simulate aparticular system, the optimised objective function will be large and then so too,through equations 2.5 and 2.17, will be the parameter covariances and, with them, theparameter confidence intervals. However, if a model has too many parameters, theobjective function may well be small, but some parameters may be highly correlated with each other due to a
	Notwithstanding the above limitations, the presentation of 95% confidence limits provides auseful means of comparing the certainty with which different parameter values are estimatedby PEST. In Example 5.1 it is obvious that parameters “ro2” and “h2” (particularly “h2”) areestimated with a large margin of uncertainty. This is because these two parameters are wellcorrelated; this means that they can be varied in harmony and, provided one is varied in amanner that properly complements the variation of the oth
	Confidence limits are not provided for tied parameters. The parent parameters of all tiedparameters are estimated with the tied parameters “riding on their back”; hence theconfidence intervals for the respective parent parameters reflect their linkages to the tiedparameters.
	Note that at the end of a PEST optimisation run a listing of the optimised parameter valuescan also be found in the PEST parameter value file case.par.
	5.2.5 Observations and Prior Information
	After it has written the optimised parameter set to the run record file, PEST records themeasured observation values, together with their model-generated counterparts calculated onthe basis of the optimised parameter set. The differences between the two (ie. the residuals)are also listed, together with the user-supplied set of observation weights. Following theobservations, the user-supplied and model-optimised prior information values are listed; aprior information value is the number on the right side of
	Tabulated residuals and weighted residuals can also be found in file case.res; see Section5.3.4. Composite observation sensitivities can be found in file case.seo; see Section 5.3.3.
	5.2.6 Objective Function
	Next the objective function is listed, together with the contribution made to the objectivefunction by the different observation groups.
	5.2.7 Correlation Coefficient
	The correlation coefficient pertaining to the current parameter estimation problem, calculatedusing equation 2.43, is next listed.
	5.2.8 Analysis of Residuals
	The next section of the run record file lists a number of statistics pertaining to observationresiduals - first to all residuals, and then separately to each observation group (including anyobservation groups to which prior information was assigned). Ideally, after the parameterestimation process is complete, weighted residuals should have a mean of zero and berandomly distributed. The information contained in this section of the run record file helps toassess whether this is the case. It also allows the us
	In calculating residual statistics, observations with zero weight are ignored.
	5.2.9 The Parameter Covariance Matrix
	The covariance matrix is always a square symmetric matrix with as many rows (andcolumns) as there are adjustable parameters; hence there is a row (and column) for everyparameter which is neither fixed nor tied. The order in which the rows (and columns) arearranged is the same as the order of occurrence of the adjustable parameters in the previouslisting of the optimised parameter values. (This is the same as the order of occurrence ofadjustable parameters in both the PEST control file and in the first secti
	Being a by-product of the parameter estimation process (see Chapter 2), the elements of thecovariance matrix pertain to the parameters that PEST actually adjusts; this means that wherea parameter is log-transformed, the elements of the covariance matrix pertaining to thatparameter actually pertain to the logarithm (to base 10) of that parameter. Note also that thevariances and covariances occupying the elements of the covariance matrix are valid only inso far as the linearity assumption, upon which their ca
	The diagonal elements of the covariance matrix are the variances of the adjustableparameters; for Example 5.1 the variances pertain, from top left to bottom right, to theparameters log(“ro2”), “h1” and log(“h2”) in that order. The variance of a parameter is thesquare of its standard deviation. With log(“h2”) having a variance of 0.866 (and hence astandard deviation of 0.931), and bearing in mind that the number “1” in the log domainrepresents a factor of 10 in untransformed parameter space, it is not hard t
	The off-diagonal elements of the covariance matrix represent the covariances betweenparameter pairs; thus, for example, the element in the second row and third column of theabove covariance matrix represents the covariance of “h1” with log(“h2”).
	If there are more than eight adjustable parameters, the rows of the covariance matrix arewritten in “wrap” form; ie. after eight numbers have been written, PEST will start a new lineto write the ninth number. Similarly if there are more than sixteen adjustable parameters, theseventeenth number will begin on a new line. Note, however, that every new row of thecovariance matrix begins on a new line of the run record file.
	5.2.10 The Correlation Coefficient Matrix
	The correlation coefficient matrix is calculated from the covariance matrix through equation2.7. The correlation coefficient matrix has the same number of rows and columns as thecovariance matrix; furthermore the manner in which these rows and columns are related toadjustable parameters (or their logs) is identical to that for the covariance matrix. Like thecovariance matrix, the correlation coefficient matrix is symmetric.
	The diagonal elements of the correlation coefficient matrix are always unity; the off-diagonalelements are always between 1 and -1. The closer that an off-diagonal element is to 1 or -1,the more highly correlated are the parameters corresponding to the row and column numbersof that element. Thus, for the correlation coefficient matrix of Example 5.1, the logs of parameters “ro2” and “h2” show medium to high correlation, as is indicated by the value ofelements (1,3) and (3,1) of the correlation coefficient m
	5.2.11 The Normalised Eigenvector Matrix and the Eigenvalues
	The eigenvector matrix is composed of as many columns as there are adjustable parameters,each column containing a normalised eigenvector. Because the covariance matrix is positivedefinite, these eigenvectors are real and orthogonal; they represent the directions of the axesof the probability “ellipsoid” in the n-dimensional space occupied by the n adjustableparameters.
	In the eigenvector matrix the eigenvectors are arranged from left to right in increasing orderof their respective eigenvalues; the eigenvalues are listed beneath the eigenvector matrix. Thesquare root of each eigenvalue is the length of the corresponding semiaxis of the probabilityellipsoid in n-dimensional adjustable parameter space.
	If the ratio of a particular eigenvalue to the lowest eigenvalue pertaining to the parameterestimation problem is particularly large, then the respective eigenvector defines a direction ofrelative insensitivity in parameter space. The eigenvector pertaining to the highest eigenvalueis worthy of attention in most parameter estimation problems, for this defines the direction ofmaximum insensitivity, and hence of greatest elongation of the probability ellipsoid inadjustable parameter space. If this eigenvector
	The ratio of the highest to lowest eigenvalue constitutes another significant item ofinformation that is forthcoming as a by-product of the parameter estimation process. Thesquare root of this ratio is related to the “condition number” of the matrix that PEST mustinvert when solving for the parameter upgrade vector - see equation 2.23. If the conditionnumber of a matrix is too high, then inversion of this matrix becomes numerically difficult oreven impossible. In the present instance this is an outcome of t
	5.3 Other PEST Output Files
	5.3.1 The Parameter Value File
	At the end of each optimisation iteration PEST writes the best parameter set achieved so far(ie. the set for which the objective function is lowest if PEST is running in parameterestimation mode) to a file named case.par where case is the filename base of the PESTcontrol file; this type of file is referred to as a PEST “parameter value file”. At the end of aPEST run, the parameter value file contains the optimal parameter set. Example 5.2 illustratessuch a file. Note that a PEST parameter value file can be
	The first line of a parameter value file cites the character variables PRECIS and DPOINT, thevalues for which were provided in the PEST control file; see Section 4.2.2. Then follows aline for each parameter, each line containing a parameter name, its current value and thevalues of the SCALE and OFFSET variables for that parameter.
	5.3.2 The Parameter Sensitivity File
	5.3.2.1 The Composite Parameter Sensitivity
	Most of the time consumed during each PEST optimisation iteration is devoted to calculationof the Jacobian matrix. During this process the model must be run at least NPAR times,where NPAR is the number of adjustable parameters.
	As is explained in Section 2.2.7, based on the contents of the Jacobian matrix, PESTcalculates a figure related to the sensitivity of each parameter with respect to all observations(with the latter weighted as per user-assigned weights). The “composite sensitivity” ofparameter i is defined as:
	si = (JtQJ)ii1/2 /m(5.1)
	where J is the Jacobian matrix and Q is the “cofactor matrix”; in most instances the later willbe a diagonal matrix whose elements are comprised of the squared observation weights. m inequation 5.1 is the number of observations with non-zero weights. Thus the compositesensitivity of the i’th parameter is the normalised (with respect to the number ofobservations) magnitude of the column of the Jacobian matrix pertaining to that parameter,with each element of that column multiplied by the weight pertaining to
	Immediately after it calculates the Jacobian matrix, PEST writes composite parametersensitivities to a “parameter sensitivity file” called “case.sen” where case is the current casename (ie. the filename base of the current PEST control file). Example 5.3 shows an extractfrom a parameter sensitivity file.
	The relative composite sensitivity of a parameter is obtained by multiplying its compositesensitivity by the magnitude of the value of the parameter. It is thus a measure of thecomposite changes in model outputs that are incurred by a fractional change in the value ofthe parameter.
	It is important to note that composite sensitivities recorded in the parameter sensitivity fileare sensitivities “as PEST sees them”. Thus if a parameter is log-transformed, sensitivity isexpressed with respect to the log of that parameter. The relative composite sensitivity of alog-transformed parameter is determined by multiplying the composite sensitivity of thatparameter by the absolute log of the value of that parameter.
	As is explained in Section 5.6, composite parameter sensitivities are useful in identifyingthose parameters which may be degrading the performance of the parameter estimationprocess through lack of sensitivity to model outcomes. The use of relative sensitivities inaddition to normal sensitivities assists in comparing the effects that different parameters haveon the parameter estimation process when these parameters are of different type, and possiblyof very different magnitudes.
	Information is appended to the parameter sensitivity file during each optimisation iterationimmediately following calculation of the Jacobian matrix. In the event of a restart, theparameter sensitivity file is not overwritten; rather PEST preserves the contents of the file,appending information pertaining to subsequent iterations to the end of the file. In thismanner the user is able to track variations in the sensitivity of each parameter through theparameter estimation process.
	When inspecting the parameter sensitivity file, keep the following points in mind:-
	If PEST is working in predictive analysis mode, it assumes that the weight assigned tothe observation constituting the sole member of the observation group “predict” iszero. Thus there is no contribution to the composite sensitivity of any parameter fromthe sole member of this observation group. However the situation is slightly differentfor information written to the parameter sensitivity file at the end of the simulation -see below.
	 PARAMETER SENSITIVITIES: CASE VES4
	OPTIMISATION ITERATION NO. 1 ----->
	 Parameter_name Group Current value Sensitivity Rel. Sensitivity
	 ro1 ro 4.00000 1.25387 0.754905
	 ro2 ro 5.00000 0.327518 0.228925
	 ro3 ro 6.00000 2.09172 1.62768
	 h1 hhh 5.00000 0.176724 0.123525
	 h2 hhh 4.00000 4.718210E-02 2.840646E-2
	 OPTIMISATION ITERATION NO. 2 ----->
	 Parameter_name Group Current value Sensitivity Rel. Sensitivity
	 ro1 ro 3.79395 1.30721 0.756995
	 ro2 ro 15.0000 0.672146 0.790506
	 ro3 ro 4.57028 1.77164 1.16918
	 h1 hhh 2.85213 0.661729 0.301198
	 h2 hhh 4.00000 0.465682 0.280369
	Example 5.3 Part of a parameter sensitivity file.
	If PEST is working in regularisation mode, the weights assigned to members of theobservation group “regul” vary from optimisation iteration to optimisation iteration.Composite parameter sensitivities for any optimisation iteration are calculated usingthe optimal weight factor (calculated on an iteration-by-iteration basis by PEST) formembers of the group “regul”.
	If an observation covariance matrix is supplied instead of observation weights for anyobservation group, this is automatically taken into account when computingcomposite parameter sensitivities.
	5.3.2.2 Sensitivity Information Recorded on Termination of PEST Execution
	At the end of the parameter estimation process (or if PEST is halted prematurely using the“stop with statistics” option), PEST provides a complete listing of composite parametersensitivities based on the best sensitivity matrix (ie. Jacobian matrix) computed during theoptimisation process. “Best” is defined in terms of the aim of the optimisation process; thismay be to minimise the objective function (parameter estimation mode), tomaximise/minimise a prediction subject to objective function constraints (pre
	The point within the parameter estimation process where the “best” Jacobian matrix wascomputed will vary from run to run. It may have been computed during the last optimisationiteration, or it may have been computed some iterations ago, subsequent attempts to improvethe outcome of the optimisation process since that iteration having met with no success. Notealso that if there was a marginal improvement in the outcome of the optimisation processduring the final optimisation iteration, but not enough to warra
	Use program PARREP (see Chapter 10) to build a new PEST control file based onoptimised parameter values from the present run.
	Set NOPTMAX in that file to -1, thus requesting that PEST compute sensitivities andthen cease execution.
	Perhaps set the FORCEN variable for each parameter group to “always_3”, thusensuring that PEST calculates derivatives with maximum precision.
	If working in regularisation mode, set the initial weight factor (WFINIT) to theoptimal weight factor determined on the present optimisation run.
	Then run PEST.
	When writing “completion parameter sensitivities” to the end of the parameter sensitivityfile, PEST lists the composite sensitivity and relative composite sensitivity to each parameterof all observation groups, as well as of each individual observation group. The compositeparameter sensitivity of each observation group is evaluated by calculating the magnitude ofthe respective column of the weighted Jacobian matrix using Equation 5.1, with thesummation confined to members of that particular observation grou
	When PEST is run in predictive analysis mode, the observation group “predict” deservesspecial attention. As was mentioned above, it is not included in the computation of overallparameter sensitivities when PEST is run in this mode. However, because it is a separateobservation group, PEST lists the composite sensitivity to each parameter of the member ofthis group, together with composite sensitivities of other observation groups, at the end of theparameter sensitivity file. The observation weight used in th
	When using PEST in regularisation mode, weights assigned to the observation group “regul”are multiplied by the optimal regularisation weight factor determined as part of the parameterestimation process before recording composite sensitivities with respect to the members ofthis group of each adjustable parameter.
	5.3.3 Observation Sensitivity File
	The composite observation sensitivity of observation oj is defined as:
	sj ={Q(JJT)}j,j1/2 /n(5.2)
	That is, the composite sensitivity of observation j is the magnitude of the j’th row of theJacobian multiplied by the weight associated with that observation; this magnitude is thendivided by the number of adjustable parameters. It is thus a measure of the sensitivity of thatobservation to all parameters involved in the parameter estimation process. At the end of itsrun, PEST lists all observation values and corresponding model-calculated values, as well ascomposite sensitivities for all observations to the
	Though composite observation sensitivities can be of some use, they do not, in general,convey as much useful information as composite parameter sensitivities. In fact in someinstances the information that they provide can even be a little deceptive. Thus while a highvalue of composite observation sensitivity would, at first sight, indicate that an observation isparticularly crucial to the inversion process because of its high information content, this maynot necessarily be the case. Another observation made
	Example 5.4 shows part of an observation sensitivity file.
	5.3.4 The Residuals File
	At the end of its execution, PEST writes a “residuals file” listing in tabular form observationnames, the groups to which various observations belong, measured and modelled observationvalues, differences between these two (ie. residuals), measured and modelled observationvalues multiplied by respective weights, weighted residuals, measurement standarddeviations and “natural weights”. This file can be readily imported into a spreadsheet forvarious forms of analysis and plotting. Its name is case.res where ca
	A word of explanation is required concerning the last two data types presented in theresiduals file. As is explained in Section 2.1.2 of this manual, after the parameter estimationprocess has been carried out and a value has been obtained for the “reference variance” σ, thestandard deviation of each observation can be calculated as the inverse of its weightmultiplied by the square root of the reference variance. Care must be taken in interpreting thisstandard deviation for, being dependent on the fit achiev
	“Natural weights” as represented on the observation residuals file are the inverse ofmeasurement standard deviations as determined above. If these weights are used in theparameter estimation process, the reference variance will be 1.0.
	Where a covariance matrix is supplied for one or more observation groups instead of weights,the residuals file is slightly modified. As well as this, an extra file called a “rotated residualsfile” is generated by PEST. See Section 4.3.3 for details.
	Observation Group Measured Modelled Sensitivity
	 ar1 group_1 1.210380 1.639640 0.5221959
	 ar2 group_1 1.512080 2.254750 0.6824375
	 ar3 group_1 2.072040 3.035590 0.8591846
	 ar4 group_1 2.940560 3.978450 1.0338167
	 ar5 group_1 4.157870 5.047430 1.1915223
	 ar6 group_1 5.776200 6.167830 1.3226952
	 ar7 group_2 7.789400 7.232960 1.4450249
	 ar8 group_2 9.997430 8.124100 1.5881968
	 ar9 group_2 11.83070 8.724950 1.7506757
	 ar10 group_2 12.31940 8.895600 1.8875951
	 ar11 group_2 10.60030 8.402450 1.9690974
	Example 5.4 Part of an observation sensitivity file.
	5.3.5 The Matrix File
	During each optimisation iteration, just after it has calculated the Jacobian matrix, if any ofthe ICOV, ICOR or IEIG variables supplied in the PEST control file are set to 1, PESTcalculates the covariance and correlation coefficient matrices, as well as the eigenvalues andnormalised eigenvectors of the covariance matrix, for the current set of parameter values.Depending on the settings of the ICOV, ICOR and IEIG variables, these matrices will then bewritten to a special file named a “matrix file”. This fil
	If any of ICOV, ICOR or IEIG are set to zero, the corresponding matrix is not written to thematrix file. If they are all set to zero, then no matrices are written to this file. If ICOV is set to1 then, as well as recording the covariance matrix to the matrix file, PEST records currentparameter values and standard deviations. (The standard deviation of a parameter is thesquare root of its variance; parameter variances comprise the diagonal of the covariancematrix.) As with the elements of the covariance and
	The observant PEST user may notice slight differences between the matrices recorded to thefinal matrix file and those recorded to the run record file at the end of the PEST run. If thelowest objective function achieved during the parameter estimation process was calculated byPEST during the final optimisation iteration, then he/she may expect that these two sets ofmatrices will be identical. Nevertheless, there are often differences between these two sets ofmatrices. These differences result from the fact t
	5.3.6 Other Files
	If requested through the PEST control variable RSTFLE, PEST intermittently stores its dataarrays and last two Jacobian matrices in binary files named case.rst, case.jac and case.jst. IfPEST execution is re-commenced using the “/r” switch, it reads the first of these binary filesin addition to its normal input files; if it is re-started with the “/j” switch it reads all of them.
	As is explained in Section 10.6, PEST records the Jacobian matrix corresponding tooptimised parameter values to a file named case.jco. This is accessible by the JACWRITutility for recording of the Jacobian matrix in text format.
	Parallel PEST uses a number of files for communication between PEST and its variousslaves. It also writes a “run management file” documenting the communications historybetween the various programs taking part in the optimisation process. All of these files aredescribed in detail in Chapter 9.
	5.3.7 PEST’s Screen Output
	As well as recording the progress of the parameter estimation process to its run record file,PEST also prints some of its run-time information to the screen; through this means the useris informed of the status of the estimation process at any time.
	If you are using the single window version of PEST and the model of which PEST hascontrol writes its own output to the screen, this will interfere with PEST’s presentation of runrecord information to the screen. Perhaps this will not worry you because it allows you tocheck that the model is running correctly under PEST’s control; in any case, you caninterrupt PEST execution to inspect the run record file at any time (see the following section).However, if you find it annoying, you may be able to redirect th
	ves > temp.dat
	or
	ves > nul
	In the latter case screen output is simply “lost”, for there is no nul file.
	5.3.8 Run-time Errors
	As was discussed above, PEST performs limited checking of its input dataset. In the event ofan error or inconsistency in its input data PEST will terminate execution with a run-time errormessage. Unlike PESTCHEK (see Chapter 10), PEST will not continue reading its input datafiles in order to determine whether more errors are present so that it can list them as well;rather it ceases execution as soon as it has noticed that something is wrong.
	Other errors can arise later in the estimation process. For example, if the instruction set failsto locate a particular observation, PEST will cease execution immediately with theappropriate run-time error message. This may happen if the model has varied the structure ofits output file in response to a certain set of parameter values in a way that you did notanticipate when you wrote the instruction set. It may also arise if the model terminatedexecution prematurely. Hence if a run-time error informs you th
	Another model-related error which can lead to PEST run-time errors of this kind will occur ifthe subdirectory which contains the model executable file is not cited in either the PATHenvironment variable or in the “model command line” section of the PEST control file. Inthis case, after PEST attempts to make the first model run, you will receive the message
	Running modelBad command or file name
	prior to a PEST run-time error message informing you that a model output file cannot beopened. (Note, however, that the model path is not required if the model executable resides inthe current directory.)
	It is normally an easy matter to distinguish PEST errors from model errors, as PEST informsyou through its screen output when it is running the model. A model-generated error, if itoccurs, will always follow such a message. Furthermore, a PEST run-time error message isclearly labelled as such, as shown in Example 5.5. If you are using Parallel PEST the modelwindow will be different from the PEST window. In this case it will be much easier todistinguish an error originating from the model from an error origi
	PEST run-time errors are written both to the screen and to the PEST run record file.
	5.4 Stopping and Restarting PEST
	5.4.1 Interrupting PEST Execution
	At the end of every model run PEST checks for the presence of a file named pest.stp in thedirectory from which it was invoked. If this file is present, PEST reads the first item in thefile. If this item is “1”, PEST ceases execution immediately. If it is “2” PEST ceasesexecution after it prints out parameter statistics. If it is “3” PEST pauses execution; to resumePEST execution after a pause, rewrite file pest.stp with a “0” as the first entry.
	File pest.stp can be written by the user using any text editor while positioned in anotherwindow to that in which PEST is running. However this file can also be written usingprograms PPAUSE, PUNPAUSE, PSTOP and PSTOPST supplied with PEST simply bytyping the name of the appropriate program as a command while situated in the PESTworking directory in another command-line window. As the names suggest, PPAUSE writesa “3” to pest.stp in order to tell PEST to pause execution; PUNPAUSE writes a “0” topest.stp to te

	Error condition prevents continued PEST execution:-
	Varying parameter “par1" has no affect on model output -
	Try changing initial parameter value, increasing derivative increment,
	holding parameter fixed or using it in prior information.

