Methane to Markets

Methane Emissions Reduction Opportunities at Natural Gas Compressor Stations

Gazprom – EPA Technical Seminar on Methane Emission Mitigation

28 - 30 October, 2008

Methane Savings at Compressor Stations: Agenda

- Compressor Opportunities
 - Replacing wet seals with dry seals in centrifugal compressors
 - Scrubber dump valves
 - Reducing emissions when taking compressors offline
 - Economic rod packing replacement in reciprocating compressors
- Pneumatic Devices
- Discussion

Methane Savings at Compressor Stations: Economics

- All technologies and practices promoted by the Natural Gas STAR Program and Methane to Markets are proven based on successful field implementation by Partner companies
- Costs and savings represented in the following presentation are based on company specific data collected from actual projects in the U.S. and other countries; data are presented in U.S. economics
- One example estimates the economics for Russia using a range of natural gas prices and a factor to adjust for Russian capital and labor costs (slide 8 and 9) using data from the Oil and Gas Journal

Compressor Methane Emissions What is the problem?

Methane to Markets

- Methane emissions from the ~51,500 compressors in the U.S. natural gas industry account for 89 Billion cubic feet (Bcf) or 2,520,000 thousand cubic meters (Mcm) per year
- This represents 24% of all methane emissions from the U.S. natural gas industry

Methane Losses from Centrifugal Compressors

- Centrifugal compressor wet seals leak little gas at the seal face
 - The majority of methane emissions occur through seal oil degassing which is vented to the atmosphere
 - Seal oil degassing may vent 1.1 to 5.7 m³/minute to the atmosphere
 - One Natural Gas STAR Partner reported emissions as high as 2,124 m³/day

Methane to Markets

Centrifugal Compressor Wet Seals

- High pressure seal oil circulates between rings around the compressor shaft
- Oil absorbs the gas on the inboard side
 - Little gas leaks through the oil seal
 - Seal oil degassing vents methane to the atmosphere

Reduce Emissions with Dry Seals

- Dry seal springs press stationary ring in seal housing against rotating ring when compressor is not rotating
- At high rotation speed, gas is pumped between seal rings by grooves in rotating ring creating a high pressure barrier to leakage
- Only a very small amount of gas escapes through the gap
- 2 seals are often used in tandem
- Can operate for compressors up to 205 atmospheres (atm)¹ safely

¹ 205 atm = 3,000 pounds per square inch gauge (psig)

Methane Savings through Dry Seals

- Dry seals typically leak at a rate of only 0.8 to 5.1 m³/hour (0.01 to 0.09 m³/ minute)
 - Significantly less than the 1.1 to 5.7 m³/minute emissions from wet seals

Example Economic Analysis: Adjusted Russian Cost Scenario

 Replacing wet seals in a 6 inch shaft beam compressor operating 8,000 hours/year

	United States Cost Scenario		Adjusted Russian Cost Scenario ¹		High Russian Cost Scenario ²	
	971 RUB/Mcm	9,712 RUB/Mcm	971 RUB/Mcm	9,712 RUB/Mcm	971 RUB/Mcm	9,712 RUB/Mcm
Internal Rate of Return (%)	43%	206%	38%	217%	26%	121%
Net Present Value (RUB) ³	6,918,000	49,257,000	5,293,000	47,632,000	5,881,000	48,220,000
Payback Period (months)	24	6	26	6	32	10

- Economics are better for new installations
 - Vendors report that 90% of compressors sold to the natural gas industry are centrifugal with dry seals

¹ Gillis, Brian, et. al. *Technology drives methane emissions down, profits up.* Lead article. Oil & Gas Journal. August 13, 2007.

² Two times greater than the Adjusted Russian Cost Scenario

³ Net Present Value calculated at a 10% interest rate

Detailed Calculations for the Adjusted Russian Cost Scenario

- Compare costs and savings for a 6-inch shaft beam compressor
- Costs have been altered to reflect adjusted Russian cost scenario¹

	Gas Price:		Gas Price:	
	971 RUB/Mcm		9,712 R	UB/Mcm
	Dry Seal	Wet Seal	Dry Seal	Wet Seal
Cost Category	(RUB)	(RUB)	(RUB)	(RUB)
Implementation Costs ²				
Seal costs (2 dry @ 298,300 RUB/shaft-inch, w/testing)	3,579,000		3,579,000	
Seal costs (2 wet @ 149,200 RUB/shaft-inch)		1,790,000		1,790,000
Other costs (engineering, equipment installation)	3,579,000		3,579,000	
Total Implementation Costs	7,158,000	1,790,000	7,158,000	1,790,000
Annual O&M	311,000	1,576,000	311,000	1,576,000
Annual methane savings (8,000 hours/year)				
2 dry seals at a total of 10 m ³ /hour	80,000		793,000	
2 wet seals at total 170 m ³ /hour		1,321,000		13,203,000
Total Costs Over 5-Year Period (RUB):	9,108,000	16,268,000	12,672,000	75,649,000
Total Dry Seal Savings Over 5 Years:				
Savings (RUB)	7,161,000		63,007,000	
Methane Emissions Reductions (Mcm)	6,389		6,389	
(at 1,278 Mcm/year)				

