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INSTALLATION INSTRUCTIONS 

System Requirements 

Users must have at least 6 GB free hard drive space, 6+ GB of RAM, i5 processor or 

AMD equivalent, and Windows 7 or newer.  As a general recommendation, COBRA will 

perform better with a faster processor and a faster hard drive. A SSD drive is preferred. 

COBRA performance is strongly impacted by hard drive performance. Antivirus 

programs and full disk encryption programs may negatively impact performance. Typical 

COBRA run time is 5 to 15 minutes. 

Installation 

COBRA can be downloaded directly to your computer or installed from a CD sent to you 

in the mail. If you are downloading the COBRA model, note that the installer file is large 

and the amount of time required to complete the download will depend on your 

connection speed. Find the program ‘setup.exe’ in the location where the installer file 

was saved. If you are installing the COBRA model from a CD, exit all programs and 

insert the Installation disk into your CD-ROM drive. The installation program may start 

automatically; if not, go to Start... Run... and then find the program ‘setup.exe’ in your 

computer’s CD-ROM drive.   

During installation, follow the prompts on your screen. COBRA is a large program, and 

depending on the configuration of your computer, it will take five minutes up to an hour 

to complete the installation. 

Launching the Model 

To launch the model, go to Start... Programs... COBRA. To allow COBRA to run 

efficiently, turn off any antivirus programs. 

Technical Assistance 

For more information, please contact Emma Zinsmeister at 202-343-9043 or 

zinsmeister.emma@epa.gov.  
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CHAPTER 1.  Introduction  

What is COBRA? 

COBRA is a screening tool that provides preliminary estimates of the impact of air 

pollution emission changes on ambient particulate matter (PM) air pollution 

concentrations, translates this into health effect impacts, and then monetizes these 

impacts,1 as illustrated below. 

 

The model does not require expertise in air quality modeling, health effects assessment, 

or economic valuation. Built into COBRA are emissions inventories, a simplified air 

quality model, health impact equations, and economic valuations ready for use, based on 

assumptions that EPA currently uses as reasonable best estimates. COBRA also enables 

advanced users to import their own datasets of emissions inventories, population, 

incidence, health impact functions, and valuation functions. Analyses can be performed at 

the state or county level and across the 14 major emissions categories (these categories 

are called “tiers”) included in the National Emissions Inventory.2 COBRA presents 

results in tabular as well as geographic form, and enables policy analysts to obtain a first-

order approximation of the benefits of different mitigation scenarios under consideration. 

However, COBRA is only a screening tool. More sophisticated, albeit time- and resource-

intensive, modeling approaches are currently available to obtain a more refined picture of 

the health and economic impacts of changes in emissions. 

 

 

                                                 
1 In calculating health impacts, COBRA generates mean estimates of health impacts. This is in contrast to a risk 

assessment, which typically builds in a margin of safety by presenting 95th percentile estimates. 
2 The emissions inventory in COBRA includes fourteen broad tier 1 categories (e.g., on-road motor vehicles); within 

each of these larger categories there are tier 2 (e.g., diesels), and tier 3 (e.g., heavy duty diesels) categories. The 

fourteen tier 1 categories include: Chemical & Allied Product Manufacturing, Fuel Combustion: Electric Utilities, 

Fuel Combustion: Industrial, Fuel Combustion: Other, Highway Vehicles, Metals Processing, Miscellaneous, 

Natural Resources, Off-Highway, Other Industrial Processes, Petroleum & Related Industries, Solvent Utilization, 

Storage & Transport, and Waste Disposal & Recycling. 
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How is COBRA used? 

COBRA can be used to quickly identify important emission sources and compare the 

impacts of different types of control options. Using the mapping capabilities in COBRA, 

users can identify the locations and types of emissions sources that contribute to local air 

quality problems. When considering different policy options, COBRA can help identify 

those options that are likely to maximize health benefits, or that could be expected to 

achieve health risk reductions in the most cost-effective manner. Once state and local 

officials narrow the set of most promising 

policy options through COBRA, they can 

then conduct analyses with more 

sophisticated air quality models to finalize 

their policy choices. 

The model contains detailed emissions 

estimates for the years 2016, 2023, and 2028.  

These baseline emissions estimates account 

for federal and state regulations as of May 

2018.3 The projected EGU emissions comply 

with the Cross-State Air Pollution Rule 

Update (CSAPR Update) finalized December 

27, 2016, the Mercury and Air Toxics Rule 

(MATS), and the Standards of Performance 

for Greenhouse Gas Emissions from New, 

Modified, and Reconstructed Stationary 

Sources.4  

 

Using COBRA, you can create your own 

new scenarios by specifying increases or 

reductions to the baseline emissions estimates for the analysis year.  Baseline data is 

preloaded for analysis years 2016, 2023, and 2028, and advanced users can analyze other 

years by importing custom datasets. Emissions changes can be entered at the county, 

state, or national level. 

 

COBRA then generates changes in PM2.5 concentrations between the baseline scenario 

(the “business-as-usual” estimates for the analysis year) and the control scenario (the 

                                                 
3 More details about the development of the 2016, 2023, and 2028 baseline emissions case are available in the 

supporting information for the 2016v1 Emissions Modeling Platform, available here: https://www.epa.gov/air-

emissions-modeling/2016v1-platform  
4 For more information on the electricity sector modeling used to develop the emissions baselines used in COBRA, 

see the Documentation for EPA’s Power Sector Modeling Platform v6 Using the Integrated Planning Model, 

available here: https://www.epa.gov/airmarkets/documentation-epas-power-sector-modeling-platform-v6 

Who can use COBRA? 

 State and local officials who would 
like to quickly identify important 
emission sources and compare the 
impacts of different control options; 

 Analysts looking to improve their 
understanding of the air quality 
improvements and health benefits  
associated with clean energy policies 
under consideration; 

 Environmental agencies trying to 
inexpensively screen through many 
options to identify those that 
maximize the health benefits and to 
quantify the economic value of health 
improvements;  

 Energy officials looking to estimate 
and promote the air quality, health, 
and associated economic co-benefits 
of their energy efficiency or 
renewable energy policies; and 

 Transportation planners interested 
in understanding the air quality and 
health impacts of fuel switching or 
reductions in vehicle miles traveled. 

https://www.epa.gov/air-emissions-modeling/2016v1-platform
https://www.epa.gov/air-emissions-modeling/2016v1-platform
https://www.epa.gov/airmarkets/documentation-epas-power-sector-modeling-platform-v6
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analysis year modified by the user’s emissions changes). A source-receptor matrix 

translates the air pollution emissions changes into changes in ambient PM2.5 (for more 

information about the emissions inventory and the source-receptor matrix, see Appendix 

A). Using a range of health impact functions, COBRA then translates the ambient PM2.5 

changes into changes in the incidence of human health effects (see Appendices B through 

E). Finally, the model places a dollar value on these health effects (for more information, 

see Appendix F).5 COBRA estimates the change in air pollution-related health impacts, 

and estimates the economic value of these impacts, using an approach that is generally 

consistent with EPA Regulatory Impact Analyses, including the analysis of the National 

Ambient Air Quality Standards for particulate matter (U.S. EPA, 2012). These analyses 

reflect the current state of the science regarding the relationship between particulate 

matter and adverse human health. 

Outcomes can be modeled nationwide or for smaller geographic areas. Results include 

changes in ambient PM2.5 concentrations, and changes in the number of cases of a variety 

of health endpoints that have been associated with PM2.5. These health endpoints include:  

 Adult and infant mortality; 

 Non-fatal heart attacks; 

 Respiratory-related and cardiovascular-related hospitalizations; 

 Acute bronchitis; 

 Upper and lower respiratory symptoms; 

 Asthma-related emergency room visits; 

 Asthma exacerbations; 

 Minor restricted activity days (i.e., days on which activity is reduced, but not 

severely restricted); and 

 Work days lost due to illness. 

Users can view the results in tabular or map form as well as export the data for use in 

their own communications. 

                                                 
5 There is a large literature regarding the health impacts of air pollution and approaches to value these impacts.  

COBRA uses a subset that EPA deems most credible. More sophisticated users interested in using additional 

approaches may want to use EPA’s Environmental Benefits Mapping and Analysis Program (BenMAP), which is 

available at:  https://www.epa.gov/benmap. 

http://www.epa.gov/ttn/ecas/benmap2download.html
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Overview of Model 

The COBRA screening model is a stand-alone Windows application that contains all of 

the data needed for the analysis of alternative emissions scenarios; the user is only 

required to enter changes in emissions. Upon launching the model, you will see the 

Introduction screen. 

 

 

Once you are ready to run a comparison, go to the 1. Select Analysis Year screen and 

select the analysis year of interest.  Advanced users can load a customized baseline 

emissions inventory at this stage, which is discussed in more detail in Chapter 3.   
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Then, go to the 2. Create Emissions Scenario screen.  Use the ‘Select Location’ panel 

on the top left of the Emissions Scenario tab to indicate the geographic level at which 

you wish to make your emissions changes. ‘US’ means that any emissions changes will 

be applied to all sources in that category throughout the entire U.S. Alternatively, you can 

enter emissions changes for selected states or selected counties. 

Next, select the category of emissions that a policy or action is expected to affect in the 

‘Select Emissions Tier’ panel.  For example, to assess the impacts of a renewable energy 

or energy efficiency policy that is expected to affect utility-related emissions, you would 

select ‘Fuel Combustion: Electric Utility’ as the first tier.  COBRA provides three levels 

of emissions sources (tiers) in a directory tree structure.  If you know the specific fuel 

source within the utility category that would be reduced or displaced (e.g. coal or natural 

gas), you can select the appropriate second tier. If you do not know the specific fuel 

source within the utility category that would be reduced or displaced, you can enter 

emissions changes at the tier 1 level.  For a policy that involves fuel switching or 

reductions in transportation through vehicle miles traveled, for example, you would select 

‘Highway Vehicles’ as the first tier. If you knew the specific fuel (e.g. diesel) that would 

be reduced, you would select it in the second tier.   
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Once your geography is determined, you can enter your emissions changes for the nation, 

a single state, groups of states, a single county, or groups of counties, depending on your 

previous selection.  
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Exhibit 1. Basic Tools and Data Sources for Determining Emission Reductions 

Online Tool Description 

EPA’s Emissions & Generation Resource 

Integrated Database (eGRID) 

(https://www.epa.gov/energy/emissions-

generation-resource-integrated-database-egrid)  

Provides data on the environmental characteristics 

of electric generation by power plants in the 

United States. 

EPA’s AVoided Emissions and geneRation Tool 

(AVERT) 

(https://www.epa.gov/statelocalenergy/avoided-

emissions-and-generation-tool-avert) 

 

Estimates displaced emissions (at the county, 

state, and regional levels) at electric power plants 

due to renewable energy or energy efficiency 

policies and programs. 

EPA’s Motor Vehicle Emission Simulator 

(MOVES) (https://www.epa.gov/moves)  

Estimates emissions from mobile sources, 

including emissions from cars, trucks, and 

motorcycles. 

National Emissions Inventory 

(https://www.epa.gov/air-emissions-

inventories/national-emissions-inventory-nei)  

Allows users to view emissions by sector (for 60 

emissions inventory sectors) for specific 

pollutants at varying levels of geographic 

aggregation.  

Power Profiler 

(https://www.epa.gov/energy/power-profiler)  

Allows users to view the emissions that can be 

attributed to electricity use in homes or 

businesses. 

Note: For more details on these basic tools and on other methods, see: (1) Chapter 4 of EPA’s “Quantifying the 

Multiple Benefits of Energy Efficiency and Renewable Energy: A Guide for State and Local Governments” report 

(U.S. EPA, 2018), available at https://www.epa.gov/statelocalenergy/quantifying-multiple-benefits-energy-efficiency-

and-renewable-energy-guide-state; or (2) Appendix I of EPA’s “Roadmap for Incorporating Energy 

Efficiency/Renewable Energy Policies and Programs into State and Tribal Implementation Plans” (U.S. EPA, 2012c), 

available at https://www.epa.gov/energy-efficiency-and-renewable-energy-sips-and-tips.   

Once you have determined the appropriate tier category and location, enter the emission 

changes for one or more of the five included pollutants in the ‘2. Create Emissions 

Scenario’ panel at the top right of the COBRA screen.  You can enter emissions changes 

in tons or percentages. Absolute emission reductions in tons can be estimated using a 

variety of methods. See Exhibit 1 above for a description of a few basic methods. 

Percentage reductions can be used to assess the benefits of a goal that results in 

reductions in activity levels or emissions from a particular source (or group of sources), 

such as a renewable portfolio standard, transportation policies requiring reductions in 

vehicle miles traveled, and energy efficiency programs.   

For example, EPA’s Emissions & Generation Resource Integrated Database (eGRID) 

website provides electric generation data and corresponding emissions rates for the 

https://www.epa.gov/energy/emissions-generation-resource-integrated-database-egrid
https://www.epa.gov/energy/emissions-generation-resource-integrated-database-egrid
https://www.epa.gov/statelocalenergy/avoided-emissions-and-generation-tool-avert
https://www.epa.gov/statelocalenergy/avoided-emissions-and-generation-tool-avert
https://www.epa.gov/moves
https://www.epa.gov/air-emissions-inventories/national-emissions-inventory-nei
https://www.epa.gov/air-emissions-inventories/national-emissions-inventory-nei
https://www.epa.gov/energy/power-profiler
https://www.epa.gov/statelocalenergy/quantifying-multiple-benefits-energy-efficiency-and-renewable-energy-guide-state
https://www.epa.gov/statelocalenergy/quantifying-multiple-benefits-energy-efficiency-and-renewable-energy-guide-state
https://www.epa.gov/energy-efficiency-and-renewable-energy-sips-and-tips
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United States.6 On the eGRID website, click on ‘eGRID2018 Summary Tables (PDF).’7 

Using the Western Electricity Coordinating Council (WECC) Southwest Region (which 

includes Arizona and New Mexico) as an example, you can obtain the following 

information: 

 Electric Generation: The “Subregion Resource Mix (eGRID 2018)” table on page 

3 summarizes electric generation data by region. The net generation for the 

WECC Southwest Region in 2018 was approximately 165,353,383 megawatt 

hours (MWh). 

 Emissions Rates: The “Subregion Output Emission Rates (eGRID 2018)” table on 

page 2 provides the WECC Southwest Region’s non-baseload output emissions 

rate for SO2: 0.3 lbs. per MWh.8 

If a policy is expected to reduce electric generation by 2% in the WECC Southwest 

Region, you can calculate the reduction in MWh: 2% × 166,327,576 MWh = 3,307,068 

MWh. You can then calculate the emission reductions as: 

Emission Reduction = 3,326,552 MWh × 0.3 lbs. SO2 per MWh = 992,120 lbs. SO2. 

This reduction is equal to about 496 tons (992,120 lbs. ÷ 2000 lbs. per ton) of SO2.
9 

After you have calculated emissions changes, you can enter these changes for as many 

tier categories as you wish, and you can enter different sets of changes for each state or 

county (or groups of states and/or counties, if you choose to select more than one). After 

each change in emissions for a state, county, or group of states or counties, click Apply 

Changes. 

 

                                                 
6 While eGRID provides a basic approach for estimating changes in emissions from energy efficiency and renewable 

energy using annual data, another useful resource available for estimating changes in emissions is EPA’s Avoided 

Emissions and Generation Tool (AVERT).  AVERT enables users to estimate the regional, state, and county-level 

emission impacts of different energy efficiency and/or renewable energy programs based on temporal energy 

savings and hourly generation profiles. For more information or to download AVERT, see: 

https://www.epa.gov/statelocalenergy/avoided-emissions-and-generation-tool-avert.   
7 Note that because the latest edition of eGRID was developed using 2018 data, it would be most appropriate to 

choose the 2016 baseline for the analysis in COBRA. 
8 Non-baseload emissions come from power plants that dispatch to the grid when demand for power exceeds 

baseload needs (U.S. EPA, 2020). 
9 For more information on the benefits of reductions in SO2 emissions, see EPA’s “Quantifying the Multiple Benefits 

of Energy Efficiency and Renewable Energy: A Resource for State and Local Governments” report (U.S. EPA, 

2018), available at: https://www.epa.gov/statelocalenergy/quantifying-multiple-benefits-energy-efficiency-and-

renewable-energy-guide-state.   

https://www.epa.gov/statelocalenergy/avoided-emissions-and-generation-tool-avert
https://www.epa.gov/statelocalenergy/quantifying-multiple-benefits-energy-efficiency-and-renewable-energy-guide-state
https://www.epa.gov/statelocalenergy/quantifying-multiple-benefits-energy-efficiency-and-renewable-energy-guide-state
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To review your scenario, click View Detailed Emissions Changes. 

 

Then, go to the 3. Execute Run screen to select settings for running your scenario.  This 

tab asks you to choose a discount rate (described in more detail in the Chapter 2 

Tutorial).  Choose a 3% or 7% discount rate and click Run using above options to run 

the comparison between the scenario you have just created and the baseline scenario.  
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The model may take 5 to 15 minutes to run, depending on your computer.  When the 

model is done running, you can examine the results in the 4. View Health Effects and 

Valuation Results tab.  Regardless of the geographic level at which you made your 

emissions changes, you can examine the results for every county in every state in the 

country. For each county, COBRA calculates three types of results: the change in 

ambient PM2.5 concentration; the change in health effects associated with that change; 

and the dollar value associated with the change in health effects.  

These results can be viewed in a table (in the Table tab) or geographically on a map of 

the United States (in the Map tab).  
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The results table includes a row with blue text that summarizes the total impact of the 

scenario. To view the impact of the scenario on a specific state, filter the “state” column 

for the state of interest. For example, results in the table above show estimated impacts of 

the scenario for Pennsylvania. According to these results, the emissions reductions in 

2023 would result in the following health effects in Pennsylvania: 
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 22.4 to 50.7 avoided premature adult deaths (over the next 20 years), valued at an 

estimated $242 and $548 million;  

 2.1 to 19.8 avoided nonfatal heart attacks (in 2023), valued at an estimated 

$280,951, to $2,609,602 and  

 12.9 avoided asthma emergency room visits (in 2023), valued at an estimated 

$8,093.   

Note that health effects are not necessarily whole numbers. This is because COBRA 

calculates small statistical risk reductions which are then aggregated over the population.  

For example, if 150,000 people experience a 0.001% reduction in mortality risk, this 

would be reported as 1.5 “statistical lives saved.”  This statistical life and its associated 

monetary value represents the sum of many small risk reductions and does not 

correspond to the loss or value of an individual life. Users may want to round these 

values to the nearest whole before presenting the results. 

Result sets can be exported for use in outside programs and presentations. To save your 

results in a table form, click on Export to CSV or Export to Excel (depending on your 

preferred format) in the Table tab.  To save your results in map form, navigate to the 

Map tab, right click on the data in the ‘Legend’ panel, then click Data…Export Data. 

Caveats and Limitations 

There are limitations to the COBRA screening model that make it inappropriate for 

certain types of analyses: 

 Determination of attainment. Modeling the attainment of National Ambient Air 

Quality Standards (NAAQS) requires more sophisticated air quality modeling 

than that currently built into COBRA.  

 Estimating dynamic market effects. COBRA does not account for changes in 

emissions that can result from changes in electricity market responses to policy.  

For example, emissions in some states and regions are “capped” by laws or 

regulations and emission allowances can then be traded across entities within a 

capped region. In these regions, a reduction in emissions in one location may 

result in an increase (rebound) in emissions in another area subject to the cap. 

COBRA does not automatically capture these types of potential effects in 

electricity market dispatch, so care should be exercised when interpreting 

COBRA results to analyze the net impacts of a change in policy. COBRA is more 

suited to an attributable risk assessment, which addresses the magnitude of an 

emission source and the impact of controlling its emissions. That information can 

be used to develop policies targeted to the appropriate sources. 
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Because COBRA is intended primarily as a screening tool, it uses a relatively simple air 

quality model, which introduces additional uncertainty. While comparative work to test 

the performance of COBRA’s air quality model is ongoing, it is not yet fully validated. 

As with more complex air pollution benefits models, there is substantial uncertainty 

surrounding the values of key inputs to COBRA – in the air quality model, emissions 

inventory, health impact functions, and economic values – and users should exercise 

caution when interpreting the results of analyses. 

Some of the uncertainty in COBRA reflects variability (for example, a health impact 

function that is appropriate for one location may not be appropriate for another location if 

the function actually varies across locations). Much of the uncertainty, however, reflects 

the insufficient level of knowledge about the true values of model inputs. 

The appendices discuss these issues and provide sources for additional information. 

However, developing a quantified confidence interval for the results is beyond the scope 

of this model. As an alternative, users should consider using sensitivity analyses to 

determine how their conclusions might change with differences in the location and 

amount of emissions. When more detailed analyses are required, users should be 

cognizant of the model’s limitations, and consider using more sophisticated modeling 

approaches. 

Chapter 2 of this User’s Manual provides a quick tutorial for the new user. Baseline data 

are examined, and a simple new scenario is defined and run, and the results are displayed 

in tables and maps. Subsequent chapters provide more detailed information on each step, 

and describe additional options you can use for more complex analyses. 

Chapter 3 describes the process of selecting and exploring baseline data. 

Chapter 4 provides details on different ways to define your new scenario, and run the 

comparison between it (the control scenario) and the baseline scenario.   

Chapter 5 describes the different ways to view and save your results. 

Chapter 6 explains how to use COBRA’s mapping functionality. 

A Glossary is provided at the end of the manual. 

Additional Information 

The Appendices to this manual provide additional information on the methods and 

assumptions used in the model. 

 Appendix A: Description of Source-Receptor Matrix and Emissions Data. 

Describes the source-receptor matrix embedded within the model that translates 

the air pollution emissions changes into changes in ambient particulate matter.   
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 Appendix B: Derivation of Health Impact Functions. Explains the derivation 

of the types of health impact functions used in COBRA. 

 Appendix C: COBRA Health Impact Functions. Provides an overview of all 

the functions used to convert changes in ambient PM2.5 into health effects.   

 Appendix D: Baseline Incidence Rates for Adverse Health Effects. Lists the 

baseline incidence rates for each of the types of adverse health effects. 

 Appendix E: Population Forecasts. Describes the forecasting procedure. 

 Appendix F: Economic Value of Health Effects. Lists the equations and sources 

of the values used to monetize the health effects.   

 Appendix G: Instructions for Batch Functionality. Explains how to run 

multiple COBRA scenarios in batch mode. 

 Appendix H: References. Provides all of the sources referenced in the 

Appendices or used in the model. 
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CHAPTER 2.  Quick-Start Tutorial 
 

This tutorial will give you a quick introduction to how COBRA works, and how to work 

through the steps of a simple analysis. As described in the text box below, COBRA v3.3 

also includes more advanced options for users who want to change underlying 

assumptions (e.g. population, emissions baseline). Subsequent chapters describe how to 

use the more advanced features.  

COBRA allows you to estimate the impact of a change in air pollution resulting from a 

new policy or other type of change. In this example, you will consider changes in one 

state (we have arbitrarily selected Pennsylvania) that result in a decrease in emissions 

from electricity generating plants. If a statewide plan to switch 25 percent of electricity 

generation to renewable sources were put into effect, what would be the difference in 

ambient particulate matter levels and health effects, compared to business-as-usual? This 

tutorial will show you how to use COBRA to examine this type of scenario through the 

following steps: 

Step 1. Select the analysis year 

and view the baseline emissions 

data. 

Step 2. Select the geography 

and tier category for emissions 

changes and define the 

emissions changes 

Step 3. Select a discount rate 

and run the comparison. 

Step 4. View and save your 

results. 

To open COBRA, click 

Start… All Programs… 

COBRA… COBRA The 

model will open and COBRA 

will display the main screen. 

You will see five tabs at the 

very top: Introduction, 1. 

Select Analysis Year, 2. 

Create Emissions Scenario, 3. 

Compared to previous versions, COBRA (3.0) offers 
additional functionality and flexibility for advanced users, 
while still being easy to operate for basic analyses. The 
table below compares COBRA’s advanced options to the 
simpler, quick-start options. More advanced options will 
be discussed in subsequent chapters. 
 

Quick-Start Options Advanced Options 

Preloaded 2016, 2023, 
and 2028 emissions 
baseline 

Custom emissions baseline 

Preloaded 2016, 2023, 
and 2028 incidence data 

Custom incidence data 

Preloaded 2016, 2023, 
and 2028 population data 

Custom population data 

Preloaded health effect 
functions 

Custom health effect 
functions 

Preloaded 2016, 2023, 
and 2028 valuation 
functions 

Custom valuation functions 

Enter emissions scenario 
in user interface 

Upload custom emissions 
scenario 

Run COBRA separately 
for each emissions 
scenario 

Run multiple emissions 
scenarios in batch mode 

View default map output 
in COBRA 

Customize map appearance 
and export for further 
manipulation or analysis in 
other tools 
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Execute Run and 4. View Health Effects and Valuation Results. Below, we provide 

detailed descriptions of the steps needed to run a scenario. 

Step 1. Select the baseline data. 

Click 1. Select Analysis Year and you will see two tabs: Basic Options and Advanced 

Options. To do a basic screening analysis for analysis year 2023, select “2023” in the 

drop down menu and click Apply selected analysis year in the Basic Options tab. 

 

To explore the preloaded baseline emissions data, go to the 2. Create Emissions 

Scenario tab.  On the top of this screen you will see three tabs: Emissions Scenario, 

View Emissions Map, and View Detailed Emissions Changes.  Click on the View 

Emissions Map tab.  At the top of this screen, you will see a drop-down menu labeled 

‘Select the field that is to be mapped.’  The first five options listed (Base NH3, Base 

NO2, Base PM2.5, Base SO2, and Base VOC) correspond to the baseline emissions of 

ammonia (NH3), nitrogen oxides (NOx), fine particulate matter (PM2.5), sulfur dioxide 

(SO2), and volatile organic compounds (VOCs), respectively, from all sectors.  Select any 

of these emissions to view a map of county-level baseline emissions. See Chapter 6 for 

more details on how to use COBRA’s mapping functionality. 
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Step 2. Define the emissions changes and select the geography for 
emissions changes. 

Now that you have seen the baseline emissions, you can define the new (control) scenario 

to compare to the baseline scenario. Click on the 2. Create Emissions Scenario tab. On 

the top of this screen you will see three tabs: Emissions Scenario, View Emissions Map, 

and View Detailed Emissions Changes. Click on the Emissions Scenario tab.   

 



Chapter 2.  Quick-Start Tutorial 

 22 June 2020 

 

In the top left panel you can select the geographic area to which you want to apply the 

emissions changes. Note that once your comparison is run, you will be able to see results 

(changes in ambient PM2.5 levels and health effects) for the entire country (although only 

a subset of states usually experience the PM2.5 reductions and health benefits of a defined 

scenario). Since this example only analyzes changes statewide in Pennsylvania, check the 

box next to ‘Pennsylvania’ in the list.  

If you wanted to vary the emissions changes across counties, or only make changes in 

some counties, you could click the ‘+’ button next to Pennsylvania and enter different 

emissions changes for each county. For instance, if you know the counties in which 

sources that are likely to be affected (such as power plants) are located, you can enter 

emissions changes in those counties only. However, in this example you are looking at a 

statewide change. 

The next step is to define the categories of emissions affected. The middle panel contains 

a directory tree with all the tier 1, 2, and 3 source categories (see Appendix A for a list of 

source categories and their emissions). You can define emissions changes at any level, 

but each level always includes all the levels indented underneath it. In this example, you 

want to change all of the source categories that are electrical utilities, so click ‘Fuel 

Combustion: Electric Utilities.’  

The panel on the right-hand side of the screen lists each pollutant included in the model. 

Since this scenario reduces all baseline emissions by 25 percent, type ‘25’ in the box next 

to each pollutant. The default selections are ‘reduce by’ and ‘percent’; leave them as they 

are. Chapter 4 describes how to create more sophisticated emissions scenarios, such as 

scenarios that cover multiple geographies or involve different emissions changes for 

different pollutants. Click Apply Changes to save your changes. The changes apply to all 

the locations selected. 