	Example 5.5 A PEST run-time error message.
	While PEST execution is paused, the run record file can be inspected by viewing it using atext editor or viewer from another window.
	5.4.2 Restarting PEST with the “/r” Switch
	As was discussed in Section 4.2.2, you can instruct PEST to periodically dump the contentsof its memory to a number of binary files so that, if its execution is terminated at any stage, itcan later be restarted, taking advantage of the work which it has already done. Thus, forexample, if you had been using the single window version of PEST and you had previouslyterminated its execution before the inversion process was complete, you could restart it usingthe command:-
	pest case /r
	where case is the filename base of the PEST control file. The restart option is invoked in anidentical manner for Parallel PEST; however it may be necessary to restart the slaves first.
	When PEST is restarted in this manner, it will not resume execution exactly where it left off;rather it will recommence the parameter estimation process at the beginning of theoptimisation iteration in which it was previously interrupted.
	In general it is unwise to interfere with any of PEST’s input files (ie. the PEST control file aswell as its template and instruction files) between interrupting and restarting PEST. WhilePEST reads all of the data previously contained in its storage arrays from the binary filecase.rst in the event of a restart, it still needs to obtain the problem dimensions and many ofits settings from the PEST control file, the parameter templates from the respective templatefiles and its instructions from the respective
	However, if you are very, very careful, you can alter a number of control variables withimpunity. The variables which you may alter are RLAMFAC, PHIRATSUF, PHIREDLAMand NUMLAM which affect the way in which PEST selects Marquardt lambdas, andNOPTMAX, PHIREDSTP, NPHINORED, RELPARSTP and NRELPAR which aretermination criteria. You can also alter the derivative variables DERINC, DERINCLB,DERINCMUL and DERMTHD for any parameter group. Thus if, for example, PESTterminates execution with a run-time error message su
	Program PARREP, one of the PEST utilities described in Chapter 10, provides a much safermeans of restarting PEST execution with one or more control variables altered. It allows anew PEST control file to be built from an existing PEST control file and a parameter valuefile; the latter may contain values optimised by PEST on a previous run. Thus a new PESTrun can be restarted (with or without altered control settings) where an old one left off.
	5.4.3 Restarting PEST with the “/j” Switch
	PEST can also be restarted with the “/j” switch; this is an integral part of the user-interactionfunctionality provided by PEST. It is discussed in Section 5.6.
	5.5 If PEST Won't Optimise
	5.5.1 General
	PEST allows the user to follow closely the progress of an optimisation run both through itsscreen output and through the user’s ability to inspect the run record file. Through watchingthe value of the objective function (referred to as “phi” on the PEST run record) fromoptimisation iteration to optimisation iteration, you can monitor PEST’s ability and efficiencyin lowering the objective function to the minimum which can be achieved within the user-provided parameter domain.
	There can be many reasons for a failure on the part of PEST to lower the objective function; in most cases the problem can be easily overcome by adjusting one or a number of PESTinput variables. The fact that PEST provides so many control variables by which it can be“tuned” to a particular model is one of the cornerstones of its model-independence. In othercases, PEST’s progress can be assisted by selectively holding either one or a few parametersat their current values; the user may then re-commence PEST e
	If you are using a particular model for the first time with PEST, you may wish to run atheoretical case first. You should use the model to fabricate a sequence of observation valuesof the same type as that for which you have laboratory or field measurements, and then usethese fabricated observations as your field or laboratory data. Then you should run PEST,using as your initial parameter estimates the parameters that gave rise to the fabricatedobservation set. PEST should terminate execution after the firs
	Next you should vary the parameter initial values and run PEST again. It is at this stage,while working with a theoretical dataset for which you know PEST should achieve a lowobjective function value, that you can adjust PEST control variables in order to tune PEST tothe model. Note that it is unlikely that you will achieve an objective function value of zeroagain; though, depending on the number of observations and their magnitudes and weights,the objective function should nevertheless be reduced to as clo
	If PEST does not lower the objective function, or lowers it slowly, you should run throughthe following checklist of reasons for PEST’s poor performance. In most instances theproblem can be rectified.
	5.5.2 Derivatives are not Calculated with Sufficient Precision
	Precise calculation of derivatives is critical to PEST’s performance. Improper derivativescalculation will normally be reflected in an inability on the part of PEST to achieve fullconvergence to the optimal parameter set. Sometimes, in such circumstances, PEST willcommence an optimisation run in spectacular fashion, lowering the objective functiondramatically in the first optimisation iteration or two. But then it “runs out of steam”, failingto lower it much further.
	Make sure that model outcomes are being written to the model output file with the maximumprecision which the model allows. If the model places an upper limit on output precision,ensure that the parameter increments used for derivatives calculation are large enough tocause a useable change in all model-calculated observations, given the number of significantdigits in which they are expressed. Try not to make parameter increments too large though, orfinite-difference-generated derivatives will be a poor appro
	Check that parameter values are written to model input files with enough significant digits toreflect parameter increments. If some parameters become very low as the optimisationprocess progresses, you may need to provide a suitable lower bound on derivativeincrements through the parameter group variable DERINCLB, or calculate the incrementusing the largest member of a parameter group by denoting the group variable INCTYP as“rel_to_max”.
	For a model which solves large matrix equations using an iterative method, you shouldensure that the model’s solution convergence criterion is set very low so that model-generated observations are calculated with a high degree of precision. However if you set ittoo low the model solution procedure may not converge; worse still, it may converge forsome parameter sets and not for others. To overcome this you may need to make a smallchange to the model such that it prints out its solution vector even if it has
	5.5.3 High Parameter Correlation
	There is often a temptation in fitting models to data, to improve the fit between modelled andmeasured observations by increasing the number of adjustable parameters. While it is truethat this can result in a lowered objective function, it is not always true that such animprovement increases a model’s ability to make reliable predictions, or that a high numberof parameters represents a valid interpretation of the dataset to which the model’s outcomesare matched. Furthermore, as the number of parameters requ
	The trouble with increasing the number of parameters without limit is that, sooner or later,some parameters become highly correlated. This results from the fact that the measurementset upon which the parameter estimation process is based may not have the ability todiscriminate between different combinations of parameter values, each combination givingrise to an equally low objective function. As has already been discussed, the extent to whichparameter pairs and/or groups are correlated can be gleaned from a
	If parameters are too highly correlated the matrix JtQJ of equation 2.18 becomes singular.However because PEST adds the Marquardt parameter to the diagonal elements of this matrixbefore solving for the parameter upgrade vector (see equation 2.20), rendering it singular nolonger, an upgrade vector can nevertheless be obtained. Eventually, unless circumvented byroundoff errors, an objective function minimum will be obtained through the normal iterativeoptimisation process. However the parameter set determined
	In addition to the nonuniqueness problem, the optimisation process may become very slow ifthere are many parameters in need of estimation. There are two reasons for this. The first isthat PEST requires at least as many model runs as there are adjustable parameters in order tofill the Jacobian matrix during each optimisation iteration. The second reason is based on thepossible near-singular condition of the normal matrix and the way in which PEST adjusts theMarquardt lambda upwards in response to this. In ge
	The incorporation of prior information into the estimation process can often add stability toan over-parameterised system. Likewise, removing a number of parameters from the processby holding them fixed at strategic values may yield dramatic improvements in PEST’sperformance. In many environmental modelling contexts a spectacular increase in PEST’sability to estimate large numbers of parameters can be achieved by running PEST inregularisation mode; see Chapter 7 for full details.
	5.5.4 Inappropriate Parameter Transformation
	PEST allows adjustable parameters to be either log-transformed or untransformed. A suitablechoice for or against log transformation for each parameter can make the difference betweena successful PEST run and an unsuccessful one.
	Trial and error is often the only means by which to judge whether certain parameters shouldbe log-transformed or not. There is no general rule governing which parameters are best log-transformed; however experience has shown that parameters whose values can vary over oneor a number of orders of magnitude often benefit from log transformation. Logtransformation of these parameters will often linearise the relationship between them and theobservations, making the optimisation process more amenable to the line
	Use of suitable SCALE and OFFSET variables can be used to change the domain of aparameter such that logarithmic transformation, and with it the possible benefits of increasedlinearity, becomes a possibility. The use of parameter scaling and offsetting is discussed inSections 2.2.4 and 4.2.4.
	More complex parameter transformations than logarithmic which may, in somecircumstances, decrease the nonlinearity of a particular parameter estimation problems can beundertaken using the parameter preprocessor PAR2PAR; see Chapter 10 for details.
	5.5.5 Highly Nonlinear Problems
	If the relationship between parameters and observations is highly nonlinear, the optimisationprocess will proceed only with difficulty. As discussed above, such nonlinearity maysometimes be circumvented through appropriate transformation of some parameters.However, in other cases this will make little difference. In such cases the Gauss-Marquardt-Levenberg method of parameter estimation on which PEST is based may not be the mostappropriate method to use.
	Sometimes the use of a high initial Marquardt lambda is helpful in cases of this type. Also,the relative and absolute parameter change limits (RELPARMAX and FACPARMAX on thePEST control file) may need to be set lower than normal; a careful inspection of the PESTrun record file may suggest suitable values for these variables and, indeed, which parametersshould be relative-limited and which should be factor-limited. Parameter increments forderivatives calculation should be set as low as possible without incur
	5.5.6 Discontinuous Problems
	The equations derived in Chapter 2, upon which the Gauss-Marquardt-Levenberg algorithmis based, are predicated on the assumption that observations are continuously differentiablefunctions of parameters. If this assumption is violated for a particular model, PEST will haveextreme difficulty in estimating parameters for that model. (However, it may have somesuccess if the dependence is continuous, if not continuously differentiable.)
	5.5.7 Parameter Change Limits Set Too Large or Too Small
	As discussed above with respect to highly nonlinear problems, a suitable choice for relativeand factor parameter change limits (ie. RELPARMAX and FACPARMAX) may allowoptimisation to be carried out under hostile circumstances. However if these change limits areset too low, minimisation of the objective function may be hampered as the upgrade vector iscontinually shortened in order to conform to the demands of these limits. An inspection of therun record file should reveal immediately whether parameter upgrad
	You should exercise caution in choosing which parameters are relative-limited and which arefactor-limited. Remember that if a parameter is factor-limited, or if it is relative-limited witha limit of less than 1, the parameter can never change sign. Conversely, if a parameter isrelative-limited with a limit of 1 or greater, it can be reduced right down to zero in a singlestep without transgressing the limit; this may cause parameter “overshoot” problems for somenonlinear models and a factor limit may need to
	As described in Section 5.6, RELPARMAX and FACPARMAX can be altered midwaythrough a PEST optimisation run. Furthermore, if the parameter adjustment vector isdominated by a particular insensitive parameter such that the change to that parameter is at itsRELPARMAX or FACPARMAX limit and the changes to other parameters are minimal,then the offending parameter can be held at its current value through the user-interventionprocess described in Section 5.6.
	5.5.8 Poor Choice of Initial Parameter Values
	In general, the closer are the initial parameter values to optimal (ie. the values for which theobjective function is at its global minimum), the faster will PEST converge to that globalminimum. Furthermore not only does a wise choice of initial parameter values reduce thePEST run time, it may also make optimisation possible, especially for highly nonlinearmodels or models for which there are local objective function minima at places removed inparameter space from the location of the global objective functi
	5.5.9 Poor Choice of Initial Marquardt Lambda
	The PEST algorithm is such that PEST should find its way to a close-to-optimal Marquardtlambda at each stage of the parameter estimation process. However if you supply an initialMarquardt lambda which is far from optimal, the adjustment to optimal lambda may notoccur. After attempting a parameter upgrade with the initial lambda, PEST searches foralternative lambdas, using the input variable RLAMFAC to calculate them. If the initiallambda was poor, these alternative lambdas may be little better in terms of l
	In most cases, the choice of an initial Marquardt lambda of between 1.0 and 10.0 works well.Nevertheless, if PEST spends the first few optimisation iterations adjusting this to a vastlyhigher value (or a vastly lower value - but remember that lambda is reduced in the normalcourse of the optimisation process anyway) before making great gains in objective functionreduction, then you will probably need to reconsider your choice of initial lambda insubsequent uses of PEST in conjunction with the same model. How
	To help PEST search farther afield for a suitable Marquardt lambda, perhaps you should setthe input variable RLAMFAC high for a while. However it is bad practice to keep it highthrough the entirety of an optimisation run; hence if PEST finds a lambda which seems towork you should terminate PEST execution, supply that lambda as the initial lambda, resetRLAMFAC to a reasonable value (eg. 2.0) and start the optimisation process again.
	Experience has shown that if the initial parameter set is poor, PEST may need a highMarquardt lambda to get the parameter estimation process started. Also the Marquardtlambda may need to be greater for highly nonlinear problems than for well-behavedproblems.
	Note that the Marquardt lambda is one of the input variables that can be adjusted in mid-runthrough user-intervention; see Section 5.6.
	5.5.10 Observations are Insensitive to Initial Parameter Values
	For some types of models, observations can be insensitive to initial parameter values if thelatter are not chosen wisely. For example, if you wish to optimise the resistivities andthicknesses of a three-layered half-space on the basis of electric current and voltagemeasurements made on the surface of that half-space, it would be a mistake to provide all thelayer resistivities with the same initial value. If you did, the model would be insensitive to thethicknesses of either of the upper layers (the lowest l
	In other cases the solution may not be as obvious. For some models, a certain parameter mayhave very little effect on model outcomes over part of its domain, yet it may have a muchgreater effect on these outcomes over other parts of its domain. If the optimised value lieswithin the insensitive area, a large degree of uncertainty will surround its estimate. Howeverif the optimal value lies in the sensitive part of the parameter’s domain it is likely that theparameter will be well-determined (unless, of cours
	5.5.11 Parameter Cannot be Written with Sufficient Precision
	In certain unusual cases an optimal parameter value may not be capable of representation in afield of limited width on the model input file. The obvious solution to this problem is toincrease the width of the parameter field in the corresponding template file. However thismay not be possible if model input format requirements are too rigid.. The only otherremedial action that can be taken is to set the DPOINT variable to “nopoint”, thus allowing again of one extra significant figure in some circumstances. B
	5.5.12 Incorrect Instructions
	If the objective function cannot be lowered it is possible that PEST is reading the modeloutput file incorrectly. If a non-numeric string is present on the model output file at a placewhere PEST has been lead to expect (through its instruction set) a number, PEST willterminate execution with an appropriate error message. However if a number is present wherePEST expects one, but this number is not the one that you intended PEST to read when youbuilt the instruction set, then it is unlikely that PEST’s perfor
	You can check that PEST is reading the correct numbers by terminating PEST executionusing the “Stop with statistics” option. PEST will then list on its run record file the model-generated observations corresponding to its best parameter set achieved so far. As PEST alsolists the residual corresponding to each model-generated observation, an incorrectly readmodel outcome may be apparent as that for which there is an unusually high residual.
	Note that program INSCHEK can also be used to check that an instruction file does, indeed,read the correct numbers from a model output file. See Chapter 10.
	5.5.13 Upgrade Vector Dominated by Insensitive Parameters
	This is a common cause of poor PEST performance. It is discussed in greater detail in thefollowing section.
	5.6 User Intervention
	5.6.1 An Often-Encountered Cause of Aberrant PEST Behaviour
	Where many parameters are being estimated and some are far more insensitive than others, itis not uncommon to encounter problems in the parameter estimation process. PEST, inresponse to the relative insensitivity of certain parameters, may calculate an upgrade vector inwhich these insensitive parameters are adjusted by a large amount in comparison with other,more sensitive, parameters; this large adjustment of insensitive parameters may be necessaryif alterations to their values are to have any effect on th
	Under these circumstances, increasing RELPARMAX and FACPARMAX is not necessarilythe solution to the problem, for parameter change limits are necessary in order to avoidunstable behaviour in the face of problem nonlinearity.
	In normal PEST usage the occurrence of this problem is easily recognised by the fact thateither the maximum relative parameter change or the maximum factor parameter change for aparticular optimisation iteration (as printed to the screen and to the run record file) is equal toRELPARMAX or FACPARMAX respectively, and that the objective function is reducedvery little. PEST records the names of parameters that have undergone the largest factor andrelative changes at the end of each optimisation iteration. More
	5.6.2 Fixing the Problem
	The solution to the above problem is to hold parameters which are identified as beingtroublesome at their current values, at least for a while. With such recalcitrant parameters“out of the road”, PEST can often achieve a significant improvement in the objectivefunction. Such temporarily held parameters can then be brought back into the parameterestimation process at a later date.
	It may be found that quite a few parameters need to be held in this manner, for once aparticular troublesome parameter has been identified and held, it may be found that theproblem does not go away because another insensitive parameter then dominates theparameter upgrade vector. When that parameter is held, yet another troublesome parametermay be identified, and so on. All such parameters can be temporarily held at their currentvalues if desired. A user may hold such parameters one by one as they are identi
	5.6.3 The Parameter Hold File
	After it calculates the Jacobian matrix, and immediately before calculating the parameterupgrade vector, PEST looks for a file named case.hld (where case is the filename base of thePEST control file) in its current directory. If it does not find it, PEST proceeds with itsexecution in the normal manner. However if it finds such a file, it opens it and reads itscontents in order to ascertain the user’s wishes for the current optimisation iteration.
	A parameter hold file is shown in Example 5.6.
	Entries in a parameter hold file can be in any order. Any line beginning with the “#”character is ignored, this being interpreted as a comment line. If any lines are in error they arealso ignored, for PEST does not pause in its execution or clutter up either its screen displayor its run record file with error messages pertaining to the parameter hold file. However itdoes report any alterations that it makes to its behaviour on the basis of directives obtainedfrom the parameter hold file to its run record fi
	A user is permitted to alter the values of three PEST control variables using the parameterhold file. These are RELPARMAX, FACPARMAX and LAMBDA. The syntax is shown inExample 5.6, ie. the name of the variable must be followed by its new value. It is importantto note that if a parameter hold file is left “lying around”, any lines altering the value oflambda should be removed or “commented out” or PEST will be prevented from making itsnormal adjustment to lambda from iteration to iteration. This may severely
	Note that once RELPARMAX and FACPARMAX have been altered using a parameter holdfile, they stay altered, even if the file is removed or the lines pertaining to RELPARMAX andFACPARMAX are subsequently deleted or commented out.
	To hold a parameter at its current value while the parameter upgrade vector is beingcalculated, use a line such as the fourth appearing in Example 5.6, ie. the string “holdparameter” followed by the parameter’s name. (If the parameter name is incorrect, PESTsimply ignores the line.) If the pertinent line is removed from the parameter hold file, or theparameter hold file itself is removed, the parameter is then free to move in later optimisationiterations.
	The format for the sixth line in Example 5.6 is:-
	hold group pargpnme < x
	where pargpnme is the name of a parameter group and x is a positive number. A line such asthis directs PEST to hold any parameter in the named parameter group temporarily fixed ifthe sensitivity of that parameter is less than the supplied number (ie. x). Held parameters canbe freed again later by reducing x (to zero if desired), by deleting this line from the parameterhold file, or by deleting the parameter hold file itself.
	relparmax 10.0
	facparmax 10.0
	lambda 200.0
	hold parameter thick1
	# hold parameter thick2
	hold group conduct < 15.0
	hold group thicknss lowest 3
	hold eigenvector 1 highest 2
	Example 5.6 Part of a parameter hold file.
	As is illustrated in the 7th line of Example 5.6, the n most insensitive parameters in aparticular parameter group can be held at their current values using the command:-
	hold group pargpnme lowest n
	where n is a positive integer. Such held parameters can be freed later in the parameterestimation process by reducing n (to zero if desired), by deleting this line from the parameterhold file, or by deleting the parameter hold file itself.
	The syntax of the 8th line of Example 5.6 is:-
	hold eigenvector n highest m
	This option has been included in PEST’s parameter holding functionality to accommodate thefact that an observation dataset can be insensitive to certain groups of parameters varied in aspecific ratio, even though observations might be individually sensitive to each parametercomprising the group. As is discussed in Chapter 2, this is a manifestation of the phenomenonof parameter correlation. The damage done to the parameter estimation process by such aninsensitive parameter combination can be every bit as ba
	In interpreting the above parameter holding command, eigenvectors are counted in order ofthe magnitude of their corresponding eigenvalues, starting from the highest eigenvalue andworking down. Thus eigenvector number 1 is the eigenvector associated with the highesteigenvalue of the covariance matrix. (This will be the eigenvector most commonly cited inparameter hold files supplied by the user, because the magnitude of an eigenvalue is ameasure of the insensitivity of the objective function to parameters var
	Once the desired eigenvector has been identified (ie. eigenvector number n in the abovecommand), PEST then selects the parameters which comprise the m largest components ofthat eigenvector. These are the parameters which are, collectively, those to which theobservation dataset is least sensitive. PEST then holds these parameters at their currentvalues while it calculates the parameter upgrade vector.
	As is discussed in Section 5.5, eigenvalues and eigenvectors are available at all stages of theparameter estimation process through the matrix file recorded by PEST during everyoptimisation iteration.
	While the ability to hold parameters according to their component magnitudes in variouseigenvectors can be of use in difficult cases, care should be taken in using this functionality.Where excessive parameter correlation is causing problems in the inversion process, it isoften sufficient for only 1, 2 or a very few of the correlated parameters to be held, rather thanall of them, when calculating an upgraded parameter set. The parameters to which the heldparameters were formerly correlated are then free to
	5.6.4 Re-calculating the Parameter Upgrade Vector
	In normal PEST operation, the user will probably not be aware that his/her intervention isrequired until after at least one optimisation iteration has elapsed. Even if it has met withlittle success in lowering the objective function, PEST moves on to the next optimisationiteration commencing, once again, its time-consuming calculation of the Jacobian matrix(possibly having switched to the use of three-point derivatives).
	However the functionality exists within PEST to halt its execution at any time and restart it atthat place at which it last commenced calculation of the parameter upgrade vector, ie. at theplace at which it last completed its calculation of the Jacobian matrix. Provided the PESTcontrol variable RSTFLE is set to 1, PEST stores the Jacobian matrix in a binary file eachtime it is calculated; the Jacobian matrix is easily retrieved if PEST is asked to re-calculatethe parameter upgrade vector.
	Re-commencement of PEST execution for upgrade vector re-calculation is effected byrunning PEST using the command
	pest case /j
	or, if using Parallel PEST,
	ppest case /j
	where case is the current PEST case name, ie. the filename base of the PEST control file; “j”stands for “Jacobian”. Whether PEST was terminated while testing the efficacy of differentMarquardt lambdas in lowering the objective function, or whether it was terminated after theiteration counter had “ticked over” and PEST was engaged in calculation of a new Jacobianmatrix, PEST will re-commence execution at the place at which the last Jacobian matrix hadjust finished being calculated. Thus, depending on what PE
	It is through this restart mechanism that user-assistance is possible with PEST. Uponinspection of the run record file and the parameter sensitivity file, a user may decide thatPEST can do better in improving the objective function if it attempts the last parameterupgrade again with certain parameters, or groups of parameters, held fixed. Thus thelaborious calculation of the Jacobian matrix is not wasted, for PEST is able to get a “secondchance” at using this important information in calculating a better pa
	PEST can be stopped and restarted using the “/j” switch as many times as is desired. Thus, insome over-parameterised cases, a user can progressively hold more and more parametersfixed until a significant improvement in the objective function is realised. Then he/she can letPEST move on to the next optimisation iteration.
	5.6.5 Maximum Parameter Change
	As has already been discussed, at the end of each optimisation iteration PEST records on itsrun record file the maximum factor and relative changes undergone by any parameter. It alsorecords the names of the parameters undergoing these maximum changes. This, incombination with the contents of the parameter sensitivity file, may assist the user indeciding which (if any) parameters to temporarily hold at their present values using directivessupplied in the parameter hold file.
	5.7 PEST Postprocessing
	5.7.1 General
	After the parameter estimation process is complete, a thorough examination must beundertaken of the results of this process before the estimated parameters can be used in acalibrated model which is run for predictive purposes. This section presents a guide to someof this analysis procedure. The discussion necessarily pertains to general parameterestimation post-processing; extra, case-specific analysis will be required for each particularinstance of PEST deployment.
	The information upon which to base post-processing analyses such as those outlined in thissection is contained in the PEST run record file and in a number of other files that are writtenby PEST, often in a format that facilitates plotting using commercial graphing andspreadsheet packages. See Sections 5.2 and 5.3 for details.
	5.7.2 Parameter Values
	Parameter values should be inspected for reasonableness. It is often a good idea to undertakeinitial PEST runs with parameter bounds set very wide. In this way PEST is free to assignunrealistic values to certain parameters if this is required in order to achieve goodness of fitbetween model outcomes and corresponding field data. When reasonable parameter boundsare then imposed it will often be possible to obtain just as good a fit, this being an outcome ofthe parameter correlation that is a feature of most
	5.7.3 Parameter Statistics
	This manual discusses at length the role of the various statistics that are produced as anoutcome of the PEST parameter estimation process. These include the parameter covariancematrix, correlation coefficient matrix, covariance matrix eigenvalues and eigenvectors andparameter confidence intervals. Though all of these quantities are only approximate becauseof the fact that their calculation is based on a linearity assumption that is often violated, thereis nevertheless much to be learned about the model, it
	High levels of parameter uncertainty can result from a poor fit between model outcomes andfield observations, from a high level of parameter correlation, from insensitivity on the partof certain parameters, or from all of these. Provided PEST has not faltered in the nonlinearparameter estimation process (see Section 5.5), the first condition indicates that either fielddata is poor or that the model is inappropriate. (Or it may indicate that certain modelparameters that were held fixed during the optimisatio
	Parameter uncertainty resulting from high levels of parameter correlation may or may not bea defect, depending on the problem to which the model will be applied. Highly correlatedparameters are recognised through an inspection of the correlation coefficient matrix, andthrough an inspection of the eigenvalues and eigenvectors of the parameter covariancematrix. Whether indeterminacy of these parameters affects a particular model predictiondepends on the prediction. The ultimate test of this is to use PEST’s p
	Parameter uncertainty caused by parameter insensitivity is often difficult to rectify. Recallthat composite parameter sensitivities are listed in the parameter sensitivity file produced byPEST. Parameter insensitivity results from the fact that the dataset used in the optimisationprocess simply does not possess the information content that is required to resolve the valuesof offending parameters. Thus these parameters can assume a range of values with minimaleffect on model outcomes.
	Once again, parameter uncertainty arising out of parameter insensitivity may or may notresult in high levels of predictive uncertainty. As always, the extent of predictive uncertaintycan be estimated using PEST’s predictive analyser.
	Parameter uncertainty resulting from either excessive correlation or from insensitivity ofparameters can often be reduced by including more measurement data in the inversionprocess, especially if these measurements are “targeted” at the offending parameters. Extrainformation in the form of prior information can also be very effective in increasingparameter sensitivity and in reducing parameter correlation. Use of PEST in regularisationmode can also be very effective in reducing the deleterious effects of pa
	5.7.4 Residuals
	An analysis of the differences between model outcomes and corresponding field or laboratorydata is an extremely important part of any parameter estimation application.
	The mathematical basis of the parameter estimation algorithm used by PEST relies on theassumption that measurement uncertainties are uncorrelated, ie. that the uncertaintyassociated with any one measurement is unrelated to that associated with any othermeasurement. If measurements do, in fact, exhibit correlation then an observation covariancematrix should be used in place of observation weights so that the “rotated residuals” areuncorrelated. See Section 4.3 for details.
	One of the first tasks that should be undertaken after the parameter estimation process iscomplete is to determine whether residuals (or rotated residuals) are, in fact, randomlydistributed about a mean of zero with minimal correlation between them. PEST providessome degree of assistance in making this determination. As described in Section 5.2.8 and inSection 4.3, on its run record file PEST lists a number of pieces of information pertaining tothe residuals taken as a whole, and to the residuals pertaining
	Much can be learned about residuals (and about the efficacy of the parameter estimationprocess that gave rise to these residuals), by different types of graphical inspection. Graphscan be readily obtained using commercial plotting software based on the informationcontained in the residuals file, and perhaps the rotated residuals file, written by PEST at theend of its run. These files can also be used as a basis for more sophisticated residuals analysisusing commercial statistical software.
	Ideally, a plot of weighted (rotated) residuals against weighted or unweighted (rotated)observation values (or weighted or unweighted simulated values) should reveal nodependence of one upon the other (unless weights were purposefully chosen to accentuatecertain observation types). Furthermore, a plot of weighted (rotated) residuals against thenormal variate should (ideally) reveal that residuals are normally distributed.
	Perhaps the most important types of residuals analyses are those that can only be undertakenin a case-specific manner. For example, if the model being calibrated is a steady-state groundwater model and the measurements are of water levels in various bores spread throughout themodel domain, then it is important that residuals be plotted at the locations of their respectiveboreholes and superimposed on a map of the area; “proportional posting” and/or contouringof these residuals may also be useful. Such a two
	If measurements used in the calibration process represent the variation of some quantity overtime at one or a number of measurement sites, then superimposed plots of model-generatedand measured quantities against time, or of the residuals themselves against time, at allmeasurement sites should be inspected. Any tendency of the model to overpredict orunderpredict over extended periods of time, or over certain segments of the graphs, should benoted, for this may indicate an inadequacy in the model’s ability t
	5.7.5 Over-Parameterisation
	In many cases of model deployment the fit between model outcomes and field measurementscan be improved with relative ease by declaring more parameters as adjustable, or by simplyadding more parameters to the model. This is particularly the case for distributed parametermodels where it is an easy matter to undertake a finer subdivision of the model domain forparameterisation purposes, thus endowing the model with a greater number of parameters thatrequire estimation. Ultimately, through adding more and more
	It is very important to be aware of the fact that a good fit under calibration conditions doesnot guarantee an accurate model prediction. In general, the more parameters that areestimated, the more highly are they correlated, and the more likely it is that some of them areinsensitive. Both of these will contribute to a high degree of parameter uncertainty whichmay result in a high degree of uncertainty for at least some types of model predictions.
	If the system under study is such that a high level of parameterisation is nevertheless requiredbecause it is necessary that the model be capable of reproducing the “fine detail” of systemresponse, then the user should be very aware of the uncertainty surrounding estimatedparameters and of the uncertainty that is likely to accompany many of the predictions madeby the model. In this case predictive analysis is a necessity. Alternatively, some kind ofproblem “regularisation” is required, this being a mechanis
	5.7.6 Covariance Matrix for Best-Fit Parameters
	The user is reminded that once PEST has calculated an optimal set of parameter values and,in accordance with one of its termination criteria, finishes execution, it calculates thecovariance matrix and the statistics derived therefrom on the basis of the Jacobian matrixgiving rise to the best set of parameter values, unless these were achieved on the very lastoptimisation iteration. If this is the case, then PEST’s termination criteria are such as toensure that the statistics calculated on the basis of the “
	Use program PARREP (see Section 10.5) to build a new PEST control file in whichinitial parameter values are actually optimised parameter values determined on aprevious PEST run.
	Set the control variable NOPTMAX (see Section 4.2.2) to -1 in the new PEST controlfile.
	Run PEST.
	Greater accuracy in derivatives calculation (and hence greater accuracy in calculation of theparameter covariance matrix) can be achieved with the FORCEN variable (see Section 4.2.3)for all parameter groups set to “always_3” in the new PEST control file.
	5.7.7 Model Outputs based on Optimal Parameter Values
	Whether or not you have undertaken the steps outlined in the previous section for obtainingstatistics based on optimal parameters, the last model run undertaken by PEST prior totermination of execution will not normally have been undertaken on the basis of optimalparameters. (If the instructions outlined in the previous section are followed, the last modelrun will, in fact, have been undertaken with one parameter value slightly incremented ordecremented from optimality for the purpose of derivatives calcula

