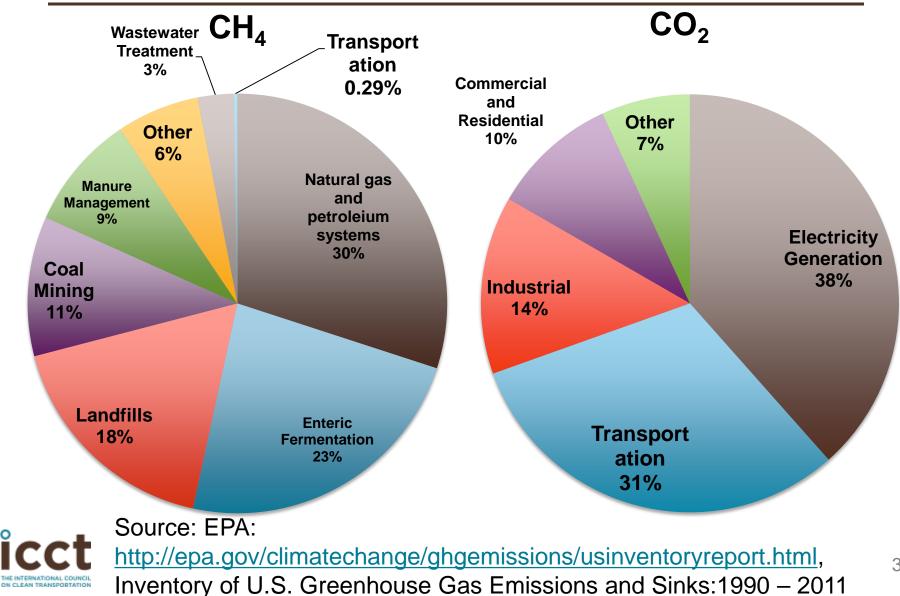
Short Lived Climate Pollutants: Methane and Natural Gas

Rachel Muncrief

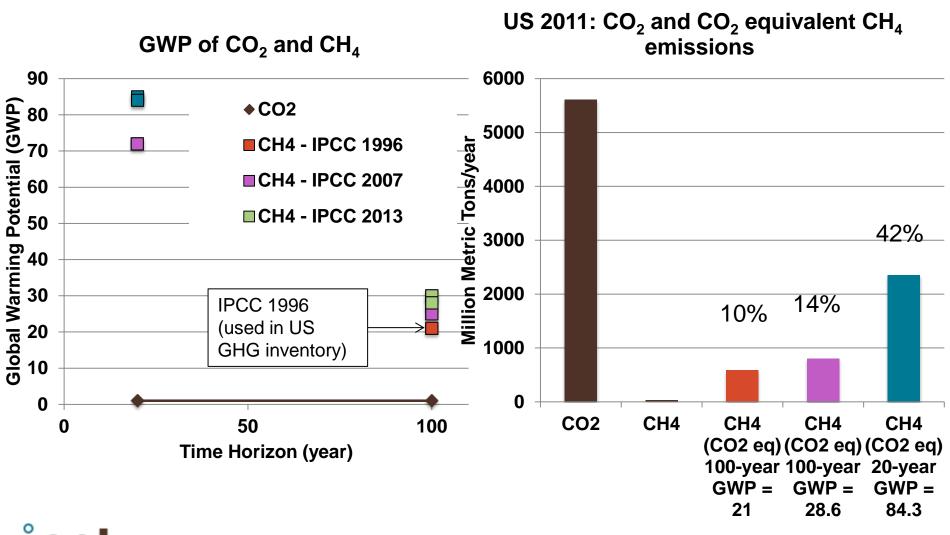
Mobile Sources Technical Review Subcommittee

October 29, 2013, Washington, DC



Introduction

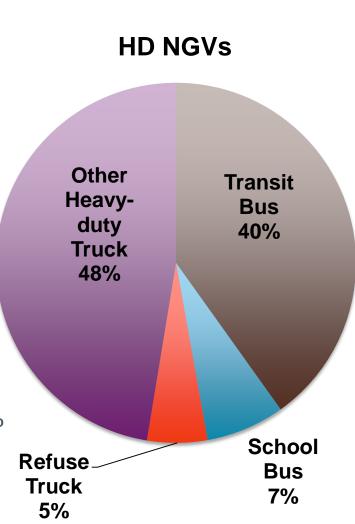
- Methane concentrations are higher than they have been in at least the last 800,000 years
- The rise in methane concentrations since the 1750s is predominantly due to human-related activities
- A 25 percent reduction in methane emissions by 2030 would reduce average surface warming by 0.2 degrees C around 2040.
- Methane vs CO₂
 - Global warming potential: CH₄>CO₂
 - Lifetime in atmosphere: CH₄<CO₂



US GHG Inventory: Sources of CH₄ and

3

Methane's CO₂ equivalence?