If you wanted to enter additional emission changes in another location, you would click 

Clear Selected States and Countries, then repeat the process of selecting a new 

geographic location tier and entering the emission change for that location. You must 

click Apply Changes after entering emissions changes for each location. If you make a 

mistake or want to start over, click the Reset to Baseline button, which will erase all 

entries. In this example, we are running the analysis for a single scenario affecting only 

one state, so we will proceed without applying any additional emissions changes.    

 

You can review your emissions scenario in table form by clicking the View Detailed 

Emissions Changes tab or in map form by clicking the View Emissions Map tab. 

NOTE: Users of EPA’s AVERT model can upload the emissions changes quantified in AVERT into 
COBRA so that the user does not have to enter all the changes manually. Chapter 4 describes the 
process for uploading AVERT outputs as COBRA inputs. 
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Step 3. Run the scenario. 

Next, go to the 3. Execute Run tab.  This tab asks you to choose a discount rate for the 

COBRA session. The discount rate you select is used to express future economic values 

in present terms. Not all health effects and associated economic values occur in the year 

of analysis (as explained in Step 5 below). Therefore, COBRA accounts for this ‘time 

value of money’ preference (i.e., a general preference for receiving benefits now rather 

than later) by discounting benefits received later. Based on EPA’s Guidelines for 

Preparing Economic Analyses (U.S. EPA, 2010a), it is recommended that COBRA users 

calculate monetized health benefits using both 3% and 7% discount rates and then 

evaluate whether the overall outcome of the analysis is affected by the choice of discount 

rate. For more details on discount rates, see Appendix F. 

In this scenario, you will use a 3% discount rate.  Click Run using above options.  

 

  

Step 4. View and save the results. 

View the results 

Once your run is complete, COBRA will automatically navigate to the last tab, 4. View 

Health Effects and Valuation Results. You will see a screen with two tabs at the top: 

Table and Map. 

NOTE: COBRA may take 5 to 15 minutes to run, and COBRA may be “not responding” as it runs. The 
run time depends on your computer.   
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Click on the first tab, Table. This tab shows the changes in air quality and reductions in 

health effects associated with your scenario.  The air quality variables shown are ‘Base 

PM 2.5’, ‘Control PM 2.5,’ and ‘Delta PM 2.5.’  Delta PM2.5 is the difference in ambient 

fine particulate matter (PM2.5) between the baseline scenario and your new scenario (the 

control scenario) in the year of your analysis (in this example, 2023), in units of 

micrograms per cubic meter (µg/m3). Note that positive values indicate a reduction in 

PM2.5 in the control scenario. 

To the right, this table also shows the reductions in health effects associated with changes 

in air quality and the dollar values associated with those reductions. Note that positive 

values indicate a decrease in impacts (that is, fewer cases of illness/premature mortality 

or avoided economic loss). 

The default view shows the whole country, but since the majority of the air quality 

changes are expected to be in Pennsylvania, filter the state by clicking in the box below 

‘State’  and typing ‘Pennsylvania’.   

 

 

Here, you see that the emissions scenario results in an estimated 22.4 to 50.7 adult 

premature deaths avoided and 12.9 avoided emergency room visits for asthma.  You can 

also look at a specific county in Pennsylvania. To do this, filter the county level by 

clicking in the box next to ‘County’ and typing ‘Montgomery.’  
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You will see that in Montgomery County, the estimated ambient PM2.5 concentration in 

the control scenario is 8.425μg/m3, compared to the estimated baseline concentration of 

8.453 μg/m3. The difference between the two estimated concentrations (Delta PM2.5) is 

0.028 μg/m3, which is the estimated change in air quality due to the 25% reduction in 

emissions from fuel combustion electricity generating plants in the whole state (the 

change in concentration is due to decreases in emissions from plants within the county 

and in other counties). Note that positive changes indicate a lower concentration in the 

control scenario. If the value in ‘Delta PM2.5’ were negative, it would indicate an increase 

in concentration. In this county, the emissions reduction scenario results in an estimated 

1.3 to 2.8 adult premature deaths avoided (over the next 20 years), an estimated 0.1 to 1.2 

avoided non-fatal heart attacks, and an estimated 0.9 avoided emergency room visit for 

asthma (in 2023). 

The table includes low and high estimates for the changes in the number of cases and the 

corresponding economic values for adult mortality and non-fatal heart attacks. The low 

and high estimates are derived using two sets of assumptions about the sensitivity of adult 

mortality and non-fatal heart attacks to changes in ambient PM2.5 levels. Specifically, the 

high estimates are based on studies that estimated a larger effect of changes in ambient 

PM2.5 levels on the incidence of these health effects. For further details on the calculation 

of low and high estimates, see the description of the health effects table in Chapter 5 and 

the detailed assumptions in Appendix C. 

The three health effects below demonstrate the interpretation of the change in health 

effects and their economic values for Montgomery County, Pennsylvania: respiratory 

hospital admissions, adult mortality, and non-fatal heart attacks. 

 Emergency Room Visits for Asthma. In COBRA, most health effects and their 

economic values are expected to occur in the year of analysis. For instance, this 

scenario results in less than one avoided emergency room visits for asthma in 

Montgomery County. This fraction of an avoided case and its economic value 

(approximately $534) would occur in 2023. 

 Adult Mortality. In contrast to respiratory hospital admissions, all avoided cases 

of adult mortality are not expected to occur in the year of analysis. Therefore, 

COBRA uses the 3% discount rate you selected in Step 4 to calculate the value of 

all avoided cases of adult mortality in present terms (in Montgomery County, a 
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low estimate of 1.3 avoided cases of adult mortality are valued at a total of 

approximately $14 million). 

 Non-fatal Heart Attacks. Another special case is non-fatal heart attacks. All 

avoided cases of non-fatal heart attacks are expected to occur in the year of 

analysis, but the costs associated with this health effect would occur over multiple 

years. Thus, while this scenario results in a range of 0.1 to 1.2 cases of non-fatal 

heart attacks in 2023, all economic benefits associated with this change ($17,620 

to $163,685) would not accrue in that same year. 

The table below relates the timing of the expected health effects and economic costs or 

benefits to the specific types of incidences in COBRA.   

Type of Health Incidence All health effects occur in the 

year of analysis? 

All economic costs or benefits 

occur in same year of analysis? 

Adult mortality No No, the value is discounted to 

present terms 

Non-fatal heart attacks Yes No, the value is discounted to 

present terms 

All other health impacts Yes Yes 

 

In addition, remember that although emissions were changed only in Pennsylvania, 

COBRA calculates changes in PM2.5 for the whole country. If you would like to examine 

the results for any of states bordering Pennsylvania, simply filter for different states. 

As described earlier, it is also important to remember COBRA does not capture dynamic 

effects of electricity markets – these markets determine electricity dispatch by EGUs and 

associated emissions levels. For example, if you assume an emission reduction among 

power plants in one area, it is possible that electricity generation and emissions may 

increase in another location unless there is an underlying change in electricity demand.  

Because COBRA does not capture potential electricity market effects, users should 

exercise care when interpreting the impacts of an emissions change in a specific location. 

The Map tab shows the results from the previous table on a map. When you click on the 

tab you will see a map of the United States. To display a result, select an outcome from 

the drop-down menu labeled ‘Select the field that is to be mapped.’  Below, the map of 

Delta PM2.5 shows the change in the particulate matter concentration between the 

baseline and control scenarios. The darker the shade of blue, the greater the change in 

concentration. As in the other results tables, a positive number indicates a decrease from 

the baseline scenario. You can also view any of the other results on the map by selecting 

them from the drop-down list under ‘Select the field that is to be mapped’. See Chapter 6 

for more details on how to use COBRA’s mapping functionality. 
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Export and save your results. 

You may want to look at and manipulate the results data outside of COBRA. You can 

export data sets into a CSV format, which can be used with spreadsheet programs.  

Emissions Scenario Definition in Table Form 

To save the definition of your emissions changes scenario go to the 2. Create Emissions 

Scenario tab.  In the top right panel, click Save Scenario. In the following window, 

browse to the file location where you want to save your data, and select ‘CSV files’ in the 
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‘Save as type’ drop-down box. You can then enter a name for the file in the box above. 

Click Save and COBRA will save the file.   

Results in Table Form 

To export the results table, go to the 4. View Health Effects and Valuation Results tab 

and then to the Table tab. Click on the Export to CSV or Export to Excel button, 

depending on your preferred format. In the following window, browse to the file location 

where you want to save your data, enter a name for the file, and click Save.   

Results in Map Form 

To save a map for use in another mapping application, navigate to the map and right-click 

on the ‘US counties’ data in the legend panel and then click Data… Export Data.  In the 

following window, browse to the file location where you want to save your data, enter a 

file name, and select ‘.shp’ in the ‘Save as type:’ drop-down menu.  Click Save and 

COBRA will save the file.   

To save the map as an image, click the ‘Print’ button in the toolbar.  In the following 

window, click File… Save.  Then browse to the file location where you want to save 

your data and select ‘DotSpatial Layout File’ or ‘Portable Network Graphics’ in the 

‘Save as type’ drop-down box.  You can then enter a name for the file in the box above 

(e.g., type ‘Penn Utility Reduction 2023 - 3%’). Click Save and COBRA will save the 

file.   
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CHAPTER 3.  Baseline Data 
 

Click on the 1. Select Analysis Year tab to select an analysis year.   

Basic Options 

The COBRA model contains detailed 2016, 2023, and 2028 baseline emissions data for 

every county in the U.S., by state, county, tier category, and pollutant type (see Appendix 

A for details on the baseline data).  It is recommended that new COBRA users start by 

using the default 2016, 2023, and 2028 baseline emissions database.  To use the 2023 

default emissions, go to the Basic Options tab, select 2023 in the “Select analysis year” 

drop down menu, and click Apply selected analysis year.  COBRA will automatically 

use the population, baseline health incidence, baseline emissions, and health impact 

valuation datasets that correspond to the analysis year you select. 

Advanced Options 

Users can also import custom datasets for population, baseline health incidence, baseline 

emissions, health effect functions, and health impact valuation.   

Custom Baseline Emissions 

There are two ways for users to import custom emissions: (1) load a file containing only 

baseline emissions or (2) load a file containing emissions for both the baseline and your 

control scenario.  It is important for input files to correspond to the same year, so if you 

choose to import custom baseline emissions data for a year that is not preloaded, you 

would also want to modify population data and incidence data to represent that same 

year.  For example, running COBRA with a 2023 baseline emissions inventory, 2023 

population data, and 2023 incidence data would result in COBRA estimating 2023 health 

benefits.  However, running COBRA with a 2020 baseline emissions inventory and 2023 

population and incidence data would result in theoretical annual health benefits that do 

not correspond to any calendar year. Alternatively, running COBRA with a projected 

emissions inventory for 2030 and the default 2023 population and incidence data would 

assume that population and incidence are constant from 2023 to 2030. 

COBRA requires that imported baseline emission files be in a specific format.  To create 

a properly formatted custom baseline emissions file, create a CSV file with the column 

headings shown in Exhibit 2.  Each row of the file should correspond to a different source 

in a different county. 
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Exhibit 2.  Format of Baseline Emissions File. 

Column Heading Description of Column Headings 

typeindx1 Stack height associated with the emission 

sourceindx2 Source index, which COBRA uses in its source receptor model 

stid FIPS state ID (e.g., the state FIPS code for Pennsylvania is 42) 

cyid FIPS county ID (e.g., the county FIPS code for Swarthmore, PA is 045) 

TIER13 Emissions category to which emissions source corresponds, at tier 1 level 

TIER23 Emissions category to which emissions source corresponds, at tier 2 level 

TIER33 Emissions category to which emissions source corresponds, at tier 3 level 

NO2 NOx emissions from each source in the baseline 

SO2 SO2 emissions from each source in the baseline 

NH3 NH3 emissions from each source in the baseline 

PM25 Primary PM2.5 emissions from each source in the baseline 

VOC VOC emissions from each source in the baseline 

Notes: 
1 A table of typeindx and name is saved on your computer after installing COBRA in the default location, 

in C:/Program Files/COBRA/input files/data dictionary/typeindx – stack heights.csv. 
2 A table of sourceindx and FIPS is saved on your computer after installing COBRA in the default location, 

in C:/Program Files/COBRA/input files/data dictionary/SOURCEINDX to FIPS crosswalk.csv. 
3 A table of tier definitions and tier numbers is saved on your computer after installing COBRA in the 

default location, in C:/Program Files/COBRA/input files/data dictionary/EmissionsTier Definitions.csv. 

To see the template for a baseline emissions file, navigate to the folder where you 

installed COBRA – the default location is C:/Program Files/COBRA/.  From there, 

navigate to input files/emissions/Emissions_2023.csv.  This is the default COBRA 2023 

emissions baseline, so do not make any changes directly to this file.   
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To import custom baseline datasets, click on the Advanced Options tab at the top of the 

1. Select Analysis Year screen.  To import a properly formatted baseline emissions file 

into COBRA, click Load a Baseline Emissions CSV File.  In the pop-up window, 

navigate to the location of your baseline emissions CSV file, click the file, and then click 

Open.  If you try to import a baseline emissions file that is incorrectly formatted, 

COBRA will display an error message that an “unhandled exception has occurred in your 

application.” 

To create a properly formatted file with both custom baseline and control scenario 

emissions, create a CSV file with the headings shown in Exhibit 3.  Each row of the file 

should correspond to a different source in a different county. 

Exhibit 3.  Format of Baseline and Scenario Emissions File 

Column Heading Description of Column Headings 

typeindx1 Stack height associated with the emission 

sourceindx2 Source index, which COBRA uses in its source receptor model 

stid FIPS state ID (e.g., the state FIPS code for Pennsylvania is 42) 

cyid FIPS county ID (e.g., the county FIPS code for Swarthmore, PA is 045) 

TIER13 Emissions category to which emissions source corresponds, at tier 1 level 

TIER23 Emissions category to which emissions source corresponds, at tier 2 level 

TIER33 Emissions category to which emissions source corresponds, at tier 3 level 
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Column Heading Description of Column Headings 

BASE_NO2 NOx emissions from each source in the baseline 

BASE_SO2 SO2 emissions from each source in the baseline 

BASE_NH3 NH3 emissions from each source in the baseline 

BASE_PM25 Primary PM2.5 emissions from each source in the baseline 

BASE_VOC VOC emissions from each source in the baseline 

CTRL_NO2 NOx emissions from each source in the control scenario 

CTRL_SO2 SO2 emissions from each source in the control scenario 

CTRL_NH3 NH3 emissions from each source in the control scenario 

CTRL_PM25 Primary PM2.5 emissions from each source in the control scenario 

CTRL_VOC VOC emissions from each source in the control scenario 

TIER1NAME Name of emissions category to which emissions source corresponds, at tier 1 

level 

TIER2NAME Name of emissions category to which emissions source corresponds, at tier 2 

level 

TIER3NAME Name of emissions category to which emissions source corresponds, at tier 3 

level 

FIPS FIPS state-county ID (e.g., the state FIPS code for Pennsylvania is 42 and the 

county FIPS code for Swarthmore, PA is 045, so the state-county FIPS ID is 

42045) 

STATE State 

COUNTY County 

TYPE Type denotes the stack height associated with the emission 

Notes: 
1 A table of typeindx, type, and name is saved on your computer after installing COBRA in the default 

location, in C:/Program Files/COBRA/input files/data dictionary/typeindx – stack heights.csv. 
2 A table of sourceindx and FIPS is saved on your computer after installing COBRA in the default location, 

in C:/Program Files/COBRA/input files/data dictionary/SOURCEINDX to FIPS crosswalk.csv 
3 A table of tier definitions and tier numbers is saved on your computer after installing COBRA in the 

default location, in C:/Program Files/COBRA/input files/data dictionary/EmissionsTier Definitions.csv 

To see an example baseline and control scenario emissions file, navigate to your 

Documents folder in Windows. From there, navigate to input files/emissionscenarios/ 

2023_50PCTReduction_scenario_sample.csv.  
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To import a properly formatted baseline and control emissions CSV file into COBRA, 

click Load a Baseline Control Scenario Emissions CSV File.  In the pop-up window, 

navigate to the location of your baseline emissions CSV file, click the file, and then click 

Open.   

Custom Population, Incidence, and Valuation Datasets 

The Advanced Options tab allows users to select customized input files for population 

data, incidence data, and valuation functions.  Note that baseline emissions, population, 

incidence, and valuation functions vary over time.  It is important for input files to 

correspond to the same year. For example, running COBRA with a 2023 baseline 

emissions inventory, 2023 population data, and 2023 incidence data would result in 

COBRA estimating 2023 health benefits. However, running COBRA with a 2023 

baseline emissions inventory and 2020 population data would result in theoretical annual 

health benefits that do not correspond to any calendar year. Alternatively, running 

COBRA with a projected emissions inventory for 2030 and the default 2023 population 

and incidence data would assume that population and incidence are constant from 2023 to 

2030. 

 

COBRA requires that customized input files be in a specific format. To create a properly 

formatted population dataset, create a CSV file where each row is a different county and 

includes the columns listed in Exhibit 4. 

Exhibit 4.  Format of Population File 

Column Heading Description of Column Headings 

Year Year of population data 
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Column Heading Description of Column Headings 

DestinationID1 DestinationID uses same pattern as SOURCEINDX to indicate destination 

locations. 

FIPS FIPS state-county ID (e.g., the state FIPS code for Pennsylvania is 42 and the 

county FIPS code for Swarthmore, PA is 045, so the state-county FIPS ID is 

42045) 

Age0 Population at age 0 

… Population at each age 

Age99 Population older than or equal to 99 

 
1 See data dictionary file that is saved on your computer after installing COBRA in the default location, in 

C:/Program Files/COBRA/input files/data dictionary/SOURCEINDX to FIPS crosswalk.csv 
 

To create a properly formatted incidence dataset, create a CSV file where each row is a 

different county and includes the columns listed in Exhibit 5. 

Exhibit 5.  Format of Incidence File 

Column Heading Description of Column Headings 

Year Year of population data 

DestinationID1 DestinationID uses same pattern as SOURCEINDX to indicate destination 

locations. 

FIPS FIPS state ID (e.g., the state FIPS code for Pennsylvania is 42 and the county 

FIPS code for Swarthmore, PA is 045, so the state-county FIPS ID is 42045) 

Endpoint Written descriptor indicating health endpoint associated with the recorded 

incidence rate. (e.g., Acute Bronchitis) 

Age0 Incidence of a specific endpoint for population at age 0 

… Incidence of a specific endpoint for population at each age 

Age99 Incidence of a specific endpoint for population older than or equal to 99 
1 See data dictionary file that is saved on your computer after installing COBRA in the default location, in 

C:/Program Files/COBRA/input files/data dictionary/SOURCEINDX to FIPS crosswalk.csv 
 

To create a properly formatted valuation functions dataset, create a CSV file where each 

row represents a concentration-response function from a single study for a specific age 

group and includes the columns described in Exhibit 6.  

Exhibit 6. Format of Valuation Functions File. 

Column Heading Description of Column Headings 

CRFunctionID ID for C-R functions (linked to the health effect function file) 

Endpoint String descriptor indicating Endpoint for the Valuation function. 
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Column Heading Description of Column Headings 

PoolingWeight Functions are pooled accounting to Endpoint. PoolingWeight indicates the 

relative weight given to this function. 

Seasonal_Metric Daily or Annual are allowable entries. Indicate if computed effect is for a day 

or an entire year. 

Study_Author Study Author 

Study_Year Study Year 

Start_Age Beginning of age range to which health impact function applies 

End_Age End of age range to which health impact function applies 

Function Functional form that is to be computed. (e.g., (1-(1/((1-

Incidence)*Exp(Beta*DELTAQ)+Incidence)))*Incidence*POP) 

Beta Beta parameter supplied to functional form. 

Adjusted Not used 

Parameter_1_Beta Parameter_1_Beta parameter supplied to functional form. 

A A parameter supplied to functional form. 

Name_A Description of A parameter. 

B B parameter supplied to functional form. 

Name_B Description of B parameter. 

C C parameter supplied to functional form. 

Name_C Description of C parameter. 

Cases Not used 

HealthEffect Use same as IncidenceEndpoint 

ValuationMethod Note of valuation method used. 

valat3pct Valuation of health endpoint using 3% discount rate 

valat7pct Valuation of health endpoint using 7% discount rate 

IncidenceEndpoint Indicates Endpoint to use for lookup in Incidence data set. 

 

Custom Health Effect Function Datasets 

The Advanced Options tab allows users to select customized health effect function 

datasets. The default health dataset in COBRA relies on an up-to-date assessment of the 

published scientific literature to ascertain the relationship between particulate matter and 

adverse human health effects, and can be used for all analysis years.  Because of this, 

most users will not want to modify this input.  If you use custom datasets to describe 

health effect functions, please list the sources of these datasets and any assumptions used 

to generate them when reporting your results. 
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If you do choose to import a custom health effect function dataset, COBRA requires that 

this file be in a specific format. To create a properly formatted health effect functions 

dataset, create a CSV file where each row represents a concentration-response function 

from a single study for a specific age group and includes the columns listed in Exhibit 7. 

 

Exhibit 7. Format of Health Effect Functions File. 

Column Heading Description of Column Headings 

FunctionID ID for C-R functions (linked to the valuation function file) 

Endpoint String descriptor indicating endpoint for the Health/Concentration-Response 

function. 

PoolingWeight Functions are pooled accounting to Endpoint. PoolingWeight indicates the 

relative weight given to this function. 

Seasonal_Metric Daily or Annual are allowed entries. Indicate if computed effect is for a day 

or an entire year. 

Study_Author Study Author 

Study_Year Study Year 

Start_Age Beginning of age range to which health impact function applies 

End_Age End of age range to which health impact function applies 

Function Functional form that is to be computed. (e.g., (1-(1/((1-

Incidence)*Exp(Beta*DELTAQ)+Incidence)))*Incidence*POP) 

Beta Beta parameter supplied to functional form. 

Adjusted Not used 

Parameter_1_Beta Parameter_1_Beta parameter supplied to functional form. 

A A parameter supplied to functional form. 

Name_A Description of A parameter. 

B B parameter supplied to functional form. 

Name_B Description of B parameter. 

C C parameter supplied to functional form. 

Name_C Description of C parameter. 

Cases Not used 

IncidenceEndpoint Indicates Endpoint to use for lookup in Incidence data set.  

 

 

Exploring Baseline Emissions Data  

You can explore the geographic distribution of pollutant concentrations in the baseline 

scenario by clicking on the 2. Create Emissions Scenario tab and then clicking on the 

View Emissions Map tab.  
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At the top of this screen, you will see a drop-down menu labeled ‘Select the field that is 

to be mapped.’ The first five options listed (Base NH3, Base NO2, Base PM2.5, Base 

SO2, and Base VOC) correspond to the baseline emissions of ammonia (NH3), nitrogen 

oxides (NOx), fine particulate matter (PM2.5), sulfur dioxide (SO2), and Volatile Organic 

Compounds (VOCs), respectively, from all sectors. Select any of these emissions to view 

a map of county-level baseline emissions. See Chapter 6 for more details on how to use 

COBRA’s mapping functionality.  
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CHAPTER 4.  Creating a New Emissions Scenario 
 

COBRA allows users to define new emissions scenarios and investigate the related 

changes in air quality and health effects. The scenario definition, results tables, and 

results maps can be exported for future use or archiving purposes.   

The steps to creating a new scenario within the COBRA interface are simple: 

Step 1. Select the Analysis Year and Baseline Data.  See Chapter 3. 

Step 2a. Select the Geography and Tier Level.  You can specify emissions 

changes at the national, state, or county level from fourteen emission source 

categories. 

Step 2b. Enter Emissions Changes. Changes can be made for each state or 

county, or the entire nation. You can group states and counties and make changes 

to them together, or make different changes to different geographic areas. 

Step 3. Run the Scenario. COBRA will calculate the changes in ambient PM2.5 

between your selected baseline scenario and the new control scenario, and 

calculate the associated changes in health effects and monetary impacts. 

Step 4. Examine the results. See Chapter 5. 

Selecting Scenario Geography  

To define your scenario, click the 2. Create Emissions Scenario tab and then the 

Emissions Scenario tab.  In the top left panel you can select the geographic area(s) to 

which you want to apply emissions changes. Note that once your comparison is run, you 

will be able to see results (changes in 

ambient PM2.5 levels and health effects) 

for the entire country.  Click on the 

appropriate choice in the left panel. 

 US. If you wish to make emissions 

changes to the entire United States, 

select ‘US.’ 

 Individual State. If you wish to make emissions changes to just one state, click 

that state. 

 Individual County. If you wish to make emissions changes to just one county, 

click that county.  

The geographic areas you select determine 
where your emissions changes are made. 
Your selection does not affect the geographic 
area for which you can view results. 
Regardless of the geographic area you select 
for emissions changes, you can view results 
for the entire country. 
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 Multiple Geographic Areas. If you wish to make the same emissions changes to 

multiple geographic areas, click the check box next to each of those geographic 

areas in the ‘Tier and Location Selection’ panel.  It is possible to select multiple 

states (e.g., all of California and Oregon), multiple counties (e.g., Dade County, 

Florida and Broward County, Florida), and combinations of states and counties 

(e.g., all of Massachusetts and Providence County, Rhode Island). 

The ‘Pollutants’ panel in the top center of your screen will show the total baseline 

emissions for all the selected geographic areas.   

When you apply an emissions change to multiple geographic areas as a percentage, your 

control scenario will consist of emissions in each county in the selected areas changing 

by that same percentage.  When you apply an emissions change to multiple geographic 

areas in tons, your control scenario will consist of emissions in each county in the 

selected areas changing by different amounts that add up to the input total emissions 

change.  COBRA divides the total emissions change across counties in proportion to the 

baseline emissions. For example, using the 2023 analysis year, if you input a 100 ton 

reduction in SO2 emissions in the Fuel Combustion: Industrial tier in Florida, this would 

correspond to SO2 emissions decreases in Alachua County in the Fuel Combustion: 

Industrial tier by 0.052 tons, emissions in Baker County would decrease by 0.02 tons, 

etc., so that the sum of the SO2 emission reductions across all Florida counties is 50 tons. 

If you have decided to apply different changes to different geographic areas categories, 

you will need to select the geographic area, select the tier level, and define the scenario 

emissions separately for each geographic area. 

Selecting Tier Level  

Next, define the categories of emissions affected.  The center panel contains a directory 

tree with all the tier 1, 2, and 3 source categories (see Appendix A for a list of source 

categories and their emissions). You can define emissions changes at any level, but each 

level always includes all the levels indented underneath it.  Click the tier at which you 

would like to apply your emissions changes.  A change entered for a tier category applies 

to all of the branches under it, but you must enter changes individually for tier categories 

on separate branches.  

Defining Scenario Emissions 

After you have selected your tier and geographic area, you can create a new emissions 

scenario by defining changes to the baseline emissions scenario.  This can either be done 

manually or by uploading an AVERT emissions change data file if you have EPA 

AVERT model outputs you would like to use.   
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Manually Entering Emissions Changes 

To manually enter the changes to the baseline emissions, use the boxes in the right panel 

for each of the five pollutants potentially emitted by sources in that category. You can 

enter emissions increases or decreases by percent or by tons. To the right of the boxes 

you will see the total emissions for your selected tier and geographic area for the baseline 

and control scenarios.  If your emissions scenario attempts to reduce emissions by more 

than exists in the baseline emissions inventory (e.g., if the SO2 emissions baseline for 

Fuel Combustion: Electric Utilities in California is 4,065 tons and you try to reduce those 

emissions by 4,100 tons), you will get the error message “Please make sure you do not try 

to reduce emissions by more than actually present in the baseline.”  Click Apply 

Changes to save your changes.  

Once your emissions changes are entered for a given tier and location, you can go back 

and change them by selecting that tier and geographic location again in the directory 

trees. The emissions baseline and your previously saved control scenario changes will be 

displayed in the right panel.  To overwrite your previously saved control scenario for that 

tier and location, enter your new emissions changes and click Apply Changes. 

