Natural Gas Dehydration

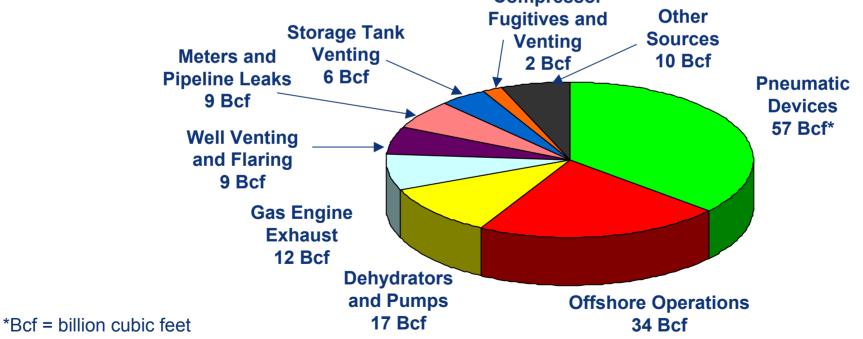
Lessons Learned from the Natural Gas STAR Program

Anadarko Petroleum Corporation and the Domestic Petroleum Council

Producers Technology Transfer Workshop College Station, Texas May 17, 2007

epa.gov/gasstar

NaturalGas


Natural Gas Dehydration: Agenda

- Methane Losses
- Methane Recovery
- Is Recovery Profitable?
- Industry Experience
- Discussion

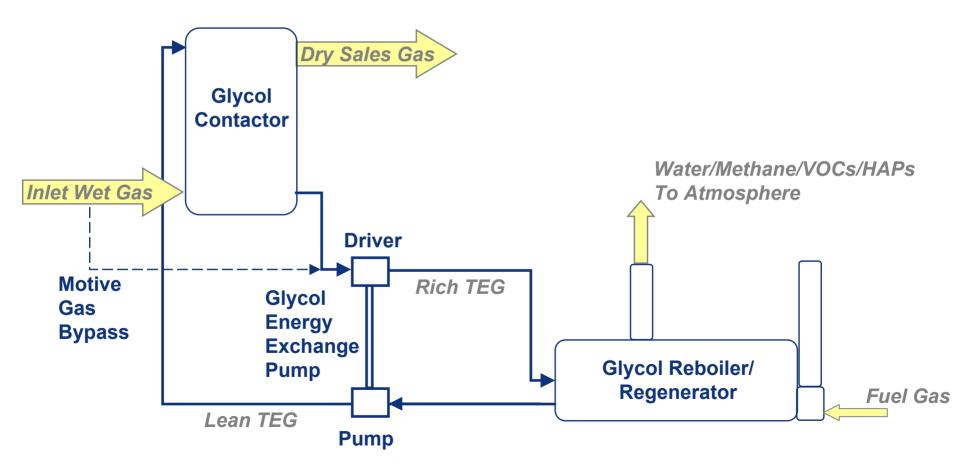
Methane Losses from Dehydrators

- Dehydrators and pumps account for:
 - 17 Billion cubic feet (Bcf) of methane emissions in the production, gathering, and boosting sectors Compressor

EPA. *Inventory of U.S. Greenhouse Gas Emissions and Sinks 1990 – 2005.* April, 2007. Available on the web at: http://yosemite.epa.gov/oar/globalwarming.nsf/content/ResourceCenterPublicationsGHGEmissions.html Natural Gas STAR reductions data shown as published in the inventory. 2

What is the Problem?

- Produced gas is saturated with water, which must be removed for gas transmission
- Glycol dehydrators are the most common equipment to remove water from gas

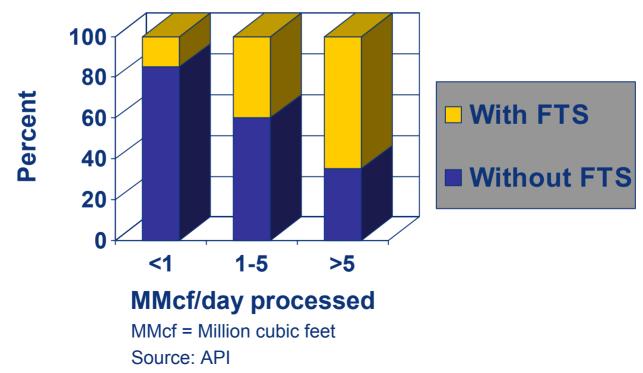

 - Most use triethylene glycol (TEG)
- Glycol dehydrators create emissions
 - Methane, Volatile Organic Compounds (VOCs), Hazardous Air Pollutants (HAPs) from reboiler vent
 - Methane from pneumatic controllers

