

Disclaimer

The information in this presentation has been reviewed and approved for public dissemination in accordance with U.S. Environmental Protection Agency (EPA). The views expressed in this presentation are those of the author(s) and do not necessarily represent the views or policies of the Agency. Any mention of trade names or commercial products does not constitute EPA endorsement or recommendation for use.

Children's Exposure to SVOCs in the Indoor Environment

Heather M. Stapleton, Ph.D. Email: <u>heather.stapleton@duke.edu</u>

The Team

Dr. Thomas Webster Boston University School of Public Health

Dr. P Lee Ferguson Duke University Civil & Environmental Engineering

Chemical Use in Commercial Products

- Consumer products are often chemically treated to alter their performance or durability (e.g. plasticizers and flame retardants).
- Many of these chemical treatments use semi-volatile organic compounds (SVOCs) that escape from products over time and accumulate in indoor environments

Flame Retardants (FRs) Used to Meet California's TB 117

- Promulgated by California Bureau of Home Furnishing and Thermal Insulation, within the Department of Consumer Affairs
- Requires 12-second open flame testing for polyurethane inside furniture

Screening Consumer Products for FR Chemicals:

Project 1- Baby Products Project 2- Residential Couches

Screening Consumer Products for FR Chemicals:

Gas Chromatograph Mass Spectrometer (GC/MS)

Flame Retardants (FRs) Used to Meet California's TB 117

- Previous research in our laboratory has focused on identifying FR chemical additives in polyurethane foam:
 - Baby Products (Stapleton et al. 2011)
 - Residential Sofas (Stapleton et al. 2012)
- The most common FRs identified in furniture are:
 - PBDEs associated with PentaBDE
 - Tris (1,3-dichloro-isopropyl) phosphate (TDCPP)
 - Chemicals associated with Firemaster® 550 (FM 550)
 - Triphenyl phosphate (TPP) and isomers of tris(4-isobutyl) phenyl phosphate
 - Tris (1-chloro-isopropyl) phosphate (TCPP)

Sleep Positioners

Table 1. Reported concentrations of organic contaminants in US house dust (ng/g or ppb).

Chemical (Class)	Year	Sample	%	Min	Median/	Max	Reference
	Sampled	Number	Detect		Geomean		
Benzo(a)pyrene (PAH)	1999-2001	120	85	<mdl< td=""><td>712</td><td>18,100</td><td>Rudel et al. 2003</td></mdl<>	712	18,100	Rudel et al. 2003
DEHP (phthalate)	1999-2001	120	100	16,700	340,000	7,700,000	Rudel et al. 2003
BBzP (phthalate)	1999-2001	120	100	3,870	45,400	1,310,000	Rudel et al. 2003
BDE 47 (flame retardant)	2009-2010	120	100	55	870	24,720	Stapleton et al. 2012
BDE 209 (flame retardant)	2009-2010	120	100	441	2574	76,130	Stapleton et al. 2012
BPA (phenol)	1999-2001	120	86	<mdl< td=""><td>821</td><td>17,600</td><td>Rudel et al. 2003</td></mdl<>	821	17,600	Rudel et al. 2003
TPP (flame retardant & plasticizer)	2002-2007	50	98	<150	7,360	1,798,000	Stapleton et al. 2009
TDCPP (flame retardant & plasticizer)	2002-2007	50	96	<90	1,890	56,090	Stapleton et al. 2009
TBPH (flame retardant)	2010-2012	30	100	83	620	20,955	Stapleton unpublished data
PFOA (PFC)	2000-2001	102	96	<10	296	1960	Strynar and Lindstrom 2008
PFOS (PFC)	2000-2001	102	95	<9	761	12,100	Strynar and Lindstrom 2008
TBT (organotin)	2005-2006	24	75	<2	22	300	Kannan et al 2009
MBT (organotin)	2005-2006	24	100	320	2450	11,000	Kannan et al. 2009

Children's Exposure Indoors

- Children spend a lot of time indoors
- Higher frequency of hand to mouth contacts
- Higher exposure to semi-volatile organic compounds (SVOCs) commonly detected in indoor dust

From Source to Dose

<u>Goal of Study</u>: To improve our understanding of pathway from "source" to "Internal Dose"

PBDE Exposure Pathway: (Stapleton et al. 2012)

What's On Your Hands Predicts What's in Your Body!