If you have decided to apply different changes to different geographic areas categories, 

click the Clear Selected States or Counties button and repeat the above steps for each 

geographic area.  For example, if you want to decrease all California Off-Highway SO2 

emissions by 25% and all Oregon Off-Highway SO2 emissions by 15%, you would have 

to enter the California emissions change, click Apply Changes, click Clear Selected 

States or Counties, enter the Oregon emissions change, and click Apply Changes again. 

Importing Emissions Changes from AVERT 

EPA’s AVoided Emissions and geneRation Tool (AVERT) estimates displaced emissions 

(at the county, state, and regional levels) at electric power plants due to renewable energy 

or energy efficiency projects, policies, or programs.  After running a renewable energy or 

energy efficiency scenario in AVERT, users can use the AVERT tool to generate a text 

file for input to COBRA that summarizes the emissions changes that result from that 

scenario.  To access AVERT or to see AVERT output file generation instructions, 

available in EPA’s AVERT user manual, go to 

https://www.epa.gov/statelocalenergy/avoided-emissions-and-generation-tool-avert.   

Once the AVERT output file is generated, it can be imported directly into COBRA by 

clicking the “Load AVERT output file” button in the 2. Create Emissions Scenario tab 

in COBRA. The emissions reductions from each county from AVERT will be loaded into 

COBRA in the “Fuel Combustion: Electric Utilities” tier. 

If you have entered any emissions changes in the user interface before loading an 

AVERT emissions scenario file, loading the AVERT file will make COBRA overwrite 

https://www.epa.gov/statelocalenergy/avoided-emissions-and-generation-tool-avert
https://www.epa.gov/statelocalenergy/avoided-emissions-and-generation-tool-avert
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emissions changes in the Fuel Combustion: Electric Utilities tier for the counties included 

in the AVERT file. Other tiers and counties will be unaffected.  

 

The text file that AVERT generates is already formatted to directly import into COBRA 

without any modifications.  If you choose to edit the AVERT output file, please make 

sure to maintain the original column headings and file format (example file shown 

below), such that each row summarizes the emissions reductions in tons for a given 

county and tier 1 category. 
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Note that you can paste the results from multiple AVERT runs into a single text file and 

import it into COBRA. If there are any duplicate counties in the text file, COBRA will 

sum the emissions reductions before importing the file.  

After loading the AVERT emissions scenario, it is possible to manually input additional 

emissions changes in other counties or tiers. In other words, you can still adjust other 

tiers besides the “Fuel Combustion: Electric Utilities” tier, such as the “Highway 

Vehicles” tier. You can also enter emissions changes in the “Fuel Combustion: Electric 

Utilities” tier for counties not included in the AVERT output file. However, if you try to 

manually adjust the emissions changes in the “Fuel Combustion: Electric Utilities” tier 

for a county included in the AVERT output file, this will overwrite the emissions changes 

from the AVERT output.  

In rare cases output from AVERT may call for more emission reduction in a given county 

than what is in the baseline in COBRA for that county in the “Fuel Combustion: Electric 

Utilities” tier. In these cases COBRA sets the “Fuel Combustion: Electric Utilities” 

emissions to 0 in that county. 

 

Reviewing Scenario Definition 

You can review your scenario definition by looking at the table in the View Detailed 

Emissions Changes tab.  This will display all of your changes by state, county, and tier 

category. If the scenario is acceptable and you wish to save it for future reference, click 

on the Emissions Scenario tab and then click the Save Scenario button in the top right 

panel of the screen. This will export a comma-delimited file that contains the same 

information as shown in the View Detailed Emissions Changes table. Exporting this file 

is useful if you export any other tables from the results tabs; at a later date you will have 

a reference for what the results tables and maps are based on. 

Running Scenario  

When you have made all of your desired changes, navigate to the 3. Execute Run tab. 

This tab asks you to choose a discount rate for the COBRA session. The discount rate 

you select is used to express future economic values in present terms. Not all health 

effects and associated economic values occur in the year of analysis. Therefore, COBRA 

accounts for the ‘time value of money’ preference (i.e., a general preference for receiving 

economic benefits now rather than later) by discounting benefits received later. Based on 

EPA’s Guidelines for Preparing Economic Analyses (U.S. EPA, 2010a), it is 

recommended that COBRA users calculate monetized health benefits using both 3 and 7 

percent discount rates and then evaluate whether the overall outcome of the analysis is 

It is also possible to enter a custom scenario definition that is not generated by AVERT into 
COBRA as a CSV.  See the Advanced Options section of Chapter 3 for further instructions on 
this scenario definition method. 
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affected by the choice of discount rate. For more details on discount rates, see Appendix 

F. 

After selecting a discount rate, click Run using above options. 

 

The time to generate your results will vary, depending on the speed of your computer. 

COBRA may stop responding while it runs, and it may take 5 to 15 minutes to generate 

results.  Once the results are generated, COBRA will navigate to the 4. View Health 

Effects and Valuation Results tab, where you can view the results of your run (see 

Chapter 5). 
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CHAPTER 5.  Viewing Results 

Viewing Results in Table Form  

Once you have defined your new scenario (called the control scenario) and run the 

comparison between the baseline and your scenario, you can view the results: changes in 

air quality and health effects between the baseline and control scenarios.  You can view 

results in table form in the Table tab or in map form in the Map tab. 

The Table tab describes the changes in air quality (i.e., particulate matter concentration) 

between the baseline emissions scenario and your scenario (the control scenario), and the 

corresponding changes in health effects (incidence and monetized values). Note that if 

you have run a state-specific scenario, changes in air quality for other states will typically 

decrease as the distance from the state increases, since the emissions changes were only 

made there. You can navigate through the table data in several ways: 

 Scroll through the data using the scroll bar on the right and bottom of the 

window.   

 Change the sort order by clicking on the heading of any column.  Click once to 

sort from smallest to largest and click twice to sort from largest to smallest. 

 Filter column variables by clicking on the filter button at the top of any column.  

You can use this functionality to filter down to a specific state and county. 

 Change the column order by clicking on the column name and dragging it to a 

new position. When you see a black line, you can drop the column there.  Note 

that the sort order of the table will not change.  

 Change the width of a column by moving your mouse to the column header and 

pointing to the dividing line between two columns. The mouse cursor will change 

to two arrows, indicating that you can drag the column line to condense or expand 

the column.   

 View totals by navigating to the top or bottom of the table. If you filter the table, 

the totals row will adjust in real time to display the totals for all values that are 

currently visible. For example, if you have not filtered the table, the totals row 

will show total health effects for the entire United States. If you have filtered the 

table to only show results for a specific state, the totals row will show total health 

effects for that state. 

For each county, the table lists the annual average PM2.5 concentration for the control 

scenario and the baseline scenario, as well as the change between the two scenarios 

(Delta PM2.5) in units of micrograms per cubic meter (µg/m3). The table also displays the 
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change in the number of cases for each health effect between the baseline emissions 

scenario and your scenario. These changes are derived using the health impact functions 

described in Appendix C. The table also displays an estimate of the economic value of 

the change in the number of cases for each health effect. For more information, see 

Appendix F. Exhibit 8 describes the health endpoints and valuations that are included in 

the health effects tables in COBRA. 

Exhibit 8. Description of Health Effects and their Economic Values 

Health Effect Description 

Mortality (low estimate) 
Low estimate of the number of deaths, based on Krewski et al. 

(2009) 

$ Mortality (low estimate) 
Low estimate of the economic value of the number of deaths, using 

Krewski et al. (2009) and a discount rate of 3% or 7% 

Mortality (high estimate) 
High estimate of the number of deaths, based on Lepeule et al. 

(2012) 

$ Mortality (high estimate) 
High estimate of the economic value of the number of deaths, using 

Lepeule et al. (2012) and a discount rate of 3% or 7% 

Infant Mortality Number of infant deaths 

$ Infant Mortality Economic value of the number of infant deaths 

Nonfatal Heart Attacks (low 

estimate) 

Low estimate of the number of non-fatal heart attacks, based on four 

acute myocardial infarction (AMI) studies 

$ Nonfatal Heart Attacks 

(low estimate) 

Low estimate of the economic value of non-fatal heart attacks, based 

on four AMI studies and a discount rate of 3% or 7% 

Nonfatal Heart Attacks (high 

estimate) 

High estimate of the number of non-fatal heart attacks, based on 

Peter et al. (2001) 

$ Nonfatal Heart Attacks 

(high estimate) 

High estimate of the economic value of non-fatal heart attacks, using 

Peter et al. (2001)  and a discount rate of 3% or 7% 

Hospital Admits, All 

Respiratory 
Number of respiratory-related hospitalizations 

Hospital Admits, Asthma Number of asthma-related hospitalizations 

Hospital Admits, Chronic 

Lung Disease 
Number of hospitalizations related to chronic lung disease 

$ Hospital Admits, All 

Respiratory 

Economic value of respiratory-related hospitalizations (total across 

respiratory-related, asthma-related, and chronic lung disease 

hospitalizations) 

Hospital Admits, 

Cardiovascular (except heart 

attacks) 

Number of cardiovascular-related hospitalizations (ICD codes 390-

409, 411-429); ICD code 410 (nonfatal heart attacks) is counted only 

in ‘Non-fatal Heart Attacks’ 
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Health Effect Description 

$ Hospital Admits, 

Cardiovascular 
Economic value of cardiovascular-related hospitalizations 

Acute Bronchitis Cases of acute bronchitis 

$ Acute Bronchitis Economic value of acute bronchitis cases 

Upper Respiratory 

Symptoms 

Episodes of upper respiratory symptoms (runny or stuffy nose; wet 

cough; and burning, aching, or red eyes) 

$ Upper Respiratory 

Symptoms 
Economic value of episodes of upper respiratory symptoms 

Lower Respiratory 

Symptoms 

Episodes of lower respiratory symptoms: cough, chest pain, phlegm, 

or wheeze 

$ Lower Respiratory 

Symptoms 
Economic value of episodes of lower respiratory symptoms 

Emergency Room Visits, 

Asthma 
Number of asthma-related emergency room visits 

$ Emergency Room Visits, 

Asthma 
Economic value of asthma-related emergency room visits 

Minor Restricted Activity 

Days 

Number of minor restricted activity days (days on which activity is 

reduced, but not severely restricted – e.g., missing work or being 

confined to bed is too severe to be MRAD). 

$ Minor Restricted Activity 

Days 
Economic value of minor restricted activity days 

Work Loss Days Number of work days lost due to illness 

$ Work Loss Days Economic value of work days lost due to illness 

Notes: * For adult mortality and nonfatal heart attacks, COBRA contains multiple health impact functions 

that relate PM2.5 and each health effect. Therefore, there are high and low estimates of the cases avoided 

and their economic values for each of these health effects. More details on the underlying health impact 

functions are available in Appendix C of the user manual. In addition, future costs are calculated using a 

discount rate (3% or 7%) that you selected before running the scenario. 

The health effects table includes low and high estimates for the changes in the number of 

cases and the corresponding economic values for adult mortality and non-fatal heart 

attacks. The low and high estimates are derived using two sets of assumptions about the 

sensitivity of adult mortality and non-fatal heart attacks to changes in ambient PM2.5 

levels. Specifically, the high estimates are based on studies that estimated a larger effect 

of changes in ambient PM2.5 levels on the incidence of these health effects. The low and 

high estimates for each of these values are derived as follows: 

 Adult Mortality. EPA (2009) used two studies when analyzing proposed NO2 

National Ambient Air Quality Standards; EPA presented the results separately for 
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each study. Following EPA, COBRA reports the results of two health impact 

functions that relate PM2.5 and mortality: Krewski et al. (2009) and Lepeule et al. 

(2012). In the health effects table, Adult Mortality (Low) and $ Adult Mortality 

(Low) represent estimates of adult deaths avoided and their economic value, 

respectively, based on Krewski et al. (2009). Adult Mortality (High) and $ 

Adult Mortality (High) represent estimates of adult deaths avoided and their 

economic value, respectively, based on Lepeule et al. (2012). More details on 

these two studies are available in Appendix C of the user manual. 

 Nonfatal Heart Attacks. COBRA calculates two estimates of the non-fatal heart 

attack cases avoided (Nonfatal Heart Attacks) and their economic value ($ 

Nonfatal Heart Attacks). The low estimate is based on Peter et al. (2001), while 

the high estimate is based on pooling of the effect estimates of the following four 

studies: Sullivan et al. (2005), Pope et al. (2006), Zanobetti et al. (2009), and 

Zanobetti & Schwartz (2006). More details on the studies are available in 

Appendix C of the user manual. 

The value in each health effects column represents the total change in the number of 

cases of each health endpoint in a county. A value of 3.00 in the Adult Mortality (low) 

column, for instance, indicates that in your scenario there would be an estimated 3 fewer 

cases of premature mortality compared to the baseline emissions scenario over the 

following 20 years. Note, however, that a negative number signifies an increase in cases. 

Therefore, - 3.00 in the Adult Mortality (low) column indicates that in your scenario there 

would be 3 additional cases of premature mortality  over the following 20 years 

compared to the baseline emissions scenario. 

 

All health effects are monetized. However, to prevent double-counting, the calculation of 

asthma exacerbations only includes asthma effects occurring in children aged 6 to18 

years. This approach follows the recommendations of EPA’s Science Advisory Board 

Health Effects Subcommittee (SAB-HES) for valuing asthma exacerbations, as described 

in the benefits analysis for the 2006 Regulatory Impact Analysis for the revised PM2.5 

National Ambient Air Quality Standard (U.S. EPA, 2006). Studies of the general 

population include asthmatics, so estimates based solely on the adult asthmatic 

population cannot be directly added to the general population numbers without double-

counting. Instead, asthma exacerbations occurring in adults were assumed to be 

accounted for in health effects for the general population, such as WLDs and MRADs 

Interpreting positive and negative results: 
In the health effects table, positive numbers indicate reductions in the number of cases of 
adverse health effects and the associated monetary benefits of your scenario. Negative numbers 
signify increases in the number of cases of health effects and the resulting costs. 
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(U.S. EPA, 2006). Since the health effects for the general population do not include 

asthma effects in children, the analysis of asthma exacerbations for children does not lead 

to double-counting (see Appendix C for details). 

Viewing Results in Maps Form 

The Map tab displays the results of your scenario geographically. The left ‘Select the 

field that is to be mapped:’ drop-down menu allows you to change the values shown on 

the map. You can display the change in PM2.5 between your scenario and the baseline 

emissions (the same values shown as ‘Delta PM2.5’ in the Table tab), or any of the health 

endpoints included in the model. The values displayed for each health endpoint are the 

change in the number of cases (or deaths for ‘Adult Mortality (Low)’, ‘Adult Mortality 

(High)’, and ‘Infant Mortality’) and the economic valuation of these cases from the 

scenario, as displayed in the Table tab. 

Saving Results 

To save your results for use outside of the COBRA environment, you can export the 

results tables by clicking Export to CSV in the Table tab. The maps can also be 

customized within COBRA and then exported for use in documents and presentations 

(see Chapter 6).  
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CHAPTER 6.  Using Mapping Functionality. 
 

COBRA can create maps of baseline emissions and air quality, control scenario 

emissions and air quality, changes in air quality, adverse health effects avoided, and the 

economic value of adverse health effects avoided. To view maps of baseline or control 

emissions, navigate to the 2. Create Emissions Scenario tab and click View Emissions 

Map at the top of the page. To view maps of baseline and control air quality, changes in 

air quality, adverse health effects avoided, and the economic value of adverse health 

avoided, navigate to the 4. View Health Effects and Valuation Results tab and click on 

Map tab at the top of the page. Maps of emissions can be viewed before running 

COBRA, but maps of air quality and health effects can only be viewed after running 

COBRA. 

The mapping interface works the same way in both screens. Below, we describe the 

major capabilities of the mapping tool and show how to use it for the Pennsylvania 

example described in Chapter 2. 

To create a map, select the variable you would like to map in the ‘Select the field that is 

to be mapped’ drop-down menu.  For this example, you will examine avoided work loss 

days. 

 

 

Customizing Map Appearance 

To modify the color scheme of the map, right-click ‘US Counties’ in the Legend panel 

and then click ‘Properties.’ 
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The menu that pops up has three panels.  The top left panel allows you to select the overall color 

scheme that will define the map.  The top right panel summarizes the color classification scheme 

(in this example, the shading that indicates larger numbers of avoided work loss days).  The 

bottom right panel allows you to modify the ranges (or “interval breaks”) used in the color 

classification scheme.   
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Defining Interval Breaks 

You can adjust how color intervals are defined in the bottom right panel.  In the box to 

the right of ‘Num Breaks’ (indicated in red below), enter the number of intervals you 

would like your map to have. 

 

If you select 1, all counties will be in the same interval and the map will be a single color.  

If you select 10, there will be 10 intervals that can be 10 different colors.  In this 

example, you should select 5.  Next, select how COBRA should define the intervals.  

There are four possible methods, described below. 

 Equal Frequency. This method takes the range of the values, and, using the 

number of breaks you selected, splits the range into intervals where each interval 

contains the same number of counties. Below is the map of avoided work loss 

days where intervals are defined using the equal frequency option. This is 

COBRA’s default setting. 
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 Equal Intervals. This method takes the range of the values for all counties in the 

U.S., and, using the number of breaks you selected, splits the range into equal 

intervals. Below is the map of avoided work loss days where intervals are defined 

using the equal intervals option. 

 

 Natural Breaks.  This method divides counties into groups where the values 

(e.g., for avoided work loss days) are similar within groups and less similar to 

counties in other groups (based on variance in the values).  Below is the map of 

avoided work loss days where intervals are defined using the natural breaks 

option. 
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Manual. This method allows you to manually enter the range of each interval. To 

do so, click the Graph tab in the bottom right panel.  This displays the 

distribution of values across all counties in the United States in a histogram.  The 

x-axis is the value you are mapping (in this example, work loss days avoided) and 

the y-axis is the number of counties.  The height of each rectangle is the number 

of counties with avoided work loss days within the range defined by the base of 

that rectangle.  The blue lines are the boundaries defining the intervals for your 

color scheme.  To change these boundaries, click on one of the blue lines and drag 

it to the boundary you want. 
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The method used to define a map’s interval boundaries affects the conclusions that 

are likely to be drawn from the map, so it is important that users exercise care in 

selecting interval definition schemes. In this example, you can choose to define 

intervals using the Natural Breaks method.  

Changing Color Scheme 

Navigate to the top left panel to change the map’s color scheme.  To create a simple spectrum 

that fades from one color to another color, click the RGB tab. Click the ‘Start Color’ box and 

select a color to represent the boxes with the smallest value. Then, click the ‘End Color’ box and 

select another color to represent the color with the largest value. In this example, choose yellow 

to represent counties with the smallest number of avoided work loss days and green to represent 

counties with the largest number of work loss days avoided.  
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After selecting interval breaks and deciding on a color scheme, you can review your selections in 

the top right panel. The ‘Symbol’ column shows the color that will represent all counties within 

each interval. The ‘Values’ column summarizes the definition of each interval. The ‘Count’ 

column lists the number of counties within each interval. The ‘Legend Text’ column displays the 

text that will be displayed in the legend. You can modify the legend text by double-clicking on 

the text. 

After creating the desired color scheme, click Apply. 

Modifying Map Scale 

You can zoom in or out on the map by selecting Zoom In ( ) or Zoom Out( ) in the top left 

toolbar and then clicking anywhere on the map.  You can also zoom in on a specific area by 

clicking the Zoom In tool and then drawing a box with left mouse button depressed.  To pan, 

click the Pan button ( ) and then click and drag the map to the portion you wish to view.  You 

can toggle between extents (i.e. map scales) by clicking Zoom to Previous Extent ( ) and 

Zoom to Next Extent ( ).  To zoom out to the full U.S., click Zoom to Maximum Extents (

).  To center the map at a specific location, click Zoom to Coordinates ( ) and input the 
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relevant latitude and longitude coordinates.  Because this scenario focused on emissions 

reductions in Pennsylvania, in this example you will zoom in to the Northeast United States. 

 

 

Exploring Data  

To get map information about a specific county, click the Identifier button ( ) in the top left 

toolbar and then click the county of interest. The selected county will be highlighted in teal and a 

box will pop up that contains the name of the county, the estimate for the value you are mapping 

for this county (e.g., avoided work loss days), and other identifying information for the county.  

For example, if you select Berks county, Pennsylvania you will see that the emissions reduction 

scenario will avoid about 134 work loss days in this county.  
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To select all counties that have values in a given interval (as described in the “Defining Interval 

Breaks” section above), right click on the interval in the Legend and then click ‘Select Features.’ 

 

 
 

To find counties that match some criterion, right click the ‘US Counties’ drop-down, then click 

Selection…Select by Attributes. You can fill the box with the criteria you are interested in. For 

example, if you want to see which counties have more than 20 avoided work loss days and are 
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also located in Pennsylvania (which has a state FIPS code of 4210), you can make selections from 

the ‘Field Names’ list in the upper left of the pop up box.  For this example, you would: 

 First, double-click Value from the ‘Field Names’ list, click the ‘>=’ button, and then type 

20. This sets the criterion for at least 20 avoided work loss days.  

 You would then add the criterion for counties located in Pennsylvania as follows: click 

the ‘And’ button, double-click STATEFP from the ‘Field Names’ list, click the ‘=’ 

button, and then type 42.   

Alternatively, once you are familiar with this functionality, you could simply write this equation 

in the box at the bottom of the window: “[Value]>=20 AND [STATEFP]=42”.  

 

Once you have described your selection, click Apply.  COBRA will highlight the counties that 

fit your criteria in teal. 

 

 
 

Exporting Map 

Printing or Exporting Map as Image 

To print the map or export a map as an image, click the Print button ( ) in the toolbar.  To 

modify how much space the map takes up on the page, click the map, then click the bottom right 

                                                 
10 FIPS codes uniquely identify United States counties and states.  Codes can be accessed at: 

https://www.census.gov/geo/reference/codes/cou.html.  

https://www.census.gov/geo/reference/codes/cou.html
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corner of the map and drag the rectangle. You can also click the center of the map and move it 

elsewhere on the page.  You can zoom in and out and pan using the tools in the right hand side of 

the screen.  To change the orientation of the page, click File…Page Setup then click Landscape. 

You can also add a compass, legend, scale bar, or text box from the toolbar.  To edit the text box, 

click the text box and then edit the “Text” row in the bottom right panel. For example, you can 

add a title to the map “Avoided Work Loss Days” in a text box. 

 

To save the map as an image, click File…Save As and then click Portable Network Graphics 

(*.png) from the ‘Save as type:’ drop-down menu.  To print, click File…Print. 

 
 

Exporting Map for Use in Other Mapping Software 

To export the map as a shapefile, right click ‘US Counties’ in the Legend tab.  Then click 

Data…Export Data.  Click the folder icon to navigate to the folder where you would like to 

save the map, and select ‘DotSpatial.Shapefile – Shapefiles (*.shp)’ from the ‘Save as type:’ 

drop-down menu.  Click Save. 
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Glossary  
Baseline emissions scenario: The emissions estimates for a given year in absence of a 

policy, ambient pollution levels and health impacts for that year. The baseline emissions 

scenario is compared to the control scenario when running COBRA. 

Control scenario: A hypothetical scenario that factors in user-specified emissions changes 

(to ‘control’ emissions). In COBRA, the control scenario is compared to the baseline 

scenario.  

Delta PM2.5: The difference in ambient concentrations of particulate matter that is less than 

or equal to 2.5 microns in diameter. 

Federal Information Processing Standards (FIPS) geographic codes: codes which 

uniquely identify United States counties and states.  Codes can be accessed at 

https://www.census.gov/geo/reference/codes/cou.html.  

Health impact function: An equation that calculates the change in adverse health effects 

associated with a change in exposure to air population. A typical health impact function has 

inputs specifying the change in the air pollutant, an effect coefficient (specifying the percent 

change in an adverse health effect per unit change of a pollutant), the age of the population 

affected, and the incidence rate of the adverse health effect. 

Scenario definition: A table of all edits made to the baseline emissions when defining a 

control scenario. The table can be viewed within COBRA or can be exported for future 

reference. 

Sensitivity analyses: Comparison of analyses performed with varied assumptions or 

decisions to determine whether the assumptions/decisions have a major effect on the results 

of the analysis. 

Source-receptor matrix: An air quality model built into COBRA that calculates the change 

in PM2.5 levels for any given change in emissions. Appendix A discusses this model in more 

detail. 

Tier category: Classification used by EPA for emission inventories. 

 

 

 

 

 

https://www.census.gov/geo/reference/codes/cou.html
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Appendix A: Dispersion Modeling in COBRA 
 

COBRA estimates particulate matter levels using the Phase II Source-Receptor (S-R) Matrix. 

The S-R Matrix consists of fixed transfer coefficients that reflect the relationship between annual 

average PM2.5 concentration values at a single receptor in each county (a hypothetical monitor 

located at the county centroid) and the contribution by PM2.5 species to this concentration from 

each emission source (E.H. Pechan & Associates Inc., 1994). 

Levy et al. (2003) found that an earlier version of the S-R Matrix predicted public health benefits 

that were similar to those predicted by CALPUFF, a comparatively more sophisticated model 

often used in risk assessments. Using the emission impacts from seven power plants in northern 

Georgia, Levy et al reported that the two models yielded generally similar results for sulfates or 

primary PM2.5, with somewhat greater differences for nitrates. However, they carefully noted 

that this result may differ depending on the location of the emissions, as temperature and 

humidity are important considerations in the formation of ambient particles. 

Because of the limited validation studies of the S-R Matrix, it should be treated as a screening 

tool that provides a crude estimate of the likely impact of a change in emissions on ambient 

PM2.5 levels. More sophisticated atmospheric dispersion models should be used to obtain 

detailed estimates of ambient air quality changes. 

The sections below summarize the development of the S-R matrix and the steps taken to apply 

the matrix in COBRA in order to derive the changes in air quality resulting from changes in 

emissions. 

Development of the S-R Matrix 

 
The S-R matrix is based on the Climatological Regional Dispersion Model (CRDM), which uses 

assumptions similar to the Industrial Source Complex Short Term model (ISCST3), an EPA-

recommended short range Gaussian dispersion model (U.S. EPA, 1995). The CRDM 

incorporates terms for wet and dry deposition of primary and secondary species that constitute 

PM2.5 and uses meteorological summaries (annual average mixing heights and joint frequency 

distributions of wind speed and direction) from 100 upper air meteorological sites throughout 

North America. This analysis employs meteorological data collected in 1990. 

Relative to more sophisticated and resource-intensive three-dimensional modeling approaches, 

the CRDM does not fully account for all the complex chemical interactions that take place in the 

atmosphere in the secondary formation of PM2.5. Instead it relies on more simplistic species 

dispersion–transport mechanisms supplemented with chemical conversion at the receptor 

location. 

The CRDM uses Turner’s sector-average approach (Turner, 1970), a probabilistic method in 

which relative frequencies of occurrence of combinations of wind and stability conditions at the 

emissions source are used to calculate the relative frequencies of transport in various sectors. 
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This method is recommended for the estimation of long-term average pollutant concentrations 

(E.H. Pechan & Associates Inc., 1997).  

The pollutant concentration in a destination sector is estimated as follows: 

 (1) 

where: 

 = atmospheric concentration in destination sector j at distance r 

 = pollutant mass flux at distance r 

 = sector width at distance r 

 = joint frequency of wind speed class i, wind direction j, and stability category k 

 = vertical diffusion coefficient for stability category k 

 = wind speed for wind class i 

 = effective stack height of emissions source (= 0 for ground-level sources) 

 

The sector width is calculated as: 

 (2) 

Primary emissions from a county are assumed to always impact the county source county itself 

and are evenly distributed over a square with the same area as the county. A simple box model is 

used for each combination of wind speed and stability category. The vertical diffusion 

coefficient, z, is then calculated at a downwind distance corresponding to the side of the 

square.11  These assumptions are necessary since the spatial variation of emissions within a 

county cannot be provided for a national scale model.12  

Additional adjustments are made to ensure a consistent distribution of pollutant species among 

areas in close proximity to the emissions source. Receptors at a distance less than the square root 

                                                 
11 The vertical diffusion coefficient z was calculated using a subroutine from EPA's ISC3 model. Atmospheric 

stabilities were assumed to be C class (slightly unstable) during the day and E class (slightly stable) at night. However, 

for wind speeds in excess of 6 m/s, stability was assumed to be neutral (class D). 
12 Actual measured concentrations would be expected to be higher than those modeled with these assumptions for a 

monitor located in, or generally downwind from, a portion of the county with emission densities much higher than the 

county average. On the other hand, concentrations would be expected to be lower if a monitor is located at the prevailing 

upwind edge of the county or in an area of relatively low emission density.  
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of the source area are assumed to receive the same concentration of pollutants as the source area. 

