Methane to Markets

Methane to Markets Experience with Methane Leak Detection and Measurement Technologies

Gazprom – EPA Technical Seminar on Methane Emission Mitigation

28 - 30 October, 2008

Methane Leak Detection and Measurement Technologies

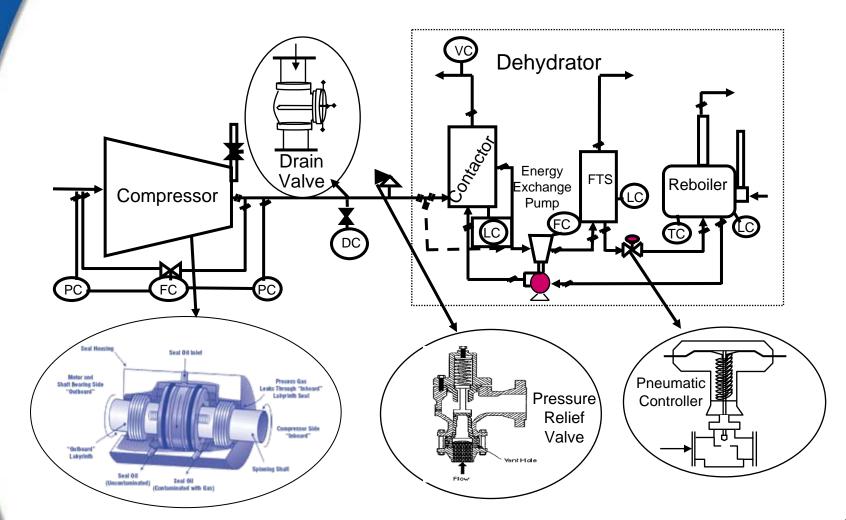
- Systematic Leak Inspection and Repair Program (Directed Inspection and Maintenance)
 - Methane Emission Sources
 - Methane Recovery: Directed Inspection and Maintenance (DI&M)
 - DI&M with Infrared Leak Detection
 - Industry Experience
 - Summary: Lessons Learned
- Other Innovative Leak Detection Approaches
- Discussion

Source: TransCanada

Basis of Recommended Technologies and Practices

ane to Markets

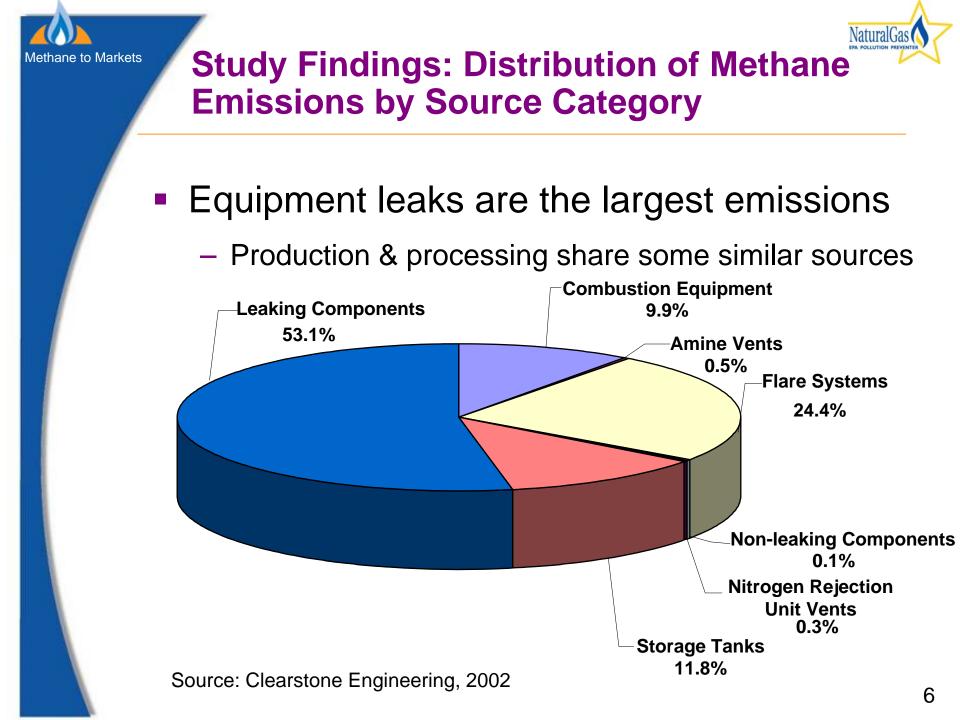
- All technologies and practices promoted by Methane to Markets and Natural Gas STAR are proven based on successful field implementation by Partner companies
- Examples represented in the following presentation are based on company specific data collected from actual projects in the U.S. and other countries; economic information is presented according to U.S. costs and gas prices

