

Gold King Mine Release – Analysis of Fate and Transport in the Animas and San Juan Rivers

Session 1

Gold King Mine Team National Exposure Research Lab/ORD June 21, 2016

1

€PA

Metals Mining in Colorado

Mineral Creek Silverton Caldera Cement Creek Mineral belt of Colorado originated during mountain-building in the Paleogene age **Upper Animas** River A volcanic caldera intruded into **Precambrian rock and sedimentary** carbonates near Silverton **Extensively hydrothermally altered sulfide** Silverton ores within the caldera produced economically extractable metal ores Boulder Gold mining began in 1871 with 1,000 to 1,500 mining claims staked in the area Denver over the next century Actively mined until about 1990 **Gold King Mine** Colorado Mineral Belt - approx inter boundary

- approx, outer bounder

Gold King Mine Background

- Numerous old mines leak acid mine drainage (AMD) into the tributaries of the headwaters of the Animas River and elsewhere in the river basin
- Gold King and associated mine complex has been described as one of the highest AMD producers among the Animas River basin by the CO Dept. of Mines
 - Recent estimates suggest GKM leaks 480 gpm
 - 690,000 gpd; 250 million gals/yr

EPA

 The 8/5/2015 release was equivalent to 4 days of normal AMD leakage from this mine

Cement Creek routinely colors the Animas River in Silverton with "yellow boy" iron and aluminum oxides that form with neutralization of acidity in the higher pH river water

What made the GKM release unique was the sudden release of a large volume of AMD that visibly and measurably impacted the river for a long distance downstream

GKM plume moved downriver from August 5 to August 13, 2015

Near Durango, CO 100 km from GKM

San Juan River During GKM Plume

At Farmington joining San Juan 200 km from GKM

Upper Animas River in San Juan National Forest

What is the risk associated with AMD?

- Acid Mine Drainage Characteristics
 - Very low pH (2.9 in GKM)
 - High concentrations of dissolved or "ionic" metals
- "Heavy" metals can be toxic to humans, livestock, wildlife, and aquatic life
- EPA, states, and tribes have established water quality criteria identifying unsafe concentrations for short or long-term exposure
 - Most criteria target the "dissolved" form of metals
 - Colloidal/particulate forms are generally thought to have low toxicity to aquatic life

Lead, Copper, Zinc, Arsenic, Nickel, Cadmium Mercury, Beryllium, Barium, Vanadium, Selenium etc. Metal ions highly reactive and seek to bind with any charged surface

Once sorbed into more stable lattices or onto surfaces, the metals are much less biologically available

Potentially Affected Water Users

- States
 - Colorado
 - New Mexico
 - Utah
 - Arizona
- Tribes
 - Southern Ute Indian Tribe
 - Ute Moutain Ute Tribe
 - Navajo Nation
- Many municipalities and counties
- EPA
 - Region 8
 - Region 6
 - Region 9

The GKM release created potential for exposure to high concentrations of metals during the "plume" movement and possibly later with remobilization of metals transferred to the bed

Legend Utah Cities Gold King Mine Impacted Streams Indian Reservation State boundar Colorado Cement GKM Silverton Tacoma Durango Ute Reservation Mexican Reservation Hat Page Cedar Hill Jicarilla Aztec Navaio Nation Reservation Apach Nation Farmington Fruitland New Mexico Arizona 30 60 km 0

The release triggered EPA emergency response to protect downstream water users by curtailing use with cooperation of states, tribes, municipalities and public in the days following the event

Set EPA

Exposure Potential

Domestic water supplies

- Population centers from Durango, CO to Farmington, NM
- Groundwater wells

 Contamination of irrigation ditches and livestock watering

Agricultural Use Density

Set EPA

Exposure Potential

- Animas River has recreational fisheries
 - Rainbow trout
 - Brown trout
- San Juan River also has species identified in ESA as endangered or at risk

Recreational river use

Research Objectives

The general objectives of this research was to assess potential exposure to metals released from the Gold King Mine (GKM) site on August 5, 2015 as the plume of acid mine drainage (AMD) traveled through the Animas and San Juan Rivers

The 4 Step Risk Assessment Process

Specific research objectives:

Quantify the release from the Gold King Mine

- Contaminants
- Volume and timing

Characterize transport and fate of AMD in Animas and San Juan Rivers

- Surface water - Sediments Quantify water quality impacts
 - Near term
 - Longer term

Characterize potential exposure to AMD for various water users, including municipal wells

Advise future monitoring priorities

Set EPA

Analysis Questions

Primary Questions

- How much was released and what was its composition?
- Where did the material in the release volume go?
- How was water quality affected?
- What was the potential for water user exposure to metals?
- Did any of the material stay in the river system, sequester to the streambed?
- If so, will that material be released into the river and will it have secondary impacts after the initial spill?
- Were groundwater drinking water or irrigation sources potentially impacted?
- Have metal concentrations in the water and sediment returned to pre-event levels?

€PA

ORD Project Team

Team of ORD scientists with multidisciplinary expertise in geochemistry, surface and groundwater hydrology, environmental engineering, water quality modeling, fish biology and bioaccumulation, statistics, and geographical information tools

Asked by ORD Assistant Administrator to analyze fate and transport of GKM release

ORD/NERL Subject Experts Working on the Project

- John Washington, Geochemistry
- Chris Knightes, WASP, water quality
- Mike Cyterski, Data analysis, statistics
- Kate Sullivan, Hydrology, project lead
- Craig Barber, Fish effects
- Steve Kraemer, Groundwater
- Anne Neale, Megan Mehaffey, EnviroAtlas
- Lourdes Prieto, GIS and data acquisition

*₽***EPA**

Review Outline

• Session I:

- Introduction
- Data and research approach
- Release volume and characteristics of AMD from Gold King Mine
- Session 2:
 - GKM plume characteristics and travel time in the Animas and San Juan Rivers
 - Geochemical transformations
 - Water quality during plume travel
 - Exposure potential

Session 3:

- Accounting for metals mass in the Animas and San Juan Rivers
- Post-GKM event trends in water and sediment quality
- Potential mobilization of deposited materials during storms and snowmelt
- Session 4:
 - Groundwater modeling of potential for contamination of wells in river alluvium
 - Wrap-up and summary
 - Discussion/questions

Each session will include time for discussion/questions

Set EPA

EPA/ORD Research Path

Methods

- We used publicly available data obtained from multiple sources to characterize the GKM release, transport, and fate
- We empirically analyzed water quality & hydrologic data collected during and after the GKM release to estimate metal concentrations and loadings downstream as the plume passed.
- We applied existing, peer-reviewed software-based process analytical models to assist understanding of transport and fate in the 600-km river system, river alluvium groundwater, and bioaccumulation.
- We reviewed USGS studies of AMD in the Animas River in the 1990's to gain insight into system behavior and expected conditions.
- We consulted with EPA regions and program staff with detailed knowledge of the event to cross check and validate results.

Reporting

- Independent peer review pre-report held Feb 22-25: reviewers traveled to Athens, GA for 3 days of presentations focused primarily on methods. Recommendations have been incorporated into current results and presentations.
- Technical review with states, tribes, others
- Report in progress (will receive independent peer review)

Data Overview

- The combined efforts of EPA, states and tribes provided an extensive database of metals concentration in water and sediments along 600 km of river
- Some historic data also available from the same groups and USGS
- 12 USGS gages within the reach

- We used publicly available data downloaded from agency websites
- Merged data from multiple sources
- We report sites as distance from Gold King Mine

⇒EPA

Data Sources--Overview

				Meta	als		
			Surface Water			Sediment	
_		GKM Plume Event (Aug 5-20)	Post-Event (Aug 21-Oct)	Pre-Event/ Historic	GKM Plume Event (Aug 5-20)	Post-Event (Aug 21-Oct)	Pre-Event/ Historic
	EPA Region 8	х	x	SADIE	X	X	Х
Federal	EPA Region 6	X	X		X	X	
rederal	EPA Region 9	х	x		X	X	
	U.S. Geological Survey	3 samples		X			Х
	Colorado DPHE	x			X		
States	New Mexico ED	х					
	Utah DEQ	х			X		
	Southern Ute Indian Tribe	x					
Tribes	Ute Mountain Tribe			X			
	Navajo Nation NNEPA	X	X	X			