In addition, the destination sector width is constrained to be at least equal to the square root of 

the source area. 

Equation (1) is applicable to both point and area sources, either ground-level or elevated, and 

results in a Gaussian distribution of pollutant mass in the vertical dimension. However, for long-

range transport, emissions are distributed uniformly in the vertical between the top of the mixed 

layer and the ground. This occurs when the vertical diffusion parameter, z, is equal to the height 

of the mixed layer, hm. For such long-range situations, the sector–average limited mixing model 

of Turner (1970) estimates pollutant concentrations at a downward distance r from the source as: 

 (3) 

The mass flux of a directly emitted primary species at distance r from the source is a function of 

the material initially emitted, the amount chemically converted to a secondary pollutant, and the 

amount deposited by wet and dry processes during the period of transport (time t) from the 

emission point to the receptor. This is calculated by solving the relevant differential equation 

(Latimer, 1993): 

 (4) 

where: 

 = primary pollutant mass flux at transport time t 

 = initial emission rate 

 = pseudo-first-order rate constant for chemical conversion of the primary species to 

the secondary species 

 = pseudo-first-order rate constant for deposition of primary species, equal to the sum 

of the dry and wet deposition rate constants (kpd + kpw) 

 = transport time 

The mass flux of secondary pollutants is dependent upon the fraction of the primary species that 

is chemically converted in the atmosphere to the secondary species and the amount of the 

secondary species that is deposited by wet and dry deposition processes during the transport time 

t from the stack to the downwind receptor point at distance r. This is also calculated by solving 

the relevant differential equation (Latimer, 1993): 

 (5) 

where: 


ki i

kji

m

j
u

f

yh

rQ
rC

,

,,)(
)(

tkk

p
pceQtQ

)(

0)(




)(tQp

0Q

ck

pk

t

 tkktk

spc

c
s

pcs ee
kkk

Qk
tQ

)(0)(









 

 

 A - 4      June 2020 

 = mass flux of the secondary species at transport time t 

 = initial emission rate 

 = pseudo-first-order rate constant for chemical conversion of the primary species to 

the secondary species 

 = pseudo-first-order rate constant for deposition of primary species, equal to the sum 

of the dry and wet deposition rate constants (kpd + kpw) 

 = pseudo-first-order rate constant for deposition of secondary species, equal to the 

sum of the dry and wet deposition rate constants (ksd + ksw) 

 =  transport time 

The model parameters used to estimate mass flux are detailed in Exhibit A-1. Note that the 

pseudo-first-order rate constant for deposition, kp, is estimated from the dry and wet deposition 

velocities by dividing them by the mixing height (hm).  

Exhibit A-1. Pollutant-specific Model Parameters 

 PM2.5, SOA* SO2
 ** NO2 NH3 

Chemical Conversion Rate, kc (%/hr) 

[RH = relative humidity (%)] 
0 

0.5 if RH < 40 

1.5 if RH > 70 

((RH - 40)/30) + 0.5 

Otherwise 

2 0 

Dry Deposition Velocity (cm/s) 0.1 0.5 1 1 

Wet Deposition Velocity (cm/s)*** 

[P = annual precipitation rate (in.)] 
0.01 P 0.003 P 0.0003 P 0.0003 P 

* Secondary organic aerosols. 

** The chemical conversion rate for SO2 was parameterized as a function of relative humidity to account for greater 

atmospheric conversion rates in areas of the country with higher humidity. 

*** Wet deposition velocities are from (Yamartino, 1985).  

)(tQs

sk
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Details of S-R Matrix Implementation in COBRA 

In subsections below we provide the following implementation details on: (i) processing of the 

EPA’s emissions data to create COBRA emissions baseline; (ii) meteorological data sources and 

processing; (iii) generating S-R transfer coefficients; (iv) approach taken to model secondary 

PM2.5 formation (atmospheric chemistry); and (v) calibration of dispersion model outputs to the 

monitored PM2.5. 

Emissions Data 

We use emissions data from EPA’s 2016v1 Air Emissions Modeling Platform (2016v1 platform) 

to forecast ambient 2016, 2023, and 2028 PM2.5 levels in COBRA.13 The 2016, 2023, and 2028 

emissions inventories contain predicted emissions that reflect federal and state measures 

(promulgated or under reconsideration) as of May 2018.14 The 2016, 2023, and 2028 base cases 

include: 

 electrical generating unit emissions (reflecting the implementation of the Cross State Air 

Pollution Rule Update),  

 the Mercury and Air Toxics Rule (MATS), 

 the Standards of Performance for Greenhouse Gas Emissions from New, Modified, and 

Reconstructed Stationary Sources, 

 mobile emissions (reflecting changes in activity data and the impacts the Tier 3 Motor 

Vehicle Emission and Fuel Standards Rule and local inspection and maintenance 

programs), and  

 base year-specific fire data for 2016. 

In addition, we used the 2016 base case emissions inventory to help develop calibration factors 

(discussed in more detail in a later section). Exhibit A-2a, Exhibit A-2b, and Exhibit A-2c 

summarize the 2016, 2023, and 2028 emissions data for the continental U.S. that we used. 

 

  

                                                 
13 Note that 2016 county-level biogenic emissions (from plants and soil) were estimated using the county total 

annual emissions by sector (available for download at ftp://ftp.epa.gov/EmisInventory/2011v6/v2platform/reports/) 

for EPA’s 2011 Version 6.2 Air Emissions Modeling Platform. 
14 More details about the development of the 2016, 2023, and 2028 baseline emissions case are available in the 

supporting information for the 2016v1 Emissions Modeling Platform, available here: https://www.epa.gov/air-

emissions-modeling/2016v1-platform  

ftp://ftp.epa.gov/EmisInventory/2011v6/v2platform/reports/
https://www.epa.gov/air-emissions-modeling/2016v1-platform
https://www.epa.gov/air-emissions-modeling/2016v1-platform
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Exhibit A-2a. 2016 Emissions Inventory Summary, by Tier 1 (tons/year) 

 
Exhibit A-2b. 2023 Emissions Inventory Summary, by Tier 1 (tons/year) 

Tier 1 NOx SO2 PM2.5 VOC NH3 

Fuel Combustion Electric Utilities 1,213,176 1,509,524 123,023 33,346 22,301 

Fuel Combustion Industrial 962,831 367,909 179,510 105,988 15,420 

Fuel Combustion Other 521,545 85,937 346,201 373,681 62,034 

Chemical & Allied Product Manuf. 41,867 111,625 14,476 79,541 21,934 

Metals Processing 60,542 85,099 34,984 22,838 638 

Petroleum & Related Industries 593,419 80,056 25,818 2,873,249 1,404 

Other Industrial Processes 319,965 138,608 260,264 336,096 28,362 

Solvent Utilization 1,248 65 3,745 3,035,948 422 

Storage & Transport 2,960 818 15,426 661,600 3,827 

Waste Disposal & Recycling 109,378 30,976 225,040 229,311 29,399 

Highway Vehicles 3,630,548 27,559 117,758 1,852,260 100,318 

Off-Highway Vehicles 2,173,402 33,326 136,316 1,258,667 2,190 

Natural Sources 965,761 0 0 42,133,700 0 

Miscellaneous 239,994 115,256 3,723,122 3,324,005 3,700,883 

Total 10,836,636 2,586,758 5,205,683 56,320,230 3,989,132 

Tier 1 NOx SO2 NH3 PM2.5 VOC 

Fuel Combustion Electric Utilities 784,566 790,808 38,924 122,222 37,822 

Fuel Combustion Industrial 929,186 280,440 12,628 178,905 115,012 

Fuel Combustion Other 516,645 48,594 61,375 332,817 362,513 

Chemical & Allied Product Manuf. 40,321 103,924 21,555 14,802 82,224 

Metals Processing 54,640 67,825 638 35,047 22,970 

Petroleum & Related Industries 607,132 92,748 1,412 28,081 3,291,678 

Other Industrial Processes 312,538 129,497 28,311 268,509 345,611 

Solvent Utilization 1,249 65 422 3,754 3,139,345 

Storage & Transport 2,648 847 3,825 15,411 619,369 

Waste Disposal & Recycling 106,723 32,391 29,525 225,221 229,983 

Highway Vehicles 1,750,937 12,484 89,285 72,468 1,098,966 

Off-Highway Vehicles 1,694,745 38,165 2,380 96,121 987,588 

Natural Sources 965,761 0 0 0 42,133,700 

Miscellaneous 240,053 115,265 3,834,279 3,750,534 3,334,678 

Total  8,007,144 1,713,053 4,124,559 5,143,892 55,801,459 
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Exhibit A-2c. 2028 Emissions Inventory Summary, by Tier 1 (tons/year) 

Tier 1 NOx SO2 NH3 PM2.5 VOC 

Fuel Combustion Electric Utilities 766,652 808,476 42,154 121,562 37,971 

Fuel Combustion Industrial 929,420 285,579 13,078 188,424 117,610 

Fuel Combustion Other 508,511 47,450 61,127 328,496 358,818 

Chemical & Allied Product Manuf. 45,755 103,938 21,572 15,125 82,776 

Metals Processing 54,690 68,071 641 35,099 23,018 

Petroleum & Related Industries 582,205 95,879 1,419 28,339 3,420,707 

Other Industrial Processes 313,274 129,739 28,298 273,239 347,825 

Solvent Utilization 1,252 65 424 3,764 3,229,409 

Storage & Transport 2,651 849 3,827 15,426 570,872 

Waste Disposal & Recycling 106,354 32,379 29,631 225,214 230,322 

Highway Vehicles 1,246,019 11,703 87,913 58,925 836,112 

Off-Highway Vehicles 1,524,774 42,668 2,465 81,990 938,552 

Natural Sources 965,761 0 0 0 42,133,700 

Miscellaneous 240,101 115,272 3,855,188 3,763,155 3,336,351 

Total  7,287,419 1,742,068 4,147,737 5,138,758 55,664,043 

 

We estimate the formation of SOA using a fixed relationship between SOA and VOC for each 

Tier 3 emission category.15 EPA’s 2016v1 platform estimated VOC but did not estimate SOA, so 

we developed a simple approach to estimate the conversion of VOC to SOA, though this 

conversion actually depends upon a number of factors including climate and the type of VOC. 

We used the 2010 base case inventory of SOA and VOC emissions generated for the Clear Skies 

Act (CSA) of 2003 (U.S. EPA, 2003b). For each Tier 3 emission category in this inventory, we 

calculated the ratio of SOA to VOC. We then used these Tier 3 category-specific ratios to 

estimate SOA in the emissions inventory from the 2016v1 platform: 

SOA2016v1, Tier 3 = VOC2016v1, Tier 3 ∙ (
SOACSA, Tier 3

VOCCSA, Tier 3
) 

 

When modeling emission sources, we categorized them into elevated point sources and 

area/mobile sources. For each, we calculate an “effective stack” height, which takes into account 

the actual stack height, gas temperature and velocity, stack diameter, and other factors. The 

effective stack height is important as it is one of the greatest determinants16 of how far emissions 

will disperse – generally the taller the effective stack the further the emissions might travel from 

                                                 
15 The emissions inventory in COBRA has fourteen broad Tier 1 categories (e.g., on-road motor vehicles), and 

within each of these larger categories there are Tier 2 (e.g., diesels), and Tier 3 (e.g., heavy duty diesels) categories. 
16 The other determinants include wind speed and direction as well as atmospheric chemistry. 
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the source. In calculating effective stack height, we assume an average wind speed of 5 meters 

per second using the plume rise algorithm from ISCST3 (U.S. EPA, 1995). 

We group stationary point source emissions for each county into three groups based on effective 

stack height: (1) less than 250 meters, (2) 250 to 500 meters, and (3) greater than 500 meters.17 

We assume that emissions from the two groups less than 500 meters originate from the center of 

the county in which they are located. For point sources with effective stack heights greater than 

500 meters, we use their true latitude and longitude coordinates when modeling the dispersion of 

emissions.18 

Emissions from both ground-level mobile and area sources in the contiguous U.S. are combined 

at the county-level and modeled as emissions from stacks with an effective stack height of zero 

located at the source county centroid. Exhibit A-3 summarizes these emission categories. 

Exhibit A-3.  Emissions Categories for the S-R Matrix 

Emissions Category Effective Stack Height Modeled Location 

U.S. area and mobile emissions 0 m County center 

U.S. elevated point emissions 0-250 m County center 

U.S. elevated point emissions 250-500 m County center 

U.S. elevated point emissions >500 m True location 

Meteorological Data 

Meteorological variables were calculated from rawinsonde data on the NAMER-WINDTEMP 

tapes19 obtained from the National Climatic Data Center. Winds for each of 100 sites throughout 

North America were averaged for the following layers: the surface to 250 meters above ground 

level (m AGL), 250-500 m AGL, 500-1000 m AGL, 1000-2000 m AGL, and 2000-4000 m 

AGL. For each of these levels and for each of the 100 meteorological sites, a joint frequency 

distribution of wind direction (16 cardinal directions) and wind speeds (11 speeds in 1 m/s 

increments) was calculated for 1990. 

These distributions were calculated separately for the twice-daily soundings. The early morning 

soundings were assumed to be associated with the E stability category, and the late afternoon 

soundings were assumed to be associated with the C stability category. Mixing heights were 

determined from each sounding by calculating the virtual potential temperature. The annual 

                                                 
17 In a very small number of cases (0.32% of records in the emissions baseline), there are point source emissions in 

multiple stack height groups for the same Tier 3 emission category in the same county. When emissions changes are 

entered in the COBRA model for these cases, the changes are apportioned to stack height groups in proportion to the 

baseline scenario emissions. 
18 For some counties, the emissions inventory contained more than one emission source with stack height greater 

than 500m. These emission sources normally have different locations and stack heights. To create a composite 

county-level emissions source with stack height greater than 500m, we used the latitude and longitude of the source 

with the tallest stack, whereas the composite stack height was an emissions-weighted average. 
19 Refers to North America wind and temperature. These are standard data tapes for upper-air (rawinsonde) data 

collected twice daily throughout North America. Rawinsondes are radar-tracked wind balloons. 
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average afternoon mixing heights were calculated for each of the 100 meteorological sites and 

were used to calculate the upper limit of vertical diffusion (hm). The appropriate wind layer for 

concentration calculations was determined using the centroid of the diffusing plume: z for a 

ground-based plume that has not yet mixed uniformly in the vertical, H for an elevated source, 

and hm/2 for a uniformly mixed plume (E.H. Pechan & Associates Inc., 1994). 

S-R Transfer Coefficients 

The S-R matrix used in COBRA estimated the transport of the following emissions species: (1) 

directly emitted PM2.5 and secondary organic aerosols (SOA), (2) sulfur dioxide (SO2), (3) 

nitrogen dioxide (NO2), and (4) ammonia (NH3). These species were then used in the calculation 

of ambient concentrations of PM2.5. 

A matrix of source-receptor coefficients (in units of s/m3) spanning the entire contiguous U.S. 

was developed for each of the four pollutants using the CRDM. For a unique combination of 

source and receptor sites, a S-R transfer coefficient represents the incremental ambient air quality 

impact in μg/m3 at the receptor resulting from a 1 μg/s unit emission from the source. The S-R 

matrix therefore provides a link between emission reductions and resulting air quality 

concentrations. Concentration reductions that occur in proportion to a decrease in emissions at a 

source are determined by the S-R coefficients for a given source and all receptors.  

The pollutant concentration at a destination county is given by: 

 (6) 
where:  

 = Concentration of pollutant s at destination county j (μg/m3) 

 = Emission of pollutant s from emissions category c in source county i (tons/year) 

 = Transfer coefficient for pollutant s from source county i to destination county j for 

emissions category c (sec/m3) 

 = Ionic conversion factor for pollutant s 

 = Unit conversion factor (28,778 μg-year/ton-sec) 

The ionic conversion factors are molecular weight ratios used to adjust the transfer coefficients 

to reflect the concentration of precursors to secondarily-formed particulate species. Standard 

molecular weights along with the ionic conversion factors used in this analysis are given in 

Exhibit A-4 and Exhibit A-5. 
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Exhibit A-4. Standard Molecular Weights 

Species Symbol Standard molecular weight 20 

Nitrate ion NO3
- 62.0049 

Sulfate ion SO4
2- 96.0626 

Bisulfate HSO4 97.07054 

Sulfur Dioxide SO2 64.0638 

Nitrogen Dioxide NO2 46.0055 

Ammonia NH3 17.03052 

Ammonium ion NH4
+ 18.03846 

Ammonium Nitrate NH4NO3 80.04336 

Ammonium Bisulfate NH4HSO4 115.109 

Ammonium Sulfate (NH4)2SO4 132.13952 

 

Exhibit A-5. Ionic Conversion Factors 

Species Ionic conversion factor, Fs 

PM25, SOA 1 

SO2 → SO4
2- 96.0626 / 64.0638 

NO2 → NO3
- 62.0049 / 46.0055 

NH3 → NH4
+ 18.03846 / 17.03052 

Atmospheric Chemistry 

This section describes how secondary reactions are modeled in COBRA, including formation of 

ammonium bisulfate (NH4HSO4), ammonium sulfate ((NH4)2SO4), and ammonium nitrate 

(NH4NO3). Note that the COBRA treats atmospheric chemistry involved in the formation of 

these pollutants in a more simplified fashion than state-of-the-art air quality models21 (e.g., 

CALPUFF, AERMOD, CMAQ). We try to address this problem by calibrating COBRA 

modeling results to measured PM2.5 concentrations as described in later in this Appendix. 

Nevertheless uncertainty remains. 

For the atmospheric chemistry in COBRA, in the presence of sulfate (SO4
2-) and nitrate (NO3

-), 

ammonium (NH4
+) reacts preferentially with SO4

2- to form NH4HSO4 and (NH4)2SO4. NH4NO3 

is only formed under conditions of excess NH4
+ and low temperatures. In each destination 

county, the relative amounts of each secondary particle are subject to the following assumptions: 

 SO4
2- is always assumed to be a particle; 

 NO3
- is assumed to be a gas, unless is combines with NH4

+; 

                                                 
20 Standard atomic weights from Coursey, et al. (2011).  
21 See U.S. EPA (2012). 
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 NH4
+ reacts first with SO4

2-. The nature of the reaction depends on the relative amounts 

of NH4
+ and SO4

2-: 

o If there is a little NH4
+, then SO4

2- will be converted to NH4HSO4 with potentially 

some leftover SO4
2-; 

o If there is an intermediate amount of NH4
+, then a combination of NH4HSO4 and 

(NH4)2SO4 will be obtained; 

o If there is a lot of NH4
+, then SO4

2- will be completely converted to (NH4)2SO4; 

 After all reactions between NH4
+ and SO4

2- occur, any remaining NH4
+ reacts with NO3

- 

to form NH4NO3. 

Below we lay out the specifics of our approach: 

Step 1: Calculate the mole ratio of NH4
+ to SO4

2-. 

𝑅 = (NH4
+ 18.03846⁄ ) (SO4

2− 96.0626⁄ )⁄ : 

 

a) If 𝑅 < 1 then we assume that a portion of SO4
2- converts to NH4HSO4  

(SO4
2- + NH4

+ → NH4HSO4), while the rest remains as SO4
2-  

- Resulting concentration of NH4HSO4 is 

15.109 ∙ min{(NH4
+ 18.03846⁄ ), (SO4

2−
96.0626⁄ )} 

- Resulting concentration of remaining SO4
2- is  

96.0626 ∙ ((SO4
2− 96.0626⁄ ) − (NH4

+ 18.03846⁄ )) 

b) If 1 ≤ 𝑅 < 2 then we assume that all SO4
2- converts to NH4HSO4  

(SO4
2- + NH4

+ → NH4HSO4) and a portion of NH4HSO4 converts to (NH4)2SO4  

(NH4HSO4 + NH4
+ → (NH4)2SO4). The second reaction will occur if there is 

enough NH4
+ remaining after the first reaction. 

 - Resulting concentration of NH4HSO4 is  

115.109 ∙ (2(SO4
2− 96.0626⁄ ) − (NH4

+ 18.03846⁄ )) 

 - Resulting concentration of (NH4)2SO4 is 

132.13952 ∙ ((NH4
+ 18.03846⁄ ) − (SO4

2− 96.0626⁄ )) 

c) If 𝑅 ≥ 2 then we assume that all SO4
2- converts to (NH4)2SO4  

(SO4
2- + 2NH4

+ → (NH4)2SO4). 

- Resulting concentration of (NH4)2SO4 is 

 132.13952 ∙ (SO4
2− 96.0626⁄ ) 

- Resulting concentration of NH4
+ (remaining) is 

18.03846 ∙ ((NH4
+ 18.03846⁄ ) − 2(SO4

2− 96.0626⁄ )) 
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Step 2: If NH4
+remains after Step 1 (c), then NH4NO3 formation can take place. The 

number moles of NO3
- neutralized in this reaction will be: 

moles of NO3
−(neutralized)=  min{(NH4

+(remaining) 18.03846⁄ ), (NO3
−

62.0049⁄ )}. 

Step 3: Particulate NH4NO3 is stable at relatively low temperatures. Following prior 

usage of the S-R Matrix (e.g., NOx SIP Call), we assume that nitrate converts to 

ammonium nitrate only a quarter of the time (i.e., the winter months). The annual average 

concentration of NH4NO3 formed by the neutralization process is therefore: 

80.04336 ∙ 0.25 ∙ moles of NO3
−(neutralized). 

Step 4: The concentration of PM2.5 at the destination county is estimated as the sum of 

concentrations of primary PM2.5, SOA, remaining SO4
2- (if any) and secondary 

NH4HSO4, (NH4)2SO4, and NH4NO3: 

PM2.5(total) = PM2.5(primary) + SOA 

+SO4
2−(remaining) 

+NH4HSO4 + (NH4)2SO4 + NH4NO3 

Calibration of S-R Matrix Outputs to Monitoring Data 

We calibrated the S-R Matrix model estimates to actual monitoring data obtained from EPA. The 

county-level calibration factors were estimated using the 2016 emissions inventory from EPA’s 

2016v1 platform and 2016 data from EPA Federal Reference Method (FRM) monitor sites and 

EPA/National Park Service Visibility Interagency Monitoring of Protected Visual Environments 

(IMPROVE) program monitor sites.22 

First, we used the S-R Matrix with the 2016 emissions inventory to estimate PM2.5 levels at the 

center of each county. Second, we spatially interpolated the PM2.5 monitor data to generate a 

monitor-based estimate for each county center as follows: 

1. We pre-processed EPA motoring data to ensure that it did not contain any values flagged 

as invalid and that minimum number of daily measurements per quarter was 11;23 

2. We calculated quarterly average PM2.5 concentrations for all monitoring sites with 

sufficient data; 

3. For each quarter, we used an automatic kriging routine from R project package ‘automap’ 

(Hiemstra, 2012) to interpolate quarterly average PM2.5 values to county centroids; 

                                                 
22 2011 daily PM2.5 monitoring data from EPA were downloaded at 

http://aqsdr1.epa.gov/aqsweb/aqstmp/airdata/download_files.html (U.S. EPA, 2011d). 
23 The choice of 11 as the minimum number of site-days per valid quarter corresponds to > 75% completeness for 

monitors on a 1 in 6 day schedule. This is a minimum number of samples that is routinely used in calculations of 

quarterly average concentrations by EPA. 

http://aqsdr1.epa.gov/aqsweb/aqstmp/airdata/download_files.html
file://///betfile01.corp.abtassoc.com/data1/common/ERD/COBRA/User%20Manual/COBRA%20manual%20update%20Dec%202011/(U.S
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4. At each county centroid we then average over the interpolated quarterly average PM2.5 

values to generate an annual average PM2.5 value. 

We calculated a “calibration factor” for each county by dividing our monitor estimate by the 

model estimate. These county-level calibration factors ranged from 0.19 to 3.32 with a mean 

value of 0.76. For each state, Exhibit A-6 gives the average of the county-level monitor and 

model values as well as the ratio of the two (the ratio being the average of the calibration 

factors). 

When calculating future year PM2.5 levels in COBRA, we use the calibration factors to adjust our 

model estimate for each county in the following way: 

PM2.5(calibrated model, 2016, 2023, or 2028)

= PM2.5(model, 2016,, 2023, or 2028) ∙ (
PM2.5(interpolated monitor, 2016)

PM2.5(model, 2016)
) 

To sum up, the steps involved in the calculation of 2016, 2023, or 2028 ambient PM2.5 levels in 

COBRA are the following. We start the process by running the CRDM model, which generates 

the S-R Matrix transfer coefficients. Emissions data for 2016 are run through the S-R Matrix and 

atmospheric chemistry calculations applied to generate un-calibrated 2016 model estimates. 

Monitoring data for 2016 were interpolated to the county-level, and were then compared with the 

2016 model estimates to generate calibration factors. Estimates of 2016, 2023, or 2028 ambient 

PM2.5 levels can then be generated by running the 2016, 2023, or 2028 emissions data through 

the S-R Matrix. The resulting 2016, 2023, or 2028 model PM2.5 levels are then multiplied with 

the previously generated county-level calibration factors to calculate a best estimate of the 2016, 

2023, or 2028 calibrated ambient PM2.5 levels. 
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Exhibit A-6. Monitor and Model Average PM2.5 Levels (ug/m3) in 2016 and Average of Monitor to Model 

Ratios by State 

State Monitor  Model Ratio State Monitor Model Ratio 

AL 8.16 14.27 0.57 MT 4.37 3.85 1.13 

AZ 4.58 5.03 0.91 NE 5.47 5.79 0.94 

AR 7.93 13.00 0.61 NV 4.44 4.61 0.96 

CA 6.84 6.20 1.10 NH 5.04 7.46 0.68 

CO 3.90 5.94 0.66 NJ 7.59 11.63 0.65 

CT 6.29 9.27 0.68 NM 3.75 5.64 0.66 

DE 7.27 9.19 0.79 NY 5.99 8.28 0.72 

DC 7.98 16.66 0.48 NC 7.43 11.49 0.65 

FL 7.32 10.30 0.71 ND 3.75 4.58 0.82 

GA 8.21 15.16 0.54 OH 7.79 13.43 0.58 

ID 5.21 6.40 0.81 OK 7.06 9.82 0.72 

IL 8.03 11.14 0.72 OR 4.95 5.20 0.95 

IN 8.25 12.24 0.67 PA 8.20 10.31 0.79 

IA 6.90 7.09 0.97 RI 5.70 8.10 0.70 

KS 6.05 7.78 0.78 SC 8.16 12.62 0.65 

KY 8.15 12.30 0.66 SD 4.68 4.79 0.98 

LA 8.28 11.48 0.72 TN 7.91 12.84 0.62 

ME 4.77 5.11 0.93 TX 7.13 7.96 0.90 

MD 7.56 11.16 0.68 UT 4.71 6.02 0.78 

MA 5.62 9.16 0.61 VT 4.59 6.12 0.75 

MI 6.32 7.56 0.84 VA 7.04 12.53 0.56 

MN 5.30 7.77 0.68 WA 4.65 4.61 1.01 

MS 8.00 13.23 0.60 WV 7.21 11.73 0.62 

MO 7.25 11.44 0.63 WI 5.89 8.43 0.70 

    WY 3.86 4.98 0.78 
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Appendix B: Derivation of Health Impact Functions 
 

This Appendix reviews the steps we performed in taking models from the epidemiological study 

and converting them into health impact functions, which we then use to quantify the change in 

adverse health effects due to a change in air pollution exposure. The most common functional 

forms the log-linear and logistic, with a linear model used in some cases. All three are discussed 

below. 