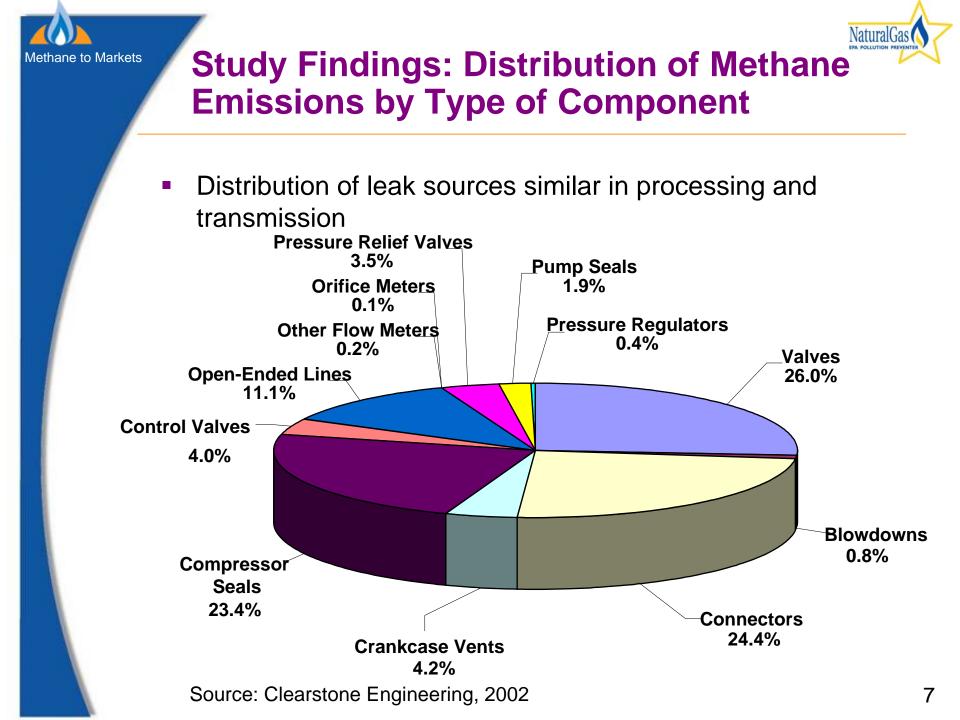

What is the Problem?

- Transmission methane gas leaks are <u>invisible</u>, <u>odorless</u>, and <u>go unnoticed</u>
- Natural Gas STAR transmission and processing companies find that valves, connectors, compressor seals, and openended lines (OELs) are major methane fugitive emission sources
 - Transmission fugitive methane emissions depend on operating practices, equipment age, and maintenance practices

Overview: Methane Emission Sources

Methane to Markets


Leak Detection Study: Key Methane Emission Sources


- Study of 4 natural gas facilities provides insight into key methane sources¹
 - Screened for all leaks, measured larger leak rates
- Principles of study are relevant to all sectors
 - A relatively small number of large leaks cause most fugitive emissions
 - Fugitive leaks from valves, connectors, compressor seals, and open-ended lines are a large source of revenue loss for all sectors

Source: Hy-bon

Solution is the same

¹ Clearstone Engineering, 2002, *Identification and Evaluation of Opportunities to Reduce Methane Losses at Four Gas Processing Plants*. Report detailing results of a methane emission leak detection survey at four gas processing plants in Wyoming and Texas.