¹ Gillis, Brian, et. al. *Technology drives methane emissions down, profits up.* Lead article. Oil & Gas Journal. August 13, 2007.

² Flowserve Corporation (updated costs and savings)

Industry Experience – PEMEX (Mexican Production Company)

- PEMEX had 46 compressors with wet seals at its PGPB production site
- Converted three to dry seals
 - Cost \$444,000/compressor
 - Saves 580,500
 m³/compressor/year

- Saves \$126,690/compressor/year in gas
- 3.5 year payback from gas savings alone
- Plans for future dry seal installations

Source: PEMEX

Finding More Opportunities

- Partners are identifying other technologies and practices to reduce emissions
 - BP-Indonesia degasses wet seal oil to a low pressure fuel gas boiler, capturing most emissions as fuel
 - Reduces expensive implementation costs of replacing with dry seals
 - TransCanada has successfully conducted pilot studies on the use of an ejector to recover dry seal leakage

Supersonic Gas Injector: TransCanada (Canadian Transmission Company)

- Developed for capturing very low pressure vent gases and re-injection into a high pressure gas stream without the use of rotating machinery
- Savings
 - 113,000 m³/year of gas savings from one compressor
 - Natural gas worth \$28,000/year/unit @\$7/Mcf
 - GHG emissions
 - Zero operating cost

Source: TransCanada

Methane Savings at Compressor Stations: Agenda

- Compressor Opportunities
 - Replacing wet seals with dry seals in centrifugal compressors
 - Scrubber dump valves
 - Reducing emissions when taking compressors offline
 - Economic rod packing replacement in reciprocating compressors
- Pneumatic Devices
- Discussion

Scrubber Dump Valves, Unit Valves, Pressure Relief Valves

- Major sources of leakage identified from Research in mid 1990's (GRI, EPA, PRCI) are the same in today.
 - Compressor seals, unit valves, scrubber dump valves and blow down valves.
- Most often missed savings opportunities occur from scrubber dump valves leaking through condensate tanks.
 - Easy access, low cost repair, huge savings potential.

Natural Gas Losses by Equipment Type

Dump valves represent one of the largest sources of methane leaks at compressor stations

Data Source: Heath Consultants Inc. 2005 (U.S. measurements)

Scrubber Dump Valves

- Improper closing of dump valves in compressor scrubbers can lead to gas venting from tanks
- Causes
 - Seat repair/damage
 - Debris
 - Over flush
- Detection and measurement methods
 - Infrared Leak Detection
 - Sonic
 - Adiabatic expansion (ice)
 - Measurement charts
 - High volume sampler

Northern Natural Gas Experience (U.S. Transmission Company): Dump Valves

Separator Dump Valve Leak

Source: Northern Natural Gas IR leak detection using FLIR GasFinIR®

Northern Natural Gas: Dump Valve Gas Losses

Methane to Markets

Natural Gas Loss

Northern Natural Gas: Repaired Dump Valve

IR leak detection using FLIR GasFinIR®

Northern Natural Gas: Separator Dump Valve Data

- 435 dump valves: 3.7 m³/hour
- 41 @ one station
- Inspection
 - Daily rounds feel & listen
 - Trim inspection & repair
- 435 dump valves: 0.3 m³/hour
- Volume from dumping operation flash gas
- Purge volume

Methane Savings at Compressor Stations: Agenda

- Compressor Opportunities
 - Replacing wet seals with dry seals in centrifugal compressors
 - Scrubber dump valves
 - Reducing emissions when taking compressors offline
 - Economic rod packing replacement in reciprocating compressors
- Pneumatic Devices
- Discussion

Compressors Offline: What is the Problem?