	Predictive Analysis
	Predictive Analysis
	6.1 The Concept
	6.1.1 What Predictive Analysis Means
	In the discussion that follows, reference will be made to PEST’s usage in the role of modelcalibration. However PEST is often used in the role of data interpretation as well, particularlygeophysical data interpretation in which earth properties are inferred from a number ofdiscrete surficial or downhole measurements. Though not referenced specifically, thefollowing discussion is just as applicable to PEST’s usage in that role as it is to PEST’s usagein model calibration.
	PEST “calibrates” a model by reducing the discrepancies between model outputs and fieldobservations to a minimum in the weighted least squares sense. The differences between fieldmeasurements and model outputs are encapsulated in an “objective function” defined as theweighted sum of squared deviations between field observations and corresponding modeloutputs. As PEST executes, it progressively reduces this objective function until it can reduceit no more.
	In many cases the “landscape” of the objective function in parameter space is not comprisedof a discrete bowl-shaped depression with the objective function minimum lying neatly at thebottom of that depression. Rather (especially if parameters number more than just a few), theobjective function minimum often lies at the bottom of a long, narrow valley of almost equaldepth along its length. Any parameters for which the objective function lies within the valleycan be considered to calibrate (or almost calibrat
	p1p2ΦminΦ + δmin
	Figure 6.1. Objective function contours in parameter space; linear model.
	ΦminΦ + δminp2p1
	Figure 6.2. Objective function contours in parameter space; nonlinear model.
	Both of Figures 6.1 and 6.2 depict situations where there is a high degree of parametercorrelation – that is, one parameter can be varied in harmony with another with virtually noeffect on the objective function. Thus the solution to the inverse problem (ie. the modelcalibration problem) is nonunique. If the minimum of the objective function is denoted asΦmin, and if all parameters for which the objective function is less than Φmin + δ (where δ isrelatively small) can also be considered to calibrate the mod
	In most instances of model calibration, only a single set of parameters lying within the Φmin +δ contour of Figures 6.1 and 6.2 is calculated. Model predictions are then made with thissingle parameter set. An obvious question is this: what would have been the model’spredictions if another set of parameters lying within the Φmin + δ contour were used forpredictive purposes instead, particularly if this alternative set is relatively distant from theoriginal parameter set as measured in parameter space?
	6.1.2 Some Solutions
	A number of different methods are available for answering this question. However traditional“sensitivity analysis” cannot be used. The term “sensitivity analysis” is often used to describethe technique whereby parameter values are individually varied from calibration values inorder to determine the effects of these changes on model predictive outcomes. This is anunacceptable method of predictive analysis in most instances because unless parameters arevaried in certain discrete ratios (that vary with paramet
	Monte-Carlo analysis is often used to examine uncertainty in model predictions. Parametersets can be generated at random; for each such parameter set the model is run undercalibration conditions. If the resulting objective function is above Φmin + δ the parameter setis rejected. If it is below Φmin + δ the model is then run under predictive conditions. Aftermany thousands of model runs have been undertaken a suite of predictions will have beenbuilt up, all generated by parameter sets which satisfy calibrati
	This method of predictive analysis has many attractions; however its main disadvantage is inthe number of model runs required. Where there are any more than a handful of adjustableparameters, the dimensionality of the problem requires that millions of model runs beundertaken, rendering the method intractable in many practical settings.
	6.1.3 The “Critical Point”
	The effect of parameter nonuniqueness on predictive nonuniqueness depends on theprediction being considered. In many instances a model is calibrated under a very differentstress regime from that under which it will operate to make predictions; in other cases thestress regimes will be similar. In some cases model predictions will be of the same type asthose that were used for calibration; in other cases a model will be required to generatepredictions of a very different type from those used in the calibratio
	In general, the more similarity that model predictions bear to the type of data used incalibrating the model, and the more similar is the stress regime in which predictions are madeto those prevailing at the time of calibration, the greater is the likelihood that parameteruncertainty arising as an outcome of the calibration process will not result in a large degreeof predictive uncertainty. If parameter uncertainty “doesn’t matter” in terms of the model’sability to replicate historical system conditions, th
	Hence parameter uncertainty is, in itself, not a big issue. Parameter uncertainty is importantonly in so far as it effects predictive uncertainty, and this depends on the prediction. (Unless,of course, the role of the inversion process is actually to infer parameters for their own sakes;in this case the parameters themselves are the predictions. The discussion that follows isdirectly applicable to this situation when parameters are considered in that light.)
	Figure 6.3 illustrates the dependence of a particular model prediction on parameter values forthe two parameter system represented in Figure 6.2. As can be seen from Figure 6.3, theprediction of interest increases with both p1 and p2 (the values of the two parameters). If it isour desire to find the maximum prediction of this type that is compatible with the fact thatmodel parameters must be constrained such that the model correctly simulates systemperformance under calibration conditions, then this predict
	direction of increasingprediction valuep2p1
	Figure 6.3 Contours of a model prediction in parameter space.
	criticalpointp2p1
	Figure 6.4 The “critical point” in parameter space.
	The situation is only slightly more complicated when parameter bounds are imposed. Figure6.5 shows objective function contours, model prediction contours, and the critical point inthis case. The prediction corresponding to parameter values at the critical point is now theworst or best model prediction that it is possible to make after both knowledge andcalibration constraints have been imposed.
	criticalpointp2p1
	Figure 6.5 The “critical point” with parameter bounds taken into account.
	The importance of predictive analysis in model deployment cannot be understated. In mostinstances of model usage only a single prediction is made. However where a range ofpredictions is possible, it is poor modelling practice not to provide at least some indication ofthe extent of this range. The model prediction corresponding to the critical point defines theextent of this predictive range in one direction.
	For example, if a rainfall-runoff model has been calibrated in order to make predictions offlood height following future high rainfall events, then the model’s prediction of themaximum possible flood height may be of critical importance to formulation of a floodmanagement strategy. Due to the fact that the height of the flood peak may be sensitive toparameters which are highly correlated with each other under the more benign conditionsunder which the model was calibrated, the possibility of predictive uncer
	6.1.4 Dual Calibration
	There are two means whereby PEST can be used to establish the degree of uncertaintyassociated with a particular model prediction. The first is approximate and can be done usingPEST under normal parameter estimation conditions. The second involves determination ofthe actual critical point. The first of these is discussed in the present section while the secondis discussed in the next section.
	“Dual Calibration” gets its name from the fact that PEST is asked to calibrate a model that isactually comprised of two models. Recall that the “model” run by PEST can actually be abatch file comprised of many executables. A batch file can easily be written such that it firstruns the model under calibration conditions and then runs the model under predictiveconditions. The dataset for “calibration” of this dual model should be the normal calibrationdataset (for which corresponding model-generated numbers ar
	The trick in implementing the dual calibration technique is the selection of a weight to assignto the single model prediction. In general, the weight applied to this prediction should besuch that the contribution to the final objective function by the residual associated with thesingle prediction is of the same order as the contribution to the objective function by all ofthe residuals associated with the historical component of the dual model. If this is the case,then obviously the model will not be produci
	Dual calibration can be used with any nonlinear parameter estimator. However it isparticularly easy to implement with PEST. One reason for this is the model-independentnature of PEST which allows it to be used as easily with a composite model encapsulated in abatch file as with a model comprised of a single executable. Another reason lies in the robustnature of the PEST inversion algorithm. Yet another reason lies in the fact that PEST printsout the contribution made to the objective function by different o
	If one of the names of the observation groups supplied to PEST is “predict”, and if there isonly one observation belonging to that group (this observation can have any name), thenPEST prints out the model-calculated number corresponding to that observation every time itcalculates a new parameter update vector. Thus whenever it displays a new objective functionit also prints out the line:-
	prediction = x
	where x is the model-generated value corresponding to the sole observation belonging toobservation group “predict”. Obviously, if you are not using PEST to undertake dualcalibration, you should avoid use of “predict” as an observation group name.
	6.1.5 Predictive Analysis Mode
	PEST can run in three different modes – “parameter estimation mode”, “regularisation mode”and “predictive analysis mode”. The first of these modes is used to find the objective functionminimum Φmin; the second is most useful when many parameters require adjustment throughthe calibration process; see the next chapter. When run in predictive analysis mode, PESTfinds the critical point depicted in Figures 6.4 and 6.5 and determines the model predictionassociated with that point. The theory underpinning PEST’s
	Model setup for predictive analysis is similar to that for dual calibration operations. That is, acomposite model is constructed comprised of the model run under calibration conditionsfollowed by the model run under predictive conditions. There can be as many fieldobservations corresponding to the former model component as desired, these being the“calibration observations”. However there should be only one output from the predictivemodel component which is used by PEST as an observation. Furthermore, so PES
	Before using PEST to undertake predictive analysis, you should have already calibrated themodel. Because the model has been calibrated, you will have determined a parameter setcorresponding to the objective function minimum; you will also have determined theobjective function minimum itself, ie. Φmin. When run in predictive analysis mode PESTmust be supplied with the value of Φmin + δ, henceforth referred to as Φ0. PEST thenmaximises or minimises the model prediction (you tell it which), while ensuring that
	PEST’s operation in predictive analysis mode has much in common with its operation inparameter estimation mode. Like parameter estimation, the process required to determine thecritical point is an iterative one, beginning at some user-supplied initial parameter set. Initialparameters can be either inside the Φ0 contour or outside of it; in fact they can be the sameinitial values that were used for the parameter estimation process. If they are outside of theΦ0 contour, PEST automatically works in parameter e
	When run in predictive analysis mode PEST still needs to calculate a Jacobian matrix, soderivatives of model outcomes with respect to adjustable parameters are still required.Derivatives can be calculated using two or three points; PEST can switch from one to theother as the solution process progresses. Parameters must still be assigned to groups for thepurpose of assigning variables which govern derivatives calculation. Parameters can be log-transformed, linked to one another, or fixed in predictive analys
	Just as in parameter estimation mode, a Marquardt lambda is used to assist PEST in copingwith model nonlinearities when it is run in predictive analysis mode; this lambda is adjustedby PEST as the optimisation process progresses. The same user-supplied control variablesaffect PEST’s lambda adjustment procedure as when it is used in parameter estimation mode(plus a couple more – see below). However, if desired, a line search procedure along thedirection of the parameter upgrade vector can be used to improve
	When run in predictive analysis mode PEST can be stopped and restarted at any time; it canbe re-started using the “/r” or “/j” switch just as in parameter estimation mode (provided thatthe PEST RSTFLE variable was set to “restart” on the previous run). Relative and factorchange limits are just as important when PEST is used in predictive analysis mode as when itis used in parameter estimation mode. Prior information can also be used; naturally if it isused in a predictive analysis run following a parameter
	Observation and observation group functionality in predictive analysis mode is identical tothat in parameter estimation mode. However, as was mentioned above, when PEST is used inpredictive analysis mode there must be at least two observation groups, one of which isnamed “predict”. This group must contain only one observation (of any name), this being theobservation corresponding to the single model output for which a maximum or minimum issought within the constraints of Φ0. All other observations for this
	When run in predictive analysis mode more model runs are normally required to achievesolution convergence than are required when PEST is run in parameter estimation modebecause it is usually a more difficult matter to find the critical point than it is to find theobjective function minimum.
	Except for the value of one control variable, the same control file can be used by PEST whenrun in both parameter estimation and predictive analysis modes (provided the control file hasa “predictive analysis” section – see below). Furthermore, because of the functionalityattached to the observation group “predict”, it is a particularly simple matter to run PEST inpredictive analysis mode on a particular problem and then switch to running PEST inparameter estimation mode on the same problem in order to imple
	PEST screen output is slightly different when run in predictive analysis mode from its screenoutput when run in parameter estimation mode in that the value calculated for the predictionis written to the screen on every parameter upgrade. The user should bear in mind whenmonitoring PEST performance through watching its screen output, that successful PESTexecution is no longer measured in terms of how much it can reduce the objective function. Itis now measured by how high or low (depending on the user’s requ
	After completion of a predictive analysis run, the highest or lowest model prediction forwhich the objective function is equal to or less than Φ0 is recorded on the PEST run recordfile. Corresponding parameter values are also recorded on this file as well as in file case.parwhere case is the filename base of the PEST control file.
	As has already been mentioned, predictive analysis should only be undertaken after PESThas been used to undertake parameter estimation with the model run under calibrationconditions alone. The predictive analysis and parameter estimation runs are closely related.All parameters, parameter transformations, parameter linkages, observations, observationweights, prior information equations and prior information weights must be the same for thetwo runs in order to ensure consistency in objective function values.
	6.2 Working with PEST in Predictive Analysis Mode
	6.2.1 Structure of the PEST Control File
	The PEST control file used for running PEST in predictive analysis mode is shown inExample 6.1 An example of this file is provided in Example 6.2.
	pcf
	* control data
	RSTFLE PESTMODE
	NPAR NOBS NPARGP NPRIOR NOBSGP
	NTPLFLE NINSFLE PRECIS DPOINT NUMCOM JACFILE MESSFILE
	RLAMBDA1 RLAMFAC PHIRATSUF PHIREDLAM NUMLAM
	RELPARMAX FACPARMAX FACORIG
	PHIREDSWH
	NOPTMAX PHIREDSTP NPHISTP NPHINORED RELPARSTP NRELPAR
	ICOV ICOR IEIG
	* parameter groups
	PARGPNME INCTYP DERINC DERINCLB FORCEN DERINCMUL DERMTHD
	(one such line for each of the NPARGP parameter groups)
	* parameter data
	PARNME PARTRANS PARCHGLIM PARVAL1 PARLBND PARUBND PARGP SCALE OFFSET DERCOM
	(one such line for each of the NPAR parameters)
	PARNME PARTIED
	(one such line for each tied parameter)
	* observation groups
	OBGNME
	(one such line for each observation group)
	* observation data
	OBSNME OBSVAL WEIGHT OBGNME
	(one such line for each of the NOBS observations)
	* model command line
	write the command which PEST must use to run the model
	* model input/output
	TEMPFLE INFLE
	(one such line for each model input file containing parameters)
	INSFLE OUTFLE
	(one such line for each model output file containing observations)
	* prior information
	PILBL PIFAC * PARNME + PIFAC * log(PARNME) ... = PIVAL WEIGHT OBGNME
	(one such line for each of the NPRIOR articles of prior information)
	* predictive analysis
	NPREDMAXMIN
	PD0 PD1 PD2
	ABSPREDLAM RELPREDLAM INITSCHFAC MULSCHFAC NSEARCH
	ABSPREDSWH RELPREDSWH
	NPREDNORED ABSPREDSTP RELPREDSTP NPREDSTP
	Example 6.1. Construction details of the PEST control file for use in predictive analysismode.
	Differences between the PEST control file used by PEST for running in predictive analysismode, and that used for work in parameter estimation mode are few. The PESTMODEvariable on the third line of the PEST control file must be set to “prediction”. Also, the PESTcontrol file must contain a “predictive analysis” section which controls PEST’s operations inthis mode. Note the following:-
	if PEST is run in parameter estimation mode the “predictive analysis” section of thePEST control file is ignored and can, in fact, be omitted;
	if there is no prior information the “prior information” section of the PEST controlfile should either be omitted or simply left empty.
	6.2.2 PEST Variables used for Predictive Analysis
	The role of those PEST variables which govern its operation in predictive analysis mode willnow be discussed in detail. Although PESTMODE was discussed in Section 4.2.2,specifications for this variable will now be repeated. All other variables discussed belowreside in the “predictive analysis” section of the PEST control file and hence pertain only toPEST’s operation in predictive analysis mode.
	PESTMODE
	This is a character variable that appears on the third line of the PEST control file just after theRSTFLE variable. It must be supplied as either “estimation”, “prediction” or “regularisation”.In the first case PEST will run in parameter estimation mode (its traditional mode ofoperation); in the second case PEST will run in predictive analysis mode; in the third casePEST will run in regularisation mode (see Chapter 7).
	As mentioned above, if PEST is run in predictive analysis mode, then you must ensure thatthe PEST control file contains a “predictive analysis” section. You must also ensure thatthere are at least two observation groups, one of which is named “predict”, and that the“predict” group has just one observation. In most cases this will correspond to an output ofthe predictive component of a composite model. The observation can have any name, valueand weight; the latter two are ignored by PEST when run in predicti
	NPREDMAXMIN
	When PEST is used in predictive analysis mode, its task is to maximise or minimise thesingle model prediction while maintaining the objective function at or below Φmin + δ (ie.Φ0). If NPREDMAXMIN is set to 1, PEST will maximise the prediction; ifNPREDMAXMIN is set to –1, PEST will minimise the prediction.
	PD0
	PD0 is a value for the objective function which, under calibration conditions, is consideredsufficient to “just calibrate” the model. It is equal to Φmin + δ, ie. Φ0 (see Section 6.1.1). APEST predictive analysis run should be preceded by a parameter estimation run in which Φminis determined. The user then decides on a suitable value for δ and hence Φ0 before supplyingthe latter as PD0 for a PEST predictive analysis run. Naturally PD0 should be greater thanΦmin; however in most circumstances it should only
	PD1
	The procedure by which PEST calculates the location of the critical point in parameter spaceis a complex one; see Section 2.1.9. If PEST is asked to maximise (minimise) a certain modelprediction while constrained to keep the objective function (calculated on the basis ofcalibration observations only) as close as possible to PD0 it will, in the course of its iterativesolution process, wander in and out of “allowed parameter space” (ie. the area inside the Φ0 +δ contour of Figures 6.1, 6.2, 6.4 and 6.5).
	Because the shape of the PD0 contour can be so complex, it is extremely hard for PEST tofind a parameter set which lies exactly on this contour. The value supplied for PD1 (whichmust be slightly higher than PD0) is a value which PEST will consider as being “closeenough” when approaching this contour from the outside. (When approaching it from theinside, any objective function value is “good enough” because values on the inside of thePD0 contour are all less than PD0 and hence all calibrate the model.)
	Thus PD0 is the value of the objective function that PEST must “aim for” when maximising(minimising) the model prediction; PD1 is the value that it will accept. This should normallybe about 5% higher than PD0. However if you are not undertaking a line search forrefinement of the parameter upgrade vector (see below), or if PEST appears to be havingdifficulties in finding parameter sets which can raise or lower the prediction (whichever isappropriate) while keeping the model calibrated, it may be advisable to
	PD2
	When used in predictive analysis mode, the solution procedure used by PEST is very similarto that used in parameter estimation mode. During each optimisation iteration PEST first fillsthe Jacobian matrix; then it calculates some trial parameter upgrade vectors on the basis of anumber of different values of the Marquardt lambda. The latter is automatically altered byPEST during the course of the solution process using a complex adjustment procedure. If thecurrent value of the objective function is above PD1,
	After PEST has tested a few different Marquardt lambdas it must make the decision as towhether to continue calculating parameter upgrade vectors based on new lambdas or whetherit should move on to the next optimisation iteration. If the objective function is above PD1this decision is made using the same criteria as in normal PEST operation; these criteria arebased on the efficacy of new lambdas in lowering the objective function. An importantvariable in this regard is PHIREDLAM. As is explained in Section 4
	When PEST is run in predictive analysis mode, as the objective function approaches PD0 therelative change in the objective function, Φ, between Marquardt lambdas may be small;however the relative reduction in (Φ - Φ0) (ie. the objective function minus PD0) may besufficient to warrant testing the efficacy of another Marquardt lambda. The objective functionvalue at which PEST stops testing for a relative objective function reduction, and beginstesting for a relative reduction in (Φ - Φ0) is PD2. Generally thi
	ABSPREDLAM and RELPREDLAM
	During each iteration, after it has filled the Jacobian matrix PEST tests the ability of anumber of different values of the Marquardt lambda to achieve its objective. Its exactobjective depends on the current value of the objective function, Φ. If the objective functionis above PD1, PEST’s highest priority is to lower it; if the objective function is less thanPD1, PEST’s highest priority is to raise or lower (depending on the value ofNPREDMAXMIN) the model prediction. In either case, PEST is constantly face
	If the objective function is below PD1 and successive Marquardt lambdas have not succeededin raising (lowering) the model prediction by a relative value of more than RELPREDLAMor by an absolute value of more than ABSPREDLAM, PEST will move on to the nextoptimisation iteration. Due to the fact that the approach to the critical point is often slow,these values may need to be set low. A value of 0.005 for RELPREDLAM is often suitable;the value for ABSPREDLAM depends on the context. If you would like one of the
	INITSCHFAC, MULSCHFAC and NSEARCH
	When undertaking predictive analysis, PEST calculates a parameter upgrade vector inaccordance with the theory presented in Section 2.1.9 of this manual. However it has beenfound from experience that the critical point of Figures 6.4 and 6.5 can be found moreefficiently if PEST undertakes a line search along the direction of its calculated parameterupgrade vector each time it calculates such a vector, in order to find the exact point ofintersection of this vector with the Φmin + δ contour. However this searc
	A line search is undertaken for each trial value of the Marquardt lambda. The maximumnumber of model runs that PEST will devote to this line search for any value of lambda isequal to the user-supplied value of NSEARCH; set NSEARCH to 1 if you wish that no linesearch be undertaken. Otherwise, a good value is between 6 and 8.
	When undertaking the line search, the initial model run is undertaken at that point along theparameter upgrade vector which is a factor of INITSCHFAC along the line of the distancethat PEST would have chosen using the theory of Section 2.1.9 alone. Unless there is a goodreason to do otherwise, a value of 1.0 is appropriate here. Then PEST moves along theparameter upgrade vector, increasing or decreasing the distance along this vector by a factorof MULSCHFAC as appropriate. A value of 1.5 to 2.0 is suitable
	It may seem at first sight that implementation of a line search algorithm may prove verycostly in terms of model runs. However experience to date is such as to suggest that inclusionof the line search option may result in a dramatic reduction in overall model runs, as feweroptimisation iterations are required to find the critical point, even though each iteration mayindividually require more model runs.
	ABSPREDSWH and RELPREDSWH
	In the “parameter groups” section of the PEST control file, the user informs PEST whetherderivatives of model outcomes with respect to the members of each parameter group are to becalculated using two points, three points, or two points at first and then three points later.When run in parameter estimation mode, PEST makes the switch between two point andthree point derivatives calculation if it fails to lower the objective function by a relativeamount equal to PHIREDSWH between successive optimisation itera
	When used in predictive analysis mode, the role of PHIREDSWH is unchanged if the currentobjective function is above PD1. However if it is below PD1, PEST’s decision to switch fromtwo point derivatives calculation to three point derivatives calculation is based onimprovements to the model prediction. If, between two successive optimisation iterations, themodel prediction is raised (lowered) by no more than a relative amount of RELPREDSWH orby an absolute amount of ABSPREPSWH, PEST makes the switch to three p
	NPREDNORED
	The last four variables are termination criteria.
	When PEST is used in parameter estimation mode, the optimisation process is judged to becomplete when the objective function can be reduced no further, or if it is apparent that acontinuation of the optimisation process will reduce it very little. This is still the case ifPEST, when used in predictive analysis mode, fails to lower the objective function belowPD1. However if it has been successful in lowering it to this value (which it should be if PD0and PD1 are chosen to be above Φmin as determined from a
	If NPREDMAXMIN is set to 1 and NPREDNORED optimisation iterations have elapsedsince PEST has managed to raise the model prediction, then it will terminate execution.Alternatively if NPREDMAXMIN is set to -1 and NPREDNORED optimisation iterationshave elapsed since PEST has managed to lower the model prediction, then it will terminateexecution. A good setting for NPREDNORED is 4.
	ABSPREDSTP, RELPREDSTP and NPREDSTP
	If NPREDMAXMIN is set to 1 and if the NPREDSTP highest predictions are within anabsolute distance of ABSPREDSTP of each other, or are within a relative distance ofRELPREDSTP of each other, PEST will terminate execution. If NPREDMAXMIN is set to-1 and the NPREDSTP lowest predictions are within an absolute distance of ABSPREDSTPof each other, or are within a relative distance of RELPREDSTP of each other, PEST willterminate execution. A good setting for RELPREDSTP is 0.005. The setting forABSPREDSTP is context
	Note that the maximum allowed number of optimisation iterations is set by the value of theNOPTMAX variable provided in the “control data” section of the PEST control file.Consider setting this higher than you would for PEST’s usage in parameter estimation mode.
	6.3 An Example
	See Section 12.2 for an example of PEST’s use in Predictive Analysis Mode.

	Regularisation
	Regularisation
	7.1 About Regularisation
	7.1.1 General
	PEST (and other nonlinear parameter estimation software) sometimes encounters difficultiesin minimising the calibration objective function where too many parameters must besimultaneously estimated. Such situations often arise when calibrating models that representtwo- and three-dimensional spatial processes, or when using such models to infer theproperties of a two- or three-dimensional model domain as part of a data interpretationprocess. In many cases the user may not wish to observe the conventional wisd
	In an attempt to reduce the number of parameters to a manageable level, a two- or three-dimensional model domain is often subdivided into a small number of zones of assumedparameter constancy; zone boundaries can be chosen on the basis of geological and/or otherevidence (where this evidence exists), or inferred from the field data itself. While thismethodology works well, there are many problems associated with it. For example, zonationof the model domain may be difficult as it may not be immediately appare
	Unfortunately a calibration and/or data interpretation strategy which does not rely entirely onan externally-supplied zonation will nearly always result in the necessity to estimate a largenumber of parameters. Some of these parameters will invariably be more sensitive to the fielddata than others; insensitive parameters are not only difficult to estimate themselves, but mayhamper PEST’s ability to estimate other, more sensitive, parameters (see Section 5.6 fordetails). Furthermore, parameter correlation is
	A related problem in working with highly-parameterised systems is that unless someconstraints are imposed on parameter values, or on relationships between parameter values,individual parameter estimates tend to show a high degree of spatial variability, and can eventake on extreme values, as PEST tries to use every parameter at its disposal in order toaccommodate every nuance of the observation dataset upon which the calibration or datainterpretation process is based. In many cases these nuances are better
	The power of a properly-implemented regularisation procedure is that it allows the modelleraccess to the benefits of using a large number of parameters (in terms of the spatial resolutionrequired to define the location of important property contrasts), at the same time as it allowshim/her access to the benefits of a more sparingly parameterised system (in terms of stabilityof the inversion process, reduced parameter correlation, and a reduced propensity forestimated parameter values to be wild and unbelieva
	7.1.2 Smoothing as a Regularisation Methodology
	The most commonly used regularisation methodology is the imposition of a “smoothingconstraint” on parameter values. In most cases this is achieved by taking differences betweenneighbouring pairs of parameter values (or between functions of these parameter values) andrequesting that each such difference be zero if possible. This is done by supplying eachparameter difference to PEST as an extra “observation”, or as an article of prior information,the “observed value” for which is zero in each case. Thus each
	Regularisation can be used in conjunction with most methods of defining a parameterisationscheme over a model domain. It can be used in conjunction with zones of assumed parameterconstancy, for use of an appropriate regularisation scheme allows the modeller to use morezones than he/she otherwise would. Through enforcing either a single, regional smoothingcondition, or a series of more local smoothing conditions over different model sub-areas, themodel can be parameterised in such a way that it respects outs
	As stated above, regularisation can take place across the entire model domain, or across sub-areas within the domain. In the latter case, if there are boundaries within the model domainwhere property discontinuities are known to exist, then no parameter differences should betaken across these boundaries for inclusion in the “regularisation observations” used toenforce the smoothing condition.
	Regularisation criteria other than uniform smoothing can also be used. For exampleindividual parameter differences might be weighted according to inter-parameter distance. Ora minimum curvature condition could be imposed; each relationship comprising thisregularisation scheme will cite at least 3 parameters, stating that the difference between the“inner” parameter value and the average of at least two “outer” parameter values is zero. Or aregularisation scheme might be comprised of a series of differences b
	The main criteria for a regularisation methodology are that:-
	it includes a substantial number of relationships between most or all of the parametersinvolved in the parameterisation process, and
	it encapsulates some “preferred state” of the system; deviations from this “preferredstate” are tolerated only to the extent that they allow the model to provide anacceptable fit to field measurements.
	Because regularisation should attempt to impose some “preferred state” on systemparameters, and because it should involve as many of the model parameters as possible, itconstitutes a mechanism for making insensitive parameters sensitive. Without the use of asuitable regularisation strategy, a parameter pertaining to a part of the model domain farremoved from locations where field measurements were made, may have a sensitivity ofalmost zero. Thus if that parameter is estimated (together with other model para
	7.1.3 Theory
	The theoretical underpinnings of the regularisation methodology provided in PEST ispresented in Section 2.1.10 of this manual.
	7.2 Implementation in PEST
	7.2.1 Regularisation Mode
	To introduce regularisation into the parameter estimation process in the manner described inSection 2.1.10, PEST must be run in “regularisation mode”. This mode of operation is not toodifferent from PEST’s traditional parameter estimation mode in that an objective function isminimised, the objective function being defined as the sum of squared weighted differencesbetween observations and corresponding model outputs. However when used inregularisation mode, observations must be subdivided into “measurement o
	7.2.2 The Observation Group “Regul”
	Regularisation observations are distinguished from measurement observations through beingassigned to a special observation group named “regul”. As was discussed in Section 4.2.6,prior information items, as well as observations, should be assigned to observation groups.Thus regularisation observations can be supplied in either the “observation data” or “priorinformation” sections of the PEST control file, or both. All observations and/or priorinformation equations which do not belong to the group “regul” are
	The user must also supply PEST with a value for the limiting measurement objective functionΦml. In some cases, PEST will be run in regularisation mode only after it has been used onthe same problem in parameter estimation mode. If this is the case, the user will know thelowest value for Φm that can be achieved without any regularisation constraints imposed, andwill set Φml a little higher than this. Alternatively, if no preceding parameter estimation runhas been carried out, Φml can be set at a level that i
	While PEST’s operation in regularisation mode is similar in many respects to its operation inparameter estimation mode, there are some important differences. In both modes of operationPEST attempts to lower an objective function; however in regularisation mode the totalobjective function cannot be compared from iteration to iteration, for the composition of theobjective function changes with the regularisation weight factor µ depicted in equation 2.33.However each of the separate components of the objective
	Because, when operating in regularisation mode, PEST’s intention during each optimisationiteration remains the same as in parameter estimation mode, ie. to lower an objectivefunction, all of the input variables which control its operation in parameter estimation modeare still required for its operation in regularisation mode. Furthermore, they still have thesame roles. However, as will be discussed below, a number of new variables are required inthe PEST control file to control PEST’s operation in regularis
	7.3 Preparing for a PEST Run in Regularisation Mode
	7.3.1 The PEST Control File - “Control Data” Section
	As was discussed in Section 4.2.2 of this manual, the variable PESTMODE on the third lineof the PEST control file must be provided as “estimation”, “prediction” or “regularisation”;the last of these options must be supplied for this variable for PEST to run in regularisationmode. If so, there must be a “regularisation” section at the end of the PEST control file(following either the “model input/output” section or, if present, the “prior information”section of the PEST control file).
	7.3.2 The PEST Control File - Observation Groups
	As has already been discussed, when working in regularisation mode, observations and/orprior information must be assigned to at least two different observation groups, one of whichmust be named “regul”. All observations and/or prior information items belonging to thegroup “regul” comprise the “regularisation observations”; all observations and/or priorinformation equations belonging to all other groups comprise the “measurementobservations”. Weights must be assigned to individual observations and prior info
	7.3.3 Control File - “Regularisation” Section
	Example 7.1 shows the format of the “regularisation” section of the PEST control file. Thissection should be placed at the end of the file.
	An example of the “regularisation” section of a PEST control file is provided in Example 7.2.
	The “regularisation” section of the PEST control file must begin with a single line containingthe character string “* regularisation”. Then follow three lines, each of which contains anumber of variables which control the way in which PEST operates when working in thismode. The role of each of these variables is now discussed.
	PHIMLIM
	This is Φml of equation 2.31. That is, it is the upper limit of the measurement objectivefunction (ie. the upper level of model-to-measurement misfit) that is tolerable when trying tominimise the regularisation objective function Φr. In some cases a PEST regularisation runwill postdate a normal parameter estimation run. If the latter run was successful, it will haveinformed the user of how low the measurement objective function can be if all parameters areadjusted without reference to any regularisation con
	PHIMACCEPT
	During each optimisation iteration, just after it has linearised the problem through calculatingthe Jacobian matrix, and just before it begins calculation of the parameter upgrade vector,PEST calculates the optimal value of the regularisation weight factor µ for that iteration. Thisis the value which, under the linearity assumption encapsulated in the Jacobian matrix, resultsin a parameter upgrade vector for which the measurement component of the objectivefunction is equal to PHIMLIM. However, due to the ap
	Normally PHIMACCEPT should be about 5% to 10% greater than PHIMLIM. However ifPEST is performing well, you may wish to make it closer to PHIMLIM than this. In choosingthe best parameter set at any stage of the optimisation process (for recording in the parametervalue file) PEST looks at all parameter sets for which it has carried out model runs up to thatpoint in the process. If any of these runs have resulted in an objective function less thanPHIMACCEPT, it then searches from among these runs for the param
	FRACPHIM
	PEST ignores the value supplied for FRACPHIM unless it is greater than zero. A value ofbetween zero and 1.0 (but normally less than about 0.3) can be supplied for this variable ifyou are unsure what value to use for PHIMLIM. See Section 7.3.4 below for a full discussionof this variable.
	WFINIT
	This is the initial regularisation weight factor. During every optimisation iteration PESTcalculates a suitable regularisation weight factor to use during that optimisation iterationusing an iterative, numerical solution procedure; its initial value when implementing thisprocedure for the first optimisation iteration is WFINIT. If there are many adjustableparameters, calculation of the regularisation weight factor for the first optimisation iterationcan be very time-consuming if WFINIT is far from optimal.
	WFMIN, WFMAX
	These are the minimum and maximum permissible values that the regularisation weightfactor is allowed to take. If a regularisation scheme is poor, (and does not lend too muchstability to an already unstable parameter estimation process), selection of appropriate valuesfor WFMIN and WFMAX may be quite important, for these can prevent PEST fromcalculating outrageous values for the regularisation weight factor in an attempt to compensatefor inadequacies of the regularisation scheme.
	A regularisation scheme should be such that, even if there are no field measurements, it can“almost” result in a unique parameter set all by itself; “almost” here implies that there maystill be a degree of nonuniqueness, but that this might only be in relation to a factor by whichall parameters can be multiplied and still satisfy the regularisation conditions. However if theregularisation scheme is such as to allow high and untrammelled variability of parameters,PEST can encounter serious difficulties if th
	WFMIN and WFMAX values of 10-6 and 106 respectively are suitable for most occasions.
	WFFAC, WFTOL
	When PEST calculates the appropriate regularisation weight factor to use during anyoptimisation iteration, it uses an iterative procedure which begins at the value of theregularisation weight factor calculated for the previous optimisation iteration; for the firstoptimisation iteration it uses WFINIT to start the procedure. In the process of finding theweight factor which, under the linearity assumption used in its calculation, will result in ameasurement objective function (ie. Φm) of PHIMLIM (ie. Φml), PE
	Experience has shown that a suitable value for WFFAC is about 1.3; it must be greater than1. WFTOL is best set at somewhere between 10-3 and 10-2. However if there are manyadjustable parameters and PEST consumes a large amount of time in determining the optimalweight factor, a tolerance of somewhat higher than 10-2 may prove suitable.
	7.3.4 The Control Variable FRACPHIM
	As was mentioned above, a non-zero value can be supplied for FRACPHIM if you would liketo use PEST in regularisation mode, but you are unsure of what value to use for PHIMLIM.
	If FRACPHIM is provided with a value of zero or less (or if this variable is absent from thePEST control file), then PEST’s action when working in regularisation mode will be exactlythe same as that already described. However if FRACPHIM is provided with a value ofbetween 0.0 and 1.0 (values of 1.0 or greater are illegal), then PEST will calculate a newvalue for PHIMLIM at the beginning of each optimisation iteration. This value will becalculated as the current value of the measurement objective function ti
	The following aspects of the use of the FRACPHIM variable should be carefully noted:-
	If FRACPHIM is supplied as 0.0, or as less than 0.0, PEST will assume that no valuehas been supplied for FRACPHIM at all. The value of PHIMLIM used in everyoptimisation iteration will thus be that supplied in the PEST control file.
	If FRACPHIM is supplied with a value of 1.0 or greater, PEST will cease executionwith an error message.
	For other values of FRACPHIM, PEST will adjust the value of PHIMLIM at eachoptimisation iteration by multiplying the current value of the measurement objectivefunction by FRACPHIM. However it will lower PHIMLIM no further than the valuefor this variable supplied in the PEST control file.
	Optimal values for FRACPHIM are normally in the range 0.1 to 0.3.
	As well as adjusting the value of PHIMLIM during every optimisation iteration,PEST also adjusts the value of PHIMACCEPT. This adjustment is made such that,during every optimisation iteration, the ratio of PHIMACCEPT to PHIMLIM is thesame as that supplied in the PEST control file. Normally this ratio should be nogreater than 1.1.
	7.4 Working with PEST in Regularisation Mode
	7.4.1 Run-Time Information
	As it runs, PEST records information to both the screen and to its run record file. When PESTis run in parameter estimation mode, the principal items of interest during each optimisationiteration are the value of the objective function at the beginning of the iteration, and newvalues of the objective function which are calculated as PEST tests a series of parameterupgrade vectors calculated on the basis of a number of different Marquardt lambdas. Whenrun in predictive analysis mode, the current value of the
	The situation is slightly different when PEST runs in regularisation mode. Because theregularisation weight factor (µ in equation 2.33) is different from iteration to iteration, theobjective function calculated during one optimisation iteration is not directly comparablewith that calculated by PEST during the previous optimisation iteration. However themeasurement and regularisation objective functions are comparable from optimisationiteration to optimisation iteration.
	Example 7.3 shows part of a run record file produced by PEST when operating inregularisation mode.
	PEST begins each optimisation iteration by recording the current value of the regularisationweight factor (as calculated during the previous optimisation iteration) and of theregularisation and measurement objective functions Φr and Φm. Note that user-suppliedregularisation weights are not multiplied by the current weight factor when calculating theregularisation objective function. (That is why the value of the regularisation objectivefunction is comparable from optimisation iteration to optimisation itera
	Next PEST fills the Jacobian matrix. Then, on the basis of the linearity assumptionencapsulated in the Jacobian matrix, PEST calculates the optimal value for the regularisationweight factor for the current iteration. Once it has calculated the regularisation weight factor,it can calculate an objective function (ie. “phi”) for the current optimisation iteration usingequation 2.33. PEST prints this phi as “the starting objective function for this itn.”.
	PEST then calculates one or a number of parameter upgrade vectors on the basis of one or anumber of different Marquardt lambdas in an attempt to lower the objective function as muchas possible. As is apparent from equation 2.33, by lowering the objective function PEST willsimultaneously lower one or both of Φr and Φm. Marquardt lambdas are selected using asimilar procedure to that used when PEST is working in parameter estimation mode. For eachparameter upgrade vector that it tests, PEST lists the measureme
	7.4.2 Composite Parameter Sensitivities
	As described in Section 5.3.2 of this manual, in the course of its execution PEST records thecomposite sensitivities of all adjustable parameters to a “parameter sensitivity file”. Thecomposite sensitivity of any parameter can be considered as the magnitude of the vectorcomprising the weighted column of the Jacobian matrix corresponding to that parameter,divided by the number of observations. Where some of the observations taking part in theparameter estimation process are regularisation observations, their
	7.4.3 Post-Run Information
	At the end of the parameter estimation process PEST records information to its run recordfile, to its residuals file, to its parameter value file, and to its observation sensitivity file.
	Information recorded to the run record file is similar to that recorded to this file when PESToperates in parameter estimation mode. Included in this information are parameteruncertainties and the parameter covariance and associated matrices. Regularisation weightsare multiplied by the optimised regularisation weight factor prior to computation of thesematrices. Caution should thus be exercised in interpreting the information contained in thesematrices. Regularisation information serves the very useful purp
	Like the run record file produced by PEST when run in parameter estimation mode, the runrecord file produced as an outcome of a regularisation run contains a listing of residuals andrespective weights, together with a brief statistical summary of the residuals pertaining toeach observation group. It should be noted that wherever weights are cited, or are used in anystatistical calculation in this section of the PEST run record file, the weights pertaining toregularisation observations are multiplied by the
	A similar consideration applies to information written to the residuals file at the end of theoptimisation process. That is, where weights are used in the calculation of any quantitiespertaining to regularisation observations listed in this file, the regularisation weights suppliedby the user are multiplied by the optimised regularisation weight factor. Note also that“measurement standard deviations” and “natural weights” are not calculated forregularisation residuals, as these have no meaning.
	Information recorded on the observation sensitivity file produced by PEST at the end of itsrun is also weight-dependent; see Section 5.3.3 for details. In this case, just as in the casesdiscussed already, weights used for regularisation observations are equal to user-suppliedweights multiplied by the optimal regularisation weight factor.
	7.5 Other Considerations Related to Regularisation
	7.5.1 Using PEST in Two Different Modes
	As is explained in Section 7.3, a PEST control file suitable for use by PEST in regularisationmode differs from a PEST control file suitable for use by PEST in parameter estimationmode, in three ways, viz:
	the PESTMODE variable must be set to “regularisation” rather than “estimation”,
	an observation group named “regul” must be present, and
	a “regularisation” section must be present at the end of the PEST control file.
	Once a PEST control file has been built for PEST usage in regularisation mode, it is a simplematter to use PEST in parameter estimation mode on the basis of the same input dataset. Allthat needs to be done is to change PESTMODE from “regularisation” to “estimation”. PESTwill then run happily in parameter estimation mode, ignoring the redundant “regularisation”section at the end of the PEST control file. It will treat the observation group “regul” just likeany other group, and members of this group just like
	As was mentioned above, parameter uncertainties and other statistics recorded at the end ofthe run record file after PEST was run in regularisation mode are calculated on the basis ofuser-supplied weights for members of the observation group “regul” multiplied by theoptimised regularisation weight factor. However if you have just undertaken a regularisationrun and you would like to calculate parameter uncertainties (and/or the parameter covariancematrix and other quantities derived from this matrix) on the
	After the regularisation run, create a new PEST control file with optimised parametervalues substituted for initial parameter values, using the PARREP utility programsupplied with PEST.
	Set all regularisation weights to zero.
	Alter PESTMODE on the new PEST control file to “estimation”.
	Adjust NOPTMAX to -1. As explained in Section 4.2.2 of this manual, when PEST isrun with NOPTMAX set to -1, it undertakes enough model runs to calculate theJacobian matrix, and then terminates execution with a full statistical printout at theend of its run record file.
	7.5.2 Initial Parameter Values
	When running PEST in regularisation mode, you can supply initial parameter values that arefar from optimal, or you can supply optimised parameter values from a previousunregularised PEST run if you wish. In the latter case, the initial measurement objectivefunction Φm may actually be less than Φml.
	In most cases it makes no difference to PEST what the starting parameter values are; if theyare a long way from optimal, PEST will reduce them to near-optimal before the regularisationmechanism begins to have a strong effect on the optimisation process. However in difficultcases, it has been found from experience that it is sometimes better to start PEST from apreviously-optimised set of parameter values. If this is done, the measurement objectivefunction Φm will approach PHIMLIM (ie. Φml) “from the inside”
	7.6 Two Examples of Regularisation
	7.6.1 A Layered Half-Space
	Electrical soundings are often undertaken by geophysicists in order to infer the variation ofelectrical resistivity with depth in the ground. A sounding is carried out by passing electricalcurrent through the ground between two current electrodes placed at varying distances apartfrom each other and measuring the voltage gradient at the surface induced by this currentflow. Interpretation of data gathered in this way is based on the premise that the earth can besimulated as a layered half-space. A model can b
	A traditional method of inferring half-space properties is to assume that the earth under themeasurement site is comprised of a small number of layers, each of uniform resistivity. PESTcan then be asked to estimate the resistivity and thickness of each of these layers from thesurficial voltage measurements. An alternative method is to assume that there are a largenumber of geoelectric layers, and that the boundaries between these layers are situated atlogarithmically increasing depths below the surface. PES
	Assume that the names provided to PEST for the resistivity of each model layer are “ro1”,“ro2”, etc. Assume also that these parameters are log-transformed during the parameterestimation process. If regularisation observations are added to the “prior information” sectionof the PEST control file, this section will look something like Example 7.4. (It is assumedthat the subsurface has been subdivided into 15 different layers.)
	Note the following points.
	The “observed” value of each parameter difference is 0.0.
	Each element of prior information pertains to the logarithm of the respectiveparameters rather than to the parameters themselves because the parameters are log-transformed in the parameter estimation process. If it is the user’s desire thatdifferences be formed between the parameters themselves rather than between theparameter logarithms, then the differences could be calculated by the model, and an“observed value” of 0.0 for each such observation supplied in the “observation data”section of the PEST contro
	All of the items of prior information involved in the regularisation process have beenassigned to the observation group “regul”.
	In the present instance, all of the regularisation observations have been assigned thesame weight. (These weights are multiplied internally by the regularisation weightfactor before being used by PEST to calculate a new set of parameter values.) If it isthe user’s desire that PEST try harder to enforce uniformity in some areas rather thanothers, then this could be requested by adopting a different weights assignmentstrategy.
	Each parameter difference comprising the set of regularisation observations is formedbetween a certain layer and the layer underneath it. However for the bottommostlayer, the difference is formed between that layer and the topmost layer.
	Experience has demonstrated that a regularisation scheme such as that depicted in Example7.4 works very well. However if an attempt is made to estimate layer thicknesses as well asresistivities, then the scheme breaks down. If layer thicknesses are estimated as well asresistivities, then the regularisation observations on their own do not provide a sufficientlystrong constraint on parameter values to constitute a suitable regularisation scheme. Thereason for this is obvious when it is realised that if all r
	7.6.2 A Heterogeneous Aquifer
	Under steady-state conditions, the flow of ground water through the subsurface ismathematically described by Darcy’s law and constrained by the conservation of mass. Thesetwo laws can be combined into a single partial differential equation which can be used tocalculate the distribution of hydraulic heads throughout a study area for different dispositionsof sources and sinks of water, and for different system boundary conditions. Where the shapeof the model domain is complex, and/or the hydraulic conductivit
	In most ground water modelling applications, the hydraulic conductivity at different locationswithin the model domain is only poorly known. However if the strengths of the varioussources and sinks of water and the characteristics of the pertinent boundary conditionsaffecting the system are known, then hydraulic conductivities in different parts of the domaincan be inferred from borehole water level measurements using PEST (assuming that thecoverage of observation bores is good enough). However before doing
	A common strategy is to subdivide the model domain into zones of assumed parameterconstancy based on geological or other information. Unfortunately, such information is oftenabsent or unreliable. Furthermore, there can be a considerable degree of variation ofhydraulic conductivity within each geological unit as a result of many factors includinglithological heterogeneity, differential weathering, structural features created during tectonicevents, etc.
	Thus in many instances it is necessary to consider a more complex parameterisation scheme.A simple but effective scheme is to divide the model domain into a large number of“parameter blocks” (or rectangles) arranged in rows and columns in a grid-like structure, andto then estimate the hydraulic conductivity within each such block. Due to the large numberof parameters requiring estimation, a suitable regularisation scheme is essential. One suchscheme is to request that differences between block hydraulic con
	The following points should be noted.
	The “observed value” of each regularisation observation is zero.
	All regularisation observations belong to the observation group “regul”.
	Each regularisation observation should pertain to a single difference between aparticular parameter and its neighbour in either the row or column direction.
	For each parameter block, differences should be taken in both the row and columndirections (resulting in two regularisation observations). However where a geologicalboundary occurs between two neighbouring blocks, the difference between parametervalues on either side of that boundary should be omitted from the regularisationdataset. In this way the regularisation scheme informs PEST that the preferredlocations of hydraulic property contrasts are at recognised geological boundaries.However heterogeneity else
	Other parameterisation schemes, together with appropriate regularisation methodologies, canbe used. For example, a “pilot points” methodology is very attractive. Using this technique,PEST is asked to assign hydraulic conductivities to discrete points within the model domain.The hydraulic conductivity at each cell or node of the numerical ground water model is thencalculated from the hydraulic conductivities assigned to these pilot points using a spatialinterpolation algorithm such as kriging. If appropriate
	A suite of utility software that implements the use of pilot points for spatial parameterdefinition in conjunction with the United States Geological Survey ground water flow modelMODFLOW is available through the “Ground Water Data Utilities” supplied with PEST.