Note that the log-linear and logistic generally produce comparable results, so the fact that some 

health impacts are estimated with a logistic function and others with a log-linear function is not a 

cause for concern. Indeed, in some circumstances, such as for small changes in air pollution, the 

logistic and log-linear produce essentially the same result. 

The Linear Model  

A linear model between the adverse health effect, y, and the pollutant concentration, x, is of the 

form 

 
 

A linear model includes the factors that are believed to affect the incidence of the health effect, 

of which the pollutant would be one.  So, the variable “α” in the linear function consists of all the 

other independent variables in the regression, typically evaluated at their mean values, times 

their respective coefficients. 

The function describing the relationship between a change in x and the corresponding change in 

incidence (rate) of the health effect from the baseline level (yb) to the post-control level (yc) is 

then: 

 
 

If y denotes an incidence rate, then Δy denotes the change in the incidence rate.  If y denotes an 

incidence count, then the β is first divided the baseline study population to generate an incidence 

rate.  Δx is the difference between the baseline level of the pollutant concentration and the 

control level of the pollutant concentration: xb – xc.  (Note that typically a control strategy is 

intended to decrease the pollutant levels, so we expect Δx to be positive.)  The expected number 

of cases avoided would then be calculated by multiplying Δy by the relevant population: 

 
 

The coefficient, β, and standard error of β (σβ) are reported directly in studies presenting results 

from linear regression models. 
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The Log-linear Model 

The most commonly used functional form for criteria air pollutant concentration-response 

functions is the log-linear model.  It defines the relationship between x and y to be of the form: 

 

or, equivalently, 

 

where the parameter B is the incidence (rate) corresponding to the zero pollutant concentration (x 

= 0); the coefficient β is the effect of pollutant x on the natural logarithm of the incidence (rate) y 

– ln(y); and α = ln(B).24 

Estimating Avoided Cases 

The relationship between Δx and Δy is: 

 

This may be rewritten as: 

 
 

where yb is the baseline incidence (rate) of the health effect – i.e., the incidence (rate) before the 

change in x.  If y is incidence rate rather than incidence count, then the change in incidence rate, 

Δy, must be multiplied by the relevant population to get the expected number of cases avoided.  

For example, if y denotes the annual number of cases of the adverse health effect per 100,000 

population then the expected number of cases avoided is calculated as: 

 

Estimating the Coefficient (β) 

Epidemiological studies that estimate log-linear concentration-response functions often report a 

relative risk for a specific Δx, rather than the coefficient, β, in the function itself.  The relative 

risk (RR) is simply the ratio of two risks corresponding to two levels of pollutant concentration – 

                                                 
24 Other covariates besides pollution clearly affect mortality.  The parameter B might be thought of as containing these 

other covariates, for example, evaluated at their means.  That is, B = Boexp{β1x1 + ... + βnxn}, where Bo is the incidence of y 

when all covariates in the model are zero, and x1, ... , xn are the other covariates evaluated at their mean values.  The 

parameter B drops out of the model, however, when changes in y are calculated, and is therefore not important. 
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the “high” risk yhigh (corresponding to the higher pollutant level, x = xhigh) and the lower risk ylow 

(corresponding to the lower pollutant level, x = xlow): 

 

Using the original log-linear function above, it can be shown that the relative risk associated with 

a specific change in pollutant concentration of Δx* = xhigh – xlow can be written as 

 
 

Taking the natural log of both sides, the coefficient in the function underlying the relative risk 

can be derived as: 

 
 

Once the pollutant coefficient, β, has been calculated, the change in incidence (rate), Δy, 

corresponding to any change in pollutant concentration, Δx, can be calculated, using the 

relationship between Δx and Δy given above, the baseline incidence (rate) and assessment 

population. 

There are instances when epidemiological studies report percent increase in the relative risk, 

rather than relative risk itself.  Given a reported x percent increase in the relative risk, we back-

calculate the relative risk as RR = 1 + x/100. Then we proceed to calculating β as described 

above. Note that some epidemiological studies (see, e.g., Moolgavkar [2003]) further define x to 

be log(RR) × 100.  In these cases, our approach to computing the RR is an approximation, 

although the error introduced is small. This approximation is consistent with EPA’s PM2.5 health 

benefits model implemented in EPA’s BenMAP-CE.  

Estimating the Standard Error of β (σβ) 

The standard error of β (σβ) is not often directly reported in studies presenting results from log-

linear regression models.  Results are most commonly presented as a relative risk and 95% 

confidence interval.  The 95% confidence interval is defined as follows: 

 

Based on this equation, the standard error of β (σβ) can be estimated from the relative risk (RR), 

upper limit of the 95% confidence interval (UL), and lower limit of the 95% confidence interval 

(LL), as follows: 
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 and  

 

 or  

 

Some studies report only a central effect estimate and t-statistic.  The t-statistic describes the 

strength of the observed pollutant-health effect association.  It is defined as the ratio of the 

coefficient, β, to the standard error of β (σβ).  The standard error of β (σβ) can, therefore, be 

estimated from the t-statistic as follows: 

 

The Logistic Model  

In some epidemiological studies, a logistic model is used to estimate the probability of an 

occurrence of an adverse health effect.  Given a pollutant level, x, and a vector of other 

explanatory variables, Z, the logistic model assumes the probability of an occurrence is: 

 
 

where β is the coefficient of the pollutant concentration, x, and α is a vector of coefficients of the 

variables in the vector Z.2 

 

Estimating Avoided Cases 

The change in the probability of an occurrence (Δy) corresponding to a change in the level of the 

pollutant from xb to xc (= Δx), all other covariates held constant, may be derived from the original 

C-R function above: 

 
 

                                                 
2 Greene (1997, Chapter 19) presents models with discrete dependent variables; in particular, page 874 presents the logit 

model.  See also Judge et al. (1985, p. 763). 
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Once again, to calculate the expected number of avoided cases of the adverse effect, it is 

necessary to multiply by the population:3 

 

Estimating the Coefficient (β) 

The estimated pollutant coefficient, β, in the original function is typically not reported in studies 

that use the logistic model.  Instead, the odds ratio (OR) corresponding to a specific change in x 

is reported. 

The odds of an occurrence is defined as: 

 

It can be shown that: 

 

The odds ratio is just the ratio of the odds when the pollutant is at a specified higher level, xhigh, 

to the odds when the pollutant is at a specified lower level, xlow: 

 

Often the odds ratio corresponding to a specified change in x, call it Δx*, is the only measure of 

the effect of x reported from a study using a logistic model (just as the relative risk 

corresponding to a specified change in x is often the only measure of the effect of x reported 

from a study using a log-linear model).  However, it is easy to calculate the underlying pollutant 

coefficient, β, from the odds ratio as follows: 

 

Given the pollutant coefficient, β, and the baseline probability of occurrence, yb, the change in 

the probability, Δy, associated with any change in pollutant concentration, Δx, can be derived 

using the equation for Δy above.  The expected number of avoided cases of the adverse effect is 

then obtained by multiplying by the population. 

                                                 
3 Note that because Δy here is a change in probability of occurrence (rather than a change in the rate per 100,000 

population), it is necessary to multiply by the population rather than by the population/100,000. 
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Estimating the Standard Error of β (σβ) 

The standard error of β (σβ) is not often directly reported in studies presenting results from 

logistic regression models.  Results are most commonly presented as an odds ratio and 95% 

confidence interval.  The 95% confidence interval is defined as follows: 

 

Based on this equation, the standard error of β (σβ) can be estimated from the odds ratio (OR), 

upper limit of the 95% confidence interval (UL), and lower limit of the 95% confidence interval 

(LL), as follows: 

 and  

 

 or  

Some studies report only a central effect estimate and t-statistic.  The t-statistic describes the 

strength of the observed pollutant-health effect association.  It is defined as the ratio of the 

coefficient, β, to the standard error of β (σβ).  The standard error of β (σβ) can, therefore, be 

estimated from the t-statistic as follows: 
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Appendix C: Health Impact Functions 
 

A reduction in ambient PM2.5 levels is associated with reductions in a number of adverse health 

effects, or “endpoints.” This Appendix discusses the calculation of avoided adverse health 

effects. The health impact functions in the COBRA model were prepared by Abt Associates in 

close consultation with EPA and rely on an up-to-date assessment of the published scientific 

literature to ascertain the relationship between particulate matter and adverse human health 

effects. We evaluated studies using a variety of selection criteria, including: study location and 

design, the characteristics of the study population, and whether the study was peer-reviewed 

(Exhibit C-1). 

Exhibit C-1.  Summary of Considerations Used in Selecting Studies 

Consideration Comments 

Peer reviewed 

research 

Peer reviewed research is preferred to research that has not undergone the peer review 

process. 

Study type Among studies that consider chronic exposure (e.g., over a year or longer) prospective 

cohort studies are preferred over cross-sectional studies because they control for 

important individual-level confounding variables that cannot be controlled for in cross-

sectional studies.  

Study period Studies examining a relatively longer period of time (and therefore having more data) 

are preferred, because they have greater statistical power to detect effects.  More recent 

studies are also preferred because of possible changes in pollution mixes, medical care, 

and life style over time. 

Study size Studies examining a relatively large sample are preferred because they generally have 

more statistical power to detect small magnitude effects.  A large sample can be 

obtained in several ways, either through a large population, or through repeated 

observations on a smaller population, e.g. through a symptom diary recorded for a panel 

of asthmatic children. 

Study location U.S. studies are more desirable than non-U.S. studies because of potential differences in 

pollution characteristics, exposure patterns, medical care system, population behavior 

and life style. 

Measure of PM For this analysis, C-R functions based on PM2.5 are preferred to those based on PM10 

(particulate matter less than 10 microns in aerodynamic diameter) because reductions in 

emissions from diesel engines are expected to reduce fine particles and not have much 

impact on coarse particles.  

Economically valuable 

health effects 

Some health effects, such as changes in forced expiratory volume and other technical 

measurements of lung function, are difficult to value in monetary terms.  These health 

effects are therefore not quantified in this analysis. 

Non-overlapping 

endpoints 

Although the benefits associated with each individual health endpoint may be analyzed 

separately, care must be exercised in selecting health endpoints to include in the overall 

benefits analysis because of the possibility of double counting of benefits.  Including 

emergency room visits in a benefits analysis that already considers hospital admissions, 

for example, will result in double counting of some benefits if the category "hospital 

admissions" includes emergency room visits. 

Model Selection 

In many epidemiological studies of air pollution and health, researchers estimate and present 

numerous single pollutant and multi-pollutant models for the same pollutant and health endpoint. 
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These models may differ from each other in a number of characteristics, including: the functional 

form of the model, the covariates included in the model, the pollutant exposure metric, the lag 

structure, and the study population.   

For the purposes of estimating health benefits associated with pollutant changes, it is neither 

realistic nor advantageous to include every model presented in each study. However, it is 

important that a relatively objective process be used to select from among models. Described 

below are the criteria that were used as guidance in the selection of a particular model from 

among several models presented in a study. It is not possible in all cases to select a model using a 

completely objective and mechanical process. In many cases, professional judgment and an 

understanding of the study context are necessary as well to select the most appropriate models. 

Exhibit C-2 summarizes the selection criteria that we used. 

Exhibit C-2.  Description of Selection Criteria  

Selection Criteria Description 

Goodness-of-fit statistics If an appropriate measure of goodness of fit (i.e., how well the model fit the 

data) is reported for each of several models in a study, then this measure may 

be used as the basis on which to select a model. 

Best captures distributed lag Select the model that appears to best capture a distributed lag effect, as 

described below. If multiple single-lag models and/or moving average models 

are specified, select the model with the largest effect estimate, all else equal. 

Best set of control variables Select the model which includes temporal variables (i.e. season, weather 

patterns, day of the week) and other known non-pollutant confounders, all else 

equal.  Select the model which uses the most sophisticated methods of 

capturing the relationship between these variables and the dependent variable 

(e.g., affords the most flexibility in fitting possible nonlinear trends). 

Useful for health effects 

modeling 

The model must be in a form that is useful for health effects modeling (e.g., the 

pollutant variable should be a continuous variable rather than a categorical 

variable). 

Sample size Select the model estimated with the larger sample size, all else equal. 

Distributed Lag Effect 

The question of lags and the problems of correctly specifying the lag structure in a model has 

been discussed extensively (U.S. EPA, 2002, Section 8.4.4). In many time-series studies, after 

the basic model is fit (before considering the pollutant of interest), several different lags are 

typically fit in separate single-lag models and the most significant lag is chosen. The 2002 draft 

PM2.5 CD notes that “while this practice may bias the chance of finding a significant association, 

without a firm biological reason to establish a fixed pre-determined lag, it appears reasonable” 

(U.S. EPA, 2002, p. 8-237). 

There is recent evidence (Schwartz, 2000) that the relationship between PM2.5 and health effects 

may best be described by a distributed lag (i.e., the incidence of the health effect on day n is 

influenced by PM2.5 concentrations on day n, day n-1, day n-2 and so on). If this is the case, a 

model that includes only a single lag (e.g., a 0-day lag or a 1-day lag) is likely to understate the 
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total impact of PM2.5. The 2002 draft PM2.5 CD makes this point, noting that “if one chooses the 

most significant single lag day only, and if more than one lag day shows positive (significant or 

otherwise) associations with mortality, then reporting a RR [relative risk] for only one lag would 

also underestimate the pollution effects” (U.S. EPA, 2002, p. 8-241). The same may hold true for 

other pollutants that have been associated with various health effects. 

Several studies report similar models with different lag structures. For example, Moolgavkar 

(2000a) studied the relationship between air pollution and respiratory hospital admissions in 

three U.S. metropolitan areas. The author reports models with PM2.5 lagged from zero to five 

days. Since the lagging of PM2.5 was the only difference in the models and the relationship is 

probably best described using a distributed lag model, any of single-lag effect estimates are 

likely to underestimate the full effect. Therefore, we selected the model with the largest effect 

estimate. 

Pooling 

There is often more than one study that has estimated a health impact function for a given 

pollutant-health endpoint combination. Each study provides an estimate of the pollutant 

coefficient, β, along with a measure of the uncertainty of the estimate. Because uncertainty 

decreases as sample size increases, combining data sets is expected to yield more reliable 

estimates of β, and therefore more reliable estimates of the incidence change predicted using β. 

Combining data from several comparable studies in order to analyze them together is often 

referred to as meta-analysis. 

For a number of reasons, including data confidentiality, it is often impractical or impossible to 

combine the original data sets. Combining the results of studies in order to produce better 

estimates of β provides a second-best but still valuable way to synthesize information. This is 

referred to as pooling. Pooling β’s requires that all of the studies contributing estimates of β use 

the same functional form for the health impact function. That is, the β’s must be measuring the 

same thing. 

To be consistent with the recent EPA benefits analyses, COBRA uses a random-/ fixed- effects 

pooling procedure (see U.S. EPA, 2009, p. 5-18), which is a method for weighting estimates 

involving using their variances. Variance takes into account both the consistency of data and the 

sample size used to obtain the estimate, two key factors that influence the reliability of results. 

The method is based on DerSimonian and Laird (1986). 

Fixed Effect Weights 

The fixed effects model assumes that there is a single true concentration-response relationship 

and therefore a single true value for the parameter β that applies everywhere. Differences among 

β’s reported by different studies are therefore simply the result of sampling error. That is, each 

reported β is an estimate of the same underlying parameter. The certainty of an estimate is 

reflected in its variance (the larger the variance, the less certain the estimate). Fixed effects 

pooling therefore weights each estimate under consideration in proportion to the inverse of its 

variance: 
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Where 

N – number of studies; 

βn – estimate provided by study n; 

vn – variance of the estimate provided by study n; 

βfe – pooled fixed effects estimate. 

Random- / Fixed- Effect Weights 

An alternative to the fixed effects model is the random effects model, which allows the 

possibility that the estimates βn from the different studies may in fact be estimates of different 

parameters, rather than just different estimates of a single underlying parameter. In studies of the 

effects of PM2.5 on hospitalizations for COPD, for example, if the composition of PM2.5 varies 

among study locations the underlying relationship between the frequency of hospitalizations for 

COPD and PM2.5 may be different from one study location to another. This would violate the 

assumption of the fixed effects model. 

It is possible to test whether it is appropriate to base the pooling on the random effects model (vs. 

the fixed effects model). A test statistic, Qw, the weighted sum of squared differences of the 

separate study estimates from the pooled estimate based on the fixed effects model βfe, is 

calculated as: 

 
 

Under the null hypothesis that there is a single underlying parameter, β, of which all the βn’s are 

estimates, Qw has a chi-squared distribution with N-1 degrees of freedom. (Recall that N is the 

number of studies in the meta-analysis.) If Qw is greater than the critical value corresponding to 

the desired confidence level, the null hypothesis is rejected. That is, in this case the evidence 

does not support the fixed effects model, and the random effects model is assumed, allowing the 

possibility that each study is estimating a different β. We use a five percent one-tailed test. 

The random effect model-based pooling must take into account not only the within-study 

variances (used in a meta-analysis based on the fixed effects model) but the between-study 

variance as well. The between-study variance, η2, is given by: 
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(i.e., if Qw < N-1), then η2 is a negative number, and it is not possible to calculate a random 

effects estimate. In this case, however, the small value of Qw would presumably have led to 

accepting the null hypothesis described above, and the meta-analysis would be based on the 

fixed effects model. The remaining discussion therefore assumes that η2 is positive. 

Given a value for η2, the random effects estimate is calculated in almost the same way as the 

fixed effects estimate. However, the pooled estimate now incorporates both the within-study 

variance (vn) and the between-study variance (η2): 

 
Where 

N – number of studies; 

βn – estimate provided by study n; 

vn – variance of the estimate provided by study n; 

η2 – within-study variance; 

βre – pooled random effects estimate. 

The weighting scheme used in a pooling based on the random effects model is basically the same 

as that used if a fixed effects model is assumed, but the variances used in the calculations are 

different. This is because a fixed effects model assumes that the variability among the estimates 

from different studies is due only to sampling error (i.e., each study is thought of as representing 

just another sample from the same underlying population), while the random effects model 

assumes that there is not only sampling error associated with each study, but that there is also 

between-study variability – each study is estimating a different underlying β. Therefore, the sum 

of the within-study variance and the between-study variance yields an overall variance estimate. 

Thresholds 

Health impact functions have been developed with and without explicit thresholds. A threshold 

means that air pollution levels below the specified threshold have no adverse health effects. In 

some prior regulatory impact assessments (e.g., U.S. EPA, 2006) assumed a threshold of 10 

µg/m3 for PM2.5. However, EPA’s most current understanding of the scientific literature is that 

there is no threshold in the relationship between PM2.5 and adverse health impacts. In its recent 

analysis of proposed NO2 national ambient air quality standards, U.S. EPA (2009) used a no–

threshold model to calculate PM2.5 co-benefits down to the lowest modeled PM2.5 air quality 

levels. 

Following EPA's updated methodology, we also assume there is no threshold for modeling 

PM2.5-related health effects. This is supported by the National Research Council (2002) in its 

review of methods for estimating the public health benefits of air pollution regulations. They 
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concluded that there is no evidence for any departure from linearity in the observed range of 

exposure to PM10 or PM2.5, nor is there any indication of a threshold. They cite the weight of 

evidence available from both short- and long-term exposure models and the similar effects found 

in cities with low and high ambient concentrations of PM2.5. More recently, Schwartz et al 

(2008) reached the same conclusion, finding a linear relationship between PM2.5 and premature 

mortality with no evidence of a threshold. 

In addition, U.S. EPA completed an “expert elicitation” analysis in which it elicited opinions 

from 12 experts (in epidemiology, toxicology, and medicine) on the nature of this relationship 

(see: Industrial Economics Incorporated (IEc), 2006). The experts were asked how likely they 

thought it is that the relationship between PM2.5 and mortality is causal, and if it is causal, what is 

the functional form of the C-R relationship, including whether there is a threshold. Eleven of the 

twelve experts thought that, although each individual may have a threshold, there is insufficient 

empirical evidence for a threshold for the population, which is the entity of interest in a C-R 

function. Only one expert did include the possibility of a population threshold, assigning a 

probability of 50 percent to there being a threshold and, if there is a threshold, an 80 percent 

chance that it is less than or equal to 5 µg/m3 (which is below the level of PM2.5 observed in 

epidemiological studies), and a 20 percent chance that it is between 5 and 10 µg/m3. 
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Summary of Health Impact Functions Used in COBRA 

In this Appendix, we present the health impact functions used to estimate PM2.5-related adverse 

health effects. Exhibit C-3 summarizes the epidemiological studies in COBRA used to estimate 

adverse health impacts of PM2.5. Each sub-section has an exhibit with a brief description of the 

health impact function and the underlying parameters. Following each exhibit, we present a brief 

summary of each study and any information that is unique to that study.    

Exhibit C-3.  Epidemiological Studies Used to Estimate Adverse Health Impacts of PM2.5 

Endpoint Author Age 

Mortality, All Cause Krewski et al. (2009) 30-99 

Mortality, All Cause Lepeule et al. (2012) 25-99 

Mortality, All Cause Woodruff et al. (1997) Infant 

Acute Myocardial Infarction, Nonfatal Peters et al. (2001) 18-99 

Acute Myocardial Infarction, Nonfatal Pope et al. (2006) 18-99 

Acute Myocardial Infarction, Nonfatal Sullivan et al. (2005) 18-99 

Acute Myocardial Infarction, Nonfatal Zanobetti and Schwartz (2006) 18-99 

Acute Myocardial Infarction, Nonfatal Zanobetti et al. (2009) 18-99 

HA, All Cardiovascular (less Myocardial Infarctions) Bell et al. (2008) 65-99 

HA, All Cardiovascular (less Myocardial Infarctions) Moolgavkar (2000b) 18-64 

HA, All Cardiovascular (less Myocardial Infarctions) Peng et al. (2008) 65-99 

HA, All Cardiovascular (less Myocardial Infarctions) Peng et al. (2009) 65-99 

HA, All Cardiovascular (less Myocardial Infarctions) Zanobetti et al. (2009) 65-99 

HA, All Respiratory Zanobetti et al. (2009) 65-99 

HA, All Respiratory Kloog et al. (2012) 65-99 

HA, Asthma Babin et al. (2007) 0-17 

HA, Asthma Sheppard (2003) 0-17 

HA, Chronic Lung Disease Moolgavkar (2000a) 18-64 

Emergency Room Visits, Asthma Mar et al. (2010) 0-99 

Emergency Room Visits, Asthma Slaughter et al. (2005) 0-99 

Emergency Room Visits, Asthma Glad et al. (2012) 0-99 

Acute Bronchitis Dockery et al. (1996) 8-12 

Asthma Exacerbation, Cough Mar et al. (2004)  6-18 

Asthma Exacerbation, Cough Ostro et al. (2001) 6-18 

Asthma Exacerbation, Shortness of Breath Mar et al. (2004) 6-18 

Asthma Exacerbation, Shortness of Breath Ostro et al. (2001) 6-18 

Asthma Exacerbation, Wheeze Ostro et al. (2001) 6-18 

Minor Restricted Activity Days Ostro and Rothschild (1989) 18-64 

Lower Respiratory Symptoms Schwartz and Neas (2000) 7-14 

Upper Respiratory Symptoms Pope et al. (1991) 9-11 

Work Loss Days Ostro (1987) 18-64 

 

Note that Appendix B mathematically derives the standard types of health impact functions that 

we encountered in the epidemiological literature, such as, log-linear, logistic and linear, so we 

simply note here the type of functional form. Appendix D presents a description of the sources 

for the incidence and prevalence data used in these health impact functions. 
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Mortality 

Health researchers have consistently linked air pollution, especially PM2.5, with excess mortality. 

Although a number of uncertainties remain to be addressed, a substantial body of published 

scientific literature recognizes a correlation between elevated PM2.5 concentrations and increased 

mortality rates. Based on the scientific evidence, EPA’s Integrated Science Assessment 

determined a causal relationship between PM2.5 and premature mortality 

(http://www.epa.gov/ncea/isa/).  

Both long- and short-term exposures to ambient levels of particulate matter air pollution have 

been associated with increased risk of premature mortality. It is clearly an important health 

endpoint because of the size of the mortality risk estimates, the serious nature of the effect itself, 

and the high monetary value ascribed to avoiding mortality risk. Because of the importance of 

this endpoint and the considerable uncertainty among economists and policymakers as to the 

appropriate way to estimate PM-related mortality risks, this section discusses some of the issues 

surrounding the estimation of premature mortality associated with PM2.5. 

Particulate matter has been linked with premature mortality in adults in multiple studies 

throughout the world (Jerrett et al., 2005; Katsouyanni et al., 2001; Laden et al., 2006; Pope et 

al., 2002; Samet, Dominici, Curriero, Coursac, & Zeger, 2000) as well as infants (Bobak & 

Leon, 1999; Conceicao, Miraglia, Kishi, Saldiva, & Singer, 2001; Loomis, Castillejos, Gold, 

McDonnell, & Borja-Aburto, 1999; Woodruff, Darrow, & Parker, 2008; Woodruff et al., 1997). 

To estimate premature mortality in adults, we use an epidemiological analysis of the American 

Cancer Society cohort by Krewski et al. (2009) and analysis of the Six-City cohort by Lepeule et 

al. (2012). To estimate premature mortality in infants, we used a study by Woodruff et al. (1997). 

 

Exhibit C-4.  Health Impact Functions for Particulate Matter and All-Cause Mortality  

Author Year Location Age Metric Beta Std Err Functional 

Form 

Krewski et al. 

 

2009 116 U.S. 

cities 

30-99 Annual 0.005827 0.000963 Log-linear 

Lepeule et al.  2012 6 Eastern 

cities 

25-99 Annual 0.013103 0.003347 Log-linear 

Woodruff et al. 1997 86 cities 0-0 Annual 0.003922 0.001221 Logistic 

 

Note that COBRA does not pool Krewski et al. (2009) and Lepeule et al. (2012) to estimate 

premature mortality in adults. In recent analysis of proposed NO2 national ambient air quality 

standards, U.S. EPA (2009) used Pope et al. (2002)25 and Laden et al. (2006) to estimate the 

PM2.5 mortality-related co-benefits and presented the results separately for each study: 

“These are logical choices for anchor points in our presentation because, while both 

studies are well designed and peer reviewed, there are strengths and weaknesses inherent 

                                                 
25 Krewski et al. (2009) is an extended and updated analysis of Pope et al. (2002). 

http://www.epa.gov/ncea/isa/
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in each, which we believe argues for using both studies to generate benefits estimates. 

Previously, EPA had calculated benefits based on these two empirical studies, but derived 

the range of benefits, including the minimum and maximum results, from an expert 

elicitation of the relationship between exposure to PM2.5 and premature mortality (Roman 

et al., 2008). Within this assessment, we include the benefits estimates derived from the 

concentration-response function provided by each of the twelve experts to better 

characterize the uncertainty in the concentration-response function for mortality and the 

degree of variability in the expert responses. Because the experts used these cohort 

studies to inform their concentration-response functions, benefits estimates using these 

functions generally fall between results using these epidemiology studies (see Figure 

5.9). In general, the expert elicitation results support the conclusion that the benefits of 

PM2.5 control are very likely to be substantial.” p. 5-25. 

Mortality, All Cause (Krewski et al., 2009) 

This cohort study consists of approximately 360,000 participants residing in areas of the country 

that have adequate monitoring information on levels of PM2.5 for 1980 and about 500,000 

participants in areas with adequate information for 2000. The causes of death that were analyzed 

included all causes, cardiopulmonary disease (CPD), ischemic heart disease (IHD), lung cancer, 

and all remaining causes. Data for 44 personal, individual-level covariates, based on participants’ 

answers to a 1982 enrollment questionnaire, were also used for the analyses. The authors also 

collected data for seven ecologic (neighborhood-level) covariates, each of which represents local 

factors known or suspected to influence mortality, such as poverty level, level of education, and 

unemployment (at both zip code and city levels). Long-term average exposure variables were 

constructed for PM2.5 from monitoring data for two periods: 1979-1983 and 1999-2000. Similar 

variables were constructed for long-term exposure to other pollutants of interest from single-year 

(1980) averages, including total suspended particles, ozone, nitrogen dioxide, and sulfur dioxide. 