Supplemental material has additional info on data sources and methods

	SURFACE WATER TOTAL Recoverable		Federal A	Agencies			States			Tribes	
Metals		EPA Region 8	EPA Region 6	EPA Region 9	U.S. Geological Survey	Colorado DPHE	New Mexico ED	Utah DEQ	Southern Ute Indian Tribe	Ute Mountain Tribe	Navajo Nation NNFPA
Total	Metals									mbe	
	Aluminum	X	Х	Х	Х	Х	X	Х	х	х	Х
	Antimony	X	X	Х	X		X	Х	X	х	Х
Fraction	Arsenic	X	X	х	X	Х	X	Х	X	х	Х
	Barium	X	X	X	X	Х	X	Х	X		
	Beryllium	X	X	X	X	X	X	Х	X		
24	Cadmium	X	X	Х	X	X	X	Х	Х	Х	X
24 metals	Calcium	X	X	X		X	X	Х	X	X	X
	Chromium	X	X	Х	X	X	X	Х	Х	Х	X
	Cobalt	X	X	X	X	X	X	Х	X		X
Not all	Copper	X	X	X	X	X	X	Х	X	X	X
motals	Iron	X	x	х	X	Х		х	x	х	
metals	Lead	X	X	Х	X	Х	X	Х	X	Х	X
measured at	Magnesium	X	Х	Х		Х	X	Х	х		Х
	Manganese	X	Х	Х	X	Х	X	Х	Х	х	х
an sites in	Mercury	X	X	X	X	X	X	Х	X	Х	X
every	Molybdenum	X	X	Х	X	X	X	Х	X	Х	X
	Nickel	X	Х	Х	Х	Х	X	Х	Х	х	х
sampling	Potassium	X	Х	Х		Х		Х	х	х	Х
event	Selenium	X	Х	Х	X	Х	X	Х	Х	Х	
event	Silver	X	X	X	X	Х	X	Х	X	Х	X
	Sodium	X	X	X		X		Х	X	Х	Х
	Thallium	X	X	Х	X		X	Х	X	х	Х
	Vanadium	X	X	Х	X	Х	X	Х	X	х	Х
	Zinc	X	X	Х	X	X	Х	Х	X	Х	X

• Mostly similar testing by various agencies but differences exist—see supplemental material

Metals --Dissolved Fraction <0.45 micron filtered

24 metals

		Federal	Agencies			States		Tribes			
Surface Water					Colorado	New		Southern	Ute	Navajo	
Dissolved	EPA Region 8	EPA Region 6	EPA Region 9	Survey	DPHE	Mexico ED	Utah DEQ	Ute Indian Tribe	Mountain Tribe	Nation NNEPA	
Aluminum	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
Antimony	Х	Х	Х	Х		Х	Х	Х		Х	
Arsenic	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
Barium	Х	Х	Х	Х	Х	Х	Х	Х			
Beryllium	Х	Х	Х	Х	Х	Х	Х	X			
Cadmium	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
Calcium	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
Chromium	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
Cobalt	Х	Х	Х	Х	Х	Х	Х	Х		Х	
Copper	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
Iron	Х	Х	Х	Х	Х		Х	Х	Х		
Lead	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
Magnesium	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
Manganese	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
Mercury	Х	Х	Х	Х	Х	Х	Х	Х		Х	
Molybdenum	Х	Х	Х	Х	X X X X X		Х	Х	Х		
Nickel	Х	Х	Х	Х	Х	Х	Х	Х		Х	
Potassium	Х	Х	Х	Х	Х		Х	Х	Х	Х	
Selenium	Х	Х	Х	Х	Х	Х	Х	Х	Х		
Silver	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
Sodium	Х	Х	Х	Х	Х		Х	Х	Х	Х	
Thallium	Х	Х	Х	Х		Х	Х	Х		Х	
Vanadium	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
Zinc	Х	Х	Х	Х	Х	Х	Х	X	Х	Х	
Other Consitutents											
Boron					Х	X			X		
Uranium-234/235/238					Х	X			Х		
Mercury	Х	X	Х		Х	X	Х	Х		Х	
Silica				Х					X		
Silicon					Х				Х		
Titanium					Х						
Strontium					Х						
Hardness, Dissolved (as C	aCO3)					X	Х	Х			

Other water quality constituents

Relatively few geochemistryrelevant parameters measured during plume movement—

--lack of data limited geochemical analyses

		Federal	Agencies			States			Tribes	
Other Chemicals and Constituents	EPA Region 8	EPA Region 6	EPA Region 9	U.S. Geological Survey	Colorado DPHE	New Mexico ED	Utah DEQ	Southern Ute Indian Tribe	Ute Mountain Tribe	Navajo Nation NNEPA
Alkalinity (as CaCO3)							х			
Alkalinity, Phenolphthalein (total hydroxide+1/2 carbonate)										х
Alkalinity, total				Х		Х	х	Х	Х	х
Bicarbonate (as CaCO ₃)				Х		х	х	X	х	х
Boron					х	Х				х
Bromate					х					
Bromide					х	х				
Carbonate						Х	Х		Х	х
Chloride				Х		Х	Х			х
Conductivity	X	х	х				х			
Cyanide						X				Х
Cyanides amenable to chlorination (HCN & CN)										х
Dissolved oxygen	X	х	х	Х	х	х				х
DOL						х				
Fluoride				Х	х	Х				х
Gross alpha radioactivity, (Americium-241 ref std)										х
Hardness (as CaCO ₃)				Х			х	x		
Hydroxide (as CaCO ₃)								х	х	х
Nitrate/Nitrite (as N)					х		х			
Phosphorus									Х	
Phosphate-phosphorus									Х	
Orthophosphate	X	х	х							
рН	x	х	х	Х	х	х	х			х
Residue Filterable								Х		
Residue Non-Filterable								X		
Salinity						Х				Х
Silica										
Silicon					х					
Specific conductance	X	х	х	Х		х				Х
Strontium					Х					
Sulfate				Х	х	х	х			х
Temperature, water	x	х	х	х	х	х			х	х
Titanium					х					
Total dissolved solids				Х		Х	х	X		х
Total suspended solids						х	х	X		х
Turbidity						Х				
Uranium-234/235/238				Х	Х	Х				
CO2				Х						

Other constituents --SONDES

		Federal	Agencies			States			Tribes	
Continuous Sondes	EPA Region 8	EPA Region 6	EPA Region 9	U.S. Geological Survey	Colorado DPHE	New Mexico ED	Utah DEQ	Southern Ute Indian Tribe	Ute Mountain Tribe	Navajo Nation NNEPA
рН						x		x		
Specific Conductance						X		Х		
Temperatre						X		Х		
Turbidity						X				
ODOSat						Х		Х		
ODO Conc						X		Х		
Total Dissolved Solids								X		
Streamflow				X						

Sondes were helpful in establishing timing of plume movement

Uncertainties in Data

- The distinction between dissolved and "solid" phases of metals (we term colloidal/particulate) is determined by sample filtering
 - All GKM samples separated by 0.45 micron filter
 - Fine AMD colloids can be smaller in size than 0.45 micron filter—can introduce systematic errors in fraction partitioning
- Acid treatment for preserving samples could affect metal phase—difficult to screen data for this
- Uncertainties due to differences in field sampling protocols are unknown, but not thought to be significant problem
- Samples below testing detection limits
 - All agencies provide sufficient info in data sets for qa qualifiers and detection limits
 - Agencies vary in how non-detects are reported as results
 - We generally focus on the metals with reasonable number of "detects"
 - Confident in plume related results because concentrations were high—detection limits mostly affect interpretation of "return to background"
- Differences in sampling timing and what was tested forces us to narrow data used for some summarizing analyses

Animas River Sampling Sites

San Juan River Sampling Sites

Surface Water

Sediment

€PA

Used Data and Technology from EnviroAtlas

EnviroAtlas is:

- An online decision support tool giving users the ability to view, analyze, and download geospatial data and other resources
- Designed to inform decision-making, education, and additional research
- Freely available to anyone with internet access

EnviroAtlas includes:

- Geospatial indicators of natural resources, benefits provided, and drivers of change
- Supplemental data (e.g., boundaries, land cover, soils, hydrography, impaired water bodies, wetlands, demographics)
- Analytic and interpretive tools

23

Developed through cooperative effort amongst multiple Federal agencies and other organizations.

Data Integration

EPA

- EPA/ORD team took opportunistic approach used everything we could
- Overall, we think the data composited from all sources allow for a robust look at the GKM event and reasonably good comparison to historic conditions
- Ability to synthesize overall understanding of event outweighs methodological uncertainties
- Distilling data for consistent and understandable analyses was challenging
 - Large number of sites, metals, samples, media
 - Concentrations ranged over 4 orders of magnitude

GKM Analysis Road Map

RESULTS

Release From Gold King Mine How much?

What was in it?