	Model-Calculated Derivatives
	Model-Calculated Derivatives
	8.1 General
	Accuracy in the calculation of model outputs with respect to adjustable parameters isessential for good PEST performance, especially when working with highly parameterisedsystems. As well as accuracy, efficiency of derivatives calculation is also important, for run-times can be very long when PEST is used with such systems. To enhance its use inconjunction with a complex modelling system, PEST offers the user increased flexibility inderivatives calculation over that which is available through finite differe
	8.2 Externally-Supplied Derivatives
	8.2.1 The External Derivatives File
	Some models are able to calculated derivatives of their outputs with respect to theirparameters themselves. If so, it is often better for PEST to use these derivatives instead of thederivatives that it calculates itself using finite parameter differences. There are two reasonsfor this.
	Code included within the model itself for the purpose of derivatives calculation canoften exploit certain aspects of the mathematics underlying the numerical simulationprocess to calculate derivatives far more quickly than they can be calculated usingfinite differences.
	Derivatives calculated directly by the model are often numerically more precise thanthose calculated by taking differences between model outputs calculated on the basisof incrementally-varied parameter values.
	Hence if a model can calculate derivatives itself, PEST should use these derivatives.
	PEST can read derivatives of model-calculated observations with respect to adjustableparameters from a special file written by the model whenever derivatives are requested byPEST. Because this file must satisfy special formatting requirements, it will normally berequired that the user add a few lines of code to the model to endow it with the ability towrite this file to PEST’s specifications.
	The “external derivatives file” (as it is called herein) produced by the model must contain a“derivatives matrix”. (This is slightly different from the Jacobian matrix in that the lattermatrix takes account of whether parameters are log-transformed or not during the inversionprocess.) The derivatives matrix, like any other matrix, is comprised of rows and columns.Each column contains the derivative of every model outcome for which there is acomplementary observation with respect to a particular parameter. E
	The first line of an external derivatives file contains two integers listing the number ofparameters and number of observations represented in the derivatives file. These correspondto the number of columns and the number of rows respectively in the derivatives matrix.They must also agree exactly with the values of the PEST variables NPAR and NOBS in thePEST control file. The derivative matrix is listed next in the file.
	Some further aspects of this file are now discussed in detail. These should be noted carefully,for if the external derivatives file does not meet PEST’s specifications it will not be read byPEST, or (what is worse) may be read incorrectly by PEST.
	8.2.2 File Management
	As is further discussed below, it is not necessary that the model supplies an externalderivatives file if you do not want it to. However if you notify PEST that the model willsupply such a file, then you must also inform PEST of the name of the external derivativesfile and of the command which PEST must use to run the model in such a way that it writesthis file. Just before issuing this command (it is issued once every optimisation iteration)PEST first checks to see whether a derivatives file already exists
	8.2.3 File Format
	The external derivatives file must be an ASCII (ie. text) file in which numbers are separatedby spaces, tabs or a comma (it is read by PEST using FORTRAN free field input). Asmentioned above, it must be headed by a line citing the number of columns and rowscomprising the matrix. The matrix itself must have NOBS rows and NPAR columns, whereNPAR is the number of parameters and NOBS is the number of observations cited in thePEST control file for the current case. The ordering of parameters and observations in
	Where there are many parameters to be estimated, each row representing the derivatives of aparticular observation with respect to all parameters can be wrapped onto the next line (or asmany lines as you wish). However derivatives for the next observation must begin on a newline.
	8.2.4 Derivatives Type
	As is documented elsewhere in this manual, some parameters can be log transformed duringthe parameter estimation process; PEST then estimates the log (to base 10) of suchparameters rather than the parameters themselves. For such parameters, respective elementsof the Jacobian matrix used by PEST contain derivatives with respect to the logs of theseparameters rather than to the parameters themselves; PEST calculates derivatives withrespect to parameter logs internally from derivatives with respect to native p
	Similarly, if the SCALE and OFFSET values for a particular parameter differ from 1 and 0respectively, the model need not concern itself with this. PEST modifies the derivatives citedin the external derivatives file to take account of this.
	8.2.5 Use of Derivatives Information
	A complex model often consists of many different parameter types. It may be possible tocompute derivatives with respect to some of these parameters inside the model, yet it may benecessary to compute derivatives with respect to others using PEST’s traditional method offinite differences. As is discussed below, the user is able to indicate to PEST the parametersfor which derivatives information is supplied externally, and those for which derivatives mustbe computed by PEST using finite differences.
	Even greater complexity can arise. For example, a model may be able to calculate derivativeswith respect to a certain parameter for some observations but not for others. In this case,derivatives with respect to the pertinent parameter are actually obtained twice by PEST. FirstPEST undertakes model runs in the usual manner to calculate derivatives for that parameterusing finite differences. Then, after all necessary finite difference model runs have beenundertaken for the purposes of finite-difference deriva
	In summary, model-calculated derivatives are read by PEST after derivatives are calculatedby finite differences for those parameters for which the user has requested finite-differencederivatives calculation for at least one observation. Externally supplied derivatives overridethose already calculated by finite differences except where a value of -1.11e33 is supplied forthe derivative value.
	8.2.6 Tied Parameters
	If a parameter is tied to a parent parameter, and derivatives of the former parameter for aparticular observation are supplied externally, then derivatives of the tied parameter for thatsame observation must also be supplied externally. If this does not occur, PEST will ceaseexecution with an appropriate error message.
	8.2.7 Name of the Derivatives File
	The user must inform PEST of the name of the external derivatives file through the PESTcontrol file for the current case (see Section 8.5). The external derivatives file can have anylegal name except for the following names which are already used by PEST. If the filenameroot of the current project is case, the names to be avoided are:- case.hld, case.jac, case.jco,case.jst, case.par, case.pst, case.res, case.rmf, case.rmr, case.rst, case.rsr, case.sen, case.mttand case.seo. Other names which must be avoided
	8.2.8 Predictive Analysis Mode
	It is very important to note that if PEST is used in predictive analysis mode and at least somederivatives are supplied externally, then the sole member of the observation group “predict”must be the last observation cited in the PEST control file. Because the ordering ofobservations in the PEST control and external derivatives files must be the same, thenderivatives for this observation must also comprise the last row of the derivatives matrixcontained in the external derivatives file.
	8.2.9 Parallel PEST
	PEST cannot receive derivatives through an external file if it is being run as Parallel PEST.
	8.3 Sending a Message to the Model
	PEST has the ability to send a small “message” to the model prior to running it. This is usefulif some aspect of the model’s deployment depends on whether it is being run to testparameter upgrades, to calculate derivatives by forward or central differences, or to fill anexternal derivatives file. The message sent by PEST resides in a file which is always namedpest.mmf. The contents of a typical message file are shown in Example 8.2
	The first line of a message file contains a character string which tells the model why PEST isrunning it. The various strings used by PEST are as follows:-
	forward_model_run
	This string informs the model that it is being run either to test a parameter upgrade, or as thefirst model run of the PEST optimisation process.
	derivative_increment
	The model is being run as part of the finite-difference derivatives calculation processundertaken by PEST.
	external_derivatives
	The model is being run in order to write an external derivatives file.
	If the character string on the first line of the PEST-to-model message file is“derivative_increment”, then the integer on the second line of this file has significance. Avalue of n for this integer indicates that the model run is being undertaken with the value ofthe nth parameter incremented for the purpose of derivatives calculation by forwarddifferences, or as the first of two runs by which derivatives will be calculated using centraldifferences. A value of -n indicates that the nth parameter is decremen
	The third line of the message file lists the number of parameters (PEST variable NPAR) andnumber of observations (PEST variable NOBS) involved in the parameter estimation process.Following this are NPAR lines of data with three entries on each line. The first entry on eachline is a parameter name; recall that this name can contain up to12 characters. Then followsthe value of the parameter used on the current model run. Following that is an integer codethat informs the model of the parameter’s status in the
	The PEST-to-model message file is always written to the current working directory; it iswritten just before each model run is undertaken. However in the case of Parallel PEST, themessage file is written to each slave working directory just before the pertinent model run isinitiated by the slave.
	8.4 Multiple Command Lines
	As has already been discussed, when PEST runs a model for the purpose of externalderivatives calculation, it can use a different command to that which it uses for ordinarymodel runs. (The same command can be used for both of these types of model run if desired.In this case it may be necessary for the model to acquaint itself with PEST’s expectations. Itcan do this by reading the PEST-to-model message file.)
	With PEST it is possible to use different commands to run the model when calculating finite-difference derivatives with respect to different parameters. Recall that when PEST calculatesthe derivatives of all model outputs with respect to a particular parameter, it runs the modelonce (maybe twice) with the value of the parameter incrementally varied. Thus a differentcommand can now be used to run the model for each such incrementally-varied parameter.
	Use of a variable command-line strategy may allow a reduction in overall PEST run time tobe achieved in some circumstances. For example, if a composite model is comprised of asequence of executable programs encapsulated in a batch file, it may not be necessary to runthe earlier programs of the sequence when parameters pertaining to the later programs arebeing incrementally varied for the purpose of derivatives calculation, for outputs of theearlier programs will not vary between subsequent model runs. Hence
	8.5 External Derivatives and the PEST Control File
	8.5.1 General
	Formatting of the PEST control file must be slightly expanded from that discussed in Section4.2 to accommodate the use of external derivatives and to control PEST-to-model messaging.Pertinent variables in the PEST control file which govern this aspect of PEST’s functionalityare now discussed.
	8.5.2 “Control Data” Section
	As is explained in Section 4.2, the fifth line of the PEST control file begins with the PESTcontrol variables NTPLFLE, NINSFLE, PRECIS and DPOINT. The three variables situatedto the end of this line (for which values of 1, 0 and 0 were suggested in Section 4.2) arenamed NUMCOM, JACFILE and MESSFILE (in that order). (For the sake of backwardscompatibility with older versions of PEST, these variables may be omitted from this line.However it is important to note that either these three variables must be comple
	The roles of these variables are now discussed.
	NUMCOM
	This is the number of different command lines which can be used to run the model. Theactual commands themselves are listed in the “model command line” section of the PESTcontrol file (see below). For previous versions of PEST, only one command line could beused to run the model. However for versions of PEST from 5.0 onwards, different commandscan be used to run the model, depending on the purpose of the model run.
	Note that when counting the number of available model command lines when assigning avalue to NUMCOM, the command that is used to run the model in order to fill the externalderivatives file should not be included in the count. This command is listed in a separatesection of the PEST control file to the “model command line” section, as will be discussedshortly.
	If there is only one command listed in the “model command line” section of the PEST controlfile (which will most often be the case), then NUMCOM should be supplied with a value of1.
	JACFILE
	Provide this integer variable with a value of 1 if a special model run is to be undertakenduring each optimisation iteration for the purpose of external derivatives calculation.Otherwise provide JACFILE with a value of 0.
	Note that if JACFILE is provided with a value of 1 and an attempt is made to run ParallelPEST, PEST will cease execution with an appropriate error message.
	MESSFILE
	Provide this integer variable with a value of 1 if PEST is required to write a PEST-to-modelmessage file prior to each model run. Otherwise provide it with a value of 0.
	8.5.3 “Parameter Data” Section
	As is described in Section 4.2.4, each line of the “parameter data” section of the PESTcontrol file contains values for the variables PARNME, PARTRANS, PARCHGLIM,PARVAL1, PARLBND, PARUBND, PARGP, SCALE, OFFSET and DERCOM (in thatorder). Only the variable DERCOM is used in implementing PEST’s external derivativesfunctionality.
	As was discussed above, the various commands which can be used to run the model forpurposes other than external derivatives calculation are listed in the “model command line”section of the PEST control file. The value of DERCOM pertaining to each parameterdenotes which of these commands will be used to run the model when PEST calculatesderivatives with respect to that parameter using finite differences; commands within the“model command line” section are numbered from first to last, beginning at 1.
	Alternatively, if the derivatives of all observations with respect to a particular parameter areto be supplied externally, then the DERCOM value for that parameter should be supplied aszero. If this is the case, PEST will not undertake any model runs to calculate derivatives withrespect to this parameter using the finite difference method.
	For a particular parameter, derivatives for some observations may be calculated using finitedifferences while derivatives for others may be supplied externally by the model. In this casea non-zero value should be provided for DERCOM, thus ensuring that PEST calculatesderivatives using finite differences for this parameter. If JACFILE (in the “control data”section of the PEST control file) is set to 1, then the model will be called specifically tocalculate external derivatives after PEST has calculated deriv
	It is important to note that if JACFILE is provided with a value of 1, then the externalderivatives command will be issued, and PEST will read derivatives from the externalderivatives file, whether or not any parameter has been assigned a DERCOM value of 0.Thus if JACFILE is set to 1, PEST can only assume that for at least one parameter with anon-zero DERCOM value, finite-difference-calculated derivatives for some observations areto be supplemented by external derivatives for others. It is again emphasised
	8.5.4 “Derivatives Command Line” Section
	If a non-zero value is supplied for JACFILE in the “control data” section of the PEST controlfile, the PEST control file must contain a “derivatives command line” section. This must besituated just above the “model command line” section. Contents of the “derivatives commandline” section of the PEST control file are illustrated in Example 8.3, while an example isprovided in Example 8.4.
	Like all other sections of the PEST control file, the beginning of the “derivatives commandline” section must be denoted using a special header line, the first character of which is anasterisk. Following the header line, the next line of this section consists of the command usedto run the model when it is required to calculate external derivatives. If appropriate, this canbe the same command as that used to run the model for the purpose of testing parameterupgrades or for the calculation of derivatives usin
	The final line of the “derivatives command line” section consists of the name of the file towhich the model should write the derivatives matrix, ie. the name of the external derivativesfile.
	If JACFILE is set to 0 in the “control data” section of the PEST control file, the “derivativescommand line” section can be omitted.
	8.5.5 “Model Command Line” Section
	In previous versions of PEST the “model command line” section of the PEST control filecontained only a single line, this being comprised of the command that PEST must use to runthe model. Indeed if NUMCOM in the “control data” section of the PEST control file is set to1, then the contents of this section are the same. However if NUMCOM is set to n, there mustbe n model command lines listed in this section of the PEST control file, one under the other.The DERCOM variable in the “parameter data” section of th
	It is important to note that when the model is run in order to test a parameter upgrade, andwhen the model is run for the first time in the optimisation process in order to obtain theobjective function corresponding to the initial parameter set, the first of the listed modelcommands is used to run the model.
	8.6 An Example
	A simple example is presented to demonstrate the use of PEST’s external derivativesfunctionality. Files pertaining to this example can be found in the edpestex subdirectory ofthe PEST directory after installation. See Chapter 12 for a more fully discussed example ofthe use of PEST and its utilities. In that example derivatives are calculated using finitedifferences.
	File polymod.f contains the source code for a simple program which computes the ordinatesof a third degree polynomial at a number of different abscissae. That is, it computes thefunction:-
	y = ax3 + bx2 + cx + d(8.1)
	for different values of x. It reads these values of x from a file named poly_x.in and writes itscomputed values of y to a file named poly_val.out. “Parameter values”, ie. the values of thepolynomial coefficients a, b, c and d, are read from a file named poly_par.in.
	As well as computing values of y corresponding to different values of x. POLYMOD alsocomputes a “prediction”, in this case a function of the parameter values given by theequation:-
	p = a + 2b + 3c + 4d(8.2)
	The “prediction” is written to the end of file poly_val.out following the computed polynomialvalues.
	POLYMOD also computes a Jacobian matrix; this is a matrix of the derivative of y withrespect to each parameter (ie. a, b, c and d) at each value of x. This is stored internally in theJACOB matrix and written to a derivatives file in the format expected by PEST. The name ofthis file is poly_der.out.
	A template file named poly_par.tpl has been prepared to complement the “model input file”poly_par.in. This file provides spaces for the four parameters a, b, c and d. An instruction filenamed poly_val.ins reads polynomial values and the prediction value from the model outputfile poly_val.out.
	Two PEST control files have been prepared. In one of these (poly.pst), PEST is asked to runin parameter estimation mode, while in the other (polyp.pst) it is asked to run in predictiveanalysis mode. In the former case the model “prediction” plays no part in the parameterestimation process as it is assigned a weight of zero. PEST is thus asked to estimate valuesfor the parameters a, b, c and d by matching computed polynomial values at differentabscissae to the “field data” contained in the PEST control file.
	On the fifth line of file poly.pst, the values of the PEST control variables NUMCOM,JACFILE and MESSFILE are set to 1, 1 and 0 respectively. Thus PEST is asked to look to aderivatives file to obtain its Jacobian matrix; no PEST-to-model message file is requested. Asis evident in the “derivatives command line” section of poly.pst, the expected name of thederivatives file is poly_der.out. Note also from the contents of the “derivatives commandline” and “model command line” sections of the PEST control file, t
	The final entry on each line of the “parameter data” section of file poly.pst is the value of thevariable DERCOM. In the present instance DERCOM is zero for all parameters; thisindicates that, for each parameter cited in the control file, PEST will obtain derivatives of allmodel outputs with respect to that parameter from the derivatives file poly_der.out - ie. nosupplementary model run is required to calculate some derivatives with respect to thisparameter using finite differences.
	(Note that an OFFSET value of 1.0 is provided for parameter d; this circumvents problemsthat can sometimes arise in the parameter estimation process when a parameter approacheszero; see the discussion of RELPARMA X and FACPARMAX in Section 4.2.2.)
	Check the input dataset contained in file poly.pst, and the template and instruction file citedtherein, by typing the command
	pestchek poly
	at the screen prompt. PESTCHEK should report no errors or inconsistencies - just a warningthat the command used to run the model for the purpose of derivatives calculation is the sameas that used to run the model for the purpose of obtaining normal model outputs. Then runPEST using the command
	pest poly
	PEST should quickly reduce the objective function to a very low value.
	Now inspect file polyp.pst. While file polyp.pst is very similar to poly.pst, there are someimportant differences. Through this file PEST is asked to carry out predictive analysis,minimising the value of the “prediction” while keeping the model “calibrated” to the extentthat the objective function (based on the match between model outputs and “field data” citedin the PEST control file), remains at or below a value of 1.0. Starting parameter values arethe same as those in poly.pst. As these are very differen
	Once again, PEST receives derivatives from the model by reading the “derivatives file”poly_der.out.
	Check the PEST input dataset using PESTCHEK and then run PEST to obtain the minimummodel prediction that satisfies calibration constraints. This should be about 8.60.
	You can repeat these PEST runs with derivatives calculated by PEST using finite differencesif you wish. For each of the two PEST control files, do the following:-
	Alter the value of JACFILE (sixth variable on the fifth line) to 0.
	Alter the value of DERCOM for each parameter (last variable on each line of the“parameter data” section) to 1.
	Check your work with PESTCHEK and then run PEST.