Exposure was averaged for all monitors within a metropolitan statistical area (MSA) and 

assigned to participants according to their Zip Code area (ZCA) of residence.  

The authors chose the standard Cox proportional-hazards model (and a variation to allow for 

random effects) to calculate hazard ratios for various cause-of-death categories associated with 

the levels of air pollution exposure in the cohort. They extended the random effects Cox model 

to accommodate two levels of information for clustering and for ecologic covariates. Three main 

analyses were conducted: a Nationwide Analysis, Intra-Urban Analyses in the New York City 

(NYC) and Los Angeles (LA) regions, and an analysis designed to investigate whether critical 

time windows of exposure to pollutants might have affected mortality in the cohort. Using a 

multi-pollutant model (O3, SO4, SO2, TSP, and PM2.5), the authors reported a relative risk (1.06) 

for all-cause mortality and the corresponding 95% confidence interval (95% CI: 1.04-1.08) for a 

10 μg/m3 increase in the average of PM2.5 exposure level for 1999-2000 (Krewski et al., 2009, 

Commentary Table 4). The results were adjusted for the 44 individual-level covariates and the 7 

ecologic covariates at the MSA & DIFF levels. 
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Functional Form: Log-linear 

Coefficient: 0.005827 

Standard Error: 0.000963 

Incidence Rate: county-specific annual all-cause mortality rate per person ages 30 and older 

Population: population of ages 30 and older 

Mortality, All Cause (Lepeule et al., 2012) 

Lepeule et al. (2012) is an extended and updated analysis of Laden et al. (2006). The authors 

performed an extended mortality follow-up from 1979-2009 using data from the Harvard Six 

Cities adult cohort study.  They used annual city-specific PM2.5 concentrations and assigned for 

each participant until death or censoring. The authors replicated the previously applied Cox 

regression (as used in Laden et al., 2006), and examined different time lags, the shape of the 

concentration–response relationship using penalized splines, and changes in the slope of the 

relation over time. Then they conducted Poisson survival analysis with time-varying effects for 

smoking, sex, and education. The authors found a significant increase in the overall mean 

mortality associated with a 10-μg/m3 increase in PM2.5. 

The coefficient and standard error are estimated from the relative risk (1.14) and 95% confidence 

interval (1.07-1.22) associated with a 10-μg/m3 increase in PM2.5 (Lepeule et al., 2012, Table 2). 

Functional Form: Log-linear 

Coefficient: 0.013103 

Standard Error: 0.003347 

Incidence Rate: county-specific annual all-cause mortality rate per person ages 25 and older 

Population: population of ages 25 and older 

Infant Mortality (Woodruff et al., 1997) 

In a study of four million infants in 86 U.S. metropolitan areas conducted from 1989 to 1991, 

Woodruff et al. (1997) found a significant link between PM10 exposure in the first two months of 

an infant’s life with the probability of dying between the ages of 28 days and 364 days. PM10 

exposure was significant for all-cause mortality. PM10 was also significant for respiratory 

mortality in average birth-weight infants, but not low birth-weight infants. 

The coefficient and standard error are based on the odds ratio (1.04) and 95% confidence interval 

(1.02-1.07) associated with a 10 μg/m3 change in PM10 (Woodruff et al., 1997, Table 3). 

Functional Form: Logistic 

Coefficient: 0.003922 

Standard Error: 0.001221 

Incidence Rate: county-specific annual post-neonatal26 infant deaths per infant under the age of 

one  

Population: population of infants under one year old 

 

                                                 
26 Post-neonatal refers to infants that are 28 days to 364 days old. 
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Non-Fatal Heart Attack 

Non-fatal heart attacks have been linked with short-term exposures to PM2.5 in the U.S. (Peters et 

al., 2001) and other countries (Poloniecki, Atkinson, de Leon, & Anderson, 1997).27 We used the 

C-R functions reported in five studies as shown in Exhibit C-5.   

The finding of a specific impact on heart attacks is consistent with hospital admission and other 

studies showing relationships between fine particles and cardiovascular effects both within and 

outside the U.S. These studies provide a weight of evidence for this type of effect. Several 

epidemiological studies (Gold et al., 2000; Liao et al., 1999; Magari et al., 2001) have shown that 

heart rate variability (an indicator of how much the heart is able to speed up or slow down in 

response to momentary stresses) is negatively related to PM2.5 levels. Lack of heart rate 

variability is a risk factor for heart attacks and other coronary heart diseases (Dekker et al., 2000; 

Liao et al., 1997; Tsuji et al., 1996). As such, the reduction in heart rate variability due to PM2.5 

is consistent with an increased risk of heart attacks. 

Exhibit C-5.  Health Impact Functions for Particulate Matter and Non-fatal Heart Attack 

Author Year Location Age Metric Beta Std Error 
Functional 

Form 

Peters et al. 2001 Boston, MA 18-99 24-hr avg 0.024121 0.009285 Logistic 

Pope et al. 2006 
Greater Salt Lake 

City, Utah 
All 24-hr avg 0.00481 0.001992 Logistic 

Sullivan et al. 2005 
King County, 

Washington 
All 24-hr avg 0.001980 0.002241 Logistic 

Zanobetti and 

Schwartz 
2006 

Greater Boston 

area (Middlesex, 

Norfolk, Suffolk 

Counties) 

All 24-hr avg 0.005300 0.002213 Logistic 

Zanobetti et al. 2009 
26 U.S. 

Communities 
All 24-hr avg 0.00225 0.000592 Log-linear 

COBRA reports two sets of incidence results: (1) incidence results based on C-R function from 

Peters et al. (2001); (2) pooled incidence based on other four studies using random/fixed effects 

pooling method. 

Acute Myocardial Infarction (Heart Attacks), Nonfatal (Peters et al., 2001) 

Peters et al. (2001) studied the relationship between increased particulate air pollution and onset 

of heart attacks in the Boston area from 1995 to 1996. The authors used air quality data for PM10, 

PM10-2.5, PM2.5, “black carbon”, O3, CO, NO2, and SO2 in a case-crossover analysis. For each 

subject, the case period was matched to three control periods, each 24 hours apart. In univariate 

analyses, the authors observed a positive association between heart attack occurrence and PM2.5 

levels hours before and days before onset. The authors estimated multivariate conditional logistic 

models including two-hour and twenty-four hour pollutant concentrations for each pollutant. 

They found significant and independent associations between heart attack occurrence and both 

two-hour and twenty-four hour PM2.5 concentrations before onset. Significant associations were 

                                                 
27 Non-fatal heart attacks are considered chronic illness although they are related to short-term exposure because the 

impact is long-lasting and this is reflected in its valuation (discussed in Appendix F). 
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observed for PM10 as well. None of the other particle measures or gaseous pollutants was 

significantly associated with acute myocardial infarction for the two hour or twenty-four hour 

period before onset. 

The patient population for this study was selected from health centers across the United States. 

The mean age of participants was 62 years old, with 21% of the study population under the age 

of 50. In order to capture the full magnitude of heart attack occurrence potentially associated 

with air pollution and because age was not listed as an inclusion criteria for sample selection, we 

apply an age range of 18 and over in the C-R function. According to the National Hospital 

Discharge Survey, there were no hospitalizations for heart attacks among children <15 years of 

age in 1999 and only 5.5% of all hospitalizations occurred in 15-44 year olds (Popovic, 2001, 

Table 10). 

The coefficient and standard error are calculated from an odds ratio of 1.62 (95% CI 1.13-2.34) 

for a 20 μg/m3 increase in twenty-four hour average PM2.5 (Peters et al., 2001, Table 4, p. 2813). 

Functional Form: Logistic 

Coefficient: 0.024121 

Standard Error: 0.009285 

Incidence Rate: We use the county-specific daily AMI hospitalization rate (ICD-9 code 410) for 

the population of individuals aged 18 years and older as the estimate for the incidence rate of 

nonfatal heart attack, assuming all heart attacks that are not instantly fatal will result in a 

hospitalization. We did not adjust for fatal AMIs in the incidence rate estimation, due to the way 

that the epidemiological studies are designed. Those studies consider total admissions for AMIs, 

which includes individuals living at the time the studies were conducted. Therefore, we use the 

definition of AMI that matches the definition in the epidemiological studies. 

Population: population of ages 18 and older 

Adjustment: As some fraction of the admitted individuals die in the hospital, we apply a 

survival rate of 93% in calculating the avoided cases of AMI in order to avoid double counting 

(once in the calculation of AMI cases and once in the calculation of PM-related mortality).  

Acute Myocardial Infarction (Heart Attacks), Nonfatal (Pope et al., 2006) 

Pope et al. (2006) evaluated the association between short-term exposure to PM2.5 and acute 

ischemic heart disease events, including acute nonfatal myocardial infarction, all acute coronary 

events, and subsequent myocardial infarctions in individuals living in greater Salt Lake City, 

Utah. In a case-crossover study, these ischemic events were assessed in relation to a 10 µg/m3 

increase in PM2.5.   

Using a single-pollutant model the coefficient and standard error were estimated from the 

percent increase (4.81%) and 95% confidence interval (95% CI: 0.98-8.79) for a 10 µg/m3 

increase in daily 24-hour mean PM2.5 (Pope et al., 2006, Table 3). 

Functional Form: Logistic 

Coefficient: 0.00481  

Standard Error: 0.001992 
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Incidence Rate: We use the county-specific daily AMI hospitalization rate (ICD-9 code 410) for 

the population of individuals aged 18 years and older as the estimate for the incidence rate of 

nonfatal heart attack, assuming all heart attacks that are not instantly fatal will result in a 

hospitalization. We did not adjust for fatal AMIs in the incidence rate estimation, due to the way 

that the epidemiological studies are designed. Those studies consider total admissions for AMIs, 

which includes individuals living at the time the studies were conducted. Therefore, we use the 

definition of AMI that matches the definition in the epidemiological studies. 

Population: The study examined population of all ages. We apply the results to people ages 18 

and older. We apply the results to people of ages 18 and older. Since the vast majority of AMI 

occur among population 65-99, over-counting may not be an issue when applying the risk 

coefficient to 18+. 

Adjustment: As some fraction of the admitted individuals die in the hospital, we apply a 

survival rate of 93% in calculating the avoided cases of AMI in order to avoid double counting 

(once in the calculation of AMI cases and once in the calculation of PM-related mortality). 

Acute Myocardial Infarction (Heart Attacks), Nonfatal (Sullivan et al., 2005) 

Sullivan et al. (2005) studied the relationship between onset time of acute myocardial infarction 

and the preceding hourly PM2.5 concentrations in 5,793 confirmed cased of myocardial infarction 

through King County, Washington. In this case-crossover study from 1988-1994, air pollution 

exposure levels averaged 1 hour, 2 hours, 4 hours, and 24 hours before onset of myocardial 

infarction were compared to a set of time-stratified referent exposures from the same day of the 

week in the month of the case event. The authors estimated that an associated risk of 1.01 (95% 

CI: 0.98-1.05) for myocardial infarction onset could be attributed to a 10 µg/m3 increase in 

PM2.5 the hour before MI onset. No increased risk was found in all cases with preexisting cardiac 

diseases with an odds ratio of 1.05 (95% CI: 0.95-1.16). Furthermore, stratification for 

hypertension, diabetes, and smoking status did not modify the association between PM2.5 and 

onset of myocardial infarction. 

Using a single-pollutant model, the coefficient and standard error were estimated from the odds 

ratio (1.02) and 95% confidence interval (95% CI: 0.98-1.07) for a 10 µg/m3 increase in daily 

24-hour mean PM2.5 lagged 1 day (Sullivan et al., 2005, Table 3). 

Functional Form: Logistic 

Coefficient: 0.001980  

Standard Error: 0.002241 

Incidence Rate: We use the county-specific daily AMI hospitalization rate (ICD-9 code 410) for 

the population of individuals aged 18 years and older as the estimate for the incidence rate of 

nonfatal heart attack, assuming all heart attacks that are not instantly fatal will result in a 

hospitalization. We did not adjust for fatal AMIs in the incidence rate estimation, due to the way 

that the epidemiological studies are designed. Those studies consider total admissions for AMIs, 

which includes individuals living at the time the studies were conducted. Therefore, we use the 

definition of AMI that matches the definition in the epidemiological studies. 

Population: The study examined population of all ages. We apply the results to people ages 18 

and older. We apply the results to people of ages 18 and older. Since the vast majority of AMI 

occur among population 65-99, over-counting may not be an issue when applying the risk 

coefficient to 18+. 
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Adjustment: As some fraction of the admitted individuals die in the hospital, we apply a 

survival rate of 93% in calculating the avoided cases of AMI in order to avoid double counting 

(once in the calculation of AMI cases and once in the calculation of PM-related mortality). 

Acute Myocardial Infarction (Heart Attacks), Nonfatal (Zanobetti & 
Schwartz, 2006)28 

Zanobetti and Schwartz (2006) analyzed hospital admissions through emergency department for 

myocardial infarction (ICD-9 code 410) and pneumonia (ICD-9 codes 480-487) for associations 

with fine particulate air pollution, ozone, black carbon, nitrogen dioxide, PM2.5 not from traffic, 

and CO in the greater Boston area from 1995-1999. The authors used a case-crossover analysis 

with control days matched on temperature. Significant associations were detected for NO2 with a 

12.7% increase 95% CI: 5.8-18.0), PM2.5 with an 8.6% increase (95% CI: 1.2-15.4), and black 

carbon with an 8.3% increase (95% CI: 0.2-15.8) in emergency myocardial infarction 

hospitalizations. Similarly, significant associations were identified for PM2.5 with a 6.5% 

increase (95% CI: 1.1-11.4) and CO with a 5.5% increase (95% CI: 1.1-9.5) in pneumonia 

hospitalizations. 

Using a single-pollutant model, the coefficient and standard error are estimated from the percent 

change in risk (8.65%) and 95% confidence interval (95% CI: 1.22-15.38%) for a 16.32 ug/m3 

increase in daily 24-hour mean PM2.5 for an average of the 0- and 1-day lag (Zanobetti & 

Schwartz, 2006, Table 4). 

Functional Form: Logistic 

Coefficient: 0.005300 

Standard Error: 0.002213 

Incidence Rate: We use the county-specific daily AMI hospitalization rate (ICD-9 code 410) for 

the population of individuals aged 18 years and older as the estimate for the incidence rate of 

nonfatal heart attack, assuming all heart attacks that are not instantly fatal will result in a 

hospitalization. We did not adjust for fatal AMIs in the incidence rate estimation, due to the way 

that the epidemiological studies are designed. Those studies consider total admissions for AMIs, 

which includes individuals living at the time the studies were conducted. Therefore, we use the 

definition of AMI that matches the definition in the epidemiological studies. 

Population: The study examined population of ages 65 and older. We apply the results to people 

of ages 18 and older. Since the vast majority of AMI occur among population 65-99, over-

counting may not be an issue when applying the risk coefficient to 18+. 

Adjustment: As some fraction of the admitted individuals die in the hospital, we apply a 

survival rate of 93% in calculating the avoided cases of AMI in order to avoid double counting 

(once in the calculation of AMI cases and once in the calculation of PM-related mortality). 

Acute Myocardial Infarction (Heart Attacks), Nonfatal (Zanobetti et al., 2009) 

Zanobetti et al. (2009) examined the relationship between daily PM2.5 levels and emergency 

hospital admissions for cardiovascular causes, myocardial infarction, congestive heart failure, 

                                                 
28 The study looked at hospital admissions of AMI through ER. Under the assumption that all heart attacks will end 

in hospitalization, we consider the endpoint as heart attack events to be consistent with other studies. 
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respiratory disease and diabetes among 26 U.S. communities from 2000-2003. The authors used 

meta-regression to examine how this association was modified by season- and community-

specific PM2.5 composition while controlling for seasonal temperature as a substitute for 

ventilation. Overall, the authors found that PM2.5 mass higher in Ni, As, and Cr as well as Br and 

organic carbon significantly increased its effects on hospital admissions. For a 10 ug/m3 increase 

in 2-day averaged PM2.5, a 1.89% (95% CI: 1.34-2.45) increase in cardiovascular disease 

admissions, a 2.25% (95% CI: 1.10-3.42) increase in myocardial infarction admissions, a 1.85% 

(95% CI: 1.19-2.51) increase in congestive heart failure admissions, a 2.74% (95% CI: 1.30-

4.20) increase in diabetes admissions, and a 2.07% (95% CI: 1.20-2.95) increase in respiratory 

admissions were observed. The relationship between PM2.5 and cardiovascular admissions was 

significantly modified when the mass of PM2.5 was high in Br, Cr, Ni, and sodium ions, while 

mass high in As, Cr, Mn, organic carbon, Ni and sodium ions modified the myocardial infarction 

relationship and mass high in As, organic carbon, and sulfate ions modified the diabetes 

admission rates. 

Using a single-pollutant model, the coefficient and standard error are estimated from the percent 

change in risk (2.25%) and 95% confidence interval (95% CI: 1.10-3.42) for a 10 ug/m3 increase 

in 2-day averaged PM2.5 (Zanobetti et al., 2009, Table 3). 

Functional Form: Log-linear 

Coefficient: 0.00225 

Standard Error: 0.000592 

Incidence Rate: We use the county-specific daily AMI hospitalization rate (ICD-9 code 410) for 

the population of individuals aged 18 years and older as the estimate for the incidence rate of 

nonfatal heart attack, assuming all heart attacks that are not instantly fatal will result in a 

hospitalization. We did not adjust for fatal AMIs in the incidence rate estimation, due to the way 

that the epidemiological studies are designed. Those studies consider total admissions for AMIs, 

which includes individuals living at the time the studies were conducted. Therefore, we use the 

definition of AMI that matches the definition in the epidemiological studies. 

Population: The study examined population of ages 65 and older. We apply the results to people 

of ages 18 and older. Since the vast majority of AMI occur among population 65-99, over-

counting may not be an issue when applying the risk coefficient to 18+. 

Adjustment: As some fraction of the admitted individuals die in the hospital, we apply a 

survival rate of 93% in calculating the avoided cases of AMI in order to avoid double counting 

(once in the calculation of AMI cases and once in the calculation of PM-related mortality). 

Hospitalizations 

We include two main types of hospital admissions – respiratory (all respiratory, COPD, and 

asthma) and cardiovascular (all cardiovascular less myocardial infarctions). 

Respiratory and cardiovascular hospital admissions are the two broad categories of hospital 

admissions that have been related to PM2.5 exposure. Although the benefits associated with 

respiratory and cardiovascular hospital admissions are estimated separately in the analysis, the 

methods used to estimate changes in incidence and to value those changes are the same for both 

broad categories of hospital admissions. 
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Due to the availability of detailed hospital admission and discharge records, there is an extensive 

body of literature examining the relationship between hospital admissions and air pollution. 

Because of this, we pooled some of the hospital admission endpoints, using the results from a 

number of studies. Specifically, we used the following pooling procedure. 

 For respiratory hospital admissions (HA): Babin et al. (2007) and Sheppard (2003) were 

used to estimate C-R functions for asthma hospitalizations (ICD-9 code: 493) for ages 0-

17 in Washington D.C and Seattle, WA, respectively. We pooled the C-R functions from 

these two studies using the random/fixed effects method. We then pooled results from 

Zanobetti et al. (2009) and Kloog et al. (2012) using subjective weights pooling method 

(i.e., 0.5 for each study) to estimate incidence for all-respiratory admissions for the 

elderly (age 65 and up). We then aggregated incidence estimates from the following three 

non-overlapping categories: (1) pooled asthma hospitalization (ages 0-17) from above, 

(2) pooled all-respiratory admissions for the elderly (age 65 and up) from above, and (3) 

COPD less asthma admissions for ages 18-64 from Moolgavkar (2000a). 

 For HA for cardiovascular diseases less myocardial infarctions (ICD-9 codes: 390-409, 

411-429): Peng et al. (2008) and Peng et al. (2009) reported C-R functions for people age 

65 years and older in 108 U.S. counties and 119 U.S. urban counties, respectively. We 

assigned equal weights to the estimates from these two studies (i.e., 0.5 for each study) 

and used the weighted average. We then assigned a weight of 0.33 to the results from 

each of two other studies that look at population of 65 years and older – Zanobetti et al. 

(2009) and Bell et al. (2008) – and pooled these results with the pooled results from Peng 

et al. (2008) and Peng et al. (2009). 
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Exhibit C-6.  Health Impact Functions for Particulate Matter and Hospital Admissions 

Endpoint Author Year Location Age Metric Beta Std 

Error 

Functional 

Form 

All 

Cardiovascular 

(less AMI) a 

Zanobetti et 

al.  

2009 26 U.S. 

communities 

65+ 24-hr avg 0.00189 0.00028 Log-linear 

All 

Cardiovascular 

(less AMI) a 

Peng et al. 2008 108 U.S. counties 65+ 24-hr avg 0.00071 0.00013 Log-linear 

All 

Cardiovascular 

(less AMI) a 

Peng et al.  2009 119 U.S. urban 

counties 

65+ 24-hr avg 0.00068 0.00021 Log-linear 

All 

Cardiovascular 

(less AMI) a 

Bell et al.  2008 202 US Counties 65+ 24-hr avg 0.0008 0.00011 Log-linear 

All 

Cardiovascular 

(less AMI) a 

Moolgavkar 2000b Los Angeles, CA 18-64 24-hr avg 0.0014 0.00034 Log-linear 

HA, All 

Respiratoryb  

Zanobetti et 

al. 

2009 26 U.S. 

communities 

65+ 24-hr avg 0.00207 0.00045 Log-linear 

HA, All 

Respiratoryb 

Kloog et al. 2012 New England area 

(6 states) 

65+ 24-hr avg 0.0007 0.00096 Log-linear 

HA, Asthmab Babin et al. 2007 Washington, D.C. 0-17 24-hr avg 0.002 0.00434 Log-linear 

HA, Asthmab Sheppard  2003 Seattle, WA 0-17 24-hr avg 0.00332 0.00104 Log-linear 

HA, COPDb Moolgavkar  2000a Los Angeles, CA 18-64 24-hr avg 0.0022 0.00073 Log-linear 
a These studies were pooled to generate pooled incidence estimates for cardiovascular hospital admissions. 
b These studies were pooled to generate pooled incidence estimates for respiratory hospital admissions. 

Hospital Admissions for All Cardiovascular (Bell et al., 2008) 

Bell et al. (2008) evaluated the association between short-term exposure to PM2.5 and the risk of 

cardiovascular (ICD-9 codes 410-414, 26-427, 428, 429, 430-438, and 440-449) hospital 

admissions among Medicare enrollees ≥65 years old varied by season and geographic region in 

202 U.S. counties with populations greater than 200,000 from 1999-2005. Three time-series 

models were used to provide three key variables: consistent PM2.5 effects across the year, 

different PM2.5 effects by season, and smoothly varying PM2.5 effects throughout the year. A 

two-stage Bayesian hierarchical model was used to estimate the association between PM2.5 and 

hospitalization rates, with the first stage estimating the association within a single county and the 

second stage combining county-specific estimates to obtain national estimates. The authors 

found statistically significant evidence of seasonal and regional variation. The strongest 

association was for the northeast. 

We use the national estimate for the all-year reported in Table 2 of Bell et al. (2008). The single 

pollutant coefficient and standard error are calculated from the estimated 0.8 percent increase in 

risk and 95% confidence interval (0.59-1.01 percent) for a 10 µg/m3 increase in same-day (lag 0) 

daily 24-hour mean PM2.5 (Bell et al., 2008, Table 2). 

Note that Bell et al. (2008) considered a broader range of ICD-9 codes and estimated the risk of 

both cardiovascular events and cerebro- and peripheral vascular disease. For comparability to 
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other studies, EPA decided to apply a baseline hospitalization rate for ICD-9 codes 390-409 and 

411-429 when using this C-R function in quantifying impacts. 

Functional Form: Log-linear 

Coefficient: 0.0008 

Standard Error: 0.00011 

Incidence Rate: county-specific daily hospital admission rate for all cardiovascular admissions 

less AMI per person ages 65+ (ICD-9 codes 390-409, 411-429) 

Population: population of ages 65+ 

Hospital Admissions for All Cardiovascular (Peng et al., 2008) 

Peng et al. (2008) examined the risk of hospital admissions for cardiovascular diseases (ICD-9 

codes 426-427, 428, 430-438, 410-414, 429, 440-448) in relation to particulate matter (PM10-2.5 

and PM2.5). To accomplish this, the authors utilized a database of 108 U.S. counties with daily 

emergency hospital admission rates for cardiovascular diseases among Medicare enrollees living 

9 miles from air, temperature, and dew-point temperature monitors. PM10-2.5 and PM2.5 

concentrations were calculated by using monitoring data from January 1, 1999 through 

December 31, 2005. Overall, there were 3.7 million cardiovascular disease-related hospital 

admissions for the time period assessed. The authors found significant associations of PM2.5 and 

PM10-2.5 with cardiovascular disease admissions. 

In a single-pollutant model, the coefficient and standard error are calculated from the estimated 

percent change in daily admission (0.44%) and 95% posterior interval (95% PI: 0.06-0.82%) for 

a 10 µg/m3 increase in daily 24-hour mean PM2.5 concentrations for the same day (Peng et al., 

2008, page 2175). 

Note that Peng et al. (2008) considered a broader range of ICD-9 codes and estimated the risk of 

both cardiovascular events and cerebro- and peripheral vascular disease. For comparability to 

other studies, EPA decided to apply a baseline hospitalization rate for ICD-9 codes 390-409 and 

411-429 when using this C-R function in quantifying impacts. 

Functional Form: Log-linear 

Coefficient: 0.00071 

Standard Error: 0.00013 

Incidence Rate: county-specific daily hospital admission rate for all cardiovascular admissions 

less AMI per person ages 65+ (ICD-9 codes 390-409, 411-429) 

Population: population of ages 65+ 

Hospital Admissions for All Cardiovascular (Peng et al., 2009) 

Peng et al. (2009) investigated the relationship between hospital admissions for cardiovascular 

and the chemical components of PM2.5 across 119 U.S. urban communities for 12 million 

Medicare enrollees using log-linear Poisson regression models. This was achieved using a 

national database with daily data from 2000-2006 on emergency hospital admissions of 

cardiovascular outcomes, ambient levels of PM2.5 components and weather variables. Bayesian 

hierarchical statistical models were used to estimate the associations. Three scenarios for PM2.5 
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exposure were assessed which were as follows: 1) for the period 2000-2006 and including only 

days with available measurements for all 7 PM2.5 components from the Speciation Trends 

network (STN); 2) PM2.5 measured by the STN for the period 2000-2006 and including only 

days with available measurements for all 7 PM2.5 components from the STN and 3) PM2.5 

estimated as the sum of the 7 largest components of PM2.5 mass for the period 2000-2006. 

Results of percent increases in emergency admissions associated with PM2.5 at lag 0 under these 

scenarios were showed in Figure 2 and the results for the components of PM2.5 from both single 

and multi-pollutant models were showed in Figure 3. 

In a single-pollutant model,  the coefficient and standard error are calculated from the estimated 

percent change in daily admission (0.68%) and 95% posterior interval (95% PI: 0.26-1.10%) for 

a 10 µg/m3 increase in daily 24-hour mean PM2.5 concentrations for the same day (Peng et al., 

2009, page 960). 

Note that Peng et al. (2008) considered a broader range of ICD-9 codes and estimated the risk of 

both cardiovascular events and cerebro- and peripheral vascular disease. For comparability to 

other studies, EPA decided to apply a baseline hospitalization rate for ICD-9 codes 390-409 and 

411-429 when using this C-R function in quantifying impacts. 