EPA

Gold King Mine Situation

See Bureau of Reclamation Report (October 2015)

- On August 5, 2015, EPA and its contractors were working at the collapsed entrance of the Gold King Mine
- Due to subsurface hydrologic connection among 4 mines on the hillslope, the pond inside the lowermost Gold King mine was "pressurized"
- Disturbance to the plugged entrance created a small leak that quickly turned into a flood carrying a slurry of acidic water laden with dissolved metals to Cement Creek
- Rushing water eroded additional contaminants from the mountainside and probably from within Cement Creek carrying it into the headwaters of the Animas River

Set EPA

Volume Released From GKM

- 3,000,000** gallons (11.42 million liters) of acidic water pH 2.9
- Release begins at I I:00 AM
- Most of the release volume observed between 12:45 and 17:45 at Cement Cr gage 12.5 km downstream
- Peak of release flood similar to flow during snowmelt

Volume Released From GKM

S FPA

- Comparing flow in Cement Creek relative to Animas above Cement suggest some leakage possibly continues until the next morning
- Other factors also could be disrupting the relative relationship in flow between the two sites
- We accept USGS estimate of 3,000,000 gallons where release ends at about 17:45

GKM Effluent Chemistry

- Concentrations of metals in the mine after the event could have increased or decreased relative to that during the release as new water filling mine voids reached equilibrium
- GKM effluent measured 4 times after release
 - EPA: Aug 15, Sep 21
 - CODPHE: Aug 7, 11
- Some initial adjustments for many metals, but not a lot of change
- Aug 15 EPA sample used to represent release for most metals

EPA

GKM Effluent Release Concentration

mg/L	CODPHE	CODPHE	EPA CC06	EPA CC06		Dissolved		
Metal	7-Aug	I I-Aug	15-Aug	21-Sep	Average of Samples	Selected Value		
Aluminum	32	31	34	32	32.25	34	15-Aug	
Antimony			0.004	0.006	0.005	0.0037	15-Aug	
Arsenic	0.086	0.067	0.044	0.044	0.06025	0.060	15-Aug	
Barium	0.021		0.009	0.002	0.010	0.0086	15-Aug	
Beryllium	0.003	0.006	0.011	0.013	0.0082	0.011	15-Aug	
Cadmium	0.100	0.084	0.082	0.08	0.09	0.082	15-Aug	
Calcium	330	330	370	460	372.5	370	15-Aug	
Chromium	0.015		0.006	0.016	0.012	0.015	15-Aug	
Cobalt	0.13	0.12	0.11	0.12	0.12	0.11	15-Aug	
Copper	6.0	7.2	4.6	7.8	6.4	7.0		
Iron			150	120	135	150	15-Aug	
Lead	0.160	0.048	0.042	0.039	0.0723	0.042	15-Aug	
Magnesium	30	30	27	31	29.5	27	15-Aug	
Manganese	34	33	36	42	36.25	36	15-Aug	
Mercury	0	0	0	0	0	0.00000	15-Aug	
Molybdenum			0.004	0.005	0.005	0.0042	15-Aug	
Nickel	0.070	0.066	0.069	0.064	0.067	0.069	15-Aug	
Potassium	2.8		2.4	3.0	2.7	2.4	15-Aug	
Selenium	0.002	0.001	0.005	0.010	0.004	0.0047	15-Aug	
Silver			0.0001	0.0006	0.0004	0.0001	15-Aug	
Sodium	92		5	4.8	34	5.3	15-Aug	
Thallium			0.0003	0.060	0.030	0.03	15-Aug	
Vanadium			0.038	0.033	0.036	0.038	15-Aug	
Zinc	28	28	20	26	25.5	26.0	21-Sep	
Sum All, mg/l			650	727	675	658		

Effluent Mass (kg)= Concentration (mg/l) x Volume (l)÷106

Volume = 11,046,485 liters

Using selected concentrations based primarily on Aug 15 sample:

Total estimated metal mass released from GKM = 7,600 kg

6 mass estimates using each concentration column to the left ranged from 7,200 to 8,000 kg, with a mean of 7,565 kg (SE 127 kg)

GKM Effluent Release Chemical Makeup

GKM Release Event

- Not just an AMD release but also an erosion event
- Most of water released within about a 2-hour period
- Fast moving flood traveled through Cement Creek at 1.5 to 2 m/s providing the power to entrain and transport metals + sediments

Significantly increased metals loads between the mine entrance and Cement Creek entry into Animas River

Potential Metal Sources: mine waste outside entrance, hillslope saturated with leakage, streambed 34

DRAFT June 20, 2016

⇒EPA

GKM Release to Animas River

- First sample in Cement Creek during release was collected at 16:00
- This sample did not likely represent peak concentrations at 12:45
- Approach to estimating total and dissolved peak concentrations was carefully reviewed by the independent peer review panel who provided suggestions

Concentrations at 12:45 peak probably much higher

€PA

GKM Release to Animas River

- First sample in Cement Creek during release was collected at 16:00
- Does not likely represent peak concentrations at 12:45
- Factor to increase total recoverable concentration at 12:45 computed as proportion of streamflow at 16:00 Q_{peak}/Q_{16:00} = 3.53

EPA/ORD team and Peer Reviewers agreed: Estimates very uncertain, concentrations could have been higher or lower

EPA

Estimating Peak Concentrations in Cement Creek-DISSOLVED FRACTION

Algorithm to estimate dissolved metal concentrations at release peak:

- Step 1: Estimate background concentration of metals in Cement Creek above GKM; done from samples collected by EPA and CODPHE in August 2015
- Step 2: Use 16:00 Cement Creek sample and background concentrations from Step 1 to solve for GKM concentration

[Cement Conc_{16:00}]=[GKM Conc] x (GKM q Portion_{16:00}) + [Background Conc] x (Background q Portion_{16:00})

• Step 3: Use Step 2 result and data from plot to the right in a mixing model at other time steps:

[Cement Conc_t]=[GKM Conc] x (GKM q Portion_t) + [Background Conc] x (Background q Portion_t)

• Step 4: Account for salt surge from entrained materials

First 30 minutes (2 time steps) increase estimated concentration by 2x

EPA

GKM Release to the Animas River

A considerable mass of additional metals was entrained between the mine entrance and the Animas River

Resulting Concentrations in Cement Creek at Peak

Relative Increase in Dissolved Concentration in

Cement Creek From Sources Other than GKM Release Volume Metals mass from release delivered to Animas River

GKM Metals--Release Load (490,000 kg)