Study Findings: Quantity of Methane Emitted

Methane Emissions from Leaking Components at Gas Facilities

Component Type	% of Total Methane Emissions	% Leak Sources	Estimated Average Methane Emissions per Leaking Component (m ³ /year)
Valves (Block & Control)	26.0%	7.4%	1,869
Connectors	24.4%	1.2%	2,265
Compressor Seals	23.4%	81.1%	10,534
Open-ended Lines	11.1%	10.0%	5,267
Pressure Relief Valves	3.5%	2.9%	23,899
Source: Clearstone Engineering, 200	2		

Methane to Markets

Study Findings: Quantity of Methane Emitted

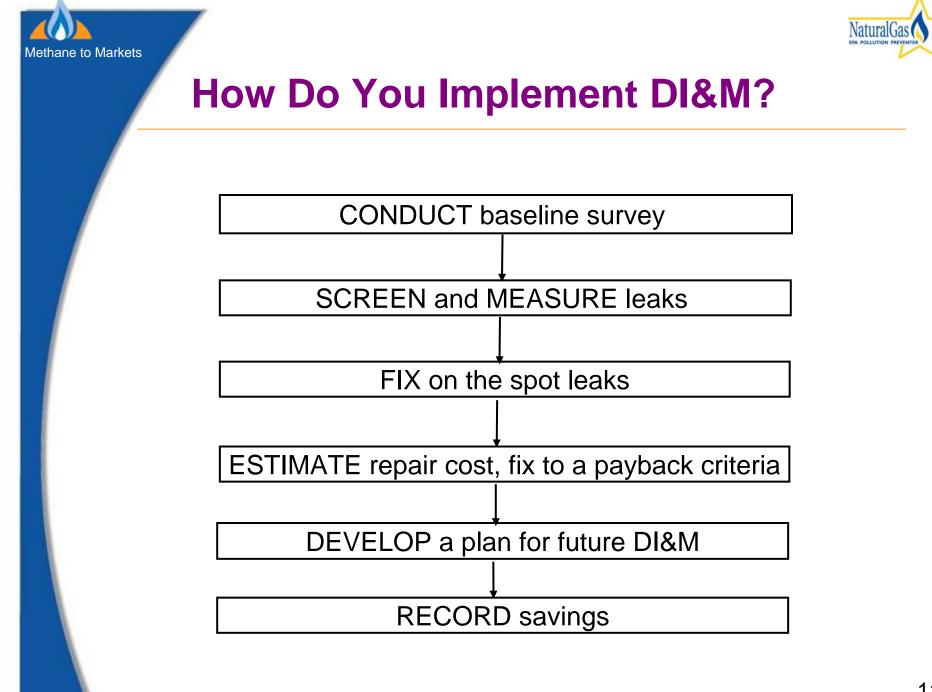
Gas Losses From Top 10 Leak Sources (m³/day)	Gas Losses From All Leak Sources ² (m ³ /day)	Contribution By Top 10 Leak Sources (%)	Contribution By Total Leak Sources (%)
1,240	3,469	35.7	1.78
3,777	5,847	64.6	2.32
6,346	9,982	63.6	1.66
2,166	5,983	36.2	1.75
13,530	25,281	53.5	1.85
	From Top 10 Leak Sources (m³/day) 1,240 3,777 6,346 2,166	From Top 10 Leak Sources (m³/day) From All Leak Sources² (m³/day) 1,240 3,469 3,777 5,847 6,346 9,982 2,166 5,983	From Top 10 Leak Sources (m³/day)From All Leak Sources2 (m³/day)By Top 10 Leak Sources (%)1,2403,46935.73,7775,84764.66,3469,98263.62,1665,98336.2

Source: Clearstone Engineering, 2002

1 - Excluding leakage into flare system

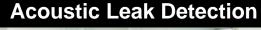
2 – Approximately 10,000 components tested in each facility

Methane Recovery: Directed Inspection & Maintenance (DI&M)


- Fugitive losses can be reduced dramatically by implementing a systematic leak detection and repair program
- Natural Gas STAR refers to this practice as Directed Inspection and Maintenance (DI&M)
 - Program to identify and fix leaks that are cost effective to repair
 - Many options for leak detection technologies

Methane to Markets

- Provides valuable data on sources of leaks with information on where to look
- Strictly adapted to company's needs
- Cost-effective practice, by definition


Infrared Leak Imaging Camera

How Do You Detect the Leaks?

