Natural Gas Processing

September 14, 2012

Natural Gas Processing

- 17.1 MMT CO₂e
- 7.9% of total natural gas systems emissions

Background

Natural Gas Processing – Sources at processing plants, including fugitives, reciprocating compressors, centrifugal compressors, vented and combusted emissions (e.g., compressor exhaust, etc.) and maintenance venting.

2012 Inventory Natural Gas Processing Emissions (MMT CO₂e)

	1990	1995	2000	2005	2010
Calculated Potential	17.9	18.3	18.4	17.3	20.1
Voluntary Reductions	+	-0.1	-0.3	-2.4	-2.7
Regulatory Reductions	+	+	-0.3	-0.3	-0.3
Net Emissions	18.0	18.1	17.8	14.6	17.1

+ = Does not exceed 0.05 MMT CO_2e

Natural Gas Processing Emission Sources

- 3 sources represent over 97% of natural gas processing emissions
 - Reciprocating compressors
 - Centrifugal compressors (wet seals)
 - Gas engines
- Other sources
 - Plant fugitives
 - Centrifugal compressors (dry seals)
 - Gas turbines
 - Acid gas removal (AGR) vents
 - Kimray pumps
 - Dehydrator vents
 - Pneumatic devices
 - Blowdowns/venting

Natural Gas Processing Emissions

2010 Methane Emissions (2012 Inventory), MMT CO₂e

General Methodology Overview

- **Step 1. Calculate potential methane**
- 1a Activity Data
- 1b Emission Factor

Step 2. Compile reductions data

- 2a Voluntary Reductions Reported to GasStar
- 2b Regulatory Reductions

Step 3. Calculate Net Emissions

Reciprocating Compressors

Includes methane emissions from reciprocating compressor blowdown open-ended lines, pressure relief valves, starter open-ended lines, and rod packing seals

Step 1. Calculate Potential Methane

 Activity Data is number of reciprocating compressors for given year – 1992 value (EPA/GRI 1996) scaled linearly from 1992 to 2010 with dry gas production

AD₂₀₁₀ = # of Recip Comp₁₉₉₂ × (Gas Prod₂₀₁₀/Gas Prod₁₉₉₂)

• Emission factor is 11,196 scfd/year-compressor from EPA/GRI (1996)

Step 2. Compile Reductions Data

- Future Inventories--NSPS

Step 3. Calculate Net Emissions

2010 Emissions (2012 Inventory), MMT CO_2e

Activity data (Compressors)	Emissions Factor (scf per compressor)	Emissions (MMT CO ₂ e)
5,028	× 11,196	= 8.3

7

Centrifugal Compressors (Wet Seal)

Wet seals use oil seals around the rotating shaft to prevent natural gas from escaping where the compressor shaft exits the compressor casing

Step 1. Calculate Potential Methane

 Activity Data is number of centrifugal compressors with wet seals for given year – 1992 value (EPA/GRI 1996) scaled linearly from 1992 to 2010 with dry gas production minus # of centrifugal compressors with dry seals

 $AD_{2010} = # of CentCompWS_{1992} \times (Gas Prod_{2010}/Gas Prod_{1992}) - # of CentCompDS_{2010}$

• Emission factor is 51,369 scfd/year-compressor

Step 2. Compile Reductions Data

• Future Inventories—NSPS

Step 3. Calculate Net Emissions

Activity data (Compressors)	Emissions Factor (scf per compressor)	Emissions (MMT CO ₂ e)
672	× 51,369	= 4.9

2010 Emissions (2012 Inventory), MMT CO₂e

Gas Engines

Internal combustion engines fueled by natural gas which serve as the driving force for reciprocating compressors

Step 1. Calculate Potential Methane

 Activity Data is number of horsepower-hours for given year – scaled linearly from 1992 to 2010 with dry gas production

 $AD_{2010} = MMHPhr_{1992} \times (Gas Prod_{2010}/Gas Prod_{1992})$

• Emission factor is 0.24 scf/horsepower-hour from EPA/GRI (1996)

Step 2. Compile Reductions Data

• N/A

Step 3. Calculate Net Emissions

2010 Emissions (2012 Inventory), MMT CO_2e

Activity data (MMHP-hr))Emissions Factor (scf per HP-hour)	Emissions (MMT CO ₂ e)
36,124	× 0.24	= 3.5

Calculating Net Emissions Processing

- Voluntary reduction activities include:
 - Directed inspection and maintenance at processing plants
 - Improve measurement systems to track gas loss
 - DI&M aerial leak detection using laser and/or infrared technology
 - Install flash tank separators on glycol dehydrators
 - Eliminate unnecessary equipment and/or systems
 - Optimize nitrogen rejection unit to reduce methane in N₂ reject stream
- Regulatory reduction activities include:
 - NESHAP in dehydrating vents
 - Future Inventories--NSPS

2010 Emissions from Processing (2012 Inventory), MMT CO_2e

Calculated	Voluntary	Regulatory	Emissions
Potential	Reductions	Reductions	(MMT CO ₂ e)
20.1	-2.7	- 0.3	= 17.1

Questions for Stakeholders

- Are more recent data sources available?
 - Activity data
 - Emission factors
 - Drivers
- Suggestions for updates to presentation of processing sector information in the GHG Inventory?