GKM Release to the Animas River

Dissolved Metal Mass in Cement Creek

Risk Perspective on GKM Metal Load

Water Quality Screening Thresholds—Various Uses, Metals, Agencies

Surface Wate	er		in mg/L																								
	Screening Criteria			Aluminum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcium	Chromium	Cobalt	Copper	Iron	Lead	Magnesium	Manganese	Mercury	Volybdenun	Nickel	Potassium	Selenium	Silver	Sodium	Thallium	Vanadium	Zinc
	Drinking water MCL	EPA (DWA)			0.006	0.010	2.000	0.004	0.005				1.300		0.015			0.002				0.050			0.002		
	Secondary Drinking	EPA (DWA)		0.050									1.000	0.300			0.050						0.100	30.000			5.000
Drinking	Child Health Advisory 1-Day	EPA (DWA)			0.010		0.700	30.000	0.040								1.000	0.002	0.080	1.000			0.200		0.007		6.000
Water	Domestic Supply	Colorado				0.01	1.0		0.005		0.05				0.05			0.002					0.1				
Related	Domestic Supply	New Mexico			0.006	0.010	2.000	0.004	0.005		0.100		1.300		0.015					0.700		0.050			0.002		10.500
nenateu	Domestic Source	Utah				0.010	1.000	0.004	0.010		0.05				0.015			0.002				0.050	0.050				
	Health Based Ingestion	Utah		5.25	6.75	31.25							7.75	11.75	37.25		7.0								40.5		
Recreation	Recreational	Region 8		170.000	0.067	0.050	33.000	0.330	0.083		220	0.050	6.700	120.000	0.200		7.800	0.050	0.830	3.300		0.830			0.002	0.830	50.000
	Irrigation	Region 6			5.000				0.010		0.100	1.000	0.200		5.000		0.200			0.200		0.130				0.100	2.000
	Irrigation	New Mexico		5.000		0.100			10.000		0.100	0.050	0.200		5.000				1.000			0.130				0.100	2.000
	Irrigation (short-term)	Utah		20.000		2.000			0.050		1.000	5.000	5.000	20.000	10.000		10.000		0.050			0.020				1.000	10.000
	Agriculture	Colorado				0.100							0.200	1.000													
Agricultural	Agricultural Supply	Navajo Nation		5.000		0.100			0.010		0.100	0.050	0.200		5.000				0.010			0.130				0.100	2.000
(Irrigation,	Revised Irrigation	Region 9		5.000		2.000			0.050		1.000	0.050	0.200		10.000				1.000			0.020				0.100	10.000
livestock)	Livestock	Region 6						0.100	0.050		1.000		0.500		0.100			0.010		1.000		0.250				0.100	25.000
	Livestock updated	Region 9				0.200			0.050		1.000	1.000	0.500		0.100							0.050				0.100	25.000
	Livestock	New Mexico				0.200			0.050		1.000	1.000	0.500		0.100							0.050				0.100	25.000
	Livestock	Utah		5.000		0.200			0.050	500.0	1.000	1.000	0.500		0.100	250.0		0.010				0.050		1000.0		0.100	25.000
	Livestock and Wildlife Watering	Navajo Nation		0.500		0.020	10.000		0.050		1.000	1.000	0.500		0.100			0.01				0.002				0.100	25.000
	Water + Fish	Colorado			0.006	0.00002					100.000		1.300							0.610		0.170			0.00024		7.400
	Aquatic Acute	Navajo Nation		0.750	0.088	0.340		0.065	0.004		0.012		0.021		0.038			0.0024		0.761		0.002	0.007		0.700		0.176
	Aquatic Acute	Region 6			8.358	0.340			0.003		0.972		0.025		0.130		3.710	0.001		0.813		0.020	0.010				0.290
	Aquatic Acute	Region 9		8.358				0.340	0.003		0.972		0.025		0.130		3.710	0.104		0.813		0.020	0.010				0.290
	Aquatic Acute	Colorado		7.650		0.340			0.003		0.016		0.024		0.136		3.697			0.806		0.0184	0.007				0.2860
	Aquatic Acute	New Mexico		7.650		0.340			0.003		0.004		0.0250		0.026		3.882		7.92	0.900		0.020	0.008				0.288
	Aquatic Acute	Utah		0.750		0.340			0.002		0.570		0.0130	1.000	0.065					0.468		0.0184	0.0016				0.120
Aquatic Life	Warm Water Fish 1-hr	Utah		0.750		0.340			0.002		0.570		0.0130	1.000	0.065					0.468		0.0184	0.0016				0.120
-	Warm Water Fish 4-day	Utah		0.087		0.150			0.0003		0.074		0.0090	1.000	0.0025					0.052		0.0046					0.120
	Aquatic Chronic	Utah		0.087					0.0003		0.074		0.0090	1.000	0.0025			0.00001		0.052		0.0046					0.120
	Aquatic Chronic	Region 6			3.348	0.150			0.00072		0.126	0.050	0.016		0.005		2.050	0.001		0.090		0.005					0.219
	Aquatic Chronic	Region 9		3.348				0.150	0.001		0.126		0.016		0.005		2.050	0.001		0.090		0.005					0.219
	Aquatic Chronic	Colorado		1.262		0.150			0.0007		0.011		0.0162	1.000	0.0053		2.042	0.00001	0.160	0.090		0.0046	0.00023		0.015		0.228
	Aquatic Chronic	Navajo Nation		0.087	0.030	0.150		0.005	0.0004		0.070		0.0138		0.039			0.000012		0.085		0.002			0.150		0.183
	Aquatic Chronic	New Mexico		3.065		0.150			0.0010		0.069		0.016		0.003		2.145	0.001	1.895	0.100		0.005					0.230

Blue shading is dissolved

Yellow shading is total

Hardness-based criteria calculated at 180 mg/l

Risk Perspective on GKM Load

Rationale for Grouping Metals Relative to Potential Effects

SEPA

	Dissolved metals with criteria for most Uses: Drinking water, Recreation, Agriculture, Livestock, Aquatic Life (acute and chronic)	Dissolved Arsenic, Cadmium, Copper, Lead, Mercury, Nickel, Zinc, Manganese					
Water Quality Potent	Dissolved Metals with Criteria Primarily for Aquatic Life	Manganese					
	Metals Primarily Targeted for Aquatic Life with Both Fractions	Total and Dissolved Aluminum and Seleniur					
Not Strongly Influential	Low Toxicity Risk (Do not have many criteria or criteria too high to screen in here)	All forms of Antimony, Barium, Beryllium, Chromium, Cobalt, IRON, Molybedenum, Silver, Thallium, Vanadium. All colloidal/particulate forms for top category					
Background Constituents	Major Anions and Cations (dominant background consituents, no criteria)	All forms of Calcium, Potassium, Magnesium, Sodium, Sulfates, NO _x , Chlorides					

Risk Perspective on GKM Load

Approximately 46,000 kg of metals with highest potential for adverse effects

EPA

- 2,500 kg potentially affecting drinking water, irrigation, agriculture
- 43,500 affecting aquatic life

Session Summary Key Findings

- Nearly 500,000 kg of metals were delivered to the Animas River from the Gold King Mine release. About 15,000 kg of
 the total mass was dissolved metals and the remainder was in a colloidal/particulate form.
- Much of the metal mass was entrained as the flood of mine water travelled downslope from the mine entrance and through Cement Creek.

EPA

Supplemental Material

- Data Sources
- Site List of Compiled Data
- Laboratory Methods

Gold King Mine Event-Related Water and Sediment Quality Data Sources

Data source	Information Obtained	Use in study				
US EPA http://www2.epa.gov/goldkingmine	 sediment and/or surface water quality data collected in Colorado (CO), New Mexico (NM), Arizona (AZ), and Utah (UT) during and post GKM event. interactive map with GKM release location, river mile markers, and location of surface water and sediment sampling sites geographic coordinates of sampling sites and GKM release location 	 empirical graphing and analysis for release characterization, WASP model calibration reference, establish distance from GKM source, obtain the coordinates of the GKM release location for mapping purposes reference, analysis, and cartography 				
US EPA Region 6 Scribe database <u>https://www.epaosc.org/site/SCRIBE</u> <u>(requires password permission)</u>	 list and location of public water systems (PWS) sampled by Region 6 water quality data for those PWS collected after GKM event 	- GW analysis: site selection and analysis				
US EPA Region 8	- Data for well in Colorado	- GW analysis				
Colorado Department of Public Health and Environment (CDPHE) <u>https://www.colorado.gov/pacific/cdphe/animas-</u> <u>river-water-quality-sampling-and-data</u>	 surface water and sediment quality data collected in CO after the GKM plume's arrival drinking water quality data collected in CO after the GKM plume's arrival fish tissue sample data collected after the arrival of the GKM's plume geographic coordinates of sampling sites 	 empirical graphing and analysis for release characterization hypothesis testing of groundwater connection to public wells corroboration of BASS simulation for arsenic reference, analysis, and cartography 				
New Mexico Department of Environment https://www.env.nm.gov/riverwatersafety/GoldKingD ata.html	 - surface water quality data collected in NM during GKM event - sonde data collected in NM during GKM event - well water quality collected in NM during GKM event - geographic coordinates of sampling sites 	 empirical graphing and analysis for release characterization -GKM plume timing GW analysis reference, analysis, and cartography 				
Utah Department of Environmental Quality <u>http://www.deq.utah.gov/Topics/Water/goldkingmin</u> <u>e/data.htm</u>	 surface water and sediment quality data collected in San Juan River, Utah during the GKM event geographic coordinates of sampling sites 	 empirical graphing and analysis for release characterization reference, analysis, and cartography 				
Southern Ute Indian Tribe Personal communication <u>ftp://ftp.southernute-nsn.gov</u>	 - surface water and/or sediment quality data collected during GKM event - sonde data collected on SUIT Reservation during GKM event - geographic coordinates of sampling sites 	 empirical graphing and analysis for release characterization GKM plume timing reference, analysis, and cartography 				
National Water Quality Monitoring http://waterqualitydata.us/portal/	 Navajo Nation water quality data collected in New Mexico and Utah during the GKM event and pre-event geographic coordinates of sampling sites 	 GKM fate and transport analysis reference, analysis, and cartography 				

Pre-event and historic water and sediment quality data sources used in Gold King Mine analyses