US: Natural Gas for Transport - Today

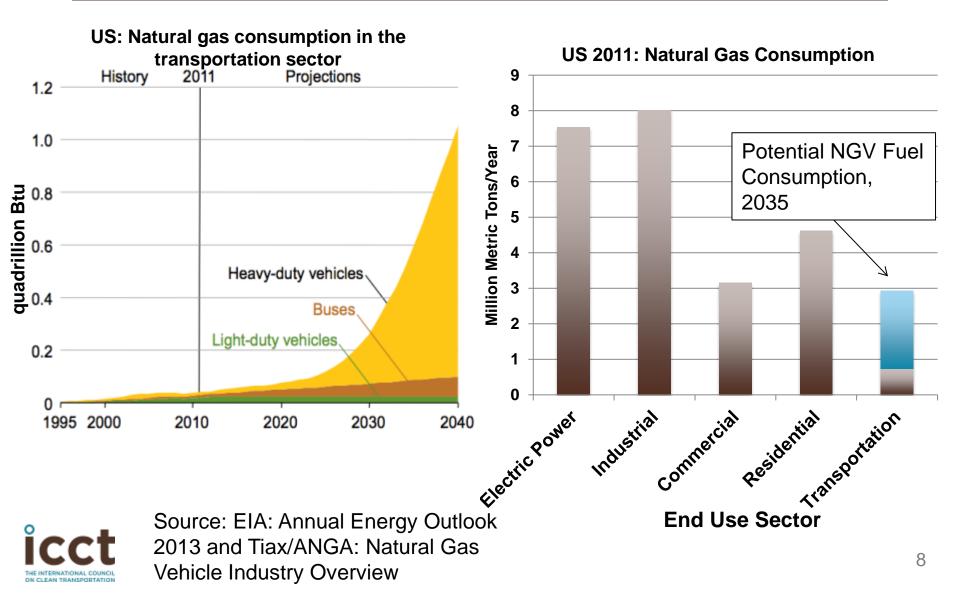
- ~135,000 NGVs (0.05% of total vehicles)
- HDVs: ~25,000 (0.4% of total HDVs)
- LDVs: ~110,000 (0.05% of total LDVs)
- Infrastructure
 - Natural Gas infrastructure has been growing ~11%/year (2009-2012).
 - Number of stations ~1500 (~1.2% of total fueling stations).

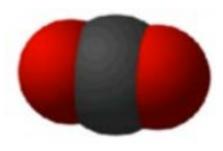
Heavy-Duty Engine Technology: Options

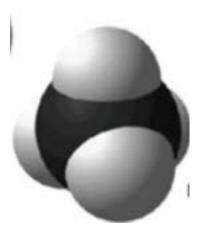
- Spark-ignited, throttled engines
 - Stoichiometric with three-way catalyst
 - Turbocharged with EGR
 - LNG or CNG
- High Pressure Direct Injection
 - Westport system
 - Diesel pilot with gas spray
 - LNG
- Dual fuel (diesel / natural gas)
 - Can operate as diesel-only
 - Diesel provides ignition source
 - Retrofit technology
 - LNG or CNG
- Methane tailpipe emissions
 - Low with stoichiometric burn
 - High with lean operation

US Fleets and Shippers: Trends

- January 18, 2012: "Waste Management plans to convert its entire fleet of 18,000 collection vehicles to CNG."
- October 8, 2013: "UPS plans to invest approximately \$50 million to build an additional nine liquefied natural gas (LNG) fueling stations, bringing the total number of stations to 13 to support the operation of approximately 1,000 UPS LNG tractors."
- October 17, 2013: "Lowe's working with carriers to transition all regional distribution center dedicated fleets to natural gas by end of 2017."
- June 27, 2013: "P&G to Convert 20 Percent of Its For-Hire Truck Loads to Natural Gas. P&G Invests in Growth of Natural Gas Industry by Awarding Loads to Eight Natural Gas Transportation Carriers."



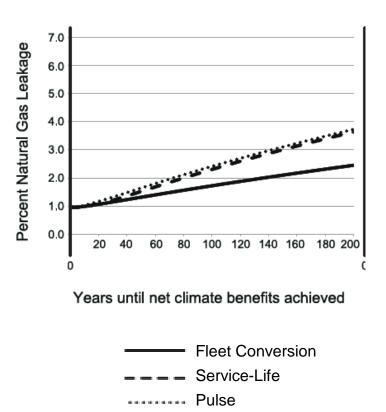

US: Natural Gas for Transport – Tomorrow?



NGV Market Penetration: Impact on GHG Emissions

- CO₂ transport emissions go down
 - Less CO₂ from combustion
 - C:H Ratio of methane lower than diesel (and gasoline)
 - Efficiency of NGVs range depending on engine technology
 - Decrease CO₂ from combustion ~10-25% (per vehicle)
- CH₄ emissions from NG systems and transportation go up
 - From leakage and increased volume in NG system
 - Leakage/venting from fueling stations, vehicles and tailpipe emissions
- Question: How much increase in CH₄
 Cct missions will offset CO₂ savings?