- TDCPP and TPP Levels in house dust did not predict handwipe or urine levels.
- However, TPP levels measured in handwipes did predict urinary metabolite levels (see Figure); trends for TDCPP were suggestive (p=0.06)
- ICC values: BDCPP = 0.81, DPP = 0.51
- BDCPP and DPP decreased 2-3%/year with increasing age (p<0.05)

Research Aims

- 1. Characterize SVOC applications in products common to home environment (e.g. furniture, TVs, insulation, flooring, etc)
- 1. Measure young children's exposure to SVOCs using hand wipes and determine if they predict internal dose (i.e. serum and urinary levels) using targeted and non-targeted approaches
- 1. Examine modifiers of hand wipe levels (e.g. hand washing, behavior, etc)
- 1. Examine patterns of co-exposure to SVOCs
- 1. Compare empirical results with predictions by indoor models

From Source to Dose

Toddlers Exposure to SVOCs in Indoor Environments "TESIE"

Recruitment:

- Targeted families with children between the ages of 2-5 years who are residing in central North Carolina;
- Currently enrolled in the NEST study (see below);
- Living in the same residence since birth of their child
- Target number of participants = 200

http://sites.duke.edu/nest

The Newborn Epigenetic STudy (NEST) is a federally-funded research project that studies how environmental exposures and nutrition, in the womb and during childhood, affect how genes work. The genes we are studying are believed to play a role in obesity and other diseases, disorders, and conditions. We would like to thank all the mothers and children that participate in the NEST study. This is a relatively new and exciting area of research which will have an impact on the health of our children in the future!

- Passive Air Sampler (n=50) for 2-3 week deployment
- Product Wipe Samples
- Dust Sample from child's play area

- Height/weight, waist circumference
- Hand wipe
- Forehead wipe
- Urine (over 2 days- then freeze)
- Blood
- Fecal sample

- Consent Form (prenatal blood)
- Questionnaire
- Activity recording sheet (to be mailed in)

Passive Air Samplers (50 Homes) (Collaboration with Dr. Mahiba Shoeib)

Product Surface Wipes

Children's Activity Logs

As children develop and learn to eat on their own they often eat with their fingers and hands.

How does your child eat?

Please observe your child during **one meal**. On the chart, please mark a box each time your child touches their mouth with a fork or spoon, their hands, or their fingers. Please include each item and each time that it contacts your child's mouth in a separate row. Additional space is provided on the back of this sheet.

Please answer the questions below.