Data source	Information Obtained	Use in study
US EPA Superfund Analytic Data Integrator & Explorer (SADIE) https://r8.ercloud.org/sadie (requires password permission)	 surface water and sediment quality data collected pre- GKM release 	- pre-event water quality characterization
US EPA STORET Central Warehouse (<u>https://www.epa.gov/waterdata/storage-and-retrieval-and-</u> water-quality-exchange)	- surface water quality data collected pre-GKM release	- pre-event water quality characterization
USGS Gold King Mine Release Database http://water.usgs.gov/owq/gkm/wq.html	 surface water and sediment quality data collected pre- GKM release 	- pre-event water quality characterization
USGS Professional Paper 1651 database http://pubs.usgs.gov/pp/1651/ (<u>http://pubs.usgs.gov/pp/1651/downloads/</u>	- surface water and sediment quality data collected pre- GKM release	- pre-event water quality characterization
USGS Open-File Report 97-151 appendices data https://pubs.er.usgs.gov/publication/ofr97151	 surface water and sediment quality data collected pre- GKM release 	- pre-event water quality characterization
National Water Quality Monitoring http://waterqualitydata.us/portal/	 Navajo Nation water quality data collected in New Mexico and Utah during the GKM event and pre-event geographic coordinates of sampling sites 	 pre-event water quality characterization reference, analysis, and cartography
Ute Mountain Tribe Personal communication	 surface water quality data collected pre-GKM release macroinvertebrate screening data pre-GKM release 	- pre-event water quality characterization
USGS National Water Information System (NWIS) Surface Water Data <u>http://waterdata.usgs.gov/nwis</u>	- water quality data for a reference gage in the San Juan River	-WASP GKM plume modeling

Surface Water and Sediment Sample Sites—Upper Animas River

			Distance from						
			GKM source	Distance from			Watershed		
Agency	SiteID	Description	(miles)	GKM source (km)	Media	Site Type	Location	Latitude	Longitude
EPA	CC06	source	0	0.00	SW	Source	Cement Creek	37.894583	-107.638358
CO (CDPHE)	СО_СКМ_О	Gold King Mine Adit	0	0.00	SW, SED	Source	Cement Creek	37.89455	-107.63827
CO (CDPHE)	CO_GKM_1	Gold King Mine Effluent	0.49	0.79	SW	Main	Source?	37.895200	-107.6468
CO (CDPHE)	CO_GKM_2	Influent Prior to Treatment	0.50	0.80	SW	Main	Source?	37.895200	-107.647000
CO (CDPHE)	CO_RI_R1	Cement Cr abv Gold King Mine	0.51	0.82	SW	Reference	Cement Creek	37.89605	-107.64696
CO (CDPHE)	CO_RI_R2	Cement Creek above Gold King	0.51	0.82	SW	Reference	Cement Creek	37.896192	-107.64682
CO (CDPHE)	СО_СКМ_З	(Gold King Mine) Treatment Effluent	0.51	0.82	SW	Source	Cement Creek	37.89572	-107.64714
CO (CDPHE)	CO_RI_R3	Cement Creek Upstream of GKM Treatment	0.51	0.82	SW	Source	Cement Creek	37.89545	-107.6475
CO (CDPHE)	CO_RI_M1	Cement Cr blw Gold King Mine	0.54	0.87	SW	Main	Cement Creek	37.89468	-107.64737
EPA	GKM13		0.54	0.87	SW	Main	Cement Creek	37.894692	-107.647253
CO (CDPHE)	CO_RI_M2	Cement Creek (below mine)	0.56	0.90	SW	Main	Cement Creek	37.89456	-107.64774
CO (CDPHE)	CO_RI_M3	Cement Creek below Gold King	0.6	0.97	SW	Main	Cement Creek	37.893968	-107.647855
CO (CDPHE)	CO_RI_M4	Treatment	0.61	0.98	SW	Main	Cement Creek	37.8938	-107.64762
CO (CDPHE)	CO_RI_M4.1	Animas River	1.9	3.06	SW	Main	Cement Creek	37.8848	-107.66526
EPA	CC48		7.79	12.54	SW	Main	Cement Creek	37.819984	-107.663275
EPA	CC 14th St Bridge		8.36	13.45	SW	Main	Cement Creek	37.812475	-107.661401
CO (CDPHE)	CO_RI_M5	Cement Creek above Animas River	8.56	13.78	SW	Main	Cement Creek	37.809993	-107.6606917
CO (CDPHE)	CO_RI_M6	Cement Creek (above Animas River)	8.59	13.82	SW	Main	Cement Creek	37.80972	-107.66065
EPA	A68	reference	8.64	13.90	SW	Reference	Upper Animas	37.811202	-107.659167
CO (CDPHE)	CO_RI_R5	Animas River (above Cement Creek)	8.64	13.90	SW	Reference	Upper Animas	37.81109	-107.65932
CO (CDPHE)	CO_RI_R6	Animas River above Cement Creek	8.64	13.90	SW	Reference	Upper Animas	37.811355	-107.6591967
CO (CDPHE)	CO_RI_R9	Animas River above Cement Creek	8.64	13.90	SW	Reference	Upper Animas	37.811065	-107.659232
CO (CDPHE)	CO_RI_R7	Animas River above Cement Creek	8.64	13.90	SW, SED	Reference	Upper Animas	37.810892	-107.659445
CO (CDPHE)	CO_RI_M7	Mineral Creek)	9.06	14.58	SW	Main	Upper Animas	37.804035	-107.6645183
CO (CDPHE)	CO_RI_M8	Animas River above Mineral Creek	9.09	14.63	SW, SED	Main	Upper Animas	37.804023	-107.664772
CO (CDPHE)	CO_RI_R8	Mineral Creek above Animas River	9.41	15.14	SW	Reference	Upper Animas	37.80282	-107.6728217
CO (CDPHE)	CO_RI_M9	Animas River near Silverton	9.67	15.56	SW, SED	Main	Upper Animas	37.797001	-107.6693973
CO (CDPHE)	CO_RI_M11	(below Cement Creek) (blw Mineral Cr Conf)	9.73	15.66	SW	Main	Upper Animas	37.79625	-107.66942
CO (CDPHE)	CO_RI_M12	Cre e k)	10.15	16.33	SW	Main	Upper Animas	37.79039	-107.667385
EPA	A72		10.16	16.35	SW	Main	Upper Animas	37.79027	-107.667578
CO (CDPHE)	CO_RI_M13	at gage - just upstream of railroad bridge	10.2	16.42	SW, SED	Main	Upper Animas	37.789767	-107.6675452
CO (CDPHE)	CO_RI_M44	Animas River in canyon 3 above Elk Creek	15.24	24.53	SW	Main	Upper Animas	37.721807	-107.654554

Green shading indicates location where plume is reconstructed, mass is calculated with the empirical model and WASP is calibrated