	Parallel PEST
	Parallel PEST
	9.1 Introduction
	9.1.1 General
	In the course of optimising parameters for a model or of undertaking predictive analysis,PEST runs the model many times. Some model runs are made in order to test a new set ofparameters. Others are made with certain parameters temporarily incremented as part of theprocess of calculating the Jacobian matrix, ie. the matrix of derivatives of observations withrespect to parameters (unless derivatives are supplied to PEST directly by the model inaccordance with PEST’s external derivatives functionality). In cal
	Parallel PEST can achieve a high degree of performance enhancement by carrying out modelruns in parallel. If installed on a machine that is part of a local area network, Parallel PESTcan carry out model runs on the different machines which make up the network (including themachine which PEST itself is running on). If model run times are large and the number ofparameters is greater than four or five, overall PEST run times can be reduced by a factoralmost equal to the number of machines over which Parallel P
	As well as allowing a user to distribute model runs across a network, Parallel PEST can alsomanage simultaneous model runs on a single machine. This can realise significant increasesin PEST efficiency when carrying out parameter optimisation or predictive analysis on amulti-processor computer by keeping all processors simultaneously busy carrying out modelruns.
	The optimisation (including regularisation) and predictive analysis algorithms used byParallel PEST are no different from those used by the normal PEST. Preparation of templatefiles, instruction files and the PEST control file is identical in Parallel PEST to that of thenormal PEST. However use of Parallel PEST requires that one extra file be prepared prior toundertaking an optimisation run, viz. a “run management file”. This file informs ParallelPEST of the machines to which it has access, of the names of
	9.1.2 Parallelisation of the Jacobian Matrix Calculation Process
	When PEST calculates derivatives of model outcomes with respect to adjustable parametersusing finite parameter differences, successive model runs are independent, ie. the parametersused for one particular model run do not depend on the results of a previous model run. Thecomplete independence of model runs undertaken as part of the process of filling theJacobian matrix makes this process easily parallelised. Under these circumstances ParallelPEST simply distributes model runs to different machines or proces
	9.1.3 Parallelisation of the Marquardt Lambda Testing Process
	Unlike the Jacobian calculation process, the lambda search process (see Section 2.1.7) isdifficult to parallelise. This is because, with the exception of the first two model runsundertaken as part of the lambda search procedure during each optimisation iteration, theMarquardt lambda used at subsequent stages of this procedure is dependent on the results ofmodel runs undertaken on the basis of previous lambda values. Hence it is necessary forPEST to wait until the results of a previous model run have been ev
	However while the lambda search process is not immediately amenable to parallelisation, it isnot impossible to accelerate this process somewhat through “partial parallelisation”, thanks tothe fact that lambda values used by PEST in this search are all related to each other bymultiples of LAMFAC. Thus if PEST is run as Parallel PEST, and if it has access to anumber of processors, it can undertake simultaneous model runs across these differentprocessors using parameters calculated on the basis of a series of
	While Parallel PEST allows such a “partial parallelisation” of the lambda search to beundertaken, parallel lambda runs will not be undertaken:-
	if at least one parameter is frozen at its upper or lower bound,
	if PEST is running in predictive analysis mode and a line search is undertaken as partof the predictive analysis process,
	if the model run time for the fastest processor involved in the parallelisation process isless than 1.8 times the model run time for the second fastest processor (see below),
	if only one slave is currently available for the undertaking of model runs (this mayhappen if all but one slave is currently completing redundant model runs arising outof the previous parallel Jacobian calculation process),
	the user indicates to PEST that only the Jacobian matrix calculation process is to beparallelised (see below).
	The user should take particular note of the first of the above exceptions to PEST’s ability toundertake a partial parallelisation of the lambda search. The reason for this exception is thatwhile PEST may be able to “guess” the values of future Marquardt lambdas to be used in thelambda search procedure with a high probability of success, it has far more difficulty inpredicting whether a parameter is to be frozen at its upper or lower bound, and the order inwhich parameters are to be frozen if more than one o
	A continuation of the discussion on how Parallel PEST undertakes “partial parallelisation” ofthe lambda testing procedure will be presented in Section 9.2.6 below after a discussion ofhow Parallel PEST actually works.
	9.1.4 A Warning
	If model run times are short, gains in computational efficiency that are achievable usingParallel PEST will not be as great as when model times are large, for the time taken inwriting and reading (possibly lengthy) model input and output files across a local areanetwork may then become large in comparison with model run times.
	9.1.5 Installing Parallel PEST
	The command-line version of the Parallel PEST executable, ppest.exe is automaticallyinstalled when you install PEST on your machine.
	As is explained below, for Parallel PEST to run a model on another machine it must signal aslave, named PSLAVE, residing on the other machine to generate the command to run themodel. Thus pslave.exe must be installed on each machine engaged in the Parallel PESToptimisation process. To do this, copy pslave.exe (also provided with PEST) to anappropriate subdirectory on each such machine. This subdirectory can be the model workingdirectory on that machine if desired; if not, it should be a directory whose name
	9.2. How Parallel PEST Works
	9.2.1 Model Input and Output Files
	The manner in which Parallel PEST carries out model runs on different machines is just asimple extension of the manner in which PEST carries out model runs on a single machine.Before running a model on any machine Parallel PEST writes one or more input files for thatmodel, these files containing parameter values appropriate to that model run. After the modelhas finished execution, Parallel PEST reads one or more files generated by the model in orderto obtain values calculated by the model for a set of outco
	Operation of Parallel PEST assumes that PEST can write model input files and read modeloutput files, even though these files may reside on a different machine to that on which PESTitself is running. Access to files on other machines is achieved through the use of modernnetwork software. Input and output files for a particular model may reside on the machinewhich actually runs the model, or on a network server to which both PEST and the model’smachine have access. The only provisos on where these files resid
	Parallel PEST writes input file(s) for the models running on the various networked machinesusing one or more templates residing on the machine on which PEST is running. Similarly,Parallel PEST reads the output file(s) produced by the various models using the instructionscontained in one or a number of instruction files residing on the machine on which PESTruns. The fact that model input files are written and model output files are read by PESTacross a network underlines the point made above that the potenti
	9.2.2 The PEST Slave Program
	While Parallel PEST is able to achieve access to model input and output files residing onother machines through the use of shared subdirectories, it cannot actually run the model onanother machine; only a program running on the other machine can do that. Hence beforePEST commences execution, a “slave” program must be started on each machine on whichthe model will run. Whenever PEST wishes to run a model on a particular machine it signalsthe slave running on that machine to start the model. Once the model ha
	The slave program (named PSLAVE) must be started before Parallel PEST on each machineon which model runs are to be undertaken. It detects the commencement of PEST executionthrough reading a signal sent by PEST as the latter starts up. It then awaits an order by PESTto commence a model run, upon the arrival of which it sends a command to its local systemto start the model. It is possible that the command used to start the model may be different fordifferent slave machines (for example if the model executable
	Figure 9.1 illustrates in diagrammatic form the relationship between Parallel PEST, PSLAVEand the model for the case where PEST resides on one machine and the model is run on eachof two other machines. Note that, as is explained below, this is an unusual case in that it iscommon practice for the master machine (ie. machine #1 in Figure 9.1) to also be a slavemachine to avoid wastage of system resources.
	9.2.3 Running the Model on Different Machines
	Greatest efficiency can be achieved if an independent model executable program resides oneach slave machine. Thus when PSLAVE runs the model, the executable program does nothave to be loaded across the network. Note however, that if PEST and two incidences ofPSLAVE are being run on the same machine in order to gain access to two differentprocessors belonging to that machine, there is no reason why each slave should not run thesame model executable.
	It is essential that for each slave engaged in the Parallel PEST optimisation process, themodel, as run by that slave, reads its input file(s) and writes its output file(s) to a differentsubdirectory (or subdirectories) from the model as run by any of the other slaves; this willprobably occur naturally when slaves reside on different machines. If this is not done, modeloutput files generated during one parallel model run will be overwritten by those generatedduring another; similarly model input files prepa
	In many cases all input files for one particular model are housed in a single subdirectory; alsoall model output files are written to this same subdirectory. In this simple case, preparationfor model runs on different machines across a network consists in simply copying the entiremodel working directory from the master machine to an appropriate directory on each of theother machines. As is explained below, the structure of the “run management file” whichParallel PEST must read in order to ascertain the wher
	Machine #2pslave.exemodel input filesmodel output filesMachine #3pslave.exemodel input filesmodel output filesMachine #1ppest.exetemplate filesinstruction fileswrites model input filesreads model output fileswrites model input filesreads model output files
	Figure 9.1 Relationship between PEST, PSLAVE and the model.
	9.2.4 Communications between Parallel PEST and its Slaves
	Parallel PEST must communicate with each of its slaves many times during the course of theoptimisation process. It must inform each slave that it has begun execution, it must commandvarious slaves to run the model, and it must receive signals from its slaves informing it thatdifferent model runs have reached completion. It must also inform all slaves to shut downunder some circumstances of run termination, and be informed by each slave, when itcommences execution, that the slave itself is up and running.
	Such signalling is achieved through the use of short shared “signal” files. These files,whether originating from PEST or PSLAVE, are written to the directory from whichPSLAVE is run on each slave machine; PSLAVE provides these signal files with no pathprefix, thus ensuring that they are written to the directory from which its execution wasinitiated. PEST however must be informed of the names of these various PSLAVE workingdirectories (most of which will reside on other machines) through its run management f
	If Parallel PEST carries out two simultaneous model runs on the one machine (for example toexploit that machine’s dual processors), then a separate PSLAVE working directory must becommissioned for each separate PSLAVE running on that machine. Once again, thesedirectories may also be the working directories for each of the two distinct model runs.
	Where Parallel PEST is used to run the model on different machines across a network, it islikely that one such slave machine will be the machine that PEST is also running on. This isbecause PEST is not, in general, a big consumer of system resources, much of its role beingto manage input and output to and from the model runs being initiated by its various slaves.Hence the running of PEST leaves adequate system resources available for the running of themodel on the same machine. For such a case running PSLAV
	9.2.5 The Parallel PEST Run Management File
	The purpose of the Parallel PEST run management file is to inform PEST of the workingdirectory of each slave (as seen through the network from the machine on which PEST isrun), and of the names and paths pertaining to each model input file which it must write andeach model output file which it must read. The run management file must possess the samefilename base as the current PEST case; its extension must be “.rmf”. Thus if Parallel PESTis run using the command:
	ppest calib
	then PEST will look to file calib.pst to read its control data (ie. calib.pst is the PEST controlfile for the current case) and file calib.rmf to read data pertaining to the distribution of modelruns across the network.
	File
	File
	File
	File

	Written By
	Written By

	Function
	Function

	pslave.rdy
	pslave.rdy
	pslave.rdy

	PSLAVE
	PSLAVE

	Informs PEST that it has begun execution; alsoinforms it of the command line which it will useto run the model.
	Informs PEST that it has begun execution; alsoinforms it of the command line which it will useto run the model.

	pest.rdy
	pest.rdy
	pest.rdy

	PEST
	PEST

	Informs PSLAVE that it has begun execution.
	Informs PSLAVE that it has begun execution.

	param.rdy
	param.rdy
	param.rdy

	PEST
	PEST

	Informs PSLAVE that it has just generatedmodel input files(s) on the basis of a certainparameter set and that it must now run themodel.
	Informs PSLAVE that it has just generatedmodel input files(s) on the basis of a certainparameter set and that it must now run themodel.

	observ.rdy
	observ.rdy
	observ.rdy

	PSLAVE
	PSLAVE

	Informs PEST that the model has finishedexecution and that it must now read the modeloutput file(s).
	Informs PEST that the model has finishedexecution and that it must now read the modeloutput file(s).

	pslave.fin
	pslave.fin
	pslave.fin

	PEST
	PEST

	Informs PSLAVE that it must now ceaseexecution.
	Informs PSLAVE that it must now ceaseexecution.

	p###.##
	p###.##
	p###.##

	PEST
	PEST

	Used to test whether PEST has access to allPSLAVE working directories.
	Used to test whether PEST has access to allPSLAVE working directories.

	Table 9.1 Files used by PEST and PSLAVE to communicate with each other.
	Example 9.1 shows the structure of a run management file while Example 9.2 shows anexample of such a file for the case where there are three slaves.
	The first line of a run management file should contain only the character string “prf”identifying the file as a PEST run management file. The next line must contain four items, thefirst of which is the number of slaves, NSLAVE, involved in the current Parallel PEST run.The second item on this line is the value of the variable IFLETYP which must be either 1 or0. If it is 1 then all model input and output files on the various slave machines must beindividually named (as is demonstrated in Example 9.2). Howeve
	The third item on the second line of the PEST run management file is the value for thevariable WAIT. As PEST and PSLAVE exchange information with each other and as PESTwrites and reads model input and output files, both PEST and PSLAVE pause at certainstrategic places in the communications process for an amount of time specified as the valueof the variable WAIT; such pauses allow one machine to “catch up” in implementing theinstructions supplied by another machine. WAIT is the duration of each such pause,ex
	Sharing violation reading drive C
	Abort, Retry, Fail? [y/n]
	The slave running that particular model will drop out of the Parallel PEST optimisationprocess until this question is answered. It would obviously be unfortunate if the question isasked at midnight when no-one is around to answer it with a simple “r” to send the model onits way again. Fortunately, if WAIT is set high enough, this should not happen.
	If PARLAM (the fourth variable appearing on the second line of the run management file) isset to 1, partial parallelisation of the lambda search is undertaken. However if it is set to 0,then the lambda search is conducted in serial fashion using just one processor. Partialparallelisation is further discussed in Section 9.2.6 below.
	Lines 3 to NSLAVE+2 (ie. NSLAVE lines in all) of the run management file should containtwo entries each. The first is the name of each slave; any name of up to 30 characters inlength can be provided. The name should be surrounded by single quotes if it contains anyblank spaces; an apostrophe should be written twice. This name is used for identificationpurposes only; it need bear no resemblance to computer names or IP addresses as allocatedby the network manager.
	The second item on each of these lines (ie. SLAVDIR) is the name of the PSLAVE workingdirectory as seen by PEST. This directory name should terminate with a backslash character;if you do not terminate the name with a backslash, PEST will add it automatically. You caneither provide the full path to the PSLAVE working directory, or supply it in abbreviatedform if this works. Thus if, having opened a command-line window to run PEST, you transferto drive K in Example 9.2 (this being a slave machine’s disk) and
	Note also from Example 9.2 that a slave on the local machine can work from the samedirectory as PEST. This may be desirable if all model input files are in this same directory(which is often the case) and this is also the current PEST working directory. A designationof .\ is sufficient to identify this directory.
	The next line of the run management file must contain as many entries as there are slaves.Each entry is the expected run time of the model on the respective slave, the ordering ofslaves on this line being the same as that in which slave data was supplied earlier in the runmanagement file. Run times should be supplied in seconds; if you are unsure of the exact runtimes, simply provide the correct run time ratios. There is no need for stopwatch precisionhere as PEST continually updates model run time estimate
	If the value supplied for IFLETYP is 0, then the run management file is complete. Howeverif it is supplied as 1, the names of all model input files and all model output files on all slavemachines must next be supplied individually. Either full pathnames can be supplied orabbreviated pathnames, the abbreviations being sufficient for PEST to write and read therespective files from the directory in which it is run. Data for the various slaves must besupplied in the same order as that in which the slaves were i
	Example 9.3 shows a Parallel PEST run management file equivalent to that of Example 9.2but with the value of NFLETYP set to 0. Use of an abbreviated run management file such asthat shown in Example 9.3 is only possible where all model input and output files on eachslave reside in the one subdirectory, and this subdirectory is also the PSLAVE workingdirectory on that machine.
	9.2.6 More on Partial Parallelisation of the Marquardt Lambda Testing Process
	The algorithm used by PEST to undertake parallel model runs as part of its lambda searchprocedure is similar to that used for parallelisation of the Jacobian matrix calculation process.However there are some important differences. One such difference is that if any slave carriesout model runs with a run time which is greater than 1.8 times that of the fastest slave, thenthat slave is not used in the partial parallelisation process. This is because PEST sends modelruns to its slaves in “packets” of 1 or more
	Another difference between the procedure by which Jacobian runs are carried out in paralleland that by which lambda search runs are carried out in parallel is that in the former casePEST knows the number of runs that must be carried out before the Jacobian calculationprocess is complete. However the lambda search procedure is deemed to be complete whenPEST judges that the overall parameter estimation process is better served by terminating thecurrent lambda search procedure and moving on to the next optimis
	During any optimisation iteration, upon commencement of the lambda search procedure forthat optimisation iteration, PEST’s first packet of model runs is based on Marquardt lambdaswhich are generally lower than the optimal lambda determined during the previousoptimisation iteration. However, if there are enough slaves at its disposal, PEST also carriesout model runs based on one or a number of higher Marquardt lambda values as well. Onsubsequent occasions during the same lambda search procedure on which PEST
	The lambda search procedure is such that parallelisation inevitably results in some modelruns being wasted. Hence, although PEST might inform the user through its screen outputthat n parallel model runs are being carried out, it may not display the results (ie. theobjective function and perhaps the model prediction) of all of these n model runs. It simplyprocesses the results of that “packet” of runs in accordance with its lambda search algorithm.If the demands of that algorithm are such that more Marquardt
	Nevertheless, there will be some occasions when the path taken by the parameter estimationprocess is slightly different when the lambda search procedure is parallelised from that whichis taken when the lambda search is conducted on the basis of serial model runs. If anunexpected and significant advance in the parameter estimation process is achieved in a runthat would not have been undertaken on the basis of the usual Marquardt lambda testingprocedure based on serial model runs, PEST will not ignore this; t
	9.3. Using Parallel PEST
	9.3.1 Preparing for a Parallel PEST Run
	Before running Parallel PEST, a PEST run should be set up in the usual manner. This willinvolve preparation of a set of template and instruction files as well as a PEST control file.When preparing the PEST control file it is important for template and instruction files to beproperly identified. However the names of the corresponding model input and output files arenot used if the value of IFLETYP in the run management file is set to 1, for these are thensupplied to PEST in the run management file itself. Si
	Next the Parallel PEST run management file should be prepared in the manner discussed inSection 9.2.5.
	Before Parallel PEST is started, care should be taken to ensure that the model runs correctlyon each slave machine. A set of model input files should be transferred from the mastermachine to each slave machine (or TEMPCHEK can be used to construct such files on thebasis of a set of template files and a parameter value file). Where any model input files arenot generated by Parallel PEST (because they contain no adjustable parameters), these filesshould be identical across all machines that run the model. In
	9.3.2 Starting the Slaves
	Go to each of the slaves in turn, open a command-line window and transfer to the PSLAVEworking directory on that machine. Start PSLAVE execution by typing the command“pslave”. PSLAVE immediately prompts the user for the command which it must use to runthe model. Type in the appropriate command. Remember that, as with the normal PEST, the“model” may be a batch file running a series of executables; alternatively, the model may bea single executable. Provide the model pathname if the model batch file or execut
	On each slave machine, PSLAVE now waits for PEST to commence execution. At this stage,or at any other stage of PSLAVE execution, the user can press the <Ctl-C> keys to terminateits execution if this is desired.
	9.3.3 Starting PEST
	The next step is to start PEST. Move to the machine on which PEST resides, open acommand-line window, transfer to the appropriate directory and type:
	ppest case
	where case is the filename base of both the PEST control file and the Parallel PEST runmanagement file.
	PEST then commences execution. First it reads the PEST control file and then the runmanagement file. Then it attempts to write to, and read from, the PSLAVE working directoryon each slave machine in order to verify that it has access to each such directory. It alsoinforms each PSLAVE that it has commenced execution and waits for a response from eachof them. Once it has received all necessary responses it commences the parameteroptimisation process.
	Operation of Parallel PEST is very similar to that of PEST. However whenever a model runmust be carried out, Parallel PEST selects a slave to carry out this run. If model runs are to beconducted one at a time (as do, for example, the initial model run and the sequence of modelruns in which parameter upgrades are tested if the user has decided not to parallelise thelambda search procedure by setting the PARLAM variable to zero), Parallel PEST selects thefastest available slave to carry out each run. Initiall
	The Parallel PEST run manager is “intelligent” to the extent that if a model run issignificantly late in completion Parallel PEST, fearing the worst, allocates that same modelrun to another slave if the latter is standing idle. Similarly, if a slave has just become free andParallel PEST calculates that a model run which is currently being undertaken on a certainslave can be completed on the newly freed slave in a significantly faster time, it reassigns therun to the new slave. As it allocates model runs to
	Parallel PEST execution continues until either the optimisation process is complete or theuser interrupts it by typing the PPAUSE, PSTOP or PSTOPST command while situated in thePPEST working directory within another command-line window; see Section 5.4.1 for furtherdetails. In the former case PEST execution can be resumed if the PUNPAUSE command istyped. Meanwhile the run record file can be examined by opening it with any text editor.
	9.3.4 Re-Starting Parallel PEST
	If the RSTFLE variable on the PEST control file is set to restart, a terminated Parallel PESTrun may be restarted at any time from the beginning of the optimisation iteration duringwhich it was interrupted. This can be achieved through entering the command:
	ppest case /r
	where case.pst is the PEST control file for the current case. Alternatively, execution can bere-commenced at that point at which calculation of the Jacobian matrix had most recentlybeen completed by typing the command:
	ppest case /j
	PSLAVE must be started in the usual fashion on each slave machine before issuing either ofthese commands. Note, however, that if PSLAVE is already running on each of thesemachines, it does not have to be restarted. This is because an already executing PSLAVE candetect the commencement of a new PEST run.
	If PEST is restarted without the “/r” or “/j” switch, it will commence the optimisation processfrom the very beginning. Once again, if PSLAVE is already running on each of the slavemachines (having been initially started for the sake of a previous Parallel PEST run), it neednot be restarted on any of these machines. Such a re-commencement of PEST execution“from scratch” will sometimes be warranted after PEST terminates execution with an errormessage, or if the user terminates PEST execution with the “Immedi
	If PEST is restarted with the “/r” or “/j” switch, neither the PEST control file, nor anytemplate or instruction file should have been altered from that supplied to PEST on itsoriginal run. It is important to note, however, that the same does not apply to the runmanagement file. Thus Parallel PEST can recommence a lengthy execution using more, less,and/or different slaves than those that were used for the initial part of the Parallel PEST run,as long as the new run management file is prepared in the correct
	9.3.5 Parallel PEST Errors
	As in normal PEST operation, Parallel PEST run-time error messages are written to both thescreen and the run record file.
	9.3.6 Losing Slaves
	If, during the course of a Parallel PEST run, a slave machine drops out of the network, undermany circumstances PEST will continue execution. If communications are lost during thecourse of a model run, then PSLAVE executing on the lost machine will not be able toinform PEST of the completion of that model run. PEST will soon grow tired of waiting andallocate that run to another slave. It will thus continue execution with one less slave at itsdisposal. However if the slave machine drops out just while PEST i
	Even complete network failure may not result in the termination of a Parallel PEST run, for ifone slave is running on the same machine as PEST, PEST will be able to continue executionusing just that single slave, as long as the time of network failure did not coincide with thetime at which PEST was reading a model output file from a slave machine.
	9.3.7 The Parallel PEST Run Management Record File
	Section 5.2 discusses in detail the PEST run record file which records the progress of theparameter estimation process. Parallel PEST produces an identical run record file to that ofthe normal PEST. It also writes a “run management record file”. Like the run record file, therun management record file possesses a filename base identical to that of the PEST controlfile. However PEST provides this file with an extension of “.rmr” (for “Run ManagementRecord”). Example 9.4 shows part of a Parallel PEST run manag
	 PEST RUN MANAGEMENT RECORD FILE: CASE VES2
	 SLAVE DETAILS:-
	 Slave Name PSLAVE Working Directory
	 ---------- ------------------------
	 "slave 1" k:.\model\
	 "slave 2" l:.\model\
	 "slave 3" m:.\model\
	 Attempting to communicate with slaves
	 - slave "slave 2" has been detected.
	 - slave "slave 3" has been detected.
	 - slave "slave 1" has been detected.
	 SLAVE MODEL INPUT AND OUTPUT FILES:-
	 Slave "slave 1" ----->
	 Model input files on slave "slave 1":-
	 k:.\model\ves.in1
	 k:.\model\ves.in2
	 Model output files on slave "slave 1":-
	 k:.\model\ves.ot1
	 k:.\model\ves.ot2
	 k:.\model\ves.ot3
	 Model command line for slave "slave 1":-
	 ves
	 Slave "slave 2" ----->
	 Model input files on slave "slave 2":-
	 l:.\model\ves.in1
	 l:.\model\ves.in2
	 Model output files on slave "slave 2":-
	 l:.\model\ves.ot1
	 l:.\model\ves.ot2
	 l:.\model\ves.ot3
	 Model command line for slave "slave 2":-
	 ves
	 Slave "slave 3" ----->
	 Model input files on slave "slave 3":-
	 m:.\model\ves.in1
	 m:.\model\ves.in2
	 Model output files on slave "slave 3":-
	 m:.\model\ves.ot1
	 m:.\model\ves.ot2
	 m:.\model\ves.ot3
	 Model command line for slave "slave 3":-
	 ves
	AVERAGE WAIT INTERVAL: 50 hundredths of a second.
	 RUN MANAGEMENT RECORD
	RUNNING MODEL FOR FIRST TIME ----->
	 21:50:00.19:- slave "slave 1" commencing model run.
	 21:55:05.00:- slave "slave 1" finished execution; reading results.
	 OPTIMISATION ITERATION NO. 1 ----->
	 Calculating Jacobian matrix: running model 5 times
	 21:55:23.65:- slave "slave 1" commencing model run.
	 21:55:33.92:- slave "slave 3" commencing model run.
	 21:55:44.20:- slave "slave 2" commencing model run.
	 22:00:05.79:- slave "slave 2" finished execution; reading results.
	 22:00:17.77:- slave "slave 3" finished execution; reading results.
	 22:00:29.47:- slave "slave 2" commencing model run.
	 22:00:39.58:- slave "slave 3" commencing model run.
	 22:00:50.07:- slave "slave 1" finished execution; reading results.
	 22:05:11.83:- slave "slave 2" finished execution; reading results.
	 22:05:43.70:- slave "slave 3" finished execution; reading results.
	 Testing parameter upgrades
	 22:06:01.69:- slave "slave 2" commencing model run.
	 22:11:16.45:- slave "slave 2" finished execution; reading results.
	 22:11:27.49:- slave "slave 2" commencing model run.
	 22:16:19.63:- slave "slave 2" finished execution; reading results.
	 22:16:35.95:- slave "slave 2" commencing model run.
	 22:21:23.48:- slave "slave 2" finished execution; reading results.
	 OPTIMISATION ITERATION NO. 2 ----->
	 Calculating Jacobian matrix: running model 5 times
	 22:21:45.07:- slave "slave 2" commencing model run.
	 22:21:55.40:- slave "slave 3" commencing model run.
	 22:22:25.05:- slave "slave 1" commencing model run.
	 22:27:05.83:- slave "slave 2" finished execution; reading results.
	 22:27:28.20:- slave "slave 3" finished execution; reading results.
	 22:27:39.52:- slave "slave 2" commencing model run.
	 22:27:52.63:- slave "slave 3" commencing model run.
	 22:28:05.18:- slave "slave 1" finished execution; reading results.
	 22:33:06.55:- slave "slave 2" finished execution; reading results.
	 22:33:33.03:- slave "slave 3" finished execution; reading results.
	 Testing parameter upgrades
	 22:34:11.46:- slave "slave 2" commencing model run.
	 22:39:36.82:- slave "slave 2" finished execution; reading results.
	 22:39:48.09:- slave "slave 2" commencing model run.
	 22:45:40.28:- slave "slave 2" finished execution; reading results.
	 22:45:51.38:- slave "slave 2" commencing model run.
	 22:50:43.30:- slave "slave 2" finished execution; reading results.
	 OPTIMISATION ITERATION NO. 3 ----->
	 Calculating Jacobian matrix: running model 10 times
	 22:50:54.46:- slave "slave 2" commencing model run.
	 22:51:14.68:- slave "slave 3" commencing model run.
	 .
	 .
	Example. 9.4 Part of a Parallel PEST run management record file.
	As is explained elsewhere in this manual, if PEST (or Parallel PEST) execution is re-commenced through use of the “/r” or “/j” command line switches, the newly re-activatedPEST appends information to the run record file created on the previous PEST (or ParallelPEST) run. The same is not true for the run management record file however, for it isoverwritten by a newly re-activated Parallel PEST. This is because, as was mentioned above,there is no necessity for Parallel PEST to employ the same slaves when it r
	9.3.8 Running PSLAVE on the Same Machine as Parallel PEST
	On many occasions of Parallel PEST execution, at least one of the slaves will be run on thesame machine as that on which PEST is run. In most cases of PEST usage, PEST’s tasks aresmall compared with those of the model; hence there is adequate capacity on one single-processor machine to run both a model and PEST without serious diminution of theperformance of either. However it is wise to ensure that the command-line window runningPSLAVE (and hence the model) is the active window (unless, of course, the user
	9.3.9 Running Parallel PEST on a Multi-Processor Machine
	Parallel PEST can be used to harness the full potential of a multi-processor machine. Such amachine can either be used on its own or as part of a network of other machines, some ofwhich may possess multiple processors and some of which may not.
	On a single dual processor machine, operation of Parallel PEST is identical to that describedabove for machines across a network. Three command-line windows must be opened, two ofwhich are used to run PSLAVE and one of which is for the use of PEST. A different set ofmodel input files, residing in a different subdirectory, must be prepared for the use of eachinstance of PSLAVE. Each PSLAVE must also have its own separate working directorywhich, for convenience, may just as well be the subdirectory holding it
	9.3.10 The Importance of the WAIT Variable
	The role of the WAIT variable was briefly discussed in Section 9.2.5. As was outlined in thatsection, an appropriate value for this variable gives machines across the network time torespond to the information sent to them by other machines. If WAIT is set too small, thepotential exists for conflicts to occur, resulting in a message on the PEST or PSLAVE screensent by the operating system. In some cases, as mentioned in Section 9.2.5, this messagedemands an answer which, if not provided, can temporarily remo
	If the message “access denied” appears on the PEST or PSLAVE screen, this is a sureindication that WAIT needs to be set larger. This occurs when PEST or PSLAVE attempts todelete one of the signal files of Table 9.1 after they have acted on the signal. If they do thisbefore the program which wrote the signal file has closed it (as can happen if WAIT is set toosmall), then the above message appears. This is not serious, however, as no user response isrequired and both PEST and PSLAVE ensure that a particular
	The more serious case of a model trying to read or write a file that is still opened by PESTresults in the operating-system generated message:
	Sharing violation reading drive C
	Abort, Retry, Fail?
	to which a response is demanded. If this occurs and you are there to respond, simply press the“r” key. If you are not there to respond, the model cannot run; furthermore the affected slavecan take no further part in the optimisation process until the “r” key is pressed.
	Experience will dictate an appropriate setting for WAIT. However it is important to note thata user should err on the side of caution rather than setting WAIT too low. A high setting forWAIT will certainly slow down communications between PEST and its slaves. It will alsoresult in a longer time between the issuing of a PPAUSE or PSTOP command and a responsefrom PEST. However it will ensure stable Parallel PEST performance across a busy network.
	In general, the busier is the network, the higher should WAIT be set. In most cases a value of1.0 to 2.0 seconds will be adequate, even for a relatively busy network; however do not beafraid to set it as high as 10.0 seconds (or even higher) on an extremely busy network. Whilethis could result in elapsed times of as much as 1 minute between the end of one model runand the beginning of another, if this is small in comparison with the model execution time,then it will make little difference to overall Paralle
	9.3.11 If PEST will not Respond
	As is mentioned above, if the PPAUSE, PSTOP or PSTOPST command is issued while thecommand-line version of Parallel PEST is running, PEST execution will be interrupted in theusual way. However unlike the single window version of PEST, Parallel PEST does not needto wait until the end of the current model run to respond to these commands; rather there isonly a short delay, the length of this delay depending on the setting of the variable WAIT.Hence if WAIT is set extremely high, be prepared for a short wait be
	There is, however, one particular situation that can result in a large elapsed time between theissuing of either of the above commands and the reception of a response from PEST. If, whenPEST tries to read a model output file, it encounters a problem, it does not immediatelyterminate execution, reporting the error to the screen. Rather it waits for 30 seconds and thentries to read the file again. If it is still unsuccessful it waits another 30 seconds and tries toread the file yet again. This time, if the er
	problem (either model or communications) in reading results from slave “xxx"
	9.3.12 The Model
	The model can be any executable or batch program which can be run from the command line.
	9.4 An Example
	Once PEST has been installed, a subdirectory of the main PEST directory called ppestex willcontain all the files needed to undertake a Parallel PEST run on a single machine. Beforerunning this example make sure that the PEST directory is cited in the PATH environmentvariable.
	Change the working directory to the ppestex subdirectory and create two subdirectories tothis directory called test1 and test2.
	Now open three command-line windows (you probably have one open already). In one ofthese windows transfer to subdirectory test1 and type the command “pslave”. Whenprompted for the command to run the model, type “..\a_model”. Do the same in anothercommand-line window for subdirectory test2.
	In the third command-line window transfer to the directory holding the example files (ie. theparent directory of test1 and test2) and type the command “ppest test”. Parallel PEST shouldcommence execution and, after verifying that it can communicate with each of its slaves,undertake parameter optimisation for the a_model model.
	If you wish, you can also carry out the parameter estimation process using the single windowversion of PEST. While situated in the ppestex subdirectory, type “pest test”. For thisparticular case the single window version of PEST will run faster than Parallel PEST. This isbecause the model run time is too small to justify Parallel PEST’s run managementoverheads. Furthermore, unless you are using a multi-processor machine, there is nothing tobe gained by undertaking parallel model runs on a single machine any
	9.5 Frequently Asked Questions
	For more information on Parallel PEST see the frequently asked questions listed in Chapter13.