ON CLEAN TRANSPORTATION

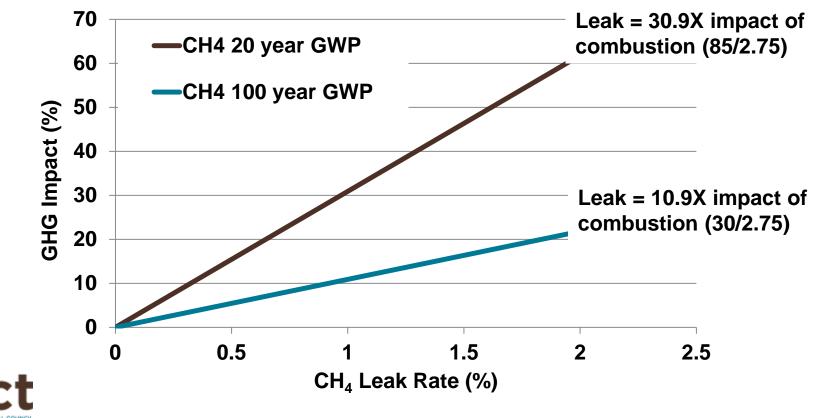


Maximum Methane Leakage to Deliver Benefits

- EDF conducted a study to determine maximum Well-to-Wheels methane leakage that would still allow for climate benefits from NGVs today
 - 1% to replace diesel vehicles
 - 1.6% to replace gasoline vehicles

Caveat: Calculated using lower GWPs (IPCC 2007)

icct


Source: Alvarez, R. A., S. W. Pacala, J. J. Winebrake, W. L. Chameides, and S. P. Hamburg. "Greater Focus Needed on Methane Leakage from Natural Gas Infrastructure." *Proceedings of the National Academy of Sciences* 109, no. 17 (2012): 6435–6440.

GHG Impact from Methane Leaks

- Compare the GHG impact of CH₄ combustion (to CO₂) vs direct release into the environment
 - Combustion: $1g CH_4 \rightarrow 2.75 g CO_2$

ON CLEAN TRANSPORTATION

Methane leak has a substantially greater impact than methane undergoing combustion

Sources of Methane Emissions Throughout the Natural Gas Value Chain

- Well-to-pump
 - Production
 - Processing
 - Transmission and Storage
 - Local Distribution
- Pump-to-wheels
 - **Fueling stations**
 - **Fueling events**
 - Vehicle
 - Fueling system (venting) and leakage)
 - Tailpipe

Range from Studies: 1.1-6.9%

- ➢ EPA (2011): 2.55%
- ➢ EPA (2013): 1.55%

Very little data available EDF Estimate: 0.6%

Fugitive Methane Emissions Study

- EDF is leading a series of collaborative studies to determine leakage from NG value chain
 - Production
 - Gathering & Processing
 - Transmission and Storage
 - Local Distribution
 - Transportation (Pump-to-Wheels)

Project Objective: Quantify methane emissions that would be associated with increased use of natural gas as a transportation fuel in the heavy-duty vehicle sector

Mitigation: Technology and Strategies are Available

Mitigation strategy for fueling stations and vehicles

Fugutive Emission Type		Mitigation Strategy
Unintentional	Leaks (Continuous or Intermittent)	Improved materials and components. Pressure checks. Inspection and maintenance
Unintentional	Failure/Disaster	Shut off valves. Safety systems
Unintentional	Refueling	Recapture
Unintentional	Tailpipe Emissions	Emissions control/catalyst
Unintentional	Vehicle (fueling system, crankcase, etc)	Capture, recirculate to engine
Intentional	LNG boil-off/Pressure relief	Recapture. Improved tank insulation. Flare
Intentional	Discharge	Operational strategies

О

THE INTERNATIONAL COUNCIL ON CLEAN TRANSPORTATION

- New Source Performance Standards
 - Key feature: will require companies to capture natural gas that escapes when hydraulically fractured gas wells are prepared for production ("Green Completions")
- Greenhouse Gas Reporting Program
 - Mandatory GHG reporting for large sources and suppliers

Policies - Downstream

- Greenhouse Gas Emissions Standards for Medium- and Heavy-Duty Engines and Vehicles – Phase 1
 - HD Engine Tailpipe Standard: 0.1 g/hp-hr
 - Option to use CO₂ credits (using conversion factor of 25)
 - No vehicle level standards
- Phase 2
 - Being worked on now...

- A small amount of CH₄ can have a large impact on climate
- Concerns for the future
 - Full vehicle
 - Fueling station/fueling event
 - Consider upstream
 - Fixing leakage from the pump and vehicle is not enough!
- US: NGV incentives in LD CAFE rule uncertain what will happen for HD Phase
 2