Surface Water and Sediment Sample Sites—Middle Animas River

			Distance from						
			GKM source	Distance from			Watershed		
Agency	SiteID	Description	(miles)	GKM source (km)	Media	Site Type	Location	Latitude	Longitude
CO (CDPHE)	CO_RI_M14	Animas River at Bakers Bridge	39.46	63.50	SW, SED	Main	Middle Animas	37.45844	-107.7997567
CO (CDPHE)	CO_RI_M15	Animas River at Bakers Bridge	39.47	63.52	SW	Main	Middle Animas	37.458517	-107.7996933
EPA	GKM02		39.66	63.83	SW	Main	Middle Animas	37.455639	-107.800945
EPA	Bakers Bridge		39.78	64.02	SW	Main	Middle Animas	37.454134	-107.801601
CO (CDPHE)	CO_RI_M16.1	above James Ditch at headgate pre-flush	40.51	65.19	SW	Main	Middle Animas	37.444217	-107.8039933
CO (CDPHE)	CO_DI_4	James Ditch - 2nd flush	40.56	65.27	SW	Ditch	Middle Animas	37.443588	-107.804965
CO (CDPHE)	CO_DI_5	James Ditch - 1st flush	40.57	65.29	SW	Ditch	Middle Animas	37.443595	-107.8049267
CO (CDPHE)	CO_DI_6	James Ditch pre-flush	40.58	65.31	SW	Ditch	Middle Animas	37.443623	-107.8049783
CO (CDPHE)	CO_DI_7	James Ditch - post flush	40.59	65.32	SW	Ditch	Middle Animas	37.443517	-107.8050133
EPA	GKM17	off river pond	40.73	65.55	SW	pond	Middle Animas	37.441355	-107.805058
EPA	GKM16	off river pond	40.84	65.73	SW	pond	Middle Animas	37.439878	-107.804945
EPA	GKM18	off river pond	40.92	65.85	SW	pond	Middle Animas	37.438755	-107.805358
CO (CDPHE)	CO_DI_8	James Creek at James Ranch	41.71	67.13	SW	Ditch	Middle Animas	37.426782	-107.8150233
CO (CDPHE)	CO_RI_M18	Animas River at Trimble Bridge	45.93	73.92	SW	Main	Middle Animas	37.384737	-107.8374767
CO (CDPHE)	CO_RI_M20	north of Durango	49.31	79.36	SW	Main	Middle Animas	37.35618	-107.84412
EPA	32nd St Bridge		57.02	91.76	SW	Main	Middle Animas	37.299991	-107.868199
CO (CDPHE)	CO_RI_M45	Animas River at 32nd Street - post flush	57.02	91.76	SW	Main	Middle Animas	37.30009	-107.86886
CO (CDPHE)	CO_RI_M46	Animas River at 29th Street - post flush	57.31	92.23	SW	Main	Middle Animas	37.295592	-107.870735
EPA	GKM04		57.4	92.38	SW	Main	Middle Animas	37.294799	-107.870034
EPA	IMAS-ROTARY PAI	RK	58.56	94.24	SW	Main	Middle Animas	37.280718	-107.876927
CO (CDPHE)	CO_RI_M27	Animas River at 9th Street	59.51	95.77	SW	Main	Middle Animas	37.274563	-107.8842733
CO (CDPHE)	CO_RI_M29	Animas River at Durango - 9th St bridge	59.59	95.90	SW, SED	Main	Middle Animas	37.273659	-107.8854425
CO (CDPHE)	CO_RI_M31	at Durango - 9th St bridge - post flush	59.62	95.95	SW	Main	Middle Animas	37.273482	-107.8856213
EPA	GKM05		59.95	96.48	SW	Main	Middle Animas	37.268704	-107.885857
CO (CDPHE)	CO_RI_M32	Animas River at Lightner Creek	59.96	96.50	SW, SED	Main	Middle Animas	37.268357	-107.8861043
CO (CDPHE)	CO_RI_M33	Animas River at Lightner Creek	59.97	96.51	SW	Main	Middle Animas	37.268254	-107.8861295
CO (CDPHE)	CO_RI_M35	below (Durrango) WWTP	60.81	97.86	SW	Main	Middle Animas	37.259523	-107.8778555
CO (CDPHE)	CO_RI_M36	below Durango WWTF	60.82	97.88	SW	Main	Middle Animas	37.25933	-107.877775
EPA	GKM01		64.1	103.16	SW	Main	Middle Animas	37.221542	-107.859455
SUIT	AR 19-3	Southern Ute Tribe AR19-3	64.73	104.17	SW, SED	Main	Middle Animas	37.213842	-107.854161
SUIT	AR 16-0	Southern Ute Tribe AR16-0	67.7	108.95	SW, SED	Main	Middle Animas	37.18703	-107.86993
SUIT	Basin Creek		68.52	110.27	SW	Main	Middle Animas	37.18541	-107.878744
SUIT	AR 7-2	Southern Ute Tribe AR7-2	76.48	123.08	SW, SED	Main	Middle Animas	37.08499	-107.87838
CO (CDPHE)	CO_RI_M41	Animas River at Bondad Bridge	79.42	127.81	SW	Main	Middle Animas	37.050973	-107.875217
CO (CDPHE)	CO_RI_M42	Animas River at Bondad Bridge	79.43	127.83	SW	Main	Middle Animas	37.051025	-107.875025
CO (CDPHE)	CO_RI_M43	Bondad Bridge	79.43	127.83	SW	Main	Middle Animas	37.050948	-107.875088
SUIT	NAR 6		81.7	131 48	SW/	Main	Middle Animas	37 02342	-107 87387

Green shading indicates location where plume is reconstructed, mass is calculated with the empirical model and WASP is calibrated

Surface Water and Sediment Sample Sites—Lower Animas River

			Distance from	Distance from			Watershed		
Agency	SiteID	Description	(miles)	GKM source (km)	Media	Site Type	Location	Latitude	Longitude
EDA		Intake Sampling Location	01.68	147 54	S/M/	Main	Lower Animac	26.0222	107.00007
EPA	ADW3-112		91.08	147.54		Na in	Lower Animas	20.9555	-107.90907
EPA	ADW-022	Intake Sampling Location	91.68	147.54	SW, SED	Iviain	Lower Animas	36.9333	-107.90907
EPA	ISW-020 (NSW-AF	Intake Sampling Location	94.19	151.58	SW, SED	Main	Lower Animas	36.900898	-107.917122
EPA	DW-021 (ADWS-IT	Intake Sampling Location	97.9	157.55	SW	Main	Lower Animas	36.872802	-107.96084
EPA	/-010 (Also ADWS-	Intake Sampling Location	101.2	162.87	SW	Main	Lower Animas	36.838545	-107.992183
EPA	AWI-R8R6	Intake Sampling Location	101.21	162.88	SW	Ditch	Lower Animas	36.838447	-107.992417
NMED	66Animas029.2	Aztec drinking water intake	101.28	162.99	SW	Ditch	Lower Animas	36.837463	-107.991684
NMED	66Animas028.1	Animas River above Estes Arroyo, near Aztec	101.96	164.09	SW	Main	Lower Animas	36.82949	-107.997663
EPA	FWI-R8R6	Intake Sampling Locations	109.71	176.56	SW	Main	Lower Animas	36.783476	-108.102056
EPA	FWS-ARP2	Farmington water system	109.71	176.56	SW	Main	Lower Animas	36.78357	-108.10214
EPA	FW-012	Intake Sampling Location	109.71	176.56	SW, SED	Main	Lower Animas	36.783635	-108.10211
EPA	MWSS-ARI	Intake	111.03	178.69	SW	off river pond	Lower Animas	36.77134	-108.11893
EPA	MW-020	ARI	111.03	178.69	SW, SED	Pond	Lower Animas	36.771913	-108.118596
NMED	66Animas001.7	Animas River at Boyd Park in Farmington	117.68	189.39	SW	Main	Lower Animas	36.72303	-108.201611
EPA	FW-040	Intake Sampling Location	118.16	190.16	SW, SED	Main	Lower Animas	36.719664	-108.207125
EPA	FWS-FDPS	Intake Sampling Location	118.85	191.27	SW	Main	Lower Animas	36.71455	-108.21644

Green shading indicates location where plume is reconstructed, mass is calculated with the empirical model and WASP is calibrated