- Natural gas compressors cycled on- and offline to match fluctuating gas demand
 - Peak and base load compressors
- Standard practice is to blow down (depressurize) off-line compressors
 - One reciprocating compressor blowdown vents
 425 m³ gas to atmosphere on average
- Isolation valves

hane to Markets

 Leak about 40 m³/hour on average through open blowdown vents

Compressors Offline: Methane Recovery

- Principles of reducing emissions from offline compressors applicable to both reciprocating and centrifugal compressor
- Volume of losses vary for reciprocating and centrifugals
 - Blowdown volumes larger for reciprocating
 - Isolation valve leakage similar in magnitude
 - Compressor seal leakage similar in magnitude
- Following example show methane emissions savings from a reciprocating compressor

Basic Reciprocating Compressor Schematic

Depressurized

Methane Recovery - Option 1

- Keep off-line compressors pressurized
 - Requires no facility modifications
 - Eliminates methane vents
 - Seal leak higher by 8.5 m³/hour
 - Reduces fugitive methane losses by 27 m³/hour (68%)

Methane Recovery - Option 2

- Route off-line compressor gas to fuel
 - Connect blowdown vent to fuel gas system
 - Off-line compressor equalizes to fuel gas pressure
 - (7.8 to 11.2 atm)
 - Eliminates methane vents
 - Seal leak higher by 3.5 m³/hour
 - Reduces fugitive methane losses by 36 m³/hour (91%)

Methane Recovery - Option 3

- Keep pressurized and install a static seal
 - Automatic controller activates rod packing seal on shutdown and removes seal on startup
 - Closed blowdown valve leaks
 - Eliminates leaks from off-line compressor seals
 - Reduces fugitive methane losses by 35 m³/hour (89%)

Compressors Offline: Calculate Methane Emissions

- Blowdown losses = (# blowdowns) x $(425 \text{ m}^3)^1$
- Fugitive losses = (# offline hours) x (40 m³/hour)¹
- Total losses = blowdown + fugitive savings
- Example for base load compressor:
 - 2 blowdowns/yr x 425 m³
 - 1,752 offline hours x 40 m³/hour = 70,900 m³/year

¹EPA default values

Compressors Offline: Calculate Costs

- Option 1: Do not blow down
 - No capital costs
 - No O&M costs

- Option 2: Route to fuel gas system
 - Add pipes and valves connecting blowdown vent to fuel gas system
 - Upgrade costs range from \$1,000 to \$2,000 per compressor

Compressors Offline: Calculate Costs

- Option 3: Do not blow down and install static seal
 - Seals cost \$675 per rod

- Seal controller costs \$1,500 per compressor
- Less cost-effective in conjunction with Option 2

Compressors Offline: Is Recovery Profitable?

Costs and Savings

Methane to Markets

	Option 1 Keep Pressurized	Option 2 Keep Pressurized and Tie to Fuel Gas	Option 3 Keep Pressurized and Install Static Seal
Capital	None	\$ 1,700/compressor	\$ 4,100/compressor
Off-line Leaka	ge		
	6,400 m ³ /year	1,800 m ³ /year	2,100 m ³ /year
Baseload	\$1,600	\$400	\$500
	51,000 m ³ /year	14,100 m ³ /year	17,000 m ³ /year
Peak Load	\$12,600	\$3,500	\$4,200
	_		

Note: Baseload scenario assumes compressor is off-line 500 hours/year; peak load scenario assumes compressor is off-line 4,000 hours/year. Gas cost is \$7/Mcf.

Compressors Offline: Economic Analysis

 Peak load options more economical due to more blowdowns and offline time

	Option 1	izod	Option 2		Option 3	
	Neep Plessu	IZEQ	to Fuel Gas		Install Static Seal	
	Base	Peak	Base	Peak	Base	Peak
Net Gas Savings (m³/year)	14,700	124,600	+5,900	+38,100	+4,200	+34,000
Dollar Savings/year ¹	\$ 3,600	\$ 30,800	\$ 1,500	\$ 9,400	\$ 1,100	\$ 8,400
Facilities Investment	0	0	\$ 1,700	\$ 1,700	\$ 4,100	\$ 4,100
Payback	Immediate	Immediate	1 yr	2 months	4 yrs	6 months
IRR ²	>100%	>100%	82%	560%	9%	207%
			•			

¹ Assuming value of gas is \$7/Mcf

Methane to Markets

² 5 year life (not including annual O&M costs)

Compressors Offline: Lessons Learned

- Avoid depressuring whenever possible
 - Immediate benefits with no investment
- Educate field staff about benefits
- Identify compressor loads to conduct economic analysis
- Develop schedule for installing fuel gas routing systems
- Record savings at each compressor

Methane Savings at Compressor Stations: Agenda

- Compressor Opportunities
 - Replacing wet seals with dry seals in centrifugal compressors
 - Scrubber dump valves
 - Reducing emissions when taking compressors offline
 - Economic rod packing replacement in reciprocating compressors
- Pneumatic Devices
- Discussion

Methane Losses from Reciprocating Compressors

- Reciprocating compressor rod packing leaks some gas by design
 - Newly installed packing may leak 0.3 to 1.7 m³/hour
 - Worn packing has been reported to leak up to 25.5 m³/hour

Reciprocating Compressor Rod Packing

- A series of flexible rings fit around the shaft to prevent leakage
- Leakage may still occur through nose gasket, between packing cups, around the rings, and between rings and shaft

Impediments to Proper Sealing

Ways packing case can leak

- Nose gasket
- Packing to rod
- Packing to cup
- Packing to packing
- Cup to cup

What makes packing leak?