- Screening find the leaks
 - Soap bubble screening
 - Electronic screening (sniffer)
 - Toxic Vapor Analyzer (TVA)
 - Organic Vapor Analyzer (OVA)
 - Ultrasound Leak Detection
 - Acoustic Leak Detection
 - Infrared Leak
 Detection/Imaging

Toxic Vapor Analyzer

How Do You Measure the Leaks?

- Evaluate the leaks detected measure results
 - High Volume Sampler
 - TVA (correlation factors)
 - Rotameters

Methane to Markets

- Calibrated
 Bag
- Engineering
 Method

Leak Measurement Using High Volume Sampler

Summary of Screening and Measurement Techniques

Summary of Screening and Measurement Techniques				
Instrument/ Technique	Effectiveness	Approximate Capital Cost		
Soap Solution	**	\$		
Electronic Gas Detector	*	\$\$		
Acoustic Detector/ Ultrasound Detector	**	\$\$\$		
TVA (Flame Ionization Detector)	*	\$\$\$		
Calibrated Bagging	*	\$\$		
High Volume Sampler	***	\$\$\$		
Rotameter	**	\$\$		
Infrared Leak Detection	***	\$\$\$		

- * Least effective at screening/measurement
- *** Most effective at screening/measurement
- \$ Smallest capital cost
- \$\$\$ Largest capital cost

Additional Gas Vent Measurement Tools

GRI-GLYCalc

Methane to Markets

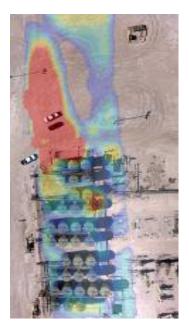
- Software tool that uses field conditions and compositional data to ____ simulate hydrocarbon emissions from glycol dehydrators
- Factors in flash gas control technologies into emissions estimate _
- Vasquez-Beggs
 - Estimate methane emissions from oil and condensate tanks

Vasquez-Beggs Equation

 $GOR = A \times (G_{flash gas}) \times (P_{sep} + 14.7)^B \times exp\left(\frac{C \times G_{oil}}{T_{sep} + 460}\right)$

where.

GO	R =	Ratio of flash gas production to standard stock tank barrels of oil produced, in scf/bbl oil (barrels of oil corrected to 60°F)			
G_{fls}	esh gas 🛛 =	Specific gravity of the tank flash gas, wh	Specific gravity of the tank flash gas, where air = 1. A suggested default value for G _{flash gas} is 1.22 (TNRCC; Vasquez, 1980)		
Goil			2, Vasquez, 1960)		
		÷ .			
\mathbf{P}_{sep}	, =	Pressure in separator, in psig			
Tsep	, =	Temperature in separator, °F			
		= 0.0362; B = 1.0937; and C = 25.724	psig – pounds per square inch, gauge scf – standard cubic feet		
<u>For G_{oil} > 30</u>	<u>)°API:</u> A =	= 0.0178 ; B = 1.187 ; and C = 23.931	bbl – barrels		



DI&M with Infrared Leak Detection

- The challenge has always been finding those few large leaks among the hundreds of components
- Real-time detection of gas leaks
 - Quicker identification and repair of leaks
 - Screen hundreds of components an hour
 - Easily screen inaccessible areas

Remote Sensing and Leak Detection Video

 Techniques to find fugitive leaks with new technology and equipment

5 minutes

Available for download at www.epa.gov/gasstar

Methane to Markets

Example: Economic Analysis of DI&M at Compressor Stations

Repair the Cost-Effective Components					
Component	Value of lost gas ¹ (\$)	Estimated repair cost (\$)	Payback (months)		
Plug Valve: Valve Body	29,498	200	0.1		
Union: Fuel Gas Line	28,364	100	0.1		
Threaded Connection	24,374	10	0.0		
Distance Piece: Rod Packing	17,850	2,000	1.4		
Open-Ended Line	16,240	60	0.1		
Compressor Seals	13,496	2,000	1.8		
Gate Valve	11,032	60	0.1		
1 – Based on \$7 per thousand cubic feet gas price					