Source: www.prideofthehill.com

Basic Glycol Dehydrator System Process Diagram

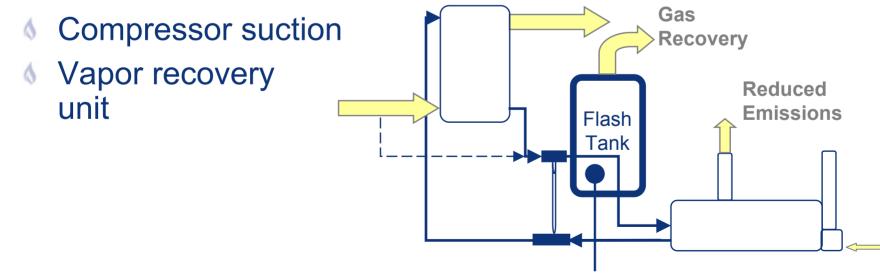
Methane Recovery

- Optimize glycol circulation rates
- Flash tank separator (FTS) installation
- Iectric pump installation
- Sero emission dehydrator
- Replace glycol unit with desiccant dehydrator
- Other opportunities


Optimizing Glycol Circulation Rate

- Gas pressure and flow at wellhead dehydrators generally declines over time
 - Glycol circulation rates are often set at a maximum circulation rate
- Glycol overcirculation results in more methane emissions without significant reduction in gas moisture content
 - A Partners found circulation rates two to three times higher than necessary
 - Methane emissions are directly proportional to circulation
- Lessons Learned study: optimize circulation rates

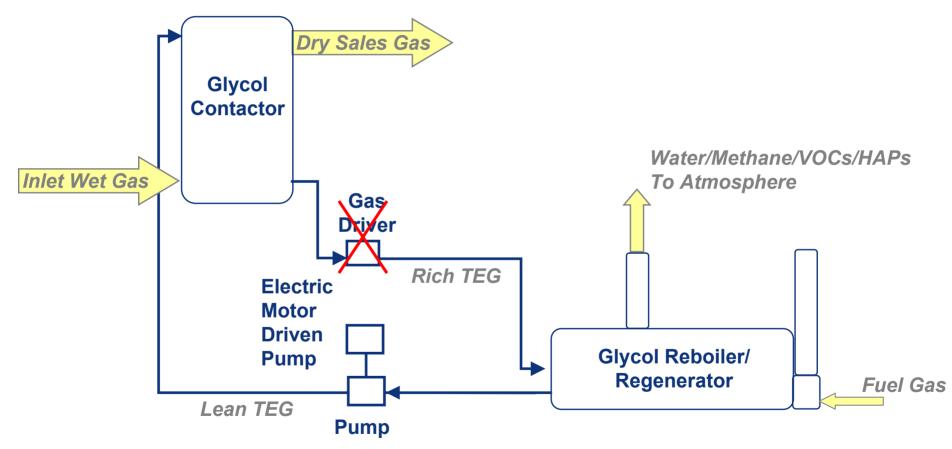
Installing Flash Tank Separator (FTS)


- Methane that flashes from rich glycol in an energyexchange pump can be captured using an FTS
- Many units are <u>not</u> using an FTS

Methane Recovery

- Recovers about 90% of methane emissions
- Reduces VOCs by 10 to 90%
- Must have an outlet for low pressure gas
 - Version Fuel

Low Capital Cost/Quick Payback



Flash Tank Costs

- Lessons Learned study provides guidelines for scoping costs, savings and economics
- Capital and installation costs:
 - Capital costs range from \$3,500 to \$7,000 per flash tank
 - Installation costs range from \$1,200 to \$2,500 per flash tank
- Negligible Operational & Maintenance (O&M) costs

Electric Pump Eliminates Motive Gas

Overall Benefits

- In Financial return on investment through gas savings
- Increased operational efficiency
- Reduced O&M costs (fuel gas, glycol make-up)
- Reduced compliance costs (HAPs, BTEX)
- Similar footprint as gas assist pump

Is Recovery Profitable?