	PEST Utilities
	PEST Utilities
	PEST is accompanied by five utility programs whose role is to assist in PEST input filepreparation. These are programs TEMPCHEK, INSCHEK, PESTCHEK, PESTGEN andPARREP. The first three of these programs are used to check template files, instruction filesand the PEST control file respectively for a particular PEST case, prior to actually runningPEST on that case. In this way you can be sure that the input dataset which you supply toPEST is correct and consistent. The PESTGEN utility creates a PEST control file
	A sixth utility program, named JACWRIT, acts in a PEST postprocessing capacity. It allowsa user to generate and ASCII file in which the Jacobian matrix for a particular parameterestimation problem is recorded for inspection.
	The PAR2PAR utility is used to undertake mathematical operations of arbitrary complexitybetween existing parameters in order to generate new parameters. It is normally used in amodel preprocessing capacity, being run by PEST as part of a composite model encapsulatedin a batch file. Its many uses include complex parameter transformation (perhaps to improvemodel linearity), and the generation of a large number of “secondary parameters” (as used bythe model) from a smaller number of “primary parameters” (as es
	10.1 TEMPCHEK
	Program TEMPCHEK checks that PEST template files obey PEST protocol. If provided witha set of parameter values, TEMPCHEK can also be used to generate a model input file from atemplate file. It builds the model input file in the same way that PEST does; you can then runyour model, checking that it is able to read such a PEST-generated input file without anydifficulties.
	TEMPCHEK is run using the command
	tempchek tempfile [modfile [parfile]]
	where
	tempfile is the name of a template file,
	modfile is the name of a model input file to be generated by TEMPCHEK (optional), and
	parfile is the name of a PEST parameter value file (also optional).
	The simplest way to run TEMPCHEK is to use the command
	tempchek tempfile
	When invoked in this way TEMPCHEK simply reads the template file tempfile, checking itfor breaches of PEST protocol. It writes any errors it finds to the screen. These errors can beredirected to a file using the “>” symbol on the TEMPCHEK command line. Thus to runprogram TEMPCHEK, directing it to write any errors found in the template file model.tpl tothe file errors.chk, use the following command
	tempchek model.tpl > errors.chk
	If no errors are encountered in the template file, TEMPCHEK informs you of this through anappropriate screen message. This message also informs you of the number of parameters thatTEMPCHEK identified in the template file. TEMPCHEK lists these parameters in a filenamed file.pmt, where file is the filename base of tempfile (ie. the filename minus itsextension). If tempfile has no extension TEMPCHEK simply adds the extension “.pmt” totempfile. By supplying a parameter value as well as a scale and offset for ea
	Note that if a parameter is cited more than once in a template file, the parameter isnevertheless written only once to file.pmt; also it is counted only once as TEMPCHEK sumsthe total number of parameters cited in the template file.
	If you wish TEMPCHEK to generate a model input file you must supply it with the name ofthe template file upon which the model input file is based, the name of the model input filewhich it must generate, and the values of all parameters named in the template file. To runTEMPCHEK in this fashion, enter the command
	tempchek tempfile modfile [parfile]
	The name of the parameter value file is optional. If you don't supply a name TEMPCHEKgenerates the name itself by replacing the extension used in the template filename with theextension “.par”; if tempfile has no extension, “.par” is simply appended. Hence the namingconvention of the parameter value file is in accordance with that used by PEST whichgenerates such a file at the end of every optimisation iteration; see Section 5.3.1.
	A PEST parameter value file is shown in Example 5.2. The first line of a parameter value filemust contain values for the character variables PRECIS and DPOINT; the role of thesevariables is discussed in Section 4.2.2. These variables must be supplied to TEMPCHEK sothat it knows what protocol to use when writing parameter values to the model input filewhich it generates.
	The second and subsequent lines of a parameter value file each contain a parameter name, avalue for the named parameter, and the scale and offset to be used when writing theparameter value to the model input file. Because TEMPCHEK is supplied with a scale andoffset for each parameter, it is able to generate model input files in exactly the same way thatPEST does; see Section 4.2.4.
	If TEMPCHEK finds a parameter in a template file which is not listed in the parameter valuefile, it terminates execution with an appropriate error message. However a parameter valuefile may contain more parameters than are cited in the template file; these extra parametersare ignored when generating the model input file. This may occur if your model has a numberof input files and you wish to optimise parameters occurring on more than one of them. Youmust make a template file for each such model input file;
	10.2 INSCHEK
	Program INSCHEK assists in the construction of PEST instruction files. Like TEMPCHEK itcan be used in two modes. In the first mode it simply checks that an instruction file has nosyntax errors and obeys PEST protocol as set out in Section 3.3. In its second mode it is ableto read a model output file using the directions contained in the instruction file; it then writesa file listing all observations cited in the instruction file together with the values of theseobservations as read from the model output fil
	INSCHEK is run using the command
	inschek insfile [modfile]
	where
	insfile is a PEST instruction file, and
	modfile is a model output file to be read by INSCHEK (optional).
	The simplest way to run INSCHEK is to use the command
	inschek insfile
	When invoked in this way, INSCHEK simply reads the instruction file insfile, checking thatevery instruction is valid and that the instruction set is consistent. If it finds any errors itwrites appropriate error messages to the screen. You can redirect this screen output to a file ifyou wish by using the “>” symbol on the command line. Thus to run INSCHEK such that itrecords any errors found in the instruction file model.ins to the file errors.chk, use thecommand
	inschek model.ins > errors.chk
	If no errors are found in the instruction file insfile, INSCHEK informs you of how manyobservations it identified in the instruction set and lists these observations to file.obf, wherefile is the filename base (ie. the filename without its extension) of insfile; if insfile has noextension, the extension “.obf” is simply appended to the filename.
	For an instruction set to be useable by PEST it must do more than simply obey PESTprotocol; it must also read a model output file correctly. You can check this by invokingINSCHEK with the command
	inschek insfile modfile
	When run in this way, INSCHEK first checks insfile for syntax errors; if any are found itwrites appropriate error messages to the screen and does not proceed to the next step.Alternatively, if the instruction set contained in insfile is error free, INSCHEK reads themodel output file modfile using the instruction set. If any errors are encountered in thisprocess, INSCHEK generates an appropriate error message and abandons execution; sucherrors may arise if, for example, INSCHEK finds a blank space where a nu
	10.3 PESTCHEK
	PESTCHEK should be used when all preparations for a PEST run are complete, ie. when alltemplate files, instruction files and the PEST control file which “brings it all together” havebeen prepared. PESTCHEK reads the PEST control file, making sure that all necessary itemsof information are present on this file and that every item is consistent with every other item(for example that logarithmically-transformed parameters do not have negative lower bounds,that RELPARMAX is greater than unity if at least one pa
	PESTCHEK also carries out some of the tasks undertaken by programs TEMPCHEK andINSCHEK, viz. it checks all template and instruction files cited in the PEST control file forcorrect syntax. Unlike TEMPCHEK and INSCHEK, PESTCHEK cannot generate a modelinput file nor read a model output file; nevertheless it does check that all parameters andobservations cited in the PEST control file are also cited in the template and instruction filesreferenced in the PEST control file, and that parameters and observations ci
	PESTCHEK is run using the command
	pestchek case
	where
	case is the filename base of a PEST control file.
	 ar1 1.21038
	 ar2 1.51208
	 ar3 2.07204
	 ar4 2.94056
	 ar5 4.15787
	 ar6 5.77620
	 ar7 7.78940
	 ar8 9.99743
	 ar9 11.8307
	 ar10 12.3194
	 ar11 10.6003
	 ar12 7.00419
	 ar13 3.44391
	 ar14 1.58278
	 ar15 1.10381
	 ar16 1.03085
	 ar17 1.01318
	 ar18 1.00593
	 ar19 1.00272
	Example 10.1 An observation value file.
	No filename extension should be provided here; an extension of “.pst” is addedautomatically. This is the same filename base which should be provided to PEST on itscommand line; see Section 5.1.2. PESTCHEK reads an identical dataset to PEST.
	PESTCHEK writes any errors it encounters to the screen. If you wish, error messages can beredirected to a file using the “>” symbol on the PEST command line. Thus to check thedataset contained in the PEST control file, calib.pst, and the template and instruction filescited therein, directing any error messages to the file errors.chk, invoke PESTCHEK usingthe command
	pestchek calib > errors.chk
	If PESTCHEK finds one or a number of errors in your input dataset it is important that youre-run PESTCHEK on the dataset after you have corrected the errors. This is becausePESTCHEK may not have read all of your input dataset on its first pass; depending on theerrors it finds, it may not be worthwhile (or possible) for PESTCHEK to read an input datasetin its entirety once an error condition has been established. Hence, once you have rectifiedany problems that PESTCHEK may have identified in your input datas
	If you wish, you can write a batch file which runs both PESTCHEK and PEST in sequence.Because PESTCHEK terminates execution with a non-zero errorlevel setting should it detectany errors, you can program the batch process to bypass the running of PEST unless the inputdataset is perfect. In this way, you can always be sure that PESTCHEK, rather than PEST, isthe first to detect any input data errors. A suitable batch file is shown in Example 10.2.
	10.4 PESTGEN
	Program PESTGEN generates a PEST control file. In most cases this file will need to bemodified before PEST is run, as PESTGEN generates default values for many of the PESTinput variables supplied on this file; it is probable that not all of these default values will beappropriate for your particular problem.
	PESTGEN is run using the command
	pestgen case parfile obsfile
	where
	@ echo off
	rem FILE RUNPEST.BAT
	rem To run RUNPEST.BAT type the command “runpest case [/r] [/j]”,
	rem where case is the filename base of the PEST control file, and
	rem “/r” and “/j” are optional restart switches.
	pestchek %1
	if errorlevel 1 goto end
	pest %1 %2
	:end
	Example 10.2 Running PESTCHEK and PEST as a batch process.
	case is the case name. No filename extension should be supplied; PESTGEN automaticallyadds the extension “.pst” to case in order to form the filename of the PEST control file whichit writes.
	parfile is a parameter value file, and
	obsfile is an observation value file.
	A parameter value file is shown in Example 5.2; Example 10.1 shows an observation valuefile. The former file must include all parameters used in the current case; these parametersmay be cited in one or a number of template files. Similarly, the observation value file mustprovide the name and value for all observations used in the current problem; theobservations, too, may be cited on one or a number of instruction files. The observationvalues provided in this file may be field/laboratory measurements or, if
	PESTGEN commences execution by reading the information contained in files parfile andobsfile (see above), checking them for correctness and consistency. If there are any errors ineither of these files, PESTGEN lists these errors to the screen and terminates execution.Alternatively, if these files are error-free, PESTGEN then generates a PEST control file.
	Files parfile and obsfile provide PESTGEN with the names of all parameters andobservations which need to be listed in the PEST control file. They also provides PEST withinitial parameter values (these must be provided in the second column of the parameter valuefile), the scale and offset for each parameter (in the third and fourth columns of the parametervalue file), the laboratory or field measurement set (in the second column of the observationvalue file) and values for the variables PRECIS and DPOINT (on
	For the parameter and observation value files shown in Examples 5.2 and 10.1, thePESTGEN-generated PEST control file is shown in Example 10.3.
	Note that when viewing a PESTGEN-generated PEST control file on your screen, theOFFSET values in the “parameter data” section of the file may not be visible as they arewritten beyond the 80th column of the file; to bring them into view, move your editor’scursor over them.
	Example 10.3 shows the default values used by PESTGEN in generating a PEST control file.The following features, in particular, should be noted.
	PESTGEN assumes that PEST will be run in parameter estimation mode. Neither a“predictive analysis” nor a “regularisation” section is included in the PEST controlfile.
	pcf
	* control data
	restart estimation
	 5 19 5 0 1
	 1 1 single point 1 0 0
	 5.0 2.0 0.3 0.03 10
	 3.0 3.0 0.001
	 0.1
	 30 0.01 3 3 0.01 3
	 1 1 1
	* parameter groups
	ro1 relative 0.01 0.0 switch 2.0 parabolic
	ro2 relative 0.01 0.0 switch 2.0 parabolic
	ro3 relative 0.01 0.0 switch 2.0 parabolic
	h1 relative 0.01 0.0 switch 2.0 parabolic
	h2 relative 0.01 0.0 switch 2.0 parabolic
	* parameter data
	ro1 none relative 1.00000 -1.00000E+10 1.00000E+10 ro1 1.0000 0.00000 1
	ro2 none relative 40.0009 -1.00000E+10 1.00000E+10 ro2 1.0000 0.00000 1
	ro3 none relative 1.00000 -1.00000E+10 1.00000E+10 ro3 1.0000 0.00000 1
	h1 none relative 1.00000 -1.00000E+10 1.00000E+10 h1 1.0000 0.00000 1
	h2 none relative 9.99978 -1.00000E+10 1.00000E+10 h2 1.0000 0.00000 1
	* observation groups
	obsgroup
	* observation data
	ar1 1.21038 1.0 obsgroup
	ar2 1.51208 1.0 obsgroup
	ar3 2.07204 1.0 obsgroup
	ar4 2.94056 1.0 obsgroup
	ar5 4.15787 1.0 obsgroup
	ar6 5.77620 1.0 obsgroup
	ar7 7.78940 1.0 obsgroup
	ar8 9.99743 1.0 obsgroup
	ar9 11.8307 1.0 obsgroup
	ar10 12.3194 1.0 obsgroup
	ar11 10.6003 1.0 obsgroup
	ar12 7.00419 1.0 obsgroup
	ar13 3.44391 1.0 obsgroup
	ar14 1.58278 1.0 obsgroup
	ar15 1.10381 1.0 obsgroup
	ar16 1.03085 1.0 obsgroup
	ar17 1.01318 1.0 obsgroup
	ar18 1.00593 1.0 obsgroup
	ar19 1.00272 1.0 obsgroup
	* model command line
	model
	* model input/output
	model.tpl model.inp
	model.ins model.out
	* prior information
	Example 10.3 A PEST control file generated by PESTGEN.
	PESTGEN generates a separate parameter group for each parameter; the name of thegroup is the same as that of the parameter. For each of these groups derivatives arecalculated using a relative increment of 0.01, with no absolute lower limit providedfor this increment. At the beginning of the optimisation process, derivatives will becalculated using the forward method, switching to the three-point “parabolic” methodon the iteration following that for which the objective function fails to undergo arelative red
	No prior information is supplied.
	No parameters are tied or fixed; no parameters are log-transformed and changes to allparameters are relative-limited (with a RELPARMAX value of 3.0). The upper boundfor each parameter is provided as 1.0E10, while the lower bound is -1.0E10. It isstrongly suggested that you modify these bounds to suit each parameter. It is alsorecommended that you consider log-transforming some parameters for greateroptimisation efficiency; see Section 2.2.1. Note, however, that the lower bound of alog-transformed parameter
	All observations are provided with a weight of 1.0.
	PESTGEN assumes that the model is run using the command “model”. It also assumesthat the model requires one input file, viz. model.inp, for which a template filemodel.tpl is provided. It further assumes that all model-generated observations can beread from one output file, viz. model.out, using the instructions provided in theinstruction file model.ins. You will almost certainly need to alter these names. If thereare, in fact, multiple model input and/or output files, don't forget to alter the variablesNTPL
	The default values for all other variables can be read from Example 10.3.
	Once you have made all the changes necessary to the PESTGEN-generated PEST controlfile, you should check that your input dataset is complete and consistent using programPESTCHEK. If PESTCHEK informs you that all is correct, then you are ready to run PEST.
	10.5 PARREP
	Program PARREP replaces initial parameter values as provided in a PEST control file byanother set of values, the latter being supplied in a PEST parameter value file.
	Recall from Section 5.3.1 that in the course of the parameter estimation process PEST writesa parameter value file every time it improves its parameter estimates. After a PEST run hasfinished (either of its own accord or if it was manually halted), optimised parameter valuescan be found in the parameter value file. The parameter value file possesses the samefilename base as the current case but has an extension of “.par”. Because it has such a simplestructure, a parameter value file can also be easily built
	PARREP is useful when commencing a new PEST run where an old run finished. An updatedPEST control file can be produced by replacing parameter values in the old file with the bestparameter values determined during the previous PEST run as recorded in the parametervalue file written during that run. Recommencing a PEST run in this way, rather than throughuse of the “/r” or “/j” switches, allows a user to alter certain PEST control variables, fix ortie certain parameters, or adjust PEST’s management of the pa
	PARREP is also useful when undertaking a single model run on the basis of a certain set ofparameters in order to calculate the objective function. Simply modify an existing PESTcontrol file using PARREP as described above, and set NOPTMAX to zero.
	PARREP is run using the command:
	parrep parfile pestfile1 pestfile2
	where
	parfile is the name of a parameter value file,
	pestfile1 is the name of an existing PEST control file, and
	pestfile2 is the name for the new PEST control file.
	When PARREP replaces parameter values in the existing PEST control file by those readfrom the parameter value file, it does not check that each parameter value lies between itsupper and lower bounds, that log-transformed parameters are positive, etc. Hence, especiallyif using a manually-created parameter value file, it is, as always, a good idea to runPESTCHEK before running PEST to ensure that all is consistent and correct.
	10.6 JACWRIT
	JACWRIT is a utility program which allows the user to inspect the Jacobian matrix computedby PEST. Recall from Chapter 2 that the Jacobian matrix contains the derivative of eachmodel output for which there is a corresponding observation with respect to each parameter.
	At the end of each optimisation iteration PEST records a binary file containing the Jacobianmatrix corresponding to “best” parameters so far attained during the optimisation process.The definition of “best” depends on the aim of the optimisation process. When working inparameter estimation mode the best parameters are those for which the lowest objectivefunction was obtained. When working in predictive analysis mode, they are those for whichthe prediction was maximised/minimised compatible with the objectiv
	The Jacobian file is stored in binary rather than text format to save space. To translate it totext format, you must run JACWRIT by typing the command:-
	jacwrit jacfile1 jacfile2
	where
	jacfile1 is the name of the binary Jacobian file written by PEST, and
	jacfile2 is the name of the text file to which JACWRIT should write the Jacobian matrix in aform which is fit for human consumption.
	Note the following:-
	Parameter and observation names are listed in the text file written by JACWRIT sothat it becomes an easy matter to link a sensitivity (ie. a derivative) to a particularparameter/observation pair.
	Only adjustable parameters are represented in the file written by JACWRIT; fixed andtied parameters are not represented.
	The sensitivity of a parameter to which another parameter is tied reflects the fact thatthis parameter “carries” at least one other parameter through the optimisation process.
	Derivatives reflect the transformation status of a parameter. Thus if a parameter islog-transformed, the derivative with respect to the log of that parameter is presented.
	10.7 PAR2PAR
	10.7.1 General
	On many occasions of model calibration there is a need to manipulate parameters beforeproviding them to a model. There can be a number of reasons for this; two of them are nowoutlined.
	10.7.1.1 Parameter Ordering
	Suppose that a particular model has three parameters named infilt1, infilt2 and infilt3. Forpurposes of illustration, let it be assumed that these parameters govern infiltration of waterinto different parts of a catchment, in this case into subareas 1, 2 and 3 respectively. Soilproperty data may suggest that infiltration increases with subarea index, that is that infilt1 <infilt2 < infilt3. Thus, during the parameter estimation process, it would be desirable for thelower bound of infilt2 to be the current v
	Unfortunately it would be very difficult to incorporate parameter-dependent bounds into thePEST inversion algorithm. However an alternative path can be taken which accomplishes thesame thing. This alternative path consists of estimating infilt1 together with two otherparameters named infiltrat2 and infiltrat3 (“infiltrat” stands for “infiltration ratio”). Theselatter two parameters are defined by the relationships:-
	infiltrat2 = infilt2/infilt1(10.1a)
	and
	infiltrat3 = infilt3/infilt2(10.1b)
	Desired infiltration parameter ordering relationships will be maintained if each of infiltrat2and infiltrat3 is provided with a lower bound of 1.0 in the parameter estimation processimplemented by PEST.
	In using this device to ensure that correct infiltration parameter ordering relationships aremaintained, PEST must “see” parameters infilt1, infiltrat2 and infiltrat3, while the modelmust “see” parameters infilt1, infilt2 and infilt3. The necessary “parameter transformation”process can be accomplished by running the utility program PAR2PAR as a modelpreprocessor contained in a “composite model” run by PEST as a batch file. PAR2PAR“receives” the current PEST-calculated values of infilt1, infiltrat2 and infil
	infilt2 = infilt1 * infiltrat2
	infilt3 = infilt2 * infiltrat3
	10.7.1.2 Seasonal Parameter Variations
	Some model parameters show seasonal variation. For environmental models which simulatewater or crop-growth processes in agricultural areas, “crop factor” may be one suchparameter. Crop factor is also a parameter that (together with other parameters) often requiresadjustment through the calibration process in order that the model can replicate measuredcrop water usage, observed crop growth, or some other system response for which historicalrecords are available.
	Many models require that the crop factor be provided on a monthly basis. However whilemonthly crop factors may indeed require estimation through the calibration process, it wouldgenerally be unwise to attempt to estimate each monthly crop factor independently of everyother monthly crop factor through the calibration process, for this would ignore an inherentrelationship between these parameters, this being the fact that variation of crop factor withseason may show a regular (perhaps sinusoidal) pattern. To
	For a case such as this, a suitable parameterisation strategy may be to estimate the meanmonthly crop factor, together with the amplitude and phase of the seasonal variation of thecrop factor about this mean. Thus twelve parameters are replaced with three. This will lendstability to the parameter estimation process as it promulgates a more unique solution to it. Inimplementing this strategy, PEST will “see” three parameters while the model will still “see”the twelve parameters which it requires. The task of
	crop1 = mean + amplitude * sin ((1 + phase)*2.0*3.142/12.0)
	crop2 = mean + amplitude * sin((2 + phase)*2.0*3.142/12.0)
	etc
	In these equations phase is measured in months; as is explained below, the argument of thesin function must be supplied in radians, where 2π radians is equal to a full cycle.
	Seasonal parameter variation can be expressed in a number of different ways; use of the sinfunction is just one of them. Another method would be to use “seasonal ratios”; in this caseonly one parameter may require estimation, this being the factor by which all such ratios aremultiplied to achieve model calibration.
	10.7.2 Using PAR2PAR
	10.7.2.1 Running PAR2PAR
	PAR2PAR is run using the command:-
	par2par infile
	where infile is a PAR2PAR input file which must be prepared by the user.
	10.7.2.2 The PAR2PAR Input File
	The structure of the PAR2PAR input file is shown in Example 10.4. An example of such afile is provided in Example 10.5.
	Example 10.4 Structure of the PAR2PAR input file.
	Example 10.5. An example of a PAR2PAR input file.
	A PAR2PAR input file must contain at least a “parameter data” section and a “template andmodel input files” section. The “control data” section is optional; if it is omitted, the defaultvalues of “single” and “point” are supplied for the variables PRECIS and DPOINT.
	The “parameter data” section of the PAR2PAR input file provides the means whereby valuesare assigned to a set of parameters. These values can be provided either by the directassignment of numbers, or through mathematical expressions. These expressions (which maybe of considerable complexity) may cite parameters whose values were assigned in previousexpressions.
	The “template and model input files” section of the PAR2PAR input file provides the namesof template files together with the names of the model input files to which they correspond.Once it has determined values for all parameters appearing on the left sides of theexpressions listed in the “parameter data” section of its input file, PAR2PAR writes theseparameter values to the nominated model input files using template files based on thesemodel input files (just like PEST does). Note the following:-
	Any parameter appearing in any of the template files listed in the “template andmodel input files” section of the PAR2PAR input file must be assigned a value in the“parameter data” section of the PAR2PAR input file.
	* parameter data
	PARNME = expression
	PARNME = expression
	.
	.
	* template and model input files
	TEMPFLE INFLE
	TEMPFLE INFLE
	.
	.
	* control data
	PRECIS DPOINT
	If there is more than one template/model input file pair listed in the “template andmodel input files” section of the PAR2PAR input file, any particular template file canbe cited more than once if desired. However each model input file can be cited onlyonce, for it would make no sense for a model input file generated on the basis of onetemplate file to be overwritten by another model input file generated on the basis ofthe same or another template file.
	If either of these rules are violated, PAR2PAR will inform you of this through an appropriateerror message.
	All template files cited in the “template and model input files” section of the PAR2PAR inputfile should be checked for correctness using TEMPCHEK. While PAR2PAR will detect andreport any errors that it finds in these files, it will only report the first error that it encounters;then it will cease execution. TEMPCHEK, on the other hand, attempts to examine theentirety of a template file, reporting all errors to the screen.
	10.7.2.3 Parameter Relationships
	The relationships by which parameter values are calculated from numbers, or from valuespreviously assigned to other parameters, may be mathematical expressions of complex form.They can include any or all of the “*”, “/”, “+”, “-” and “^” operators as well as brackets.(Note that the “^” operator raises the number in front of the “^” symbol to a power equal tothe number trailing the “^” symbol; this operation can also be designated using the “**”symbol as in the FORTRAN programming language.) Mathematical ope
	The following mathematical functions are supported in expressions by which parametervalues are calculated – sin, cos, tan, asin, acos, atan, sinh, cosh, tanh, exp, log, log10, absand sqrt. Note the following rules governing use of these functions:-
	As is the FORTRAN convention, the arguments of the trigonometric functions sin,cos and tan, and the values returned by their inverse functions asin, acos and atan, areassumed to be in radians. There are 2π radians in a circle; thus 2π radians are equal to360 degrees.
	The log function is to base e; for logarithms to base 10, use the log10 function.
	For some of the functions listed above, arguments must lie within a specific numericalrange (for example the argument of the log function must always be greater thanzero). If a function argument is provided which is outside of its legal range,PAR2PAR will often trap the error and cease execution with an appropriate errormessage. However in some rare instances the argument may “slip through” and acompiler-generated error message will be supplied upon termination of PAR2PARexecution.
	The following rules apply when formulating mathematical expressions to calculate parametervalues.
	Expressions may contain both numbers and parameters. However where a parameteris used, its value must have been calculated (or supplied) in a previous expression.
	As is the normal PEST convention, parameter names must be 12 characters or less inlength.
	Spaces can be placed next to operators, brackets and functions. However they cannotappear within numbers, parameter names or function names.
	Some examples of allowable mathematical expressions follow:-
	trans5 = k5 * (top5 – bottom5)
	pi = 3.14159
	par3 = 3.4 * (4.5 + trans5 ^ (3 + sin(0.6)))
	par4 = par3 / (pi + exp(5.0 + par3/trans5))
	par5 = -(par1 + par2) * cosh(pi * trans5)
	If an expression is long, it may be continued onto the next line by placing the “&” characterat the beginning of that line. Thus the expression:-
	par5 = -(par1 + par2) * cosh(pi * trans5)
	is equivalent to:-
	par5 =
	& -(par1+par2)
	& * cosh(
	& pi * trans5)
	10.7.2.4 Generation of Model Input Files
	Once it has calculated values for all parameters, PAR2PAR writes these values to one ormore model input files using templates of these files to govern parameter value placement.Use of template files for writing model input files is fully discussed in Chapter 3 of thismanual. As is described in that chapter, slight variations of the way in which numbersrepresenting parameter values are written to model input files can be effected through use ofthe PRECIS and DPOINT variables; values for these variables are s
	10.7.3 Using PAR2PAR with PEST
	10.7.3.1 The Composite Model
	As was discussed above, when used with PEST, PAR2PAR will normally be run as part of a“composite model” encapsulated in a batch file. Thus whenever PEST runs the model, it firstruns PAR2PAR (and any other model preprocessors cited in the batch file), followed by themodel (followed by any model postprocessors cited in the batch file).
	As for any other model executable program which uses parameters which require estimationby PEST, a template file must be built, based on a PAR2PAR input file. Just before it runsthe model, PEST will then write current parameter values to the PAR2PAR input file usingthe corresponding template file. An example of such a template file, based on the PAR2PARinput file shown in Example 10.5, is provided in Example 10.6.
	Example 10.6. A template for the PAR2PAR input file of Example 10.5.
	Based on the template file of Example 10.6, before PEST runs the model it will replace thestrings “$infilt1$”, “$infiltrat2$”, and “$infiltrat3$” with the current values of theseparameters. Note that these parameters do not need to be named the same as the PAR2PARparameters to which values are assigned in the pertinent expressions in the PAR2PAR inputfile. They could have been given any name at all; the same parameter names are used by bothPEST and PAR2PAR in this example simply as a matter of convenience.
	Example 10.7. A PAR2PAR input file.
	Example 10.8. A template for the PAR2PAR input file of Example 10.7.
	It is apparent that when using PAR2PAR as part of a composite model run by PEST there aretwo sets of template files involved in the inversion process, viz. that used by PEST to write aPAR2PAR input file, and those used by PAR2PAR to write model input files. These shouldnot be confused. PEST should never be instructed to use a template file to write a modelinput file that is also cited in the “template and model input files” section of a PAR2PARinput file. If this happens, the model input file generated by P
	It often happens that only a few parameters required by a model need to be calculated by anexpression cited in a PAR2PAR input file; other model parameters can be estimated directlyby PEST. These latter parameters can simply be “passed through” PAR2PAR by assigningthem numerical values in the pertinent expressions in the PAR2PAR input file. Example 10.9shows a PAR2PAR input file in which only parameter par8 is calculated throughmanipulation of other parameters; Example 10.10 shows the corresponding template
	Example 10.9. A PAR2PAR input file.
	Example 10.10. A template file for the PAR2PAR input file of Example 10.9.
	10.7.3.2 Numerical Precision
	As is explained elsewhere in this manual, when PEST writes a number to a model input fileon the basis of a template file, it alters its internal representation of that number to accountfor the fact that the number may be written to the model input file with less than themaximum number of significant figures with which that number can be represented internallywithin the computer. Thus when PEST calculates derivatives of model outputs with respect toparameters using finite differences, the differences between
	The ability for PEST to compensate for limited parameter space widths on model input filesis lost when parameter values are written to those files using program PAR2PAR (becausePEST has no way of adjusting its internal representation of parameters based on PAR2PARoutputs). Thus unless the formatting requirements of the model input file are such that itallows model input parameters to be supplied with full numerical precision (which isnormally about 7 significant figures), slight errors will be incurred in t
	10.7.3.3 Intermediate Files
	Before it runs the model PEST deletes all model output files that it knows about (ie. themodel output files cited in the PEST control file). Hence if the model fails to run, PEST willnot read old model output files produced on previous model runs, mistaking them for newones. Thus if PEST generates an error message saying that it cannot find a particular modeloutput file, this is a sure sign that, for some reason, the model failed to run. In most cases thematter is then easily rectified by taking some simple
	Where a model is comprised of multiple executable programs listed in a batch file, similarconsiderations apply to “intermediate model files”, ie. to files generated by one or more ofthe executable programs comprising the composite model and read by one or moresucceeding executable programs cited in the model batch file. If, for some reason, anexecutable program which generates such an intermediate file fails to run, then laterexecutable programs of the composite model may read old intermediate files, mistak
	Example 10.11. A model batch file which includes PAR2PAR as one of the modelexecutable programs.
	In the batch file depicted in Example 10.11, file par2par.in is the PAR2PAR input file. If it isdesired that screen output from all programs comprising the composite model (including themodel batch file itself) be suppressed so that the model’s screen output does not interferewith that of PEST, the batch file shown in Example 10.11 could be altered to that shown inExample 10.12.
	rem Model input files written by PAR2PAR are deleted.
	del model1.in
	del model2.in
	rem PAR2PAR is run.
	par2par par2par.in
	rem The model is run.
	model
	Example 10.12. The batch file of Example 10.11 with all screen output suppressed.