What did they use to eat?							
Fingers	Whole Hand	Fork or Spoon	Other				

Targeted SVOCs in Air, Dust and Handwipes

FLAME RETA	ARDANTS PARABENS	PHEN	<u>OLS</u>
BDE 17	BUTYL PARABEN	BPA	bisphenol A
BDE 28	ETHYL PARABEN	2,4 DE	3P 2,4 dibromophenol
BDE 47	METHYL PARABEN	2,4,5	TBP 2,4,5-tribromopheno
BDE 49	N-PROPYL PARABEN	2,3,5	TBP 2,3,5-tribromopheno
BDE 66		2,4,6	TBP 2,4,6-tribromopheno
BDE 99		Triclos	san
BDE 85			
BDE 99		PAHS	
BDE 100		Acena	pthene
BDE 153		Anthr	acene
BDE 154		Benzo	o(a)pyrene
BDE 183		Fluora	anthene
BDE 203		Fluore	ene
BDE 209		Phena	anthrene
		Pyren	e
твв		1,2 Be	enzanthracene
тврн		Chryse	ene
HBCD		Benzo	[b,k,j]fluoranthene
BTBPE		Benzo	e]pyrene
ТВВРА		Benzo	[a]pyrene
		Peryle	ene
V6		PESTI	CIDES
TCEP	Tris (2-chloro-ethyl) phosphate	Lindar	 ne
ТСРР	Tris (1-chloro-isopropyl) phosphate	Chlorp	oyrifos
TDCPP	Tris (2,4-dichloro-isopropyl) phospha	e Perme	ethrin
TPP	triphenyl phosphate	Fipror	nil
ТВРР	tris (4-butyl-phenyl) phosphate	chloro	lane*
TiBP	Tri-iso-butyl-phosphate	cyperi	methrin*
TnBP	Tri-n-butyl-phosphate		
TBOEP	Tri-(2-butoxyethyl)-phosphate	PERFLUORINATEd CON	<u>IPOUNDS</u>
TBPDP	Tert-buty-phenyl, diphenyl phosphate	PFCAs	s (C4-C12)
		PFBS	
DEHP	diethyl hexyl phthalate	PFHxS	,
DBP	dibutyl phthalate	PFOS	
DINP	di-isononyl phthalate	PFDS	
DiBP	di-isobutyl phthalate	FTOH	5
BBP	benzyl butyl phthalate	FTACs	(fluorotelomer acrylates)
DMP	di-methyl phthalate	diPAP	s (4:2, 4:2/6:2)
DEP	di-ethyl phthalate		

Samples Collected To Date (Sept. 2014- present)

Hand Wipes n=45 Forehead Wipes n=45 Activity Logs n=36

Pilot Studies

Pilot Project: Predicting FR Levels in Dust

- Home visits conducted April –November 2014
- Collected investigator collected house dust
- Collected a sample of polyurethane foam from sofa in main living area

Foam Collection

Dust Collection

Pilot Project: Predicting FR Levels in Dust

- Carpet vs wood flooring affects dust loading, but not FR dust concentrations
- Age of furniture does not appear correlated with dust concentrations

Non-Targeted Analysis of Hand Wipe Samples

- Question: Can hand wipes identify recent exposures in a specific micro-environment?
- Hand wipes and urine (n=4) collected before and after spending one hour playing in a foam pit filled with flame retarded treated pit cubes

TIC of Before, After and Field Blank

Sample preparation and Liquid

MSMS Spectra Comparison with Massbank

Spectra of 439.2025

Res: 100'000 FWHM

441.19

441.20

441.21

441.22

441.23

40-

MSMS of 439.2025

H. Stapleton et al., Environmental Science and Technology, 2012, 46 (24), 13432-13439

TIC of Before, After and Field Blank

Sample preparation and Liquid

Non-targeted analysis by HRMS/MS

Chromatography:

intense ion from Scan 1

- Accela UHPLC system
- RP C18 column (100x2.1mm)
- ACN/H₂O Gradient (~45min)

Mass Spectrometry:

- Thermo LTQ Orbitrap Velos
- **HESI(+)**, HESI(-), APPI/APCI(+)
- Full-scan HRMS + FTMS/MS

- Data-dependent top 3 HRMS2R=7500• Full-scanAccurate mass CID spectra of most• Accurate mass
 - Accurate mass (<2ppm by external cal.)
 - High-resolution (R=100,000 FWHM)

Workflow for non-targeted data analysis

add confirmed compounds to AMT database

Non-target analysis objectives:

- Utilize 1D and 2D HPLC separations coupled to HRMS to resolve and characterize a broad range of polar and semivolatile pollutants in house dust, children's hand wipes, and urine/serum samples.
- Employ APCI, APPI, and ESI ionization methods to broaden the range of pollutants detected.
- Perform differential (subtractive) data analysis among dust, hand wipe, and urine/serum samples to prioritize contaminants with highest exposure and accumulation potential.
- Identify prioritized contaminants using customized databases and libraries of POPs, polymer additives, and consumer chemicals, together with authentic standards.

Future Plans & Directions

- Recruitment phase will take another year to complete
- Begin chemical analyses in Summer/Fall 2015
- Conduct hand washing experiments during Summer 2015
- Characterize additive chemical applications in insulation, flooring and wiring components

Thank You For Your Attention!

Questions?