- Dirt or foreign matter (trash)
- Worn rod (.015 mm/per cm dia.)
- Insufficient/too much lubrication
- Packing cup out of tolerance (≤ 0.05 mm)
- Improper break-in on startup
- Liquids (dilutes oil)
- Incorrect packing installed (backward or wrong type/style)

Methane Losses from Rod Packing

Emission from Running Compressor	24,600	m ³ /year-packing
Emission from Idle/Pressurized Compressor	36,000	m ³ /year-packing
Leakage from Packing Cup	19,500	m ³ /year-packing
Leakage from Distance Piece	8,500	m ³ /year-packing

Leakage from Rod Packing on Running Compressors				
Packing Type	Bronze	Bronze/Steel	Bronze/Teflon	Teflon
Leak Rate (m ³ /year)	17,300	15,700	37,300	5,900

Leakage from Rod Packing on Idle/Pressurized Compressors				
Packing Type	Bronze	Bronze/Steel	Bronze/Teflon	Teflon
Leak Rate (m ³ /year)	17,400	N/A	36,500	5,400

Source: Cost Effective Leak Mitigation at Natural Gas Transmission Compressor Stations – PRCI/ GRI/ EPA PR-246-9526

Steps to Determine Economic Replacement

- Measure rod packing leakage
 - When new packing installed after worn-in
 - Periodically afterwards
- Determine cost of packing replacement
- Determine economic replacement threshold
 - Partners can determine economic threshold for all replacements
 - This is a capital recovery economic calculation
- Replace packing when leak reduction expected will pay back cost

Economic Replacement Threshold (m³/hour) =

Where:

- CR =Cost of replacement (\$)
- Discount factor at interest i =DF =
- Hours of compressor operation per year Gas price (\$/thousand cubic meters) н =
- GP =

$$\frac{7R*DF*1,000}{(H*GP)}$$

Low Emission Packing

- The side load eliminates clearance and maintains positive seal on cup face
- LEP is a static seal, not a dynamic seal. No pressure is required to activate the packing
- This design works in existing packing case with limited to no modifications required

Orientation in Cup

LEP: Low Emissions Packing Orientation of P303 Rings

Reasons to Use LEP

- Upgrade is inexpensive
- Significant reduction of greenhouse gas are major benefit
- Refining, petrochemical and air separation plants have used this design for many years to minimize fugitive emissions

- Monitored emission at two locations
 - Unit A leakage as high as 301 liters/minute (18 m³/hour)
 - Unit B leakage as high as 105 liters/minute (6 m³/hour)
- Installed Low Emission Packing (LEP)
 - Testing is still in progress
 - After 3 months, leak rate shows zero leakage increase

Northern Natural Gas Packing Leakage Economic Replacement Point

- Approximate packing replacement cost is \$3,000 per compressor rod (parts/labor)
- Assuming gas at \$7 per thousand cubic feet (Mcf) or \$250/Mcm:
 - -50 liters/minute/1000 = 0.05 m3/minute
 - 0.05 x 60 minutes/hour= 3 m3/hour
 - $-3 \times 24 = 72 \text{ m3/day}$

- 72 x 365 days/1000 = 26.3 Mcm/year
- 26.3 x \$250/Mcm = \$6,600 per year leakage
- This replacement pays back in <6 months

Methane to Markets

Reciprocating Compressor Lessons Learned

- A threshold exists when it is economic to replace rod packing in reciprocating compressors
- This threshold is often surpassed before replacement occurs
- Sharing these thresholds company-wide is an easy way for operators to determine when replacement is economic
- You must periodically measure emissions
- Economic replacement of rod packing reduces methane emissions, saves money

Methane Savings at Compressor Stations: Agenda

- Compressor Opportunities
 - Replacing wet seals with dry seals in centrifugal compressors
 - Scrubber dump valves
 - Reducing emissions when taking compressors offline
 - Economic rod packing replacement in reciprocating compressors
- Pneumatic Devices
- Discussion