Surface Water and Sediment Sample Sites—San Juan River

			Distance from						
			GKM source	Distance from			Watershed		
Agency	SiteID	Description	(miles)	GKM source (km)	Media	Site Type	Location	Latitude	Longitude
EPA	LVW-WPI	Water intake	121.82	196.05	SW	Main	San Juan	36.73139	-108.249
EPA	LVW-020	Intake Sampling Location	121.82	196.05	SW, SED	Main	San Juan	36.730556	-108.251046
EPA	SJLP		122.33	196.87	SW, SED	Main	San Juan	36.735887	-108.2539868
EPA	LVW-FD	Intake Sampling Location	126.35	203.34	SW	Ditch	San Juan	36.73156	-108.31426
NMED	67SanJua088.1	San Juan River at Lions Park near Kirtland	127.03	204.43	SW	Main	San Juan	36.722136	-108.325619
EPA	LVW-030	Intake Sampling Location	127.06	204.48	SW, SED	Main	San Juan	36.721812	-108.325933
EPA	SJFP		133.24	214.43	SW, SED	Main	San Juan	36.748156	-108.4120157
NNEPA	10SANJUANR25	@ bottom of Hogback fish passage	141.44	227.63	SW	Main	San Juan	36.745463	-108.5378488
EPA	SJHB		141.46	227.66	SW, SED	Main	San Juan	36.745192	-108.5377578
EPA	SJSR		153.07	246.34	SW, SED	Main	San Juan	36.781624	-108.6927838
NNEPA	10SANJUANR26	San Juan River near Canal Creek	169.31	272.48	SW	Main	San Juan	36.893252	-108.8785948
EPA	SJDS		169.31	272.48	SW, SED	Main	San Juan	36.893312	-108.8786415
NNEPA	02SANJUANR06	near NM/CO border at the Four Corners	183.82	295.83	SW	Main	San Juan	36.996201	-109.0046225
EPA	SJ4C		183.82	295.83	SW, SED	Main	San Juan	36.996216	-109.0046838
UDEQ	4954000	San Juan R at US160 Xing in CO	185.63	298.74	SW, SED	Main	San Juan	37.001755	-109.032726
EPA	MECT	reference	206.85	332.89	SW, SED	Reference	San Juan	37.218462	-109.190811
EPA	SJME		207.05	333.21	SW, SED	Main	San Juan	37.216811	-109.19615
UDEQ	4953990		214.82	345.72	SW, SED	Main	San Juan	37.257788	-109.30975
NNEPA	02SANJUANR07	near bridge at Montezuma Creek	214.87	345.80	SW	Main	San Juan	37.258277	-109.310476
EPA	SJMC		214.87	345.80	SW, SED	Main	San Juan	37.258226	-109.3106036
UDEQ	4953400	SAN JUAN R AT SWINGING FOOTBRIDGE	226.65	364.76	SW	Main	San Juan	37.280001	-109.4928962
UDEQ	4953250	SAN JUAN R AT SAND ISLAND	234.29	377.05	SW, SED	Main	San Juan	37.260279	-109.6137343
NNEPA	02SANJUANR08	at US 191 bridge near Bluff	234.62	377.58	SW	Main	San Juan	37.257673	-109.61849
EPA	SJBB		234.64	377.62	SW, SED	Main	San Juan	37.25737	-109.6185856
EPA	SJMH		261.8	421.33	SW, SED	Main	San Juan	37.149993	-109.8662835
NNEDA		Immediately upstream from the mouth of	261.94	421.20	CIM/	Main	San Juan	27 150200	100 866814
	293ANJUANKUS		261.84	421.39	SWV SED	Main	SanJuan	37.150366	-109.860814
	4955000	San Juan River at Clay Hills heat ramp	201.9	421.49 510.74	SW, SED	Main	SanJuan	27 202008	-109.887672
EDA	4992942		227.97	510.74	SW, SED	Main	SanJuan	27 25567	110 66414
EPA	SIIN		337.87	543.85	SW, 3LD	Main	San Juan	37 2536	-110.6632
EDA			250.46	545.85		Lako	Lake Rowell	27 16279	110.7095
FDA			300.40	627 07	SW/ SED	Lake		37 12642	-111 10226
FDA	IPGR		39/ 15	634 22	SW/ SED	Lake		37.13042	-111 22/75
FPΔ	IPPC		396.12	637.49	SW/ SED	Lake	Lake Powell	37.05487	-111 26525
FDA		lake Powell	402.32	647.47	SW, 3LD	Lake	Lake Powell	36.030	-111 32/50
EPA	IPDAM		402.52	663 55	510/	Lake	Lake Powell	36 94436	-111 / 8601
EPA	PAGE		412.51	666 51	SW/	DW/S	Lake Powell	36 908472	-111 4535539
LFM	TAGE	Lakerowen	+1+.10	000.51	300	1 1 2 3	Lakerowen	30.306472	-111.4333320

Test Methods for Metals Employed by Data Contributors

Surface Water

	Analyte	USEPA Region 6	USEPA Region 8	USEPA Region 9	Colorado DPHE	Southern Ute Indian Tribe	Navajo Nation	New Mexico ED	Utah DEQ	SADIE	USGS GKM database
Test Methods for	Aluminum (Al)	EPA 200.7 ICP-AES	EPA 200.7 ICP-AES EPA 200.8 ICP/MS	EPA 200.8 ICP/MS	EPA 200.7 ICP-AES	EPA 200.7, 200.7/6010, EPA 200.8 ICP-AES and ICP/MS	USGS I-1472-85 D ICP-AES USGS I-1472-87 D ICP-AES USGS I-1472-95 D ICP-AES USGS I-2477-92 D ICP/MS Unknown D EPA 200.7 TR ICP-AES USGS I-4471-97 TR ICP-AES USGS I-4471-97 TR ICP/MS Unknown TR				
ivietais Employed by	Antimony (Sb)	EPA 200.8 ICP/MS	EPA 200.8 ICP/MS	EPA 200.8 ICP/MS	NA	EPA 200.8 ICP/MS	EPA 200.8 ICP/MS	EPA 200.8 ICP/MS	EPA 200.8 ICP/MS	EPA 200.8 ICP/MS	USGS I-2477-92 D ICP/MS Unknown D USGS I-4471-97 T ICP/MS
Data Contributors	Arsenic (As)	EPA 200.8 ICP/MS	EPA 200.8 ICP/MS	EPA 200.8 ICP/MS	EPA 200.8 ICP/MS	EPA 200.8, 200.8/6020 ICP/MS	USGS I-2020-05 D cICP-MS USGS I-2063-98 D GFAAS USGS I-2477-92 D ICP/MS Unknown D USGS I-4020-05 T cICP-MS USGS I-4063-98 T GFAAS				
Surface Water	Barium (Ba)	EPA 200.8 ICP/MS	EPA 200.8 ICP/MS	EPA 200.8 ICP/MS	EPA 200.7 ICP-AES	EPA 200.8 ICP/MS	EPA 200.7 ICP-AES	EPA 200.8 ICP/MS	EPA 200.8 ICP/MS	EPA 200.8 ICP/MS	USGS I-1472-85 D ICP-AES USGS I-1472-87 D ICP-AES USGS I-1472-95 D ICP-AES USGS I-2477-92 D ICP/AES Unknown D EPA 200.7 TR ICP-AES USGS I-4471-97 TR ICP/MS
Aluminum -Chromium	Beryllium (Be)	EPA 200.8 ICP/MS	EPA 200.7 ICP-AES	EPA 200.8 ICP/MS	EPA 200.8 ICP/MS	EPA 200.7, 200.7/6010 ICP-AES	USGS I-2477-92 D ICP/MS Unknown D USGS I-4471-97 TR ICP/MS				
	Boron (B)	NA	NA	NA	EPA 200.7 ICP-AES	NA	EPA 200.7 ICP-AES	EPA 200.7 ICP-AES	NA	NA	NA
	Cadmium (Cd)	EPA 200.8 ICP/MS	EPA 200.7 ICP-AES	EPA 200.8 ICP/MS	EPA 200.8 ICP/MS	EPA 200.8, 200.8/6020 ICP/MS	EPA 200.7 D ICP-AES USGS I-2138-89 D GF-AAS USGS I-2477-92 D ICP/MS Unknown D EPA 200.7 T ICP-AES USGS I-4471-97 T ICP/MS Unknown T				
ICP-AES – Inductively Coupled Plasma-Atomic Emission Spectroscopy	Calcium (Ca)	EPA 200.7 ICP-AES	EPA 200.7 ICP-AES	EPA 200.7 ICP-AES	EPA 200.7 ICP-AES	EPA 200.7, 200.7/6010, EPA 200.8 ICP-AES and ICP/MS	USGS I-1472-85 D ICP-AES USGS I-1472-87 D ICP-AES USGS I-1472-95 D ICP-AES Unknown D				
ICP/MS – Inductively Couple Plasma/Mass Spectrometry cICP–MS - Collision/reaction cell Inductively Coupled Plasma-Mass Spectrome	Chromium (Cr)	EPA 200.8 ICP/MS	EPA 200.8 ICP/MS	EPA 200.8 ICP/MS	EPA 200.7 ICP-AES	EPA 200.8 ICP/MS	EPA 200.7 ICP-AES	EPA 200.8 ICP/MS	EPA 200.8 ICP/MS	EPA 200.7/6010, EPA 200.8 ICP-AES and ICP/MS	EPA 200.7 D ICP-AES USGS I-1233-93 D GFAAS USGS I-2020-05 D cICP-MS USGS I-2477-92 D ICP/MS Unknown D EPA 200.7 TR USGS I-3233-93 TR GFAAS USGS I-3233-93 TR GFAAS USGS I-4020-05 TR cICP-MS Unknown TR
DRAFT June 20, 2016	Chromium(III)	NA	NA	NA	NA	NA	SM 3500- CR(D) SM 3500-	NA	NA	NA	NG NA
	chronnun(vi)	110					CR(D)				112

Analytical Method

Test Methods for Metals Employed by Data Contributors

Surface Water

Cobalt - Molybedenum

ICP-AES – Inductively Coupled Plasma-Atomic Emission Spectroscopy					
	ICP/MS – Inductively Couple Plasma/Mass Spectrometry				
	cICP-MS - Collision/reaction cell Inductively Coupled Plasma-N	Mass Spe	ctrometry		

