Ben Damsky

Mgr. Power Electronics Systems

Power Delivery and Markets/Substations

EPRI's Solid State Current Limiter

Long an objective

New factors to consider:

Constantly decreasing component costs

Technical effects of deregulation -

Merchant plants may locate at sites that increase available fault currents

Loss evaluation less of a factor

Strategy:

Develop module that can be stacked for different voltage ratings

Begin field trials at distribution voltages, move to transmission after some experience

Single Line to Ground Fault Conventional Breaker

Single Line to Ground Fault SSCL with Current Limiting

Thyristor module 5000 V each, 2 in series

Overall Structure of SSCL

26 identical switching sections

Advantages compensate for higher costs:

One current limiter can extend the usefulness of many conventional breakers

Reliability and life -

Reduced current and voltage peaks seen by other equipment

Power quality improved

Applications:

example

Tie breaker position to limit fault current

Minimize switching transient on transmission line

Capacitor bank switching at frequent intervals

Improved power quality for customer; fire hazard case as

Funding and Hosting:

Development phase to be covered by EPRI funds

Extra funds from utilities are speeding the work

Looking for host utilities for field trials in 2003

of medium voltage device

Nomenclature dictated by standards

Because we will have slightly different specifications, we will call this device a "current limiter" and not a "circuit breaker."

EPRI's Post Silicon Initiative

 SiC and GaN have potential for higher voltage and higher temperature

Can we make further big steps in Si?

 This work funded by Strategic Science and Technology at EPRI

EPRI's Post Silicon Initiative

SiC GTO

Higher than 6 kV blocking

Operating temperature above 250 C

Thermally advanced packaging for parallel operation

SiC GTO: 0.5 mm sq. rated 5 kV

EPRI's Post Silicon Initiative

Si "Super" GTO

Higher than 5 kV blocking
Higher turn off current density
Faster speed
Smaller gate power
1 x 2 cm size

Silicon wafer with SuperGTOs

SuperGTO vs. Standard GTO

Super GTO

Standard GTO

3,000 x in cell density gives 10x increase in turn-off current density.