Functional Form: Log-linear 

Coefficient: 0.00068 

Standard Error: 0.00021 

Incidence Rate: county-specific daily hospital admission rate for all cardiovascular admissions 

less AMI per person ages 65+ (ICD-9 codes 390-409, 411-429) 

Population: population of ages 65+ 

Hospital Admissions for All Cardiovascular (Zanobetti et al., 2009) 

Zanobetti et al. (2009) examined the relationship between daily PM2.5 levels and emergency 

hospital admissions for cardiovascular causes, myocardial infarction, congestive heart failure, 

respiratory disease and diabetes among 26 U.S. communities from 2000-2003. The authors used 

meta-regression to examine how this association was modified by season- and community-

specific PM2.5 composition while controlling for seasonal temperature as a substitute for 

ventilation. Overall, the authors found that PM2.5 mass higher in Ni, As, and Cr as well as Br and 

organic carbon significantly increased its effects on hospital admissions. The relationship 

between PM2.5 and cardiovascular admissions was significantly modified when the mass of PM2.5 

was high in Br, Cr, Ni, and sodium ions, while mass high in As, Cr, Mn, organic carbon, Ni and 

sodium ions modified the myocardial infarction relationship and mass high in As, organic 

carbon, and sulfate ions modified the diabetes admission rates.  

The single-pollutant coefficient and standard error are calculated from the estimated percent 

change in risk (1.89 percent) and 95% confidence interval (1.34-2.45) for a 10 µg/m3 increase in 

2-day averaged PM2.5 (Zanobetti et al., 2009, Table 3). 

Note that Zanobetti et al. (2009) report results for ICD-9 codes 390-429. In the benefit analysis, 

avoided nonfatal heart attacks are estimated separately. In order to avoid double counting heart 
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attack hospitalizations, we have excluded ICD-9 code 410 from the baseline incidence rate used 

in this function. 

Functional Form: Log-linear 

Coefficient: 0.00189 

Standard Error: 0.00028 

Incidence Rate: county-specific daily hospital admission rate for all cardiovascular admissions 

less AMI per person ages 65+ (ICD-9 codes 390-409, 411-429) 

Population: population of ages 65+ 

Hospital Admissions for All Cardiovascular (Moolgavkar, 2000b) 

Moolgavkar (2000b) examined the association between air pollution and cardiovascular hospital 

admissions (ICD-9 390-448) in the Chicago, Los Angeles, and Phoenix metropolitan areas. He 

collected daily air pollution data for ozone, SO2, NO2, CO, and PM10 in all three areas. PM2.5 

data was available only in Los Angeles. The data were analyzed using a Poisson regression 

model with generalized additive models to adjust for temporal trends. Separate models were run 

for 0 to 5 day lags in each location. In a single pollutant model, PM2.5 was statistically significant 

for lag 0 and lag 1. In co-pollutant models with CO, the PM2.5 effect dropped out and CO 

remained significant. For ages 20-64, SO2 and CO exhibited the strongest effect and any PM2.5 

effect dropped out in co-pollutant models with CO. Among the 65+ age group, the gaseous 

pollutants generally exhibited stronger effects than PM10 or PM2.5. The strongest overall effects 

were observed for SO2 and CO. 

The single pollutant coefficient and standard error are calculated from an estimated percent 

change of 1.4 and t-statistic of 4.1 for a 10 μg/m3 increase in PM2.5 in the zero lag model for ages 

18-64 (Moolgavkar, 2000b, Table 4). 

Note that Moolgavkar (2000b) reported results that include ICD-9 code 410 (heart attack).  In the 

benefits analysis, avoided nonfatal heart attacks are estimated separately. In order to avoid 

double counting heart attack hospitalizations, we have excluded ICD-9 code 410 from the 

baseline incidence rate used in this function.  

Functional Form: Log-linear 

Coefficient: 0.0014 

Standard Error: 0.000341 

Incidence Rate: county-specific daily hospital admission rate for all cardiovascular admissions 

per person ages 18 to 64 (ICD-9 codes 390-409, 411-429) 

Population: population of ages 18 to 64 

Hospital Admissions for All Respiratory (Zanobetti et al., 2009) 

Zanobetti et al. (2009) examined the relationship between daily PM2.5 levels and emergency 

hospital admissions for cardiovascular causes, myocardial infarction, congestive heart failure, 

respiratory disease and diabetes among 26 U.S. communities from 2000-2003. The authors used 

meta-regression to examine how this association was modified by season- and community-

specific PM2.5 composition while controlling for seasonal temperature as a substitute for 
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ventilation. Overall, the authors found that PM2.5 mass higher in Ni, As, and Cr as well as Br and 

organic carbon significantly increased its effects on hospital admissions. The relationship 

between PM2.5 and cardiovascular admissions was significantly modified when the mass of PM2.5 

was high in Br, Cr, Ni, and sodium ions, while mass high in As, Cr, Mn, organic carbon, Ni and 

sodium ions modified the myocardial infarction relationship and mass high in As, organic 

carbon, and sulfate ions modified the diabetes admission rates. 

In a single-pollutant model, the coefficient and standard error are estimated from the percent 

change in risk (2.07%) and 95% confidence interval (1.2% - 2.95%) for a 10 μg/m3 increase in 2-

day averaged PM2.5 (Zanobetti et al., 2009, Table 3). 

Functional Form: Log-linear 

Coefficient: 0.00207 

Standard Error: 0.00045 

Incidence Rate: county-specific daily hospital admission rate for all respiratory admissions per 

person ages 65+ (ICD-9 codes 460 - 519) 

Population: population of ages 65+ 

Hospital Admissions for All Respiratory (Kloog et al., 2012) 

Kloog et al. (2012) investigated both the long and short term effects of PM2.5 exposure on 

hospital admissions across New England for all residents aged 65 and older. The authors 

performed separate Poisson regression analysis for each admission type: all respiratory, 

cardiovascular disease (CVD), stroke and diabetes. Daily admission counts in each zip code were 

regressed against long and short-term PM2.5 exposure, temperature, socio-economic data and a 

spline of time to control for seasonal trends in baseline risk. They observed associations between 

both short-term and long-term exposure to PM2.5 and hospitalization for all of the outcomes 

examined. 

In a single-pollutant model, the coefficient and standard error are estimated from the percent 

change in risk (0.70%) and 95% confidence interval (0.35% - 0.52%) for a 10 μg/m3 increase in 

short-term (same day) PM2.5 exposure (Kloog et al., 2012, Table 3). 

Functional Form: Log-linear 

Coefficient: 0.0007 

Standard Error: 0.00096 

Incidence Rate: county-specific daily hospital admission rate for all respiratory admissions per 

person ages 65+ (ICD-9 codes 460 - 519) 

Population: population of ages 65+ 

Hospital Admissions for Asthma (Sheppard, 2003) 

Sheppard et al. (1999) studied the relation between air pollution in Seattle and nonelderly (<65) 

hospital admissions for asthma from 1987 to 1994. They used air quality data for PM10, PM2.5, 

coarse PM10-2.5, SO2, ozone, and CO in a Poisson regression model with control for time trends, 



 

 

  C - 22      June 2020 

seasonal variations, and temperature-related weather effects.29 They found asthma hospital 

admissions associated with PM10, PM2.5, PM10-2.5, CO, and ozone. They did not observe an 

association for SO2. They found PM2.5 and CO to be jointly associated with asthma admissions. 

The best fitting co-pollutant models were found using ozone. However, ozone data was only 

available April through October, so they did not consider ozone further. For the remaining 

pollutants, the best fitting models included PM2.5 and CO. Results for other co-pollutant models 

were not reported. 

In response to concerns that the work by Sheppard et al. (1999) may be biased because of 

concerns about the (S-plus) software used in the original analysis, Sheppard (2003) reanalyzed 

some of this work; in particular Sheppard reanalyzed the original study’s PM2.5 single pollutant 

model.  

The coefficient and standard error are based on the relative risk (1.04) and 95% confidence 

interval (1.01-1.06) for a 11.8 μg/m3 increase in PM2.5 in the 1-day lag GAM stringent model 

(Sheppard, 2003, pp 228-299). 

Functional Form: Log-linear 

Coefficient: 0.003324 

Standard Error: 0.001045 

Incidence Rate: county-specific daily hospital admission rate for asthma admissions per person 

(ICD-9 code 493) 

Population: population of ages 0 -1730 

Hospital Admissions for Asthma (Babin et al., 2007) 

Babin et al. (2007) examined pediatric asthma-related emergency room (ER) visits and hospital 

admissions (ICD-9 code 493) in Washington, D.C. from 2001-2004 and their short-term 

associations with ozone, particulate matter, socioeconomic status, and age group. Applying 

Poisson regression analyses, the authors found significant associations between asthma ER visits 

and outdoor ozone concentrations for the 5-12 year old age group. The association between 

PM2.5 and asthma hospitalization was found statistically insignificant. 

The single pollutant coefficient and standard error are calculated from the estimated percent 

increase in risk (0.2 percent) and 95% confidence interval (-0.6 – 0.1 percent) for a 1 μg/m3 

increase in same-day (lag 0) daily 24-hour mean PM2.5 based on single-pollutant models (Babin 

et al., 2007, Table 2). 

Functional Form: Log-linear 

Coefficient: 0.002 

Standard Error: 0.00434 

Incidence Rate: county-specific daily hospital admission rate for asthma admissions per person 

(ICD-9 code 493) 

                                                 
29 PM2.5 levels were estimated from light scattering data. 
30 Although Sheppard (2003) reports results for the <65 year old age range, for comparability to other studies, we 

apply the results to the population of ages 0 to 17. 
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Population: population of ages 0 -17 

Hospital Admissions for Chronic Lung Disease (Moolgavkar, 2000a) 

Moolgavkar (2000a) examined the association between air pollution and COPD hospital 

admissions (ICD-9 490-496) in the Chicago, Los Angeles, and Phoenix metropolitan areas. He 

collected daily air pollution data for ozone, SO2, NO2, CO, and PM10 in all three areas. PM2.5 

data was available only in Los Angeles. The data were analyzed using a Poisson regression 

model with generalized additive models to adjust for temporal trends.  Separate models were run 

for 0 to 5 day lags in each location. Among the 65+ age group in Chicago and Phoenix, weak 

associations were observed between the gaseous pollutants and admissions. No consistent 

associations were observed for PM10. In Los Angeles, marginally significant associations were 

observed for PM2.5, which were generally lower than for the gases.  In co-pollutant models with 

CO, the PM2.5 effect was reduced. Similar results were observed in the 0-19 and 20-64 year old 

age groups. 

The PM2.5 C-R functions for the 20-64 age group are based on the single-pollutant model. Since 

the true PM2.5 effect is most likely best represented by a distributed lag model, any single lag 

model should underestimate the total PM2.5 effect. As a result, we selected the lag models with 

the greatest effect estimates for use in the C-R functions. 

The single pollutant coefficient and standard error are calculated from an estimated percent 

change of 2.2 and t-statistic of 3.0 for a 10 μg/m3 increase in PM2.5 in the two-day lag model 

(Moolgavkar, 2000a, Table 4). 

Functional Form: Log-linear 

Coefficient: 0.0022 

Standard Error: 0.000733 

Incidence Rate: county-specific daily hospital admission rate for chronic lung disease 

admissions per person 18-64 (ICD-9 codes 490-496) 

Population: population of ages 18 to 6431  

                                                 
31 Although Moolgavkar (2000a) reports results for the 20-64 year old age range, for comparability to other studies, 

we apply the results to the population of ages 18 to 64. 
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Emergency Room Visits 

To estimate the effects of PM2.5 air pollution reductions on asthma-related ER visits, we use the 

C-R functions based on Mar et al. (2010), Slaughter et al. (2005) and Glad et al. (2012). COBRA 

estimates the incidence results for ER visits by pooling these three studies using random/fixed 

pooling method. Exhibit C-7 below summarizes the attributes of the C-R functions used in 

COBRA. 

Exhibit C-7.  Health Impact Functions for Particulate Matter and Emergency Room Visits 

Author Year Location Age Metric Beta Std Error 
Functional 

Form 

Mar et al.  2010 Greater Tacoma, 

Washington 

0-99 24-hr avg 0.0056 0.0021 Log-linear 

Slaughter et 

al.  

2005 Spokane, Washington 0-99 24-hr avg 0.0029 0.0027 Log-linear 

Glad et al. 2012 Pittsburgh, PA 0-99 24-hr avg 0.0039 0.0028 Logistic 

Emergency Room Visits for Asthma (Mar et al., 2010) 

Mar et al. (2010) assessed the effect of particulate matter air pollution, including emissions from 

diesel generators, on emergency room visits for asthma in the greater Tacoma, Washington area 

from January 3, 1998 to May 30, 2002 using Poisson regression models. Health data were 

collected for individuals of all ages from 6 Tacoma hospitals. The authors also assessed the 

impacts of diesel generator use on emergency room visits for asthma from January 24, 2001 to 

June 2, 2001. Overall, the researchers found an association between daily PM2.5 levels and 

emergency room visits for asthma at lag days 2 and 3, with a relative risk for lag day 2 of 1.04 

(95% CI: 1.01-1.07) and a relative risk for lag day 3 of 1.03 (95% CI: 1.0-1.06). No significant 

association between emergency room visits for asthma and increased use of the diesel generators 

was observed. 

In a single-pollutant model, the PM2.5 coefficient and standard error are estimated from the 

relative risk (1.04) and 95% confidence interval (95% CI: 1.01-1.07) for a 7 µg/m3 increase in 

daily 24-hour mean PM2.5 at lag day 2 (Mar et al., 2010, Table 4). 

Functional Form: Log-linear 

Coefficient: 0.0056 

Standard Error: 0.0021 

Incidence Rate: county-specific daily asthma emergency room rate per person (The study didn’t 

report ICD-9 code but we assume ICD-9 code 493) 

Population: population of all ages 

Emergency Room Visits for Asthma (Slaughter et al., 2005) 

Slaughter et al. (2005) examined the short-term association of particulate matter (PM1, PM2.5, 

PM10, and PM10-2.5) and carbon monoxide with hospital admissions and emergency room visits 

for respiratory and cardiac outcomes and mortality in Spokane, Washington from January 1995 

to June 2001 using a log-linear generalized linear model. The authors found no association 

between respiratory emergency room visits and any size fraction of PM2.5, but there was a 
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suggestive relationship between fine PM2.5 and respiratory effects when compared to coarse 

PM2.5. No association between cardiac hospital admissions or mortality and any size fraction of 

PM2.5 or CO was observed at the 0- to 3-day lag. CO, on the other hand, was found to be 

associated with all respiratory emergency room visits and visits for asthma at the 3-day lag.   

In a single-pollutant model, the coefficient and standard error are estimated from the relative risk 

(1.03) and 95% confidence interval (95% CI: 0.98-1.09) for a 10 µg/m3 increase in daily 24-hour 

mean PM2.5 at 1-day lag (Slaughter et al., 2005, Table 4). 

 

Functional Form: Log-linear 

Coefficient: 0.0029 

Standard Error: 0.0027 

Incidence Rate: county-specific daily asthma emergency room rate per person (ICD-9 code 493) 

Population: population of all ages 

 

Emergency Room Visits for Asthma (Glad et al., 2012) 

Glad et al. (2012) investigated the relationship between air pollution and emergency department 

(ED) visits for asthma in the Pittsburgh, Pennsylvania area between 2002 and 2005 using a case-

crossover methodology with a logistical model. The authors found a 2.5% increase in asthma ED 

visits for each 10 ppb increase in the 1-hour maximum ozone level on day 2 (odds ratio [OR] = 

1.025, p < 0.05). Particulate matter with an aerodynamic diameter ≤2.5 μm (PM2.5) had an effect 

both on the total population on day 1 after exposure (1.036, p < 0.05), and on African Americans 

on days 1, 2, and 3. PM2.5 had no significant effect on Caucasian Americans alone. The disparity 

in risk estimates by race may reflect differences in residential characteristics, exposure to 

ambient air pollution, or a differential effect of pollution by race.  

In a single-pollutant model, the coefficient and standard error are estimated from the relative risk 

(1.040) and 95% confidence interval (95% CI: 0.984-1.100) for a 10 µg/m3 increase 6-day 

average of daily PM2.5 (Glad et al., 2012, Table 3). 

 

Functional Form: Logistic 

Coefficient: 0.0039 

Standard Error: 0.0028 

Incidence Rate: county-specific daily asthma emergency room rate per person (ICD-9 code 493) 

Population: population of all ages 
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Minor Effects 

We include functions to estimate acute bronchitis, lower respiratory symptoms, minor restricted 

days, and work loss days. 

Exhibit C-8.  Health Impact Functions for Particulate Matter and Acute Effects 

Endpoint Name Author Year Location Age Metric Beta 
Std 

Error 

Functiona

l Form 

Minor Restricted 

Activity Days 

 

Ostro & 

Rothschild 

1989 Nationwide 18-64 24-hr avg 0.007410 0.000700 Log-linear 

Acute Bronchitis 

 

Dockery et 

al. 

1996 24 communities 8-12 Annual 0.027212 0.017096 Logistic 

Work Loss Days 

 

Ostro 1987 Nationwide 18-64 24-hr avg 0.004600 0.000360 Log-linear 

Lower Respiratory 

Symptoms 

Schwartz 

and Neas 

2000 6 U.S. cities 7-14 24-hr avg 0.019012 0.006005 Logistic 

Acute Bronchitis (Dockery et al., 1996) 

Dockery et al (1996) examined the relationship between PM2.5 and other pollutants on the 

reported rates of asthma, persistent wheeze, chronic cough, and bronchitis, in a study of 13,369 

children ages 8-12 living in 24 communities in U.S. and Canada. Health data were collected in 

1988-1991, and single-pollutant models were used in the analysis to test a number of measures of 

particulate air pollution. Dockery et al. found that annual level of sulfates and particle acidity 

were significantly related to bronchitis, and PM2.1 and PM10 were marginally significantly related 

to bronchitis.32 They also found nitrates were linked to asthma, and sulfates linked to chronic 

phlegm. It is important to note that the study examined annual pollution exposures, and the 

authors did not rule out that acute (daily) exposures could be related to asthma attacks and other 

acute episodes. Earlier work, by Dockery et al. (1989), based on six U.S. cities, found acute 

bronchitis and chronic cough significantly related to PM15. Because it is based on a larger 

sample, the Dockery et al (1996) study is the better study to develop a C-R function linking 

PM2.5 with bronchitis.  

Bronchitis was counted in the study only if there were “reports of symptoms in the past 12 

months” (Dockery et al., 1996, p. 501). It is unclear, however, if the cases of bronchitis are acute 

and temporary, or if the bronchitis is a chronic condition. Dockery et al. found no relationship 

between PM2.5 and chronic cough and chronic phlegm, which are important indicators of chronic 

bronchitis. For this analysis, we assumed that the health impact function based on Dockery et al. 

is measuring acute bronchitis. The health impact function is based on results of the single 

pollutant model reported in Table 1. 

The estimated logistic coefficient and standard error are based on the odds ratio (1.50) and 95% 

confidence interval (0.91-2.47) associated with being in the most polluted city (PM2.1 = 20.7 

                                                 
32 The original study measured PM2.1, however when using the study's results we use PM2.5. This makes only a negligible 

difference, assuming that the adverse effects of PM2.1 and PM2.5 are comparable. 
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μg/m3) versus the least polluted city (PM2.1 = 5.8 μg/m3) (Dockery et al., 1996, Tables 1 and 4). 

The original study used PM2.1, however, we use the PM2.1 coefficient and apply it to PM2.5 data. 

Functional Form: Logistic 

Coefficient: 0.027212 

Standard Error: 0.017096 

Incidence Rate: annual bronchitis incidence rate per person in 2010 = 0.043 (American Lung 

Association, 2013, Table 11) 

Population: population of ages 8-12 

Lower Respiratory Symptoms (Schwartz & Neas, 2000) 

Schwartz and Neas (2000) used logistic regression to link lower respiratory symptoms and cough 

in children with coarse PM10, PM2.5, sulfate and H+ (hydrogen ion). Children were selected for 

the study if they were exposed to indoor sources of air pollution: gas stoves and parental 

smoking. The study enrolled 1,844 children into a year-long study that was conducted in 

different years (1984 to 1988) in six cities. The students were in grades two through five at the 

time of enrollment in 1984. By the completion of the final study, the cohort would then be in the 

eighth grade (ages 13-14); this suggests an age range of 7 to 14. 

The coefficient and standard error are calculated from the reported odds ratio (1.33) and 95% 

confidence interval (1.11-1.58) associated with a 15 μg/m3 change in PM2.5 (Schwartz & Neas, 

2000, Table 2). 

Functional Form: Logistic 

Coefficient: 0.01901 

Standard Error: 0.006005 

Incidence Rate: daily lower respiratory symptom incidence rate per person = 0.0012 (Schwartz 

et al., 1994, Table 2). 

Population: population of ages 7 to 14 

Minor Restricted Activity Days (Ostro and Rothschild, 1989) 

Ostro and Rothschild (1989) estimated the impact of PM2.5 and ozone on the incidence of minor 

restricted activity days (MRADs) and respiratory-related restricted activity days (RRADs) in a 

national sample of the adult working population, ages 18 to 65, living in metropolitan areas.33 

The annual national survey results used in this analysis were conducted in 1976-1981. 

Controlling for PM2.5, two-week average ozone has highly variable association with RRADs and 

MRADs. Controlling for ozone, two-week average PM2.5 was significantly linked to both health 

endpoints in most years.34 The health impact function for PM2.5 is based on this co-pollutant 

model. 

                                                 
33 The study population is based on the Health Interview Survey (HIS), conducted by the National Center for Health 

Statistics. In publications from this ongoing survey, non-elderly adult populations are generally reported as ages 18-64. 

From the study, it is not clear if the age range stops at 65 or includes 65 year olds. We apply the health impact function to 

individuals ages 18-64 for consistency with other studies estimating impacts to non-elderly adult populations. 
34 The study used a two-week average pollution concentration; the health impact function uses a daily average, which is 

assumed to be a reasonable approximation.   
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The study is based on a “convenience” sample of non-elderly individuals. Applying the health 

impact function to this age group is likely a slight underestimate, as it seems likely that elderly 

are at least as susceptible to PM2.5 as individuals under 65.   

Using the results of the two-pollutant model (O3 and PM2.5), we developed separate coefficients 

for each year in the analysis, which were then combined for use in this analysis. The coefficient 

is a weighted average of the coefficients in Ostro and Rothschild (1989, Table 4) using the 

inverse of the variance as the weight: 

 

The standard error of the coefficient is calculated as follows, assuming that the estimated year-

specific coefficients are independent: 

 

This reduces down to: 

 

Functional Form: Log-linear 

Coefficient: 0.00741 

Standard Error: 0.00070 

Incidence Rate: daily incidence rate for minor restricted activity days (MRAD) = 0.02137 

(Ostro & Rothschild, 1989, p. 243). 

Population: adult population ages 18 to 64 

Work Loss Days (Ostro, 1987) 

Ostro (1987) estimated the impact of PM2.5 on the incidence of work-loss days (WLDs), 

restricted activity days (RADs), and respiratory-related RADs (RRADs) in a national sample of 

the adult working population, ages 18 to 65, living in metropolitan areas.35 The annual national 

survey results used in this analysis were conducted in 1976-1981. Ostro reported that two-week 

average PM2.5 levels36 were significantly linked to work-loss days, RADs, and RRADs, however 

                                                 
35 The study population is based on the Health Interview Survey (HIS), conducted by the National Center for Health 

Statistics. In publications from this ongoing survey, non-elderly adult populations are generally reported as ages 18-64. 

From the study, it is not clear if the age range stops at 65 or includes 65 year olds. We apply the health impact function to 

individuals ages 18-64 for consistency with other studies estimating impacts to non-elderly adult populations. 
36 The study used a two-week average pollution concentration; the health impact function uses a daily average, which is 

assumed to be a reasonable approximation. 



 

 

  C - 29      June 2020 

there was some year-to-year variability in the results. Separate coefficients were developed for 

each year in the analysis (1976-1981); these coefficients were pooled. The coefficient used in the 

concentration-response function presented here is a weighted average of the coefficients in Ostro 

(1987, Table 3) using the inverse of the variance as the weight. 

The study is based on a “convenience” sample of non-elderly individuals. Applying the health 

impact function to this age group is likely a slight underestimate, as it seems likely that elderly 

are at least as susceptible to PM2.5 as individuals under 65. On the other hand, the number of 

workers over the age of 65 is relatively small; it was approximately 3% of the total workforce in 

2001 (U.S. Bureau of the Census, 2002). 

The coefficient used in the health impact function is a weighted average of the coefficients in 

Ostro (1987, Table 3) using the inverse of the variance as the weight: 

 

The standard error of the coefficient is calculated as follows, assuming that the estimated year-

specific coefficients are independent: 

 
This eventually reduces down to: 

 
Functional Form: Log-linear 

Coefficient: 0.0046 

Standard Error: 0.00036 

Incidence Rate: daily work-loss-day incidence rate per person ages 18 to 64 = 0.00595 (Adams, 

Hendershot, & Marano, 1999, Table 41; U.S. Bureau of the Census, 1997, No. 22) 

Population: adult population ages 18 to 64 
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Asthma-Related Effects 

We pool the results of studies by Ostro et al. (2001) and Mar et al. (2004) to get an estimate of 

asthma exacerbation in asthmatics. In addition to the lower respiratory estimate, we include an 

upper respiratory estimate based on a study by Pope et al. (1991). 

 

Exhibit C-9.  Health Impact Functions for Particulate Matter and Asthma-Related Effects 

Endpoint Name Author Year Location Age Metric Beta Std 

Error 

Functiona

l Form 

Asthma Exacerbation, 

Cough 

Ostro et 

al. 

2001 Los 

Angeles, 

CA 

6-18 24-hr avg 0.000985 0.00074

7 

Logistic 

Asthma Exacerbation, 

Shortness of Breath 

Ostro et 

al. 

2001 Los 

Angeles, 

CA 

6-18 24-hr avg 0.002565 0.00133

5 

Logistic 

Asthma Exacerbation, 

Wheeze 

Ostro et 

al. 

2001 Los 

Angeles, 

CA 

6-18 24-hr avg 0.001942 0.00080

3 

Logistic 

Asthma Exacerbation, 

Cough 

Mar et 

al. 

2004 Vancouver

, CAN 

6-18 24-hr avg 0.01906 0.00982

8  

Logistic 

Asthma Exacerbation, 

Shortness of Breath 

Mar et 

al. 

2004 Vancouver

, CAN 

6-18 24-hr avg 0.01222 0.01384

9 

Logistic 

Upper Respiratory 

Symptoms 

Pope et 

al. 

1991 Utah 

Valley 

9-11 24-hr avg 0.0036 0.0015 Logistic 

Pooling Ostro et al. (2001) and Mar et al. (2004) 

To characterize asthma exacerbations in children, we use two studies that followed panels of 

asthmatic children. Ostro et al. (2001) followed a group of 138 African-American children in Los 

Angeles for 13 weeks, recording daily occurrences of respiratory symptoms associated with 

asthma exacerbations (e.g., shortness of breath, wheeze, and cough). This study found a 

statistically significant association between PM2.5, measured as a 12-hour average, and the daily 

prevalence of shortness of breath and wheeze endpoints. Although the association was not 

statistically significant for cough, the results were still positive and close to significance; 

consequently, we decided to include this endpoint, along with shortness of breath and wheeze, in 

generating incidence estimates. 

Mar et al. (2004) followed nine asthmatic children for over eight months in Spokane, 

Washington. Data on respiratory symptoms and medication use were recorded daily by the 

study’s subjects, while air pollution data was collected by the local air agency and Washington 

State University. The authors found a strong association between cough symptoms and several 

metrics of particulate matter, including PM2.5. 

We employed the following pooling approach in combining effect estimates from the two studies 

to produce a single asthma exacerbation incidence estimate. First, we pooled (with a 
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fixed/random effects approach) the incidence estimates based on the two studies for “cough” and 

“shortness of breath” separately. We then assigned an equal weight (i.e., 0.33) to the pooled 

results for cough, the pooled results for shortness of breath, and the (un-pooled) results for 

wheeze (from Ostro et al., 2001).  

To prevent double-counting, we followed U.S. EPA (2005, p. 4-38) and focused the estimation 

on asthma exacerbations occurring in children and excluded adults from the calculation. Asthma 

exacerbations occurring in adults are assumed to be captured in the general population endpoints 

such as work loss days and MRADs. Consequently, if we had included an adult-specific asthma 

exacerbation estimate, this would likely have double-counted incidence for this endpoint. 