	SENSAN
	SENSAN
	11.1 Introduction
	In many modelling applications, an analysis of the sensitivity of particular model outputs toparticular model inputs must be performed. Such an analysis may be required as part of aneffort to increase a modeller’s understanding of the processes simulated by the model. Or itmay be the first step in a model calibration exercise whereby key system parameters areidentified.
	SENSAN facilitates the sensitivity analysis process by allowing a modeller to automate thetedious task of adjusting certain model inputs, running the model, reading the outputs ofinterest, recording their values, and then commencing the whole cycle again. UsingSENSAN, a modeller can prepare for an unlimited number of model runs and then let thecomputer undertake these runs overnight, over a weekend, or simply while he/she is doingother things. SENSAN reads user-prepared parameter values and writes specified
	If requested, a system command can be issued after each model run. For example a user maywish to rename certain model output files after some model runs have been completed; hencethese model output files are not overwritten during subsequent model runs and are thusavailable for later inspection.
	SENSAN is model-independent. This means that it can be used to conduct a sensitivityanalysis in conjunction with any model. It achieves this by communicating with a modelthrough the model’s own input and output files. It uses an identical model interface protocolto PEST, writing model input files on the basis of user-supplied templates, and reading outputfiles with the aid of a user-prepared instruction set. In fact, SENSAN communicates onlyindirectly with a model, using the PEST utilities TEMPCHEK and INSC
	Like PEST, SENSAN runs a model through a command supplied by the user. There is noreason why a “model” cannot be a batch file housing a number of commands. Thus a“model” can consist of a series of executables, the outputs of one constituting the inputs toanother, or simply a number of executables which read different input files and generatedifferent output files. SENSAN can write parameter values to many input files and readmodel outputs from many output files.
	SENSAN is limited in the number of parameters and observations that it can handle, boththrough the internal dimensioning of its own arrays and those belonging to TEMPCHEK andINSCHEK which it runs. This will rarely pose a problem for it is in the nature of sensitivityanalysis that adjustable parameters do not number in the hundreds nor selected modeloutcomes in the thousands. Nevertheless if either SENSAN, TEMPCHEK or INSCHEKreports that it cannot allocate sufficient memory to commence or continue execution,
	A comprehensive SENSAN input data checker named SENSCHEK is provided withSENSAN. Its role is similar to that of PESTCHEK and should be run after all SENSAN inputdata has been prepared, prior to running SENSAN itself.
	11.2 SENSAN File Requirements
	11.2.1 General
	SENSAN requires four types of input file. The first two are the SENSAN control file and theparameter variation file. The former file provides SENSAN with the structural details of aparticular sensitivity analysis. The latter provides SENSAN with the parameter values to beused in the succession of model runs which it must undertake. The other two file types arePEST template and instruction files. These latter two kinds of file are dealt with briefly first.
	11.2.2 Template Files
	Section 3.2 of this manual provides a detailed discussion of how PEST writes parametervalues to model input files.
	After a user has prepared a template file prior to running PEST, he/she can check its integrityusing the PEST utility TEMPCHEK. As explained in Chapter 10, TEMPCHEK also providesthe functionality to generate a model input file on the basis of a template file and acorresponding user-supplied list of parameter values. Rather than reproduce this functionalitywithin SENSAN, SENSAN simply runs TEMPCHEK whenever it wishes to prepare a modelinput file on the basis of a set of parameter values. Thus it is essential
	You can provide SENSAN with the name of a single template file in order that it cangenerate a single model input file. Alternatively you may provide SENSAN with the namesof many template files in order to generate multiple input files prior to running the model. Ineither case, before it runs the model SENSAN writes a parameter value file using the currentset of parameter values as provided in the parameter variation file (see below). ThenSENSAN runs TEMPCHEK for each model input file which must be produced.
	Before running SENSAN you should always check the integrity of all template files whichyou supply to it by running TEMPCHEK yourself outside of SENSAN.
	11.2.3 Instruction Files
	Instruction files are discussed in Section 3.3 of this manual. Model-generated numbers can beread from one or many model output files as long as at least one instruction file is providedfor each model output file. The integrity of an instruction file can be checked using the PESTutility INSCHEK described in Section 10.2. INSCHEK is also capable of actually readingvalues from a model output file on the basis of a user-supplied instruction file. In order toavoid duplication of this functionality, SENSAN runs
	Before running SENSAN, you should check the integrity of all instruction files which yousupply to it by running INSCHEK yourself outside of SENSAN.
	11.2.4 The Parameter Variation File
	SENSAN’s task is to run a model as many times as a user requires, providing the model witha user-specified set of parameter values on each occasion. As discussed above, theparameters which are to be varied from model run to model run are identified on one or anumber of template files. The values which these parameters must assume on successivemodel runs are provided to SENSAN in a “parameter variation file”, an example of which ispresented below.
	The file shown in Example 11.1 provides 6 sets of values for 5 parameters; the parameternames appear in the top row. As usual, a parameter name must be twelve characters or less inlength. The same parameter names must be cited on template files provided to SENSAN. Infact, if there is a naming discrepancy between the parameters cited in the parametervariation file and those cited in the template files supplied to SENSAN, parameters cited inthe parameter variation file which are absent from any template file(
	The second and subsequent rows of a parameter variation file contain parameter values forSENSAN to use on successive model runs. A separate model run will be undertaken for eachsuch row. A parameter variation file can possess as many rows as a user desires; henceSENSAN can be set up to undertake thousands of model runs if this is considered necessary(as it may be in Monte Carlo simulation).
	In many sensitivity analyses, a user is interested in the effect of varying parameters, eitherindividually or in groups, from certain “base” values. In such cases, parameter base valuesshould appear on the second line of the parameter variation file immediately under theparameter names. As will be discussed below, SENSAN produces two output files in whichvariations from “base value outputs” are recorded, “base value outputs” being defined asmodel outputs calculated on the basis of base parameter values.
	dep1 dep2 res1 res2 res3
	1.0 10.0 5.0 2.0 10.0
	2.0 10.0 5.0 2.0 10.0
	1.0 11.0 5.0 2.0 10.0
	1.0 10.0 6.0 2.0 10.0
	1.0 10.0 5.0 3.0 10.0
	1.0 10.0 5.0 2.0 11.0
	Example 11.1 A parameter variation file.
	Items on each line of a parameter value file can be space, comma or tab-delimited.
	11.2.5 SENSAN Control File
	It is recommended, though it is not essential, that the SENSAN control file be provided witha filename extension of “.sns”. Use of this default extension avoids the need to type in theentire SENSAN control filename when running either SENSAN or SENSCHEK.
	Example 11.2 shows a SENSAN control file. Example 11.3 shows the structure of theSENSAN control file. As is apparent, the SENSAN control file resembles, to some extent,the PEST control file. Like the PEST control file, the SENSAN control file must begin with athree-character code; viz. “scf”, identifying it as a SENSAN control file. Like the PESTcontrol file, the SENSAN control file is divided into sections by lines beginning with the “*”character. And like the PEST control file, the SENSAN control file pro
	scf
	* control data
	noverbose
	5 19
	2 3 single point
	* sensan files
	parvar.dat
	out1.dat
	out2.dat
	out3.dat
	* model command line
	model > nul
	* model input/output
	ves.tp1 ves1.inp
	ves.tp2 ves2.inp
	ves1.ins ves1.out
	ves2.ins ves2.out
	ves3.ins ves3.out
	Example 11.2 A SENSAN control file.
	The role of each SENSAN input variable is now discussed.
	11.2.6 Control Data
	SCREENDISP
	SCREENDISP is a character variable which can take either one of two possible values. Thesevalues are “noverbose” and “verbose”. In the former case, when SENSAN runs TEMPCHEKand INSCHEK it redirects all of the screen output from these programs to the “nul” file;hence the user is not aware that they are running. In the latter case, TEMPCHEK andINSCHEK output is directed to the screen in the usual fashion.
	Once you have set up a SENSAN run and ensured that everything is working correctly, anicer screen display is obtained by using the “noverbose” option. In this case the user shouldensure that the model likewise produces no screen output by redirecting its output to the“nul” file using, for example, the command
	model > nul
	to run the model. If SENSAN is thus left to produce the only screen output, the user canmonitor progress and detect any SENSAN error messages if they are written to the screen.
	NPAR
	This is the number of parameters. It must agree with the number of parameters cited in thetemplate file(s) used by SENSAN. It must also agree with the number of parameters named inthe parameter variation file provided to SENSAN.
	NOBS
	NOBS is the number of “observations”, ie. the number of model outcomes used in thesensitivity analysis process. It must agree with the number of observations cited in theinstruction file(s) provided to SENSAN.
	scf
	* control data
	SCREENDISP
	NPAR NOBS
	NTPLFLE NINSFLE PRECIS DPOINT
	* sensan files
	VARFLE
	ABSFLE
	RELFLE
	SENSFLE
	* model command line
	write the command which SENSAN must use to run the model
	* model input/output
	TEMPFLE INFLE
	(one such line for NTPLFLE template files)
	INSFLE OUTFLE
	(one such line for NINSFLE instruction files)
	Example 11.3 Structure of the SENSAN control file.
	NTPFLE
	The number of template files to be used by SENSAN. For each template file there must be acorresponding model input file; see below. Note that a given template file can be used towrite more than one model input file; however two templates cannot write the same modelinput file.
	NINSFLE
	The number of instruction files used by SENSAN to read model outcomes. For eachinstruction file there must be a matching model output file. Note that the same instruction filecannot read more than one model output file (observation values would be overwritten);however two different instruction files can read the same model output file.
	PRECIS
	PRECIS is a character variable which must take either the value “single” or “double”. Itdetermines whether single or double precision protocol is used to represent a very large orvery small number, or a number in a wide parameter space; see Section 3.2.6 for moredetails. The value “single” is usually appropriate.
	DPOINT
	DPOINT must be supplied as either “point” or “nopoint”. In the latter case the decimal pointis omitted if there is a tight squeeze of a parameter value into a parameter space. Use “point”if at all possible, for some models make assumptions regarding the location of a missingdecimal point. See Section 3.2.6 for more details.
	11.2.7 SENSAN Files
	VARFLE
	VARFLE is the name of the parameter variation file for the current model run. The numberof parameters cited in this file must agree with the value of NPAR cited in the “control data”section of the SENSAN input file.
	ABSFLE RELFLE and SENSFLE
	The names of the three SENSAN output files. Contents of these files are discussed below.
	11.2.8 Model Command Line
	Provide the command that you would normally use to run the model. Remember that you canenter the name of a batch file here to run a model consisting of multiple executables. Toprevent screen output from occurring during execution of batch file commands (if desired)you can disable echoing of each batch file command using the “@” character and the “echooff” command. Also, model screen output can be redirected to the nul file. See Example 11.4.
	Care should be taken if SENSAN is executing in the “noverbose” mode for it then appendsthe string “> nul” to the command recorded in the “model command line” section of itsinput file. If the command already involves output redirection to a file using the “>” symbol,this may become confounded through use of the further “>” symbol supplied by SENSAN toredirect command output to the “nul” file.
	11.2.9 Model Input/Output
	TEMPFLE
	TEMPFLE is the name of a template file used to write a model input file.
	INFLE
	The name of a model input file corresponding to the template file preceding it in theSENSAN control file.
	INSFLE
	INSFLE is the name of a PEST instruction file.
	OUTFLE
	The name of the model output file read by the instruction file whose name precedes it in theSENSAN control file.
	11.2.10 Issuing a System Command from within SENSAN
	SENSAN allows a user to issue a system command after each model run. A system commandis a direction to the operating system, and is implemented by the system just as if thecommand were typed at the screen prompt. The command can be an operating systemcommand such as “copy” or “del”; or it can be the name of a user-supplied executableprogram or batch file.
	The system command to be run after any particular model run should be written to theparameter variation file following the parameter values pertinent to that model run. In manycases the command will simply be the “copy” command, ensuring that model output files arestored under different names before they are overwritten during subsequent model runs.Example 11.5 shows such a case.
	@echo off
	model1 > nul
	model2 > nul
	Example 11.4. A batch file serving as a model; all screen output has been disabled.
	In Example 11.5 the model run by SENSAN produces a file called model.out. After eachmodel run this file is copied to a different file whose name is associated with that run. Thesefiles can later be inspected or processed in a fitting manner.
	SENSAN assumes that any characters following the NPAR numbers representing the NPARparameter values for a particular run constitute a system command which it duly delivers tothe operating system after the model has run. SENSAN takes no responsibility for incorrectcommands; nor does it check whether the system has properly interpreted and executed thecommand. It simply reads the next set of parameters and undertakes the next model run aftercontrol has been returned back to it from the operating system after
	Care should be taken if SENSAN is executing in the “noverbose” mode, for then the string“> nul” is added to any command appearing in the parameter variation file. This may causeproblems if a command already uses the “>” symbol to redirect command output to a file.
	11.3 SENSCHEK
	11.3.1 About SENSCHEK
	Once all SENSAN input data has been prepared, and before running SENSAN, SENSCHEKshould be run in order to verify that the entire SENSAN input dataset is correct andconsistent. SENSCHEK reads all SENSAN input files, ie. the SENSAN control file, theparameter variation file, as well as all template and instruction files. It checks all of thesefiles for correct syntax and for consistency between them. Thus, for example, if the numberof observations cited in all instruction files differs from the value supplied
	Though SENSAN itself carries out some error checking, it has not been programmed to carryout extensive consistency checks in the way that SENSCHEK does. In fact SENSAN mayrun happily if provided with certain erroneous datasets; however SENSAN’s results undersuch conditions will be misleading. Thus it is most important that SENSCHEK be run prior toSENSAN, once all SENSAN input files have been prepared.
	11.3.2 Running SENSCHEK
	SENSCHEK is run using the command
	dep1 dep2 res1 res2 res3
	1.0 10.0 5.0 2.0 10.0 copy model.out model1.out
	2.0 10.0 5.0 2.0 10.0 copy model.out model2.out
	1.0 11.0 5.0 2.0 10.0 copy model.out model3.out
	1.0 10.0 6.0 2.0 10.0 copy model.out model4.out
	1.0 10.0 5.0 3.0 10.0 copy model.out model5.out
	1.0 10.0 5.0 2.0 11.0 copy model.out model6.out
	Example 11.5. A parameter variation file for a SENSAN run in which systemcommands are run after the model.
	senschek infile
	where infile is the name of the SENSAN control file. If the latter possesses an extension of“.sns”, then this extension can be omitted from the filename in the same manner that the“.pst” extension can be omitted from the name of the PEST control file when running PESTand PESTCHEK.
	SENSCHEK writes its error messages to the screen. It is important to note that ifSENSCHEK detects certain errors early in the SENSAN control file it may not proceed withits checking of the remainder of this file, nor of the template and instruction files cited in theSENSAN control file, nor of the parameter variation file. Thus it is important to ensure thatonce a SENCHEK-identified error has been rectified, SENSCHEK is run again. Only whenSENSCHEK explicitly informs the user that no errors have been detect
	11.4 Running SENSAN
	11.4.1 SENSAN Command Line
	SENSAN is run using the command
	sensan infile
	where infile is the name of a SENSAN control file. If the latter possesses an extension of“.sns” it is not necessary to include this extension in the SENSAN command line, forSENSAN automatically appends “.sns” to a filename supplied without extension.
	It is important to ensure before SENSAN is run that the executable files tempchek.exe andinschek.exe are either in the current directory, or are in a directory cited in the PATHenvironment variable. As is mentioned above, SENSAN runs both of these programs in thecourse of its execution, the first to generate model input files and the second to read modeloutput files.
	11.4.2 Interrupting SENSAN Execution
	To interrupt SENSAN type <Ctl-C>.
	11.5 Files Written by SENSAN
	11.5.1 SENSAN Output Files
	SENSAN produces three output files, each of which is easily imported into a spreadsheet forsubsequent analysis. In each of these files the first NPAR columns contain the parametervalues supplied to SENSAN in the parameter variation file. The subsequent NOBS columnspertain to the NOBS model outcomes (ie. “observations”) cited in the instruction file(s)supplied to SENSAN. The first row of each of these output files contains parameter andobservation names.
	The last NOBS entries on each line of the first SENSAN output file (ABSFLE) simply listthe NOBS model outcomes read from the model output file(s) after the model was run usingthe parameter values supplied as the first NPAR entries of the same line.
	The second SENSAN output file (RELFLE) lists the relative differences between observationvalues on second and subsequent data lines of the ABSFLE output file and observationvalues cited on the first data line. Hence if the first data line (ie. the line following theparameter name line) of the parameter variation file lists parameter base values, the secondSENSAN output file lists the variations of model outcome values relative to model outcomebase values. If, for a particular model outcome, Ob represents th
	OOOpbb−(11.1)
	Note that if Ob is zero, a value of 1035 is written to RELFLE as an indicator of this condition.
	The third SENSAN output file (SENSFLE) provides model outcome “sensitivities” withrespect to parameter variations from their base values. As usual, parameter base values areassumed to reside on the first data line of the parameter variation file. Sensitivity for aparticular outcome is calculated as the difference between that model outcome and thepertinent model outcome base value, divided by the difference between the current parameterset and the parameter base values. The latter is calculated as the L2 n
	OOppbb−−(11.2)
	where Ob and pb are model outcome and parameter base values and O and p are the modeloutcome and parameter values pertaining to a particular model run. Hence if NPAR+1parameter sets are provided to SENSAN, where the first set contains parameter base valuesand the subsequent NPAR sets contain parameter values identical to the base values exceptthat each parameter in turn is varied from the base value by an incremental amount, then thelast NPAR rows and NOBS columns on the SENSAN sensitivity output file, SENS
	Note that if p - pb in equation 11.2 is equal to zero, then SENSAN writes the correspondingsensitivity as 1035, except for the first data line (assumed to be the base value line) where allsensitivities are provided as 0.0. Note also that the L2 norm can only be positive. Howeverwhen only a single parameter is varied, the sign of that variation is taken into account,resulting in a negative denominator for equation 11.2 if p < pb.
	11.5.2 Other Files used by SENSAN
	As has already been discussed, SENSAN uses programs TEMPCHEK and INSCHEK toprepare model input files and read model output files. SENSAN writes a parameter value filefor the use of TEMPCHEK, naming this file t###.par. This filename should be avoided whennaming other files.
	INSCHEK writes the values of the observations which it reads from a model output file to theobservation value file instruct.obf where instruct is the filename base of the instruction fileprovided to INSCHEK. Hence for any instruction file provided to SENSAN, use of a filewith the same filename base but with an extension of “.obf” will result in that file beingoverwritten.
	11.6 Sensitivity of the Objective Function
	SENSAN allows a user to undertake many model runs without user intervention. Thesensitivity of certain model outputs to certain parameters can be tested. However SENSANdoes not compute an objective function because it does not read an observation dataset, andhence cannot compare model outputs with corresponding observations to calculate residuals.
	However once all PEST input files have been prepared for a particular case, SENSAN can beused in conjunction with PEST to study the dependence of the objective function on certainparameters. Where there are only two parameters, this can be used to contour the objectivefunction in parameter value space.
	A SENSAN control file implementing this is shown in Example 11.6.
	Note the following points:-
	There can be as many parameters as you like but only one observation. This should bethe initial value of phi as read from the PEST run record file; PEST writes this valueafter it has carried out just one model run.
	In the PEST control file the value of NOPTMAX should be set to zero. Hence PESTruns the model only once before it terminates execution.
	There is only one template file and one instruction file.
	The template file is built from the PEST control file. Parameters adjusted bySENSAN are initial parameter values as listed on the PEST control file.
	SENSAN’s observation file is the run record file for the PEST case.
	As in normal SENSAN operation, supply parameter values to be used by SENSANthrough a parameter variation file.
	Use the single window version of PEST rather than Parallel PEST.
	The instruction set by which the PEST control file is read is shown below (the observationname is “phi”).
	pif $
	$(ie phi)$ $=$!phi!
	This instruction set simply instructs SENSAN to read the PEST run record file until itencounters the string “(ie phi)” followed by “=”, and then to read the observation named“phi” as a non-fixed observation following that.
	11.7 SENSAN Error Checking and Run-Time Problems
	As has already been discussed, SENSAN does not carry out extensive error checking.Comprehensive SENSAN input data error checking can be undertaken using SENSCHEK.Hence if there are any problems encountered in SENSAN execution, or if there are anysuspicions regarding the numbers recorded on any of its output files, SENSCHEK should berun immediately if it has not already been run.
	If SENSCHEK has not been used to verify an input dataset and SENSAN finds an error in aparameter variation file (such as an unreadable parameter value) it will not terminateexecution. Instead, SENSAN reports the error to the screen and moves on to the nextparameter set. However it writes the offending line of the parameter variation file to its threeoutput files. If a trailing system command is present on this line, this too will be written to theSENSAN output files; however the command is not executed. Nat
	It is possible that model execution will fail for some parameter value sets supplied by theuser. SENSAN ensures that old model output files are deleted before the model is run so that,should this occur, out-of-date model outcome values are not read as current values. If, afterthe model has been run, a certain model output file is not found, SENSAN reports thiscondition to the screen, records the current set of parameter values to its output files, andmoves on to the next parameter set. If a model run termin
	Another reason why SENSAN may report that it cannot open a “temporary observation file”(ie. an INSCHEK-generated file) is that it was unable to run INSCHEK and/or TEMPCHEKbecause their directories were not cited in the PATH environment variable. Alternatively, itmay not have been able to run the model for the same reason.
	If a parameter appears to be totally insensitive on SENSAN output files, make sure that it hasbeen provided with the same name in the parameter variation file as that provided for thissame parameter in any template file in which it appears. If parameter names are not identicalbetween these two file types, some parameter values as supplied to SENSAN in theparameter variation file cannot be written to model input file(s). (Note, however, that such anerror will be detected and recorded by SENSCHEK.)
	When undertaking a SENSAN run for the first time, it is a good idea to set SCREENDISP to“verbose” so that TEMPCHEK and INSCHEK can report what they are doing to the screen.After any errors have been corrected, SCREENDISP can then be set to “noverbose” forroutine SENSAN usage. Similarly, model output should not be directed to the nul file until itis verified that SENSAN (through TEMPCHEK) is able to build correct input files for it.Failure in this regard will normally result in a model-generated error messag
	If running SENSAN in “verbose” mode for cases where there are multiple template files, theuser may notice a message similar to the following scroll past on the screen:
	Warning: parameter "ro1" from parameter value file t###.par not cited intemplate file ves.tp2.
	This is of no concern, for it is simply TEMPCHEK informing the user that it has beenprovided with a parameter value file (ie. t###.par written by SENSAN) that contains thevalues of more parameters than are cited on any one template file.
	11.8 An Example
	Included in the pestex subdirectory of the directory into which PEST was installed are thefiles required to run the soil clod shrinkage example discussed in Chapter 12 of this manual.Also included in this subdirectory are three files not discussed in Chapter 12. These aretwofit.sns a SENSAN control file, out1.ins an instruction file identical to out.ins discussed inChapter 12, and parvar.dat a parameter variation file.
	An inspection of file twofit.sns reveals that this SENSAN control file assumes the samenumber of parameters and observations as the PEST control file twofit.pst. As the parametervariation file parvar.dat reveals, parameter names are identical for the two cases. Alsoidentical for the two cases are the template and instructions files; however the instruction filefor the SENSAN example is named out1.ins instead of out.ins in order to avoid out.obf (usedin the PEST example of Chapter 12) being overwritten when
	Five parameter sets are provided in parvar.dat, requiring that five model runs be undertaken.After the third model run has been completed the model output file out.dat is copied to fileout.kp for safekeeping until later inspection.
	Before running SENSAN make sure that the PEST directory is cited in the PATHenvironment variable (so that SENSAN can run TEMPCHEK and INSCHEK). RunSENSCHEK using the command:
	senschek twofit
	After verifying that there are no errors or inconsistencies in the SENSAN input dataset, runSENSAN using the command:
	sensan twofit
	After SENSAN has completed execution, inspect files out1.txt, out2.txt and out3.txt, the threeSENSAN output files. You may also wish to verify that file out.kp exists, this being a recordof out.dat generated on the third model run.

	An Example
	An Example
	12.1 Parameter Estimation
	12.1.1 Laboratory Data
	This section takes you, step by step, through an example which demonstrates the applicationof PEST to a practical problem. Once PEST has been installed on your computer, the filescited in this chapter can be found in the pestex subdirectory of the main PEST directory.
	Table 12.1 shows the results of an experiment in which the specific volume of a soil clod (thereciprocal of its bulk density) is measured at a number of water contents as the clod isdesiccated through oven heating. The data are plotted in Figure 12.1; see also file soilvol.dat.We wish to fit two straight lines to this data. In soil physics parlance, the straight linesegment of low slope fitted through the points of low water content is referred to as the“residual shrinkage” segment, whereas the segment cove
	0.00.20.40.6Water content (cu m/Mg)0.40.60.81.0Specific volume (cu m/Mg)
	Figure 12.1 Soil clod shrinkage data.
	water content (m3/Mg)
	water content (m3/Mg)
	water content (m3/Mg)
	water content (m3/Mg)

	specific volume (m3/Mg)
	specific volume (m3/Mg)

	0.052
	0.052
	0.052
	0.068
	0.103
	0.128
	0.172
	0.195
	0.230
	0.275
	0.315
	0.332
	0.350
	0.423
	0.488

	0.501
	0.501
	0.521
	0.520
	0.531
	0.534
	0.548
	0.601
	0.626
	0.684
	0.696
	0.706
	0.783
	0.832