Source: "Cost-effective emissions reductions through leak detection, repair". Hydrocarbon Processing, May 2002

Industry Experience - Targa Resources (U.S. Processing Company)

- Surveyed components in two processing plants: 23,169 components
- Identified leaking components: 857 (about 3.6%)
- Repaired 80 to 90% of the identified leaking components
- Annual methane emissions reductions: 5.6 million m³/year
- Annual savings: \$1,386,000/year (at \$250/thousand m³ or \$7/Mcf)

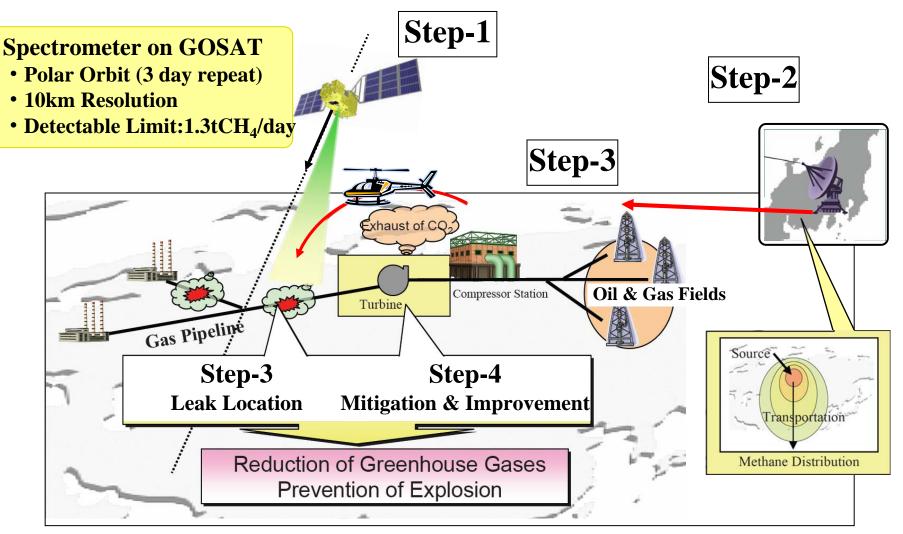
Source: Targa Resources

Industry Experience – Kursk Natural Gas Distribution Company (Russian)

- Hired Heath Consultants to survey 47 regulator stations in November 2005
 - Surveyed 1,007 components
 - Found 94 leaks
- Using Hi Flow Sampler, quantified leaks as 900,000 m³ per year
 - Initial investment of \$30,000
 - Produced revenue from verified carbon credits
- So successful, Kurskgas expanded study beyond initial 47 stations and covered over 3,300 components

Summary: Lessons Learned

- A successful, cost-effective DI&M program requires measurement of the leaks
- A high volume sampler is an effective tool for quantifying leaks and identifying costeffective repairs
- A relatively small number of large leaks cause most fugitive emissions
- The business of leak detection is changing dramatically with new technology like infrared cameras that make DI&M faster and easier


Methane to Markets

Other Innovative Leak Detection Approaches

- Greenhouse Gas Observing Satellite (GOSAT)
 - Joint project of JAXA (Japan Aerospace Exploration Agency), MOE (Ministry of the Environment) and NIES (National Institute for Environmental Studies)
- Observes concentrations of GHGs from orbit
 - Passive observation system
 - Calculates gas concentration using reflected light radiated by the sun that is absorbed by GHGs
 - Wide range of wavelengths (near infrared to thermal infrared)
 - Projected launch: early 2009

The concept of the natural gas pipeline leak detection system using GOSAT

Step-1:Satelite Pipeline leak observation Step-2:Data transmission and analysis Step-3:Ground exploration based on results of analysis Step-4:Mitigation of problems

Discussion Questions

- To what extent are you implementing these opportunities?
- How could these opportunities be improved upon or altered for use in your operation?
- Do you use any additional methods?
- What are the barriers (technological, economic, lack of information, labor, etc.) that are preventing you from implementing these practices?