Three Options for Minimizing Glycol Dehydrator Emissions

Option	Capital	Annual O&M	Emissions	Payback
	Costs	Costs	Savings	Period ¹
Optimize Circulation Rate	Negligible	Negligible	394 to 39,420 Mcf/year	Immediate
Install Flash	\$6,500 to	Negligible	710 to 10,643	4 to 11
Tank	\$18,800		Mcf/year	months
Install Electric Pump	\$1,400 to \$13,000	\$165 to \$6,500	360 to 36,000 Mcf/year	< 1 month to several years

1 – Gas price of \$7/Mcf

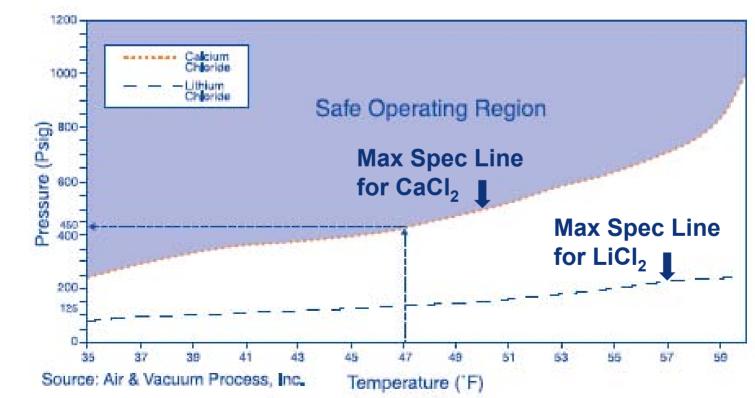
Zero Emission Dehydrator

- Combines many emission saving technologies into one unit
 - Vapors in the still gas coming off of the glycol reboiler are condensed in a heat exchanger
 - Non-condensable skimmer gas is routed back to the reboiler for fuel use
 - In Electric driven glycol circulation pumps used instead of energy-exchange pumps

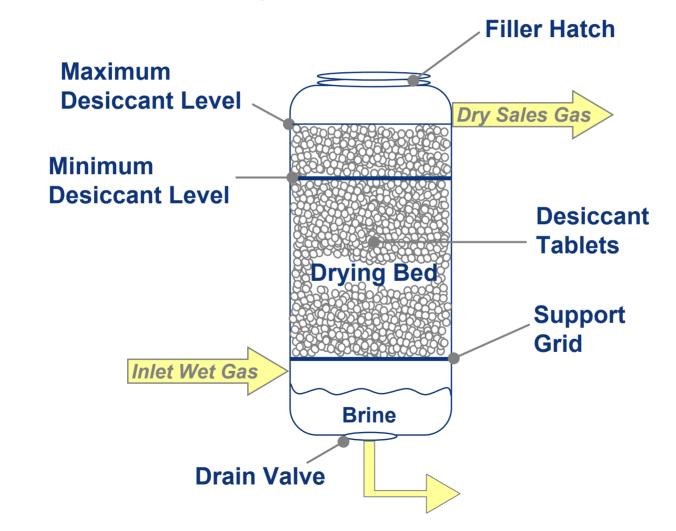
Overall Benefits: Zero Emissions Dehydrator

- Reboiler vent condenser removes heavier hydrocarbons and water from non-condensables (mainly methane)
- The condensed liquid can be further separated into water and valuable gas liquid hydrocarbons
- Non-condensables (mostly methane) can be recovered as fuel or product
- Sy collecting the reboiler vent gas, methane (and VOC/HAP) emissions are greatly reduced

Replace Glycol Unit with Desiccant Dehydrator


- Desiccant Dehydrator
 - Wet gasses pass through drying bed of desiccant tablets
 - Tablets absorb moisture from gas and dissolve
- Moisture removal depends on:
 - Type of desiccant (salt)
 - 6 Gas temperature and pressure

Hygroscopic Salts	Typical T and P for Pipeline Spec	Cost	
Calcium chloride	<47ºF @ 440 psig	Least expensive	
Lithium chloride	<60°F @ 250 psig	More expensive	


Desiccant Performance

Desiccant Performance Curves at Maximum Pipeline Moisture Spec (7 pounds water / MMcf)

Desiccant Dehydrator Schematic

Estimate Capital Costs

- Determine amount of desiccant needed to remove water
- A Determine diameter of vessel
- Costs for single vessel desiccant dehydrator
 - Capital cost varies between \$3,500 and \$22,000
 - Gas flow rates from 1 to 20 MMcf/day
 - Capital cost for 20-inch vessel with 1 MMcf/day gas flow is \$8,100
 - Installation cost assumed to be 75% of capital cost
- Normally installed in pairs
 - One drying, one refilled for standby

How Much Desiccant Is Needed?