Methane Losses from Pneumatic Devices

Methane to Markets

Pneumatic devices are used to actuate process controls on equipment throughout the natural gas industry

How Gas Pneumatic Devices Work

¹ 1 atmosphere (atm) = 0 pounds per square inch gauge (psig) and 14.7 pounds per square inch atmospheric (psia)

¹ atm = 1.013 bar and 101.3 kilopascals (kPa)

Pneumatic Devices: Methane Emissions

- As part of normal operations, pneumatic devices release natural gas to atmosphere
- High-bleed devices are defined as those that bleed in excess of 4 m³ per day
 - Aggregates to more than 1,460 m³/year
 - Typical high-bleed pneumatic devices bleed an average of 3,965 m³/year
- Actual bleed rate is largely dependent on device's design and maintenance

Methane Recovery from Pneumatic Devices

- Option 1: Replace high-bleed devices with low-bleed devices
 - Replace at end of device's economic life
 - Typical cost range from \$700 to \$3000 per device
- Option 2: Retrofit controller with bleed reduction kits
 - Retrofit kit costs approximately \$675
 - Payback time approximately 6 months
- Option 3: Maintenance aimed at reducing losses
 - Field survey of controllers
 - Re-evaluate the need for pneumatic positioners
 - Cost is low

Methane to Markets

 Field experience shows that up to 80% of all high-bleed devices can be replaced or retrofitted with low-bleed equipment

Five Steps for Reducing Methane Emissions from Pneumatic Devices

Methane to Markets

Suggested Analysis for Replacement

- Replacing high-bleed controllers at end of economic life
 - Determine incremental cost of low-bleed device over high-bleed equivalent
 - Determine gas saved with low-bleed device using manufacturer specifications
 - Compare savings and cost
- Early replacement of high-bleed controllers
 - Compare gas savings of low-bleed device with full cost of replacement

Implementationa	Doplage of End of Life	Early Replacements		
implementation."	Replace at End of Life	Level Control		
Cost (\$)	150 to 250 ^b	513	1,809	
Annual Gas Savings (m ³)	1,400 to 5,660	4,700	6,460	
Annual Gas Savings (Mcf)	50 to 200	166	228	
Annual Value of Saved Gas (\$) ^c	350 to 1,400	1,165	1,596	
IRR (%)	138 to 933	226	84	
Payback (months)	2 to 9	6	14	

^a All data based on Partners' experiences and represented in U.S. economics

^b Range of incremental costs of low-bleed over high bleed equipment

^c Gas price is assumed to be \$7/Mcf

Suggested Analysis for Retrofit

- Retrofit of low-bleed kit
 - Compare savings of low-bleed device with cost of conversion kit
 - Retrofitting reduces emissions by average of 90%

5	Retrofit ^a
Implementation Costs ^b	\$675
Bleed rate reduction (m ³ /device/year)	6,200
Bleed rate reduction (Mcf/device/year)	219
Value of gas saved (\$/year) c	\$1,533
Payback (months)	6
Internal Rate of Return	226%

^a On high-bleed controllers

- ^b All data based on Partners' experiences and represented in U.S. economics.
- ^c Gas price is assumed to be \$7/Mcf

Methane to Markets

Suggested Analysis for Maintenance

- For maintenance aimed at reducing gas losses
 - Measure gas loss before and after procedure
 - Compare savings with labor (and parts) required for activity

	Reduce supply pressure	Repair & retune	Change settings	Remove valve positioners
Implementation Cost (\$) ^a	207	31	0	0
Gas savings (m ³ /year)	4,960	1,250	2,500	4,470
Gas savings (Mcf/year)	175	44	88	158
Value of gas saved (\$/year) ^b	1,225	308	616	1,106
Payback (months)	3	2	<1	<1
IRR	592%	994%		

^a All data based on Partners' experiences and represented in U.S. economics

^b Gas price is assumed to be \$7/Mcf

Industry Experience: Marathon Oil (U.S. Production Company)

- Marathon surveyed 158 pneumatic devices at 50 production sites
- Half of the controllers were low-bleed
- High-bleed devices included
 - 35 of 67 level controllers
 - 5 of 76 pressure controllers
 - 1 of 15 temperature controllers

Marathon Oil: Industry Experience

- Marathon measured gas losses total 145 thousand m³/year
- Level controllers account for 86% of losses
 - Losses averaged 0.2 m³/hour/device
 - Losses ranged up to 1.4 m³/hour/device (11.9 thousand m³/year)
- Concluded that excessive losses can be heard or felt

Methane Savings at Compressor Stations: Discussion

- Industry experience applying these technologies and practices
- Limitations on application of these technologies and practices
- Actual costs and benefits