	Table 12.1 Soil clod shrinkage data.
	12.1.2 The Model
	Before we can use PEST there must be a model. We will list the model program in a moment;first we present the model algorithm.
	Figure 12.2 shows two intersecting line segments. Let the slope of the first segment be s1 andthat of the second segment be s2. Let the intercept of the first segment on the y-axis be y1 andthe x-coordinate of the point of intersection of the two line segments be xc. The equation forthe two-line system is
	y = s1 x + y1 x ≤ xc
	y = s2 x + (s1 - s2) xc + y1 x > xc(12.1)
	where x is the water content and y represents the soil clod specific volume.
	A simple FORTRAN program can be written based on this concept; a listing is provided inExample 12.1 (see also file twoline.for in the pestex subdirectory). Program TWOLINEbegins by reading an input file named in.dat which supplies it with values for s1, s2, y1 and xc,as well as the water contents (ie. x values in equation 12.1) at which soil clod specificvolumes are required. TWOLINE writes a single output file (named out.dat) listing bothwater contents and the specific volumes calculated for these water co
	xys1s2y1xc
	Figure 12.2 Parameters of the two line model.
	We would like TWOLINE to calculate specific volumes at water contents corresponding toour experimental dataset as set out in Table 12.1. The input file of Example 12.2 ensures thatthis will, indeed, occur. Hence TWOLINE is now our system model. We would like PEST toadjust the parameters of this model such that the discrepancies between laboratory andmodel-generated specific volumes are as small as possible. The parameters in this case arethe four line parameters, viz. s1, s2, y1 and xc. Now that our model i
	program twoline
	integer*4 i,nx
	real*4 s1,s2,y1,xc
	real*4 x(50),y(50)
	open(unit=20,file='in.dat')
	cread the line parameters
	read(20,*) s1,s2
	read(20,*) y1
	read(20,*) xc
	cread the abscissae at which there are measurement values
	read(20,*) nx
	do 100 i=1,nx
	read(20,*) x(i)
	100continue
	close(unit=20)
	cevaluate y for each x
	do 200 i=1,nx
	if(x(i).le.xc) then
	 y(i)=s1*x(i)+y1
	else
	 y(i)=s2*x(i)+(s1-s2)*xc+y1
	end if
	200continue
	cwrite the y values to the output file
	open(unit=20,file='out.dat')
	do 300 i=1,nx
	write(20,*) x(i),y(i)
	300continue
	close(unit=20)
	end
	Example 12.1 A listing of program TWOLINE.
	12.1.3 Preparing the Template File
	First a template file must be prepared. This is easily accomplished by copying the file in.datlisted in Example 12.2 to the file in.tpl and modifying this latter file in order to turn it into aPEST template file. Example 12.4 shows the resulting template file; the value of each of theline parameters has been replaced by an appropriately named parameter space, and the “ptf”header line has been added to the top of the file. Because TWOLINE reads all parametersusing free field format, the width of each paramet
	0.3 0.8
	0.4
	0.3
	13
	0.052
	0.068
	0.103
	0.128
	0.172
	0.195
	0.230
	0.275
	0.315
	0.332
	0.350
	0.423
	0.488
	Example 12.2 A TWOLINE input file in.dat
	 0.520000E-01 0.415600
	 0.680000E-01 0.420400
	 0.103000 0.430900
	 0.128000 0.438400
	 0.172000 0.451600
	 0.195000 0.458500
	 0.230000 0.469000
	 0.275000 0.482500
	 0.315000 0.502000
	 0.332000 0.515600
	 0.350000 0.530000
	 0.423000 0.588400
	 0.488000 0.640400
	Example 12.3 A TWOLINE output file out.dat
	Now that in.tpl has been prepared, it should be checked using program TEMPCHEK; runTEMPCHEK using the command
	tempchek in.tpl
	Example 12.5 shows file in.pmt, written by TEMPCHEK, in which all parameters cited in filein.tpl are listed. By copying file in.pmt to in.par and adding parameter values, scales andoffsets to the listed parameter names, as well as values for the character variables PRECISand DPOINT, we can create a PEST parameter value file. Example 12.6 shows such a file;because this file will shortly be used with program PESTGEN to generate a PEST controlfile, the values supplied for each of the parameters are the initial
	At this stage TEMPCHEK should be run again using the command
	tempchek in.tpl in.dat in.par
	ptf #
	# s1 # # s2 #
	# y1 #
	# xc #
	13
	0.052
	0.068
	0.103
	0.128
	0.172
	0.195
	0.230
	0.275
	0.315
	0.332
	0.350
	0.423
	0.488
	Example 12.4 The template file in.tpl
	 s1
	 s2
	 y1
	 xc
	Example 12.5 File in.pmt
	single point
	 s1 0.3 1.0 0.0
	 s2 0.8 1.0 0.0
	 y1 0.4 1.0 0.0
	 xc 0.3 1.0 0.0
	Example 12.6 File in.par
	(“in.par” can be omitted if you wish, for this is the default parameter value filenamegenerated automatically by TEMPCHEK from the template filename.) When invoked withthis command, TEMPCHEK generates file in.dat, the TWOLINE input file, using theparameter values provided in file in.par; you should then run TWOLINE, making sure that itreads this file correctly.
	12.1.4 Preparing the Instruction File
	Next the instruction file should be prepared. This can be easily accomplished by writing theinstructions shown in Example 12.7 to file out.ins using a text editor. Using this instructionset all model-generated observations are read as semi-fixed observations; while they couldhave been read as fixed observations, we may have been unsure of just how wide a numbercan ever get in the second column of file out.dat (for example if a number becomes negative,very large or very small).
	Program INSCHEK should now be used to check that file out.ins contains a legal instructionset. Run INSCHEK using the command
	inschek out.ins
	If no errors are encountered you should then run INSCHEK again, this time directing it toread a TWOLINE output file using the instruction set; use the command
	inschek out.ins out.dat
	INSCHEK will produce a file named out.obf listing the values it reads from file out.dat forthe observations cited in file out.ins; see Example 12.8.
	pif #
	l1 (o1)19:26
	l1 (o2)19:26
	l1 (o3)19:26
	l1 (o4)19:26
	l1 (o5)19:26
	l1 (o6)19:26
	l1 (o7)19:26
	l1 (o8)19:26
	l1 (o9)19:26
	l1 (o10)19:26
	l1 (o11)19:26
	l1 (o12)19:26
	l1 (o13)19:26
	Example 12.7 The instruction file out.ins
	12.1.5 Preparing the PEST Control File
	The PEST-TWOLINE interface is now complete as PEST can now generate a TWOLINEinput file and read a TWOLINE output file. The next step is to generate a PEST control filethrough which PEST is provided with an appropriate set of optimisation control variables andin which the laboratory measurements of specific volume are provided. First copy file out.obfto file measure.obf. Then replace the value of each model-generated observation with thecorresponding value from Table 12.1, ie. with the appropriate laborator
	pestgen twofit in.par measure.obf
	PESTGEN generates a PEST control file named twofit.pst; see Example 12.10. File twofit.pstshould now be edited as some of the default values used by PESTGEN in writing this file arenot appropriate to our problem. In particular, our model is run using the command “twoline”,not “model”; the filenames listed in the “model input/output” section of twofit.pst need to bealtered as well. Once you have made these changes (Example 12.11 lists that part of twofit.pstto which the alterations have been made), preparati
	 o1 0.415600
	 o2 0.420400
	 o3 0.430900
	 o4 0.438400
	 o5 0.451600
	 o6 0.458500
	 o7 0.469000
	 o8 0.482500
	 o9 0.502000
	 o10 0.515600
	 o11 0.530000
	 o12 0.588400
	 o13 0.640400
	Example 12.8 File out.obf
	 o1 0.501
	 o2 0.521
	 o3 0.520
	 o4 0.531
	 o5 0.534
	 o6 0.548
	 o7 0.601
	 o8 0.626
	 o9 0.684
	 o10 0.696
	 o11 0.706
	 o12 0.783
	 o13 0.832
	Example 12.9 File measure.obf
	As a final check that the entire PEST input dataset is complete, correct and consistent, youshould run program PESTCHEK using the command
	pestchek twofit
	If all is correct, you can now run PEST using the command:-
	pest twofit
	pcf
	* control data
	restart estimation
	 4 13 4 0 1
	 1 1 single point 1 0 0
	 5.0 2.0 0.3 0.03 10
	 3.0 3.0 0.001
	 0.1
	 30 0.01 3 3 0.01 3
	 1 1 1
	* parameter groups
	s1 relative 0.01 0.0 switch 2.0 parabolic
	s2 relative 0.01 0.0 switch 2.0 parabolic
	y1 relative 0.01 0.0 switch 2.0 parabolic
	xc relative 0.01 0.0 switch 2.0 parabolic
	* parameter data
	s1 none relative 0.300000 -1.00000E+10 1.00000E+10 s1 1.0000 0.000 1
	s2 none relative 0.800000 -1.00000E+10 1.00000E+10 s2 1.0000 0.000 1
	y1 none relative 0.400000 -1.00000E+10 1.00000E+10 y1 1.0000 0.000 1
	xc none relative 0.300000 -1.00000E+10 1.00000E+10 xc 1.0000 0.000 1
	* observation groups
	obsgroup
	* observation data
	o1 0.501000 1.0 obsgroup
	o2 0.521000 1.0 obsgroup
	o3 0.520000 1.0 obsgroup
	o4 0.531000 1.0 obsgroup
	o5 0.534000 1.0 obsgroup
	o6 0.548000 1.0 obsgroup
	o7 0.601000 1.0 obsgroup
	o8 0.626000 1.0 obsgroup
	o9 0.684000 1.0 obsgroup
	o10 0.696000 1.0 obsgroup
	o11 0.706000 1.0 obsgroup
	o12 0.783000 1.0 obsgroup
	o13 0.832000 1.0 obsgroup
	* model command line
	model
	* model input/output
	model.tpl model.inp
	model.ins model.out
	* prior information
	Example 12.10 The PESTGEN-generated control file twofit.pst
	* model command line
	twoline
	* model input/output
	in.tpl in.dat
	out.ins out.dat
	Example 12.11 Altered section of twofit.pst
	A run record file twofit.rec will be written by PEST in the pestex subdirectory; so too will filetwofit.par containing the optimised parameter set. Figure 12.3 shows the lines of best fitsuperimposed on the laboratory data.
	0.00.20.40.6Water content (cu m/Mg)0.40.60.81.0Specific volume (cu m/Mg)
	Figure 12.3 Soil clod shrinkage data with lines of best fit superimposed.
	12.2 Predictive Analysis
	12.2.1 Obtaining the Model Prediction of Maximum Likelihood
	Files for this example can be found in the \papestex directory of the PEST directory afterinstallation. This example builds on the soil clod shrinkage example discussed in the previoussection.
	Based on the dataset supplied with the example, PEST lowers the objective function to avalue of 6.71E-4 when estimating values for the model parameters. Best fit parameter valuesare listed in Table 12.2.
	After PEST is run in parameter estimation mode, best-fit model parameters can be found infile twofit.par. Insert these into the model input file in.dat by running TEMPCHEK asfollows:-
	tempchek in.tpl in.dat twofit.par
	If the value for specific volume at a water content of 0.4 is of particular interest to us, this cannow be easily calculated with our calibrated “model”. An appropriate TWOLINE input filein2.dat is provided; this is easily prepared from the new in.dat file created usingTEMPCHEK by alteration with a text editor in conformity with the expectations of programTWOLINE. As the first two lines of this file contain parameter values to be used byTWOLINE, it was necessary to run TEMPCHEK first to ensure that the para
	As TWOLINE expects a file named in.dat, in2.dat must be copied to in.dat beforeTWOLINE is run. But before doing this, copy the existing in.dat to in1.dat for safekeeping.
	After running program TWOLINE (by typing “twoline” at the screen prompt) open fileout.dat to obtain the model-predicted specific volume. It should be 0.756. This is thus ourbest estimate of the soil clod specific volume at a water content of 0.4.
	12.2.2 The Composite Model
	Before undertaking predictive analysis, we must construct a “composite model” comprised ofthe model run under calibration conditions followed by the model run under predictionconditions. This model must be encompassed in a batch file; an appropriate file namedmodel.bat is supplied. Example 12.12 shows a printout of model.bat.
	The batch file is divided into three parts. In the second part the model is run under calibrationconditions. First the “calibration input file” in1.dat is copied to the expected TWOLINEinput file in.dat. TWOLINE is then run and its output file out.dat is copied to another fileOUT1.DAT for safekeeping.
	The process is then repeated in the third part of file model.bat for the predictive model run. Inthis case in2.dat is the model input file and out2.dat is the model output file.
	The first part of the batch file model.bat illustrates a procedure that is recommended in theconstruction of all composite models. In this section of the batch file all intermediate filesused or produced during execution of the composite model are deleted. Recall that PESTdeletes all model output files (that it knows about) before it runs the model. In this way it isensured that if, for some reason, the model does not run, then old model output files are notmistaken for new ones. Thus if the model fails to
	The first line of the batch file model.bat prevents the operating system from echoing batchfile commands to the screen. This relieves screen clutter when the model is run under thecontrol of PEST in the same window as PEST. To assist in this process screen output fromall commands is directed to the nul file instead of the screen. To find out more about batchfiles, see the DOS help file on your Windows CD.
	To satisfy yourself that the composite model runs correctly, type:-
	model
	at the screen prompt. Inspect the model output files out1.dat and out2.dat. (You may wish todelete the “@echo off” line and remove “> nul” from each command line before you run themodel in order to see the appropriate model commands scroll past on the screen as they areexecuted.)
	12.2.3 The PEST Control File
	We would now like to obtain the maximum possible value for the soil specific volume at awater content of 0.4 compatible with the model being calibrated against our laboratorydataset. Let us do this by assuming that the model can still be considered to be calibrated ifthe objective function under calibration conditions is as high as 5.0E-3; this is thus the valueassigned to the variable PD0.
	The PEST control file used in the parameter estimation process was named twofit.pst. Thisfile should be copied to file twofit1.pst and the following alterations made (actually this hasalready been done for you).
	Replace the word “estimation” with the word “prediction” on the third line of this file.
	When undertaking a predictive analysis run there is an extra observation, this beingthe model prediction. Hence the number of observations (ie. NOBS) must beincreased from “13” to “14” on the 4th line of file twofit1.pst.
	There will now be two observation groups, so alter the 5th entry on line 4 of filetwofit1.pst (ie. NOBSGP) to “2”.
	There are now two model input files and two model output files, so alter the first twoentries on the 5th line of file twofit1.pst (ie. NTPLFLE and NINSFLE) to “2” and “2”respectively.
	In the “observation groups” section of the PEST control file add the observationgroup “predict”.
	In the “observation data” section of the PEST control file add an extra observationnamed “o14”. Assign this to the observation group “predict”. Provide whateverobservation value and weight that you like, as these are ignored by PEST when run inpredictive analysis mode. It is probably best to make both of these 0.0, just in caseyou wish to run PEST later using the same file in parameter estimation mode; byassigning the weight as zero, the “prediction observation” will contribute nothing tothe objective funct
	Alter the model command line to “model.bat” in the “model command line” section ofthe new PEST control file.
	The two model input files are named in1.dat and in2.dat; the first is used for thecalibration component of the composite model, the second is used for the predictivecomponent of the composite model. A PEST template file already exists for the firstmodel input file (ie. in.tpl). We will introduce a new template file for the secondmodel input file shortly; it will be called in2.tpl. So alter the model input filename toin1.dat on the first line of the “model command line” section of file twofit1.pst; thenadd a
	The model output files are named out1.dat and out2.dat; the first is produced by thecalibration component of the composite model while the second is produced by thepredictive component of the composite model. A PEST instruction file already existsfor the first model output file (ie. out.ins). We will introduce a new instruction file forthe second one shortly; it will be called out2.ins. So alter the model output filename to“out1.dat” on the third line of the “model command line” section of file twofit1.pst;
	Add a “predictive analysis” section to file twofit1.pst. Because we wish to maximisethe prediction, NPREDMAXMIN is assigned the value of 1. As mentioned above,PD0 is 5.0E-3. Set PD1 to 5.2E-3 and set PD2 to be twice as high as PD0, ie. 1.0E-2.Variables governing operation of the Marquardt lambda, the switching from two pointto three point derivatives calculation, and the termination of execution will be set inrelative rather than absolute terms, so set ABSPREDLAM, ABSPREDSWH andABSPREDSTP to 0.0. RELPREDLAM
	12.2.4 Template and Instruction Files
	Inspect files in2.tpl and out2.ins provided with the example files. These are, respectively, atemplate file for in2.dat and an instruction file to read the single prediction observation fromfile out2.dat.
	Notice how parameter spaces for each of the four parameters involved in the predictiveanalysis process appear in both of files in.tpl and in2.tpl. This is because these parametervalues are used by the model under both calibration and prediction conditions. Prior torunning the composite model they must be written to both sets of input files (together withother data specific to each component of the composite model).
	12.2.5 Running PEST
	Before running PEST, run PESTCHEK to check that the entire input dataset is consistent andcorrect. At the screen prompt type:-
	pestchek twofit1
	Then run PEST using the command:-
	pest twofit1
	There are two things to watch as PEST executes. The first is the value of the objectivefunction and the second is the value of the prediction. Both of these are written to the screenon every occasion that PEST calculates a parameter upgrade vector (these are easily seenwhen running PEST if screen output from the composite model is disabled as discussedearlier). The objective function (ie. phi) hovers around 5.0E-3 as it should (though values oneither side of this are recorded). The value of the prediction s
	When PEST ceases execution, open file twofit1.rec and go to the bottom of the file. Near thebottom of the file it is written that PEST achieved a maximum prediction value of 0.786 for acorresponding objective function value of 5.16E-3. This is a little above our target value of5.0E-3, but is accepted due to the action of PD1. However due to the rather subjective way inwhich an objective function value is selected at which the model is said to be “calibrated”this matters little.
	While inspecting the run record file, notice how observation “o14” is not listed with otherobservations in the section of this file which tabulates observed values, corresponding model-generated values and residuals. This is because observation “o14” is in fact the prediction,PEST recognising it as such because it is the only observation assigned to the observationgroup “predict”.
	Figure 12.4 shows a plot of the line segments calculated on the basis of the parametersderived by PEST during the above predictive analysis process. The fit is not too bad, thoughobviously not as good as that obtained on the basis of best fit parameters.
	0.00.20.40.6Water content (cu m/Mg)0.40.60.81.0Specific volume (cu m/Mg)
	Figure 12.4. Soil clod shrinkage data with line segments superimposed.
	In the present instance, the “worst case” model prediction of 0.786 is not too different fromthe “most likely” model prediction of 0.756. This is comforting to know. It is a frighteningfact that in many instances of environmental modelling the worst case prediction can behugely different from that calculated using parameters corresponding to the objectivefunction minimum. It is under these circumstances that predictive analysis becomes anabsolute necessity.

	Frequently Asked Questions
	Frequently Asked Questions
	13.1 PEST
	When I run PEST with certain older models, a message pops up asking me if I would like torun the model in MS-DOS mode. How can I prevent this from happening?
	Click with your right mouse button on the bar at the top of the DOS window in which you arerunning PEST and choose “properties” from the pop-up menu. In the “program/advanced”section of the pop-up dialogue box uncheck the “Suggest MS-DOS mode as necessary” box.To prevent this from ever happening again, click on the model icon in Windows Explorerwith the right mouse button and alter its properties in similar fashion.
	When I run PEST with a certain model a message pops up telling me that the computer isabout to enter MS-DOS mode and that I must close all other programs. How can I preventthis from happening?
	Click on the model icon in Windows Explorer as described above. This time uncheck the“MS-DOS” mode box.
	I am having trouble running PEST in WINDOWS NT and/or WINDOWS 2000. Sometimes acommand line window just disappears.
	See Section 13.3 below.
	13.2 Parallel PEST
	Can a slave be introduced part of the way through a Parallel PEST run?
	As presently programmed, no. All incidences of PSLAVE must begin execution beforePEST. A slave can drop out of the Parallel PEST optimisation process, or its execution can beterminated (eg. by hitting <Ctl-C>) and PEST will simply carry on without it as long as thereare other slaves to carry out model runs. However if this slave is then re-started, PEST willnot recognise it. Even if you start a slave just after PEST has started, before it has actuallyundertaken any model runs, PEST will still not recognise
	Our office network is such that we have a single server to which all of our individualmachines have access as drive O. Our machines are not able to communicate individuallywith each other in a peer-to-peer sense. What is the best way to set up Parallel PEST underthese circumstances?
	Install the model on each machine. Create as many subdirectories on drive O: as there areslaves, calling these subdirectories, for example, sub1, sub2, etc. On each slave machinemake one such directory the current working directory, making sure to use a differentsubdirectory in each case. Make sure the model can run from that subdirectory once PEST-generated input files are placed there (ie. do a “dummy” model run on each slave machineusing normal model input files placed in each of the sub1, sub2, etc. sub
	The PEST template and instruction files can reside in any directory on the master machine.However for each slave, Parallel PEST should be informed that model input files and modeloutput files reside in the sub1, sub2 etc. subdirectory appropriate to that slave. Each suchsubdirectory should also be cited as a slave subdirectory for the purposes of writing the signalfiles listed in Table 9.1. Once the Parallel PEST run management file has been constructedaccordingly, Parallel PEST can be started and should ru
	If the slave and model working directories are on a server’s disk, is not the server runningthe model?
	No, the model is run by the machine from which PSLAVE is launched irrespective ofwhether the current working directory is on the current machine’s disk, or on a diskbelonging to another machine. Similarly, even if the model executable resides on anothermachine’s disk, the model is run by the machine from which the model run command isissued; this is the machine running PSLAVE, for it is PSLAVE which issues the command torun the model. If the model executable resides on another machine, then it has to be loa
	Do I have to install the model executable on each slave machine?
	Not at all. If a single model executable is accessible through the network by all slavemachines then it can be run from each slave machine without having to install it on any ofthem. The disadvantage of this scheme, however, is that if the model executable is large,reloading it to each slave machine every time that slave runs the model may be a slowprocess on heavily-used networks. The contribution that this makes to network traffic mayresult in a user having to employ a higher value for WAIT than would oth
	When I came to work one morning after Parallel PEST had been running all night, one of myslaves had ceased carrying out model runs, displaying instead the following prompt:
	Sharing violation reading drive C
	Abort, Retry, Fail?
	Why did this happen?
	This message was sent by the operating system, not by PSLAVE. The model was probablytrying to read an input file that had not yet been closed by PEST, or PEST was trying to reada model output file that had not yet been closed by the model. Theoretically, such thingsshould not happen. However on busy machines connected to busy networks it may take sometime for one process on a particular machine to get the message that a file has been closed bya process running on another machine. To prevent this error from
	Can PSLAVE run a batch file containing multiple executables as the model, just like PESTcan?
	Yes. However make sure that either the full directory of each executable is included withinits name as cited in the batch file, or that the directory containing each executable is cited inthe PATH environment variable on the machines from which the model is run.
	Can PEST and PPEST be used interchangeably?
	Yes, all versions of PEST use identical template and instruction files, and an identical PESTcontrol file.
	Parallel PEST terminated execution with an error message to the effect that it could not findthe model output file. What could be wrong? Furthermore, it waited an unduly long timeafter commencement of execution to inform me of this.
	If Parallel PEST encounters any problems whatsoever in reading a model output file (forexample premature termination of the file, data errors, poor instructions or file not present), ittries to read the file three times at 30 second intervals in order to be sure that the problemsare not network-related. If, after making three attempts to read the file, it is still unsuccessful,it reports the error to the screen and terminates execution.
	If a model output file cannot be found then either the model did not write it, the model didnot run, or an erroneous name was provided for the model output file in the Parallel PESTrun management file. In the first case, a poor parameter set may have been provided to themodel, resulting in a model run-time error being generated before the model wrote any datato its output file. Or perhaps model input files were misnamed in the Parallel PEST runmanagement file. Alternatively, if the model did not run, the mo
	If, after following the steps outlined above, the reason for the problem is still not apparent,increase the value of the WAIT variable and try running Parallel PEST again.
	13.3 PEST and Windows NT
	A few problems have been encountered when using PEST and Parallel PEST withWINDOWS NT and WINDOWS 2000. The problems are not caused by PEST. However thisis not much consolation if PEST does not perform correctly.
	Problems encountered include the following.
	A command line window used by PEST or PSLAVE closes in the middle of a modelrun.
	PEST reports that it cannot find a model output file when the model output file isactually present.
	In a composite model written as a batch file and containing a number of executablesrun in succession, one of the executable programs is not actually executed on oneparticular model run.
	The problems are particularly frustrating because they occur so rarely. Thus PEST may runhappily for hours when, suddenly, one of the above conditions occurs. Any one of them willcause immediate termination of execution.
	In many cases where these problems have been encountered it has been found that theproblem was rectified by re-compiling the model source code using a modern compiler. Oldcompilers used DOS memory extenders (some of which had a memory leakage bug) to gainaccess to all of a machine’s memory; very old compilers generated 16 bit executables andused no extender at all. WINDOWS NT/2000 does not work well with either of these.
	If the problem persists, make sure that the latest service pack has been installed. Also, see ifuse of the command rather than the cmd command interpreter (and vice versa) makes anydifference.

	Index
	Index

	! !...3-22
	! !...3-22
	! !...3-22
	&...3-14, 3-25, 4-26
	()...3-21
	[]...3-19
	<...1-4, 3-1
	>..1-4, 5-22, 10-1, 10-3, 10-5
	ABSFLE...11-6, 11-10
	ABSPREDLAM..6-14
	ABSPREDSTP..6-15
	ABSPREDSWH..6-15
	Adjustable parameters...1-6
	ASCII files...1-4, 3-2, 3-10, 4-22
	AUTOEXEC.BAT...1-1
	Batch..10-19
	Batch file..3-2, 4-21, 10-5
	Best fit method..2-28, 2-32, 5-26
	Binary files...3-2, 3-10, 4-22
	Calibration...1-2
	Central derivatives.........1-8, 2-26, 2-28, 2-29, 4-10, 4-15
	Column numbers..3-18, 3-20
	Continuation character.....................................3-25, 4-26
	Control data...4-4
	Control file.....................1-12, 4-1, 5-24, 10-4, 10-5, 12-8
	Control variables..5-24, 5-25
	Correlation coefficient matrix............................2-3, 4-17
	Covariance...2-15, 5-39
	Covariance matrix.....................................2-3, 4-17, 5-36
	Critical point..6-3
	Cursor..3-14, 3-23
	Decimal point..3-7, 4-6
	Degrees of freedom..2-3
	DERCOM..4-19
	DERINC..2-29, 5-24
	DERINCLB...................................2-29, 4-14, 5-24, 5-26
	DERINCMUL..2-29, 4-15, 5-24
	Derivatives..2-27, 4-13, 8-8
	DERMTHD..2-29, 4-16, 5-24
	Distributed parameters.........................1-1, 1-5, 2-27, 3-8
	DPOINT.........................3-6, 4-6, 5-16, 5-31, 10-2, 11-6
	Dual calibration...6-6
	Dummy group..4-13
	Dummy observation...3-13, 3-24
	EDIT..3-25
	Eigenvalues..2-3, 5-36
	Eigenvectors...2-3, 4-17, 5-36
	Errorlevel...10-5
	Excitations...1-1
	FACORIG..2-22, 4-10
	FACPARMAX.......................2-21, 4-9, 5-10, 5-28, 5-33
	Factor-limited parameters................2-22, 4-9, 5-10, 5-29
	Fixed observations...3-19
	Fixed parameters..4-17
	FORCEN..2-29, 4-15, 5-11
	Formatted input..3-5
	FORTRAN..3-5, 3-7, 3-20
	Forward derivatives................1-8, 2-27, 2-29, 4-10, 4-15
	FRACPHIM...7-7, 7-9
	Frozen parameters.....................................2-20, 4-8, 5-11
	Gradient vector..2-8, 2-20
	Hemstitching..2-8, 5-27
	ICOR...5-21
	ICOV...5-21
	IEIG..5-21
	IFLETYP..9-8
	INCTYP..2-29, 4-14, 5-26
	INFLE..4-24, 11-7
	Initial parameter values...............................1-7, 2-7, 4-18
	INITSCHFAC...6-14
	INSCHEK.............................1-12, 3-26, 5-31, 10-3, 12-7
	INSFLE...11-7
	Instability..2-5, 4-9, 5-27
	Installation..1-1
	Instruction files........................1-7, 4-6, 4-24, 10-3, 12-7
	Instructions...1-7, 10-3
	Interpretation...1-2
	Interrupt..1-11
	JACFILE..4-6, 8-7
	Jacobian..1-13
	Jacobian matrix........................2-6, 2-27, 4-15, 5-9, 5-35
	JACWRIT..1-13, 10-9
	LAMBDA...5-33
	Line...6-14
	Line advance...3-15
	Linear models...1-7
	List-directed input..3-5, 12-5
	Log least squares...4-21
	Logarithmic transformation2-19, 2-30, 4-17, 4-25, 5-12,5-27
	Marker delimiter...3-14
	Markers...3-11
	Marquardt lambda..................2-10, 4-7, 5-10, 5-24, 5-27
	Matrix...5-21
	Measurement..2-13, 7-4
	Measurements...3-1, 3-9, 4-20
	MESSFILE...4-6, 8-7
	Model..8-9
	Model input files..4-24, 10-1
	Model output files.....................................3-9, 4-24, 10-3
	Model zones..3-9
	Model-calculated...2-32, 8-1
	Model-generated errors...5-23
	Model-generated observations2-1, 2-6, 2-31, 3-1, 3-9, 5-31, 10-6
	MULSCHFAC..6-14
	Multiple...8-6
	na..5-9
	NFLETYP...9-10
	NINSFLE...4-6, 4-24, 9-10, 11-6
	NOBS...4-5, 11-5
	NOBSGP...4-5
	Non-fixed observations...3-21
	Nonlinear models......................................2-6, 2-32, 4-10
	Nonuniqueness..2-5, 5-27, 6-3
	NOPTMAX...................................2-26, 4-11, 5-24, 5-40
	Normal matrix....................................2-7, 2-10, 4-5, 5-27
	NPAR..4-5, 11-5
	NPARGP...4-5
	NPHINORED...2-25, 4-12, 5-24
	NPHISTP..2-25, 4-12, 5-11
	NPREDMAXMIN...6-12, 6-15
	NPREDNORED..6-15
	NPRIOR..4-5, 4-24
	NRELPAR..2-26, 4-12, 5-24
	NSEARCH...6-14
	NSLAVE...9-8, 9-9
	NTPFLE..9-10, 11-6
	NTPLFLE..4-6
	NUMCOM...4-6, 8-7
	NUMLAM...4-8, 5-24
	OBGNME..4-21
	Objective function1-7, 2-2, 2-6, 2-10, 2-25, 4-8, 4-20, 5-9, 5-11, 5-25, 6-5, 11-11
	Observation..4-27
	Observation groups..4-20
	Observation value file.............................10-4, 10-6, 12-7
	Observations..1-6, 2-1, 3-1, 3-9
	OBSNME...4-20
	OBSVAL...4-20
	OFFSET................................2-20, 4-19, 5-16, 5-29, 10-2
	OUTFLE..11-7
	Outside points..2-28
	Over-parameterisation...5-39
	PAR2PAR...1-13, 10-10
	Parabolic method....................................2-28, 2-32, 5-26
	Parallel PEST..5-1, 9-1, 13-1
	Parameter...10-14
	Parameter bounds...4-18
	Parameter correlation..................................2-3, 2-5, 5-12
	Parameter factor...4-25
	Parameter groups....................................2-27, 2-29, 4-13
	Parameter hold file...5-32
	Parameter increments..............................4-14, 5-26, 5-28
	Parameter sensitivity file...5-16
	Parameter space...3-4, 3-6
	Parameter upgrade vector2-7, 2-10, 2-20, 2-21, 2-22, 2-24
	Parameter value file.......................5-16, 10-1, 10-6, 12-6
	Parameter variation file..11-3
	Parameters...1-1, 1-5
	PARCHGLIM..2-21, 4-18
	Parent parameter..............................1-5, 2-19, 4-17, 4-19
	PARGP..4-19
	PARGPNME...4-14
	PARLBND...2-19, 4-18
	PARNME...4-17, 4-25
	PARREP..1-12, 5-39, 5-40, 10-8
	PARTIED..4-19
	PARTRANS..2-19, 4-17
	PARUBND..2-19, 4-19
	PARVAL1...4-18
	PATH...4-21, 5-23
	PD0..6-12
	PD1..6-13
	PD2...6-13
	PEST control file..6-10
	PEST.STP...5-23
	PESTCHEK..................1-12, 3-26, 4-1, 9-12, 10-4, 12-9
	PESTGEN..1-12, 4-1, 10-5, 12-8
	PESTMODE...6-12
	PEST-to-model..2-32, 8-4
	Phi..5-11, 5-25
	PHIMACCEPT...7-6
	PHIMLIM...7-6
	PHIRATSUF..4-7, 5-24
	PHIREDLAM..4-8, 5-24
	PHIREDSTP..................................2-25, 4-12, 5-11, 5-24
	PHIREDSWH...2-29, 4-10, 5-11
	PIFAC...4-25
	PILBL...4-25
	PIVAL...4-26
	Post-processing...5-36
	PPAUSE..1-11, 5-23, 9-13
	PPEST..5-1, 9-13
	PRECIS....................................3-6, 4-6, 5-16, 10-2, 11-6
	Precision.............................2-31, 3-4, 3-6, 4-6, 4-22, 5-9
	Predictive Analysis...6-1
	Primary marker...3-14
	Prior information article..4-24
	Prior information equation..4-25
	Prior information label..4-25
	PSLAVE...9-3, 9-12, 13-2
	PSTOP..1-11, 5-23, 9-13
	PSTOPST..1-11, 5-23, 9-13
	PUNPAUSE...1-11, 5-23
	Reference variance..2-5
	Regularisation..........................1-10, 2-13, 2-26, 7-1, 7-5
	Relative-limited parameters.............2-22, 4-9, 5-10, 5-29
	RELFLE...11-6, 11-10
	RELPARMAX.......................2-21, 4-9, 5-10, 5-28, 5-33
	RELPARSTP..2-26, 4-12, 5-24
	RELPREDLAM..6-14
	RELPREDSTP..6-15
	RELPREDSWH..6-15
	Residuals..................................2-4, 2-8, 4-20, 4-32, 5-37
	Residuals file...5-20
	Restart switch..5-1
	RLAMBDA1..4-7, 5-29
	RLAMFAC......................................4-7, 5-11, 5-24, 5-29
	Rotation...2-16
	Roundoff errors...........2-27, 2-29, 4-15, 4-22, 5-25, 5-27
	RSTFLE..4-4
	Run..7-10
	Run management file..9-7
	Run record file...1-9, 5-2
	Run-time errors..3-25, 5-1
	SCALE...2-20, 4-19, 5-16, 10-2
	SCREENDISP...11-5
	Secondary marker..3-16, 3-24
	Section headers...4-3
	Semi-fixed observations..3-20
	SENSAN..1-13, 11-1
	SENSAN Control File...11-4
	SENSCHEK..11-8
	SENSFLE...11-6, 11-10
	Sensitivity..5-16
	Sensitivity analysis..5-13
	Sharing violation.......................................9-9, 9-17, 13-2
	SLAVDIR..9-9
	Slave..9-3, 9-4
	Smoothing..7-2
	Standard deviation...5-14
	Tab...3-18
	Taylor's theorem..2-6
	TEMPCHEK...1-12, 3-9, 10-1
	TEMPFLE...4-24, 11-7
	Template files...................1-5, 3-1, 4-6, 4-24, 10-1, 12-5
	Terminal input...3-1
	Terminal output...3-10
	Tied parameters..1-5, 4-17, 4-19
	User interaction..5-25, 5-31
	VARFLE..11-6
	Variance...5-14
	WAIT...9-9, 9-17
	WEIGHT...4-20, 4-26
	Weights..1-7, 2-6, 4-20, 4-26
	WFFAC...7-8
	WFINIT...7-7
	WFMAX..7-7
	WFMIN...7-7
	WFTOL...7-8
	Whitespace..3-18, 3-23
	WINDOWS...3-25, 13-1