Example:

F = 1 MMcf/day

O = 7 pounds/MMcf

D = ?

B = 1/3

Where:

- D = Amount of desiccant needed (pounds/day)
- F = Gas flow rate (MMcf/day)
- I = 21 pounds/MMcf I = Inlet water content (pounds/MMcf)
 - O = Outlet water content (pounds/MMcf)
 - B = Desiccant/water ratio vendor rule of thumb

Calculate: D = F * (I - O) * B D = 1 * (21 - 7) * 1/3D = 4.7 pounds desiccant/day

Source: Van Air

Calculate Vessel Diameter

Example:

Where:

- ID = ? D = 4.7 pounds/day T = 7 days B = 55 pounds/cf
- H = 5 inch

- ID = Inside diameter of the vessel (inch)
- D = Amount of desiccant needed (pounds/day)
- T = Assumed refilling frequency (days)
- B = Desiccant density (pounds/cf)
- H = Height between minimum and maximum bed level (inch)

Calculate:

ID =
$$12 \sqrt[*]{\frac{4*D*T*12}{H*B*\pi}}$$
 = 16.2 inch

Standard ID available = 20 inch

Source: Van Air

Operating Costs

- Operating costs
 - Model Desiccant: \$2,556/year for 1 MMcf/day example
 - \$1.50/pound desiccant cost
 - In Brine Disposal: Negligible
 - \$1/bbl brine or \$14/year
 - Labor: \$2,080/year for 1 MMcf/day example

\$40/hour

Total: about \$4,650/year

Savings

Gas savings

- Gas vented from glycol dehydrator
- 6 Gas vented from pneumatic controllers
- 6 Gas burned for fuel in glycol reboiler
- Gas burned for fuel in gas heater
- Less gas vented from desiccant dehydrator
- Methane emission savings calculation
 - 6 Glycol vent + Pneumatics vents Desiccant vents
- Operation and maintenance savings
 - 6 Glycol O&M + Glycol & Heater fuel Desiccant O&M

Gas Vented from Glycol Dehydrator

Example:

- GV = ?
- F = 1 MMcf/day
- W = 21-7 pounds $H_2O/MMcf$
- R = 3 gallons/pound
- OC = 150%
- G = 3 cf/gallon

Where:

- GV= Gas vented annually (Mcf/year)
- F = Gas flow rate (MMcf/day)
- W = Inlet-outlet H₂O content (pounds/MMcf)
- R = Glycol/water ratio (rule of thumb)
- OC = Percent over-circulation
- G = Methane entrainment (rule of thumb)

Calculate:

GV = <u>(F * W * R * OC * G * 365 days/year)</u> 1,000 cf/Mcf

GV = 69 Mcf/year

Glycol Dehydrator Unit Source: GasTech

Gas Vented from Pneumatic Controllers

Example:

- GE = ?
- PD = 4
- EF = 126 Mcf/device/year

Where:

- GE = Annual gas emissions (Mcf/year)
- PD = Number of pneumatic devices per dehydrator
- EF = Emission factor (Mcf natural gas bleed/ pneumatic devices per year)

Calculate: GE = EF * PD GE = 504 Mcf/year

Norriseal Pneumatic Liquid Level Controller

Source: norriseal.com

Gas Burned as Fuel for Glycol Dehydrator

- 6 Gas fuel for glycol reboiler
 - 1 MMcf/day dehydrator
 - Removing 14 lb water/MMcf
 - Reboiler heat rate: 1,124 Btu/gal TEG
 - Heat content of natural gas: 1,027 Btu/scf

- Gas fuel for gas heater
 - 1 MMcf/day dehydrator
 - Meat gas from 47°F to 90°F
 - Specific heat of natural gas: 0.441 Btu/lb-°F
 - Density of natural gas: 0.0502 lb/cf
 - 6 Efficiency: 70%

Fuel requirement:
 17 Mcf/year

 Fuel requirement: 483 Mcf/year

Gas Lost from Desiccant Dehydrator

Example:

Where:

GLD = ?%G = 45% $P_1 = 15 Psia$ $P_2 = 450 Psig$ T = 7 days

- GLD = Desiccant dehydrator gas loss (Mcf/year) ID = 20 inch (1.7 feet) ID = Inside Diameter (feet) H = 76.75 inch (6.4 feet) H = Vessel height by vendor specification (feet)%G = Percentage of gas volume in the vessel P_1 = Atmospheric pressure (Psia) P_2 = Gas pressure (Psig)
 - T = Time between refilling (days)

Calculate:

 $GLD = H * ID^2 * \pi * P_2 * %G * 365 days/year$ 4 * P₁ * T * 1,000 cf/Mcf GLD = 10 Mcf/year

> Desiccant Dehydrator Unit Source: usedcompressors.com

Natural Gas Savings

Gas vented from glycol dehydrator:	69 Mcf/year
Gas vented from pneumatic controls:	+504 Mcf/year
Gas burned in glycol reboiler:	+ 17 Mcf/year
Gas burned in gas heater:	+483 Mcf/year
Minus desiccant dehydrator vent:	- 10 Mcf/year
Total savings:	1,063 Mcf/year

Value of gas savings (@ \$7/Mcf):

\$7,441/year

Desiccant Dehydrator and Glycol Dehydrator Cost Comparison

Type of Costs and Savings	Desiccant (\$/yr)	Glycol (\$/yr)	
Implementation Costs			
Capital Costs Desiccant (includes the initial fill) Glycol	16,097	24,764	
Other costs (installation and engineering)	12,073	18,573	
Total Implementation Costs:	28,169	43,337	
Annual Operating and Maintenance Costs			
Desiccant Cost of desiccant refill (\$1.50/pound) Cost of brine disposal Labor cost	2,556 14 2,080		
Glycol		000	
Cost of glycol refill (\$4.50/gallon) Material and labor cost		206 4,680	
Total Annual Operation and Maintenance Costs:	4,650	4,886	

Based on 1 MMcf per day natural gas operating at 450 psig and 47°F Installation costs assumed at 75% of the equipment cost

Desiccant Dehydrator Economics

NPV= \$13,315 IRR= 39% Payback= 25 months

Type of Costs						
and Savings	Year 0	Year 1	Year 2	Year 3	Year 4	Year 5
Capital costs	-\$28,169					
Avoided O&M						
costs		\$4,886	\$4,886	\$4,886	\$4,886	\$4,886
O&M costs -						
Desiccant		-\$4,650	-\$4,650	-\$4,650	-\$4,650	-\$4,650
Value of gas						
saved ¹		\$7,441	\$7,441	\$7,441	\$7,441	\$7,441
Glycol dehy.						
salvage value ²	\$12,382					
Total	-\$15,787	\$7,677	\$7,667	\$7,667	\$7,667	\$7,667

1 – Gas price = \$7/Mcf, Based on 563 Mcf/year of gas venting savings and 500 Mcf/year of fuel gas savings

2 – Salvage value estimated as 50% of glycol dehydrator capital cost

Partner Experience

- One partner routes glycol gas from FTS to fuel gas system, saving 24 Mcf/day (8,760 Mcf/year) at each dehydrator unit
- Texaco has installed FTS
 - A Recovered 98% of methane from the glycol
 - Reduced emissions from 1,232 1,706 Mcf/year to <47 Mcf/year

Other Partner Reported Opportunities

- In Flare regenerator off-gas (no economics)
- With a vent condenser,
 - A Route skimmer gas to firebox
 - A Route skimmer gas to tank with VRU
- Instrument air for controllers and glycol pump
- Mechanical control valves
- Pipe gas pneumatic vents to tank with VRU (not reported yet)

Lessons Learned

- Optimizing glycol circulation rates increase gas savings, reduce emissions
 - Negligible cost and effort
- FTS reduces methane emissions by about 90 percent
 - Require a low pressure gas outlet
- Electric pumps reduce O&M costs, reduce emissions, increase efficiency
 - Require electrical power source
- Sero emission dehydrator can virtually eliminate emissions
 - Requires electrical power source
- Desiccant dehydrator reduce O&M costs and reduce emissions compared to glycol
- Miscellaneous other PROs can have big savings

Discussion

- Industry experience applying these technologies and practices
- Limitations on application of these technologies an practices
- Actual costs and benefits