However, because the general population endpoints do not cover children (with regard to 

asthmatic effects), an analysis focused specifically on asthma exacerbations for children (6 to 18 

years of age) could be conducted without concern for double-counting. 

Asthma Exacerbation: Cough, Wheeze, and Shortness of Breath (Ostro et 
al., 2001) 

Ostro et al. (2001) studied the relation between air pollution in Los Angeles and asthma 

exacerbation in African-American children (8 to 13 years old) from August to November 1993. 

They used air quality data for PM10, PM2.5, NO2, and O3 in a logistic regression model with 

control for age, income, time trends, and temperature-related weather effects.37 Asthma symptom 

endpoints were defined in two ways: “probability of a day with symptoms” and “onset of 

symptom episodes”. New onset of a symptom episode was defined as a day with symptoms 

followed by a symptom-free day. The authors found cough prevalence associated with PM10 and 

PM2.5 and cough incidence associated with PM2.5, PM10, and NO2. Ozone was not significantly 

associated with cough among asthmatics. 

Note that the study focused on African-American children ages 8 to 13 years old. We apply the 

function based on this study to the general population ages 6 to 18 years old. 

Asthma Exacerbation, Cough 

The coefficient and standard error are based on an odds ratio of 1.03 (95% CI 0.98-1.07) for a 30 

μg/m3 increase in 12-hour average PM2.5 concentration (Ostro et al., 2001, Table 4, p. 204).  

Functional Form: Logistic 

Coefficient: 0.000985 

Standard Error: 0.000747 

Incidence Rate: daily cough rate per person (Ostro et al., 2001, p. 202)  = 0.145 

Population: Asthmatic population ages 6 to 17 = 10.70%; asthmatic population age 18 = 

7.19%.38 

                                                 
37 The authors note that there were 26 days in which PM2.5 concentrations were reported higher than PM10 concentrations.  

The majority of results the authors reported were based on the full dataset. These results were used for the basis for the C-

R functions. 
38 The American Lung Association (2010, Table 7) estimates asthma prevalence for children ages 5-17 at 10.70% and for 

adults ages 18-44 at 7.19% (based on data from the 2008 National Health Interview Survey). 



 

 

  C - 32      June 2020 

Asthma Exacerbation, Shortness of Breath 

The coefficient and standard error are based on an odds ratio of 1.08 (95% CI 1.00-1.17) for a 30 

μg/m3 increase in 12-hour average PM2.5 concentration (Ostro et al., 2001, Table 4, p. 204).  

Functional Form: Logistic 

Coefficient: 0.002565 

Standard Error: 0.001335 

Incidence Rate: daily shortness of breath rate per person (Ostro et al., 2001, p. 202) = 0.074 

Population: Asthmatic population ages 6 to 17 = 10.70%; asthmatic population age 18 = 7.19%. 

Asthma Exacerbation, Wheeze 

The coefficient and standard error are based on an odds ratio of 1.06 (95% CI 1.01-1.11) for a 30 

μg/m3 increase in 12-hour average PM2.5 concentration (Ostro et al., 2001, Table 4, p. 204).  

Functional Form: Logistic 

Coefficient: 0.001942 

Standard Error: 0.000803 

Incidence Rate: daily wheeze rate per person (Ostro et al., 2001, p. 202)  = 0.173 

Population: Asthmatic population ages 6 to 17 = 10.70%; asthmatic population age 18 = 7.19%. 

Asthma Exacerbation, Cough and Shortness of Breath (Mar et al., 2004) 

Mar et al. (2004) studied the effects of various size fractions of particulate matter on respiratory 

symptoms of adults and children with asthma, monitored over many months. The study was 

conducted in Spokane, Washington, a semiarid city with diverse sources of particulate matter. 

Data on respiratory symptoms and medication use were recorded daily by the study’s subjects, 

while air pollution data was collected by the local air agency and Washington State University. 

Subjects in the study consisted of 16 adults – the majority of whom participated for over a year – 

and nine children, all of whom were studied for over eight months. Among the children, the 

authors found a strong association between cough symptoms and several metrics of particulate 

matter, including PM2.5. However, the authors found no association between respiratory 

symptoms and PM2.5 of any metric in adults. Mar et al. therefore concluded that the discrepancy 

in results between children and adults was due either to the way in which air quality was 

monitored, or a greater sensitivity of children than adults to increased levels of PM2.5 air 

pollution. 

Asthma Exacerbation, Cough 

In a single-pollutant model, the coefficient and standard error are estimated from the odds ratio 

(1.21) and 95% confidence interval (1.00-1.47) for a 10.0 μg/m3 increase in 1-day lagged 

concentration of PM2.5 (Mar et al., 2004, Table 7). 
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Functional Form: Logistic 

Coefficient: 0.019062 

Standard Error: 0.009828 

Incidence Rate: daily cough rate per person (Ostro et al., 2001)  = 14.5% 

Population: The study reported results for population ages 7-12. For comparability to other 

studies, we apply the results to the population of ages 6 to 18. Asthmatic population ages 6 to 17 

= 10.70%; asthmatic population age 18 = 7.19%. 

Asthma Exacerbation, Shortness of Breath 

In a single-pollutant model, the coefficient and standard error are estimated from the odds ratio 

(1.13) and 95% confidence interval (0.86-1.48) for a 10.0 μg/m3 increase in current-day 

concentration of PM2.5 (Mar et al., 2004, Table 7). 

Functional Form: Logistic 

Coefficient: 0.012222 

Standard Error: 0.013849 

Incidence Rate: daily shortness of breath rate per person (Ostro et al., 2001, p.202)  = 7.4% 

Population: The study reported results for population ages 7-12. For comparability to other 

studies, we apply the results to the population of ages 6 to 18. Asthmatic population ages 6 to 17 

= 10.70%; asthmatic population age 18 = 7.19%. 

 

Upper Respiratory Symptoms (Pope, 1991) 

Using logistic regression, Pope et al. (1991) estimated the impact of PM10 on the incidence of a 

variety of minor symptoms in 55 subjects (34 “school-based” and 21 “patient-based”) living in 

the Utah Valley from December 1989 through March 1990. The children in the Pope et al. study 

were asked to record respiratory symptoms in a daily diary. With this information, the daily 

occurrences of upper respiratory symptoms (URS) and lower respiratory symptoms (LRS) were 

related to daily PM10 concentrations. Pope et al. describe URS as consisting of one or more of 

the following symptoms: runny or stuffy nose; wet cough; and burning, aching, or red eyes.   

Levels of ozone, NO2, and SO2 were reported low during this period, and were not included in 

the analysis. The sample in this study is relatively small and is most representative of the 

asthmatic population, rather than the general population. The school-based subjects (ranging in 

age from 9 to 11) were chosen based on “a positive response to one or more of three questions: 

ever wheezed without a cold, wheezed for 3 days or more out of the week for a month or longer, 

and/or had a doctor say the ‘child has asthma’ (Pope, 1991, p. 669).” The patient-based subjects 

(ranging in age from 8 to 72) were receiving treatment for asthma and were referred by local 

physicians. Regression results for the school-based sample (Pope, 1991, Table 5) show PM10 

significantly associated with both upper and lower respiratory symptoms. The patient-based 

sample did not find a significant PM10 effect. The results from the school-based sample are used 

here. 

The coefficient and standard error for a one μg/m3 change in PM10 is reported in Table 5. 
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Functional Form: Logistic 

Coefficient: 0.0036 

Standard Error: 0.0015 

Incidence Rate: daily upper respiratory symptom incidence rate per person = 0.3419 (Pope, 

1991, Table 2)  

Population: Asthmatic population ages 6 to 17 = 10.70% 39 of population ages 9 to 11. 

                                                 
39 The American Lung Association (2010, Table 7) estimates asthma prevalence for children 5-17 at 10.70% (based on 

data from the 2008 National Health Interview Survey). 



 

 

  D - 1      June 2020 

 

 

Appendix D: Baseline Incidence Rates for Adverse Health 
Effects 
 

Health impact functions developed from log-linear or logistic models estimate the percent 

change in an adverse health effect associated with a given pollutant change. In order to estimate 

the absolute change in incidence using these functions, we need the baseline incidence rate of the 

adverse health effect. For certain health effects, such as asthma exacerbation, we need a 

prevalence rate, which estimates the percentage of the general population with a given ailment 

like asthma. This Appendix describes the data used to estimate baseline incidence rates and 

prevalence rates for the health effects considered in this analysis. 

Mortality 

This section describes the development of county mortality rates for years 2015, 2025 and 2030 

for use in COBRA.40 First, we describe the source of 2012-2014 individual-level mortality data 

and the calculation of county-level mortality rates. Then we describe how we use national-level 

Census mortality rate projections to develop county-level mortality rate projections for years 

2015, 2025 and 2030. 

Mortality Data for 2012-2014 

We obtained individual-level mortality data from 2012-2014 for the whole United States from 

the Centers for Disease Control (CDC), National Center for Health Statistics (NCHS). The data 

were compressed into a CD-ROM, which contains death information for each decedent, 

including residence county FIPS, age at death, month of death, and underlying causes (ICD-10 

codes). 

Using the detailed mortality data combined with county-level inter-censal population estimates,41 

we generated age-, cause-, and county-specific mortality rates using the following formula: 

 

 
where Ri,j,k is the mortality rate for age group i, cause j, and county k; D is the death count; and P 

is the population. 

For county-age group cells with fewer than 10 deaths, CDC WONDER suppresses the exact 

death count. For these observations, a mortality rate cannot be calculated. For each combination 

                                                 
40 We use projected 2020 mortality rates for analysis year 2017 in COBRA because the Census Bureau national 

mortality rates are projected only every 5 years and are not available for 2017. 
41 The detailed mortality data obtained from CDC do not include population. The county-level inter-censal 

population estimates are based on US Census of Population and Housing 2010 and forecasts developed by Woods & 

Poole (2011). 
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of age group and mortality cause, we used the following procedure to deal with suppressed 

counts. 

For each combination of state, age group and mortality cause, we grouped counties with 

unsuppressed mortality figures and summed their reported death counts. We then subtracted 

these unsuppressed deaths from the state-level age- and cause-specific death count, which 

includes suppressed deaths. We divided the resulting state-wide death count in suppressed 

counties by the age-specific populations in those counties. This calculation resulted in an age- 

and cause- specific average mortality rate for suppressed counties. 

In some instances, age- and cause-specific death counts were suppressed at both the county and 

state level. In these cases, we substituted national-level age- and cause- specific mortality rates 

for the respective missing county mortality rates. 

Following CDC Wonder (http://wonder.cdc.gov), we treated mortality rates as “unreliable” when 

the death count is less than 20. 42 For each combination of age group and mortality cause, we 

used the following procedure to deal with the problem of “unreliable” rates: 

 For a given state, we grouped the counties where the death count (i.e., the numerator on 

the right-hand side of the above equation) was less than 20 and summed those death 

counts across those counties. If the sum of deaths was greater than or equal to 20, we then 

summed the populations in those counties, and calculated a single rate for the “state 

collection of counties” by dividing the sum of deaths by the sum of populations in those 

counties. This rate was then applied to each of those counties.43 

 If the sum of deaths calculated in the above step was still less than 20, the counties in the 

“state collection of counties” were not assigned the single rate from the above step. 

Instead, we proceeded to the regional level (see Exhibit D-1 for region definition). In 

each region, we identified all counties whose death counts were less than 20 (excluding 

any such counties that were assigned a rate in the previous step). We summed the death 

counts in those counties. If the sum of deaths was greater than or equal to 20, we then 

summed the populations in those counties, and calculated a single rate for the “regional 

collection of counties” by dividing the sum of deaths by the sum of populations in those 

counties. This rate was then applied to each of those counties in the “regional collection 

of counties.”44  

                                                 
42 Among all the calculated age-, cause-, and county-specific mortality rates, there were about 67% “unreliable” 

rates. 
43 After this adjustment, there were 17% unreliable rates left. 
44 After this regional adjustment, there were 7% unreliable rates left. 
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Exhibit D-1.  Regional Definitions from U.S. Census 

Region States Included 

Northeast 
Maine, New Hampshire, Vermont, Massachusetts, 

Rhode Island, Connecticut, New York, New Jersey, 

Pennsylvania 

Midwest 
Ohio, Indiana, Illinois, Michigan, Wisconsin, 

Minnesota, Iowa, Missouri, North Dakota, South 

Dakota, Nebraska, Kansas 

South 

Delaware, Maryland, District of Columbia, Virginia, 

West Virginia, North Carolina, South Carolina, 

Georgia, Florida, Kentucky, Tennessee, Alabama, 

Mississippi, Arkansas, Louisiana, Oklahoma, Texas 

West 
Montana, Idaho, Wyoming, Colorado, New Mexico, 

Arizona, Utah, Nevada, Washington, Oregon, 

California, Alaska, Hawaii 

 If the sum of deaths calculated in the previous (regional) step was still less than 20, the 

counties in the “regional collection of counties” were not assigned the single rate from 

the above step. Instead, we proceeded to the national level, identifying all counties in the 

nation whose death counts were less than 20 (excluding any such counties that were 

assigned a rate in the previous steps). We summed the death counts in those counties and 

divided by the sum of the populations in those counties to derive a single rate for the 

“national collection of counties.” This rate was then applied to each of those counties in 

the “national collection of counties.”45 In these cases where national adjustment still did 

not yield a death count greater than 20, we simply calculated a single rate for the 

“national collection of counties, even though it was “unreliable,” and assigned it to those 

counties in the “national collection of counties.” 

Exhibit D-2 shows the resulting national average all-cause mortality rates. 

Exhibit D-2.  National All-Cause Mortality Rates (per 100 people per year) by Age Group 

Mortality 

Category 

Infant

* 
1--17 18--24 25--34 35--44 45--54 55--64 65--74 75--84 85+ 

Mortality, All 

Cause 

0.593

96 

0.019

51 

0.078

04 

0.106

65 

0.172

64 

0.405

42 

0.861

62 

1.796

70 

4.628

37 

13.580

34 

* We estimate post-neonatal mortality (deaths after the first month) for infants because the health impact 

function (see Appendix F) estimates post-neonatal mortality. 

Mortality Rate Projections to 2015, 2025 and 2030 

To estimate age- and county-specific mortality rates in years 2015, 2025 and 2030, we calculated 

adjustment factors, based on a series of Census Bureau projected national mortality rates (for all-

                                                 
45 Even after this national adjustment, there were about 1% unreliable rates left. In these cases, we simply calculated 

a single rate for the “national collection of counties”, even though it was “unreliable,” and assigned it to those 

counties in the “national collection of counties.”  
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cause mortality), to adjust the age- and county-specific mortality rates calculated using 2012-

2014 data as described above. We used the following procedure: 

 For each age group, we obtained the series of projected national mortality rates from 

2013 to 2050 (see the 20135 rate in Exhibit D-3) based on Census Bureau projected life 

tables.46   

 We then calculated, separately for each age group, the ratio of Census Bureau national 

mortality rate in years 2015, 2025, and 2030 to the 2013 rate. These ratios are shown in 

Exhibit D-4. 

 Finally, to estimate mortality rates in years 2015, 2025 and 2030 that are both age group-

specific and county-specific, we multiplied the county- and age-group-specific mortality 

rates for 2012-2014 by the appropriate ratio calculated in the previous step. For example, 

to estimate the projected mortality rate in 2015, 2025and 2030 among ages 18-24 in 

Wayne County, MI, we multiplied the mortality rate for ages 18-24 in Wayne County in 

2012-2014 by the ratio of Census Bureau projected national mortality rate in 2015, 2025 

and 2030 for ages 18-24 to Census Bureau national mortality rate in 2013 for ages 18-24. 

Exhibit D-3. All-Cause Mortality Rate (per 100 people per year), by Source, Year, and Age Group 

Source & 

Year 
Infant* 1--17 

18--

24 

25--

34 

35--

44 

45--

54 

55--

64 

65--

74 

75--

84 
85+ 

Calculated 

CDC 2012-

2014 

0.594* 0.020 0.078 0.107 0.173 0.405 0.862 1.797 4.628 13.580 

Census 

Bureau 

2013** 

0.654 0.029 0.088 0.102 0.183 0.387 0.930 2.292 5.409 13.091 

* The Census Bureau estimate is for all deaths in the first year of life. COBRA uses post-neonatal mortality (deaths 

after the first month, i.e., 0.23 per 100 people) because the health impact function (see Appendix F) estimates 

postneonatal mortality. For comparison purpose, we also calculated the rate for all deaths in the first year, which is 

0.684 per 100 people). 

Exhibit D-4. Ratio of 2025 and 2020 All-Cause Mortality Rate to 2013 Estimated All-Cause Mortality Rate, 

by Age Group 

Year Infant 1--17 18--24 25--34 35--44 45--54 55--64 65--74 75--84 85+ 

2025 0.85 0.81 0.74 0.80 0.75 0.77 0.85 0.91 0.93 0.97 

2020 0.94 0.94 0.98 1.04 0.97 0.98 1.02 1.03 1.03 1.00 

 

                                                 
46  For a detailed description of the model, the assumptions, and the data used to create Census Bureau projections, 

see the working paper, "Methodology and Assumptions for the Population Projections of the United States: 1999 to 

2100, Working Paper #38.", which is available on 

http://www.census.gov/population/www/documentation/twps0038/twps0038.html (Hollman, et al. 2000) . 

http://www.census.gov/population/www/documentation/twps0038/twps0038.html
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Hospitalizations 

Hospitalization rates were calculated using data from the Healthcare Cost and Utilization Project 

(HCUP). HCUP is a family of health care databases developed through a Federal-State-Industry 

partnership and sponsored by the Agency for Healthcare Research and Quality (AHRQ).47 

HCUP products include the State Inpatient Databases (SID), the State Emergency Department 

Databases (SEDD), the Nationwide Inpatient Sample (NIS), and the Nationwide Emergency 

Department Sample (NEDS). HCUP databases can be obtained from the following data services: 

 The HCUP Central Distributor: Many of the HCUP databases are available for purchase 

through the HCUP Central Distributor. The databases include detailed information for 

individual discharges, such as primary diagnosis (in ICD-9 codes), patient’s age and 

residence county.  

 HCUP State Partners: Some HCUP participating states do not release their data to the 

Central Distributor; however, the data may be obtained through contacting the State 

Partners. Some State Partners (e.g., CA, TX, and NY) provided discharge-level data; 

others (e.g., OH) provided summarized data.  

 HCUPnet: This is a free, on-line query system based on data from HCUP. It provides 

access to summary statistics at the state, regional and national levels.   

Exhibit D-5 shows the level of hospitalization data (e.g., discharge-level or state-level) for each 

state. Note that for some states neither discharge-level nor state-level data were available. In such 

cases, we used regional statistics from HCUPnet to estimate hospitalization rates for those states. 

The data year for states using HCUPnet data is 2014. For discharge-level data, the data year for 

most states is 2014; however, some states provided data for 2011 (CA, MS); 2012 (ME); and 

2013 (AR, MA, MD, NV, SD, UT). We assume hospitalization rates are reasonably constant 

from 2011-2014 and consider all as 2014 rates. 

                                                 
47 More information about HCUP can be found at http://www.hcup-us.ahrq.gov/.  

http://www.hcup-us.ahrq.gov/
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Exhibit D-5.  Hospitalization Data from HCUP 

 

The procedures for calculating hospitalization rates are summarized as follows:48 

 For states with discharge-level data:  

o We calculated age-, health endpoint-, and county-specific hospitalization 

counts.49.  

o The above calculation excluded hospitalizations with missing patient age or 

county FIPS, which may lead to underestimation of rates. Therefore we scaled up 

the previously calculated age-, endpoint-, and county-specific counts using an 

adjustment factor obtained as follows: 

                                                 
48 The data year for most states is 2007; the exception is MA, for which the data year is 2006. We assume 

hospitalization rates are reasonably constant from 2006-2007 and consider all as 2007 rates. 
49  Ohio was the only state that, while not providing discharge-level data, did provide county-level data for each age 

group-endpoint combination. 
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 We first counted the number of discharges for a specific endpoint in the 

state including those discharges with missing age or county FIPS. 

 We then counted the number of discharges for the endpoint in the state 

excluding those records with missing age or county FIPS. 

 The adjustment factor is the ratio of the two counts. 

o For California and West Virginia, patient county was unavailable for all 

observations. For these two states, we used hospital county in place of patient 

county. 

o We calculated hospitalization rates for each county by dividing the adjusted 

county-level hospitalization counts by the Census estimated county-level 

population for the corresponding year (2011 – 2014). Following CDC Wonder, 

we treated rates as “unreliable” when the hospitalization count was less than 20, 

using the same procedure we used for mortality rates above.  

 For states with summarized state statistics (from HCUPnet) we calculated the state-, age-, 

endpoint- specific hospitalization rates and applied them to each county in the state. We 

used the previously described procedure to adjust the “unreliable” rates. 

 For states without discharge-level or state-level data:   

o We obtained the endpoint-specific hospitalization counts in each region from 

HCUPnet/NIS (we refer to this count for the ith endpoint in the jth region as 

“TOTALij”). 

o For those states in the jth region that do have discharge-level or state-level data, 

we summed the hospital admissions by endpoint (we refer to this count for the ith 

endpoint in the jth region as “SUB ij”).  

o We then estimated the hospitalization count for states without discharge or state 

data for the ith endpoint in the jth region as TOTALij – SUB ij. Note that while 

this count is endpoint- and region- specific, it is not age-specific. We obtained the 

distribution of hospital admission counts across age groups based on the National 

Hospital Discharge Survey (NHDS) and assumed the same distribution for the 

HCUP hospitalizations. We then applied this distribution to the estimated hospital 

counts (i.e., TOTALij – SUB ij) to obtain endpoint-, region-, and age-specific 

counts.  

o Using the corresponding age- and region-specific populations, we calculated age-

specific hospitalization rates for the ith endpoint in the jth region and applied 

them to those counties in the region that didn’t have discharge-level or state-level 

data. 



 

 

  D - 1      June 2020 

 

 

Exhibit D-6 shows the resulting average national hospitalization rates by health endpoint and age group. 

Exhibit D-6. National Hospitalization Rates, by Health Endpoint and Age Group 

Hospitalization 

Category 

ICD-9 

Codes 

Hospitalization Rate by Age Group  

(admissions per 100 people per year) 

Age 0-1 2-17 18-24 25-34 45-54 55-64 65-74 75-84 85+ 

  Respiratory 

all respiratory 460-519 2.387 0.363 0.166 0.212 0.340 0.737 1.297 2.292 4.151 

asthma 493 0.217 0.147 0.036 0.048 0.076 0.123 0.136 0.157 0.218 

chronic lung disease 490-496 0.226 0.151 0.041 0.056 0.105 0.281 0.496 0.837 1.276 

  Cardiovascular 

all cardiovascular  390-429 0.044 0.017 0.061 0.138 0.377 0.914 1.747 3.131 5.886 
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Emergency Room Visits for Asthma 

The data source for emergency department/room (ED or ER) visits is also HCUP, i.e., SID, 

SEDD, and NEDS. The types of data providers are also the same as those described above for 

hospitalizations. Exhibit D-7 shows the emergency department data in each state.  

Exhibit D- 7. Emergency Department Data from HCUP 

 

 

The calculation of ER visit rates is also similar to the calculation of hospitalization rates, except 

for the following differences: 

 The SEDD databases include only those ER visits that ended with discharge. To identify 

the ER visits that ended in hospitalization, we used a variable called “admission source” 

in the SID databases. Admission source identified as “emergency room” indicates that the 

hospital admission came from the ER – i.e., the ER visit ended in hospitalization. For 

each combination of age group, endpoint and county, we summed the ER visits that 

ended with discharge and those that resulted in hospitalization. 
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 The data year varies across the states from 2011 to 2014 (see Exhibit D-7); we assumed 

that ER visit rates are reasonably constant across these three years and consider them as 

2014 rates. 

 Instead of using HCUPnet/NIS and NHDS in the last step as described for 

hospitalizations, we used HCUPnet/NEDS and the National Ambulatory Medical Care 

Survey (NAMCS) to calculate ER visit rates for states without discharge level or state 

level data. 

Exhibit D-8 shows the resulting average national rates of asthma emergency room visits by age 

group. 

Exhibit D-8.  National Emergency Room Visit Rates for Asthma, by Age Group 

 

ER Category 
ICD-9 

Codes 

ER Visit Rate (visits per 100 people per year) 

Age 0-17 18-24 25-34 35-44 45-54 55-64 65-74 75-84 85+ 

Asthma 493 0.959 0.601 0.556 0.538 0.552 0.408 0.331 0.368 0.350 

 

Nonfatal Heart Attacks  

The relationship between short-term particulate matter exposure and heart attacks was quantified 

in case-crossover analyses by Peters et al (2001), Pope et al. (2006), and Sullivan et al. (2005).  

The study population was selected from heart attack survivors in a medical clinic. Therefore, the 

applicable population to apply to the C-R function is all individuals surviving a heart attack in a 

given year. Several data sources are available to estimate the number of heart attacks per year. 

For example, several cohort studies have reported estimates of heart attack incidence rates in the 

specific populations under study. However, these rates depend on the specific characteristics of 

the populations under study and may not be the best data to extrapolate nationally.  The 

American Heart Association reports approximately 785,000 new heart attacks per year (Roger et 

al., 2012). Exclusion of heart attack deaths reported by CDC Wonder yields approximately 

575,000 nonfatal cases per year. 

An alternative approach to the estimation of heart attack rates is to use data from the HCUP, 

assuming that all heart attacks that are not instantly fatal will result in a hospitalization. 

According to the HCUPnet, in 2014 there were approximately 608,795hospitalizations due to 

heart attacks (acute myocardial infarction: ICD-9 code of 410, primary diagnosis).50 We used 

county-level hospitalization rates over estimates extrapolated from cohort studies because the 

former is part of a nationally representative survey with a larger sample size, which is intended 

to provide reliable national estimates. The hospitalization section above describes the detailed 

                                                 
50 Source: Online query on HCUPnet website (AHRQ 2012), accessed 1-13-2012 

http://hcupnet.ahrq.gov/HCUPnet.app/HCUPnet.jsp?Id=53F290DC050F1296&Form=SelLAY&GoTo=MAINSEL

&JS=Y 
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procedure for developing the incidence rates for hospitalization of AMI. As additional 

information is provided regarding the American Heart Association methodology, we will 

evaluate the usefulness of this estimate of heart attack incidence. 

Rosamond et al. (1999) reported that approximately six percent of male and eight percent of 

female hospitalized heart attack patients die within 28 days (either in or outside of the hospital). 

We, therefore, applied a factor of 0.93 to the count of hospitalizations to estimate the number of 

nonfatal heart attacks per year. Note that we did not adjust for fatal AMIs in the incidence rate 

estimation, due to the way that the epidemiological studies are designed. Those studies consider 

total admissions for AMIs, which includes individuals living at the time the studies were 

conducted. Therefore, we use the definition of AMI that matches the definition in the 

epidemiological studies. 

Exhibit D-9 presents the national nonfatal heart attack incidence rates around year 2007 by age 

group (Note: county-level rates around year 2007 are used in COBRA). 

Exhibit D-9.  Nonfatal Heart Attack Rates by Age Group 

 

ER Category 
ICD-9 

Codes 

Nonfatal Heart Rate by Age Group  

(admissions per 100 people per year) 

Age 0-17 18-24 25-34 35-44 45-54 55-64 65-74 75-84 85+ 

Acute Myocardial 

Infarction, Nonfatal 
410 0.000 0.000 0.002 0.010 0.068 0.202 0.380 0.575 0.921 

 

 

 

Other Acute Effects 

For many of the minor effect studies, baseline rates from a single study are often the only source 

of information, and we assume that these rates hold for locations in the U.S. The use of study-

specific estimates is likely to increase the uncertainty around the estimate because they are often 

estimated from a single location using a relatively small sample. These endpoints include: acute 

bronchitis, upper respiratory symptoms, and lower respiratory symptoms. Exhibit D-10 presents 

a summary of these baseline rates. 
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Exhibit D-10