		Analytical Method										
Analyte	USEPA Region 6	USEPA Region 8	USEPA Region 9	Colorado DPHE	Southern Ute Indian Tribe	Navajo Nation	New Mexico ED	Utah DEQ	SADIE	USG GKM dat	S abas	e
Cobalt (Co)	EPA 200.8 ICP/MS	EPA 200.8 ICP/MS	EPA 200.8 ICP/MS	EPA 200.7 ICP-AES	EPA 200.8 ICP/MS	EPA 200.7 ICP-AES	EPA 200.8 ICP/MS	EPA 200.8 ICP/MS	EPA 200.8 ICP/MS	USGS 1-2020-05 cl CP–MS USGS 1-2477-92 ICP/MS Unknown USGS 1-4020-05	D D D TR	
Copper (Cu	EPA 200.8 ICP/MS	EPA 200.8 ICP/MS	EPA 200.8 ICP/MS	EPA 200.7 ICP-AES	EPA 200.8 ICP/MS	EPA 200.7 ICP-AES	EPA 200.8 ICP/MS	EPA 200.8 ICP/MS	EPA 200.8, 200.8/6020 ICP/MS	USGS 1-1472-85 AES USGS 1-1472-87 AES USGS 1-1472-95 AES	D D D	ICP- ICP- ICP-
lron (Fe)	EPA 200.7 ICP-AES	EPA 200.7 ICP-AES	EPA 200.7 ICP-AES	EPA 200.7 ICP-AES	EPA 200.7 ICP-AES	EPA 200.7 ICP-AES	NA	EPA 200.7 ICP-AES	EPA 200.7, 200.7/6010 ICP-AES	USGS I-1472-85 USGS I-1472-87 USGS I-1472-95 Unknown EPA 200.7 AFS	D D D TR	ICP-AES ICP-AES ICP-AES ICP-
Lead (Pb)	EPA 200.8 ICP/MS	EPA 200.8 ICP/MS	EPA 200.8 ICP/MS	EPA 200.8 ICP/MS	EPA 200.8 ICP/MS	EPA 200.7 ICP-AES	EPA 200.8 ICP/MS	EPA 200.8 ICP/MS	EPA 200.8, 200.8/6020 ICP/MS	EPA 200.7 AES USGS I-2403-89 USGS I-2477-92 ICP/MS	D D D	ICP- GFAAS
Magnesium	EPA 200.7 ICP-AES	EPA 200.7 ICP-AES	EPA 200.7 ICP-AES	EPA 200.7 ICP-AES	EPA 200.7 ICP-AES	EPA 200.7 ICP-AES	EPA 200.7 ICP-AES	EPA 200.7 ICP-AES	EPA 200.7 ICP-AES	USGS 1-1472-85 AES USGS 1-1472-87 AES USGS 1-1472-95 AES	D D D	ICP- ICP- ICP-
Manganese	EPA 200.8 ICP/MS	EPA 200.8 ICP/MS	EPA 200.8 ICP/MS	EPA 200.7 ICP-AES	EPA 200.8 ICP/MS	EPA 200.7 ICP-AES	EPA 200.8 ICP/MS	EPA 200.8 ICP/MS	EPA 200.7 ICP-AES	USGS 1-1472-85 AES USGS 1-1472-87 AES USGS 1-1472-95 AFS	D D D	ICP- ICP- ICP-
Mercury (H	EPA 245.1 CVAA	EPA 245.1 CVAA	EPA 245.1 CVAA	EPA 200.8, EPA 245.1 ICP/MS and CVAA	EPA 7470A CVAA	EPA 1631E	EPA 245.1 CVAA	EPA 245.1 CVAA	NA	USGS I-2462-85 USGS I-2464-01 USGS I-3462-85 USGS I-4464-01 Unknown	D D TR TR TR	CVAAS CV-AFS CVAAS CV-AFS
Molybdenu	EPA 200.8 ICP/MS	EPA 200.8 ICP/MS	EPA 200.8 ICP/MS	EPA 200.7 ICP-AES	EPA 200.8 ICP/MS	EPA 200.7 ICP-AES	EPA 200.8 ICP/MS	EPA 200.8 ICP/MS	EPA 200.8 ICP/MS	EPA 200.7 AES USGS I-2477-92 ICP/MS Unknown EPA 200 7	D D D TR	ICP-

Test Methods for Metals Employed by Data Contributors

Surface Water

Nickel -Zinc

ICP-AES – Inductively Coupled Plasma-Atomic Emission Spectroscopy					
ICP/MS – Inductively Couple Plasma/Mass Spectrometry					
clCP-MS - Collision/reaction cell Inductively Coupled Plasm	na-Mass Spe	ctrometry			

						Analytica	l Method			
Analyte	USEPA Region 6	USEPA Region 8	USEPA Region 9	Colorado DPHE	Southern Ute Indian Tribe	Navajo Nation	New Mexico ED	Utah DEQ	SADIE	USGS GKM database
Nickel (Ni)	EPA 200.8 ICP/MS	EPA 200.8 ICP/MS	EPA 200.8 ICP/MS	EPA 200.7 ICP-AES	EPA 200.8 ICP/MS	EPA 200.7 ICP-AES	EPA 200.8 ICP/MS	EPA 200.8 ICP/MS	EPA 200.7 ICP-AES	USGS I-1472-85 D ICP-AES USGS I-1472-87 D ICP-AES USGS I-1472-95 D ICP-AES USGS I-2020-05 D CICP-MS
Potassium	EPA 200.7 ICP-AES	EPA 200.7 ICP-AES	NA	EPA 200.7 ICP-AES	EPA 200.7/6010 ICP-AES	SM 3120 ICP D ICP-OES USGS I-1630-85 D AAS Unknown D				
Selenium (S	EPA 200.8 ICP/MS	EPA 200.8 ICP/MS	EPA 200.8 ICP/MS	EPA 200.8 ICP/MS	EPA 200.8 ICP/MS	USGS I-2020-05 D cICP–MS USGS I-2477-92 D ICP/MS USGS I-2668-98 D GFAAS Unknown D				
Silver (Ag)	EPA 200.8 ICP/MS	EPA 200.7 ICP-AES	EPA 200.8 ICP/MS	EPA 200.8 ICP/MS	EPA 200.8, 200.8/6020 ICP/MS	USGS I-2477-92 D ICP/MS USGS I-2724-89 D GFAAS USGS I-2725-93 D GFAAS Unknown D				
Sodium (Na	EPA 200.7 ICP-AES	EPA 200.7 ICP-AES	NA	EPA 200.7 ICP-AES	EPA 200.7, 200.7/6010 ICP-AES	USGS I-1472-85 D ICP-AES USGS I-1472-87 D ICP-AES USGS I-1472-95 D ICP-AES Unknown D				
Thallium (T	EPA 200.8 ICP/MS	EPA 200.8 ICP/MS	EPA 200.8 ICP/MS	NA	EPA 200.8 ICP/MS	EPA 200.8 ICP/MS	EPA 200.8 ICP/MS	EPA 200.8 ICP/MS	EPA 200.8 ICP/MS	USGS I-2477-92 D ICP/MS USGS I-4471-97 T ICP/MS
Uranium	NA	NA	NA	EPA 200.8 ICP/MS	NA	EPA 200.8 ICP/MS	NA	NA	NA	NA
U-234/235	NA	NA	NA	NA	NA	NA	EPA 200.8 ICP/MS	NA	NA	NA
Vanadium	EPA 200.8 ICP/MS	EPA 200.8 ICP/MS	EPA 200.8 ICP/MS	EPA 200.7 ICP-AES	EPA 200.8 ICP/MS	EPA 200.7 ICP-AES	EPA 200.8 ICP/MS	EPA 200.8 ICP/MS	EPA 200.8 ICP/MS	USGS I-1472-85 D ICP-AES USGS I-1472-87 D ICP-AES USGS I-1472-95 D ICP-AES USGS I-2020-05 D cICP-MS
Zinc (Zn)	EPA 200.8 ICP/MS	EPA 200.8 ICP/MS	EPA 200.8 ICP/MS	EPA 200.7 ICP-AES	EPA 200.8 ICP/MS	EPA 200.7 ICP-AES	EPA 200.8 ICP/MS	EPA 200.8 ICP/MS	EPA 200.7, 200.7/6010, EPA 200.8 ICP-AES	USGS I-1472-85 D ICP-AES USGS I-1472-87 D ICP-AES USGS I-1472-95 D ICP-AES USGS I-2020-05 D cICP-MS
	Horizontal	green shadi	ng indicates	s the metho	d used to de	etermine the	analvte in	question is	the same.	
NA	Means "No	t applicable	" because t	he analyte v	was not mea	sured by th	at entity.			
ICP-AES – In	ductively Co	upled Plasn	na-Atomic Ei	mission Spe	ctroscopy					
ICP/MS – In	ductively Co	uple Plasma	/Mass Spec	ctrometry						
cICP-MS - C	ollision/rea	ction cell In	ductively Co	upled Plasn	na-Mass Spe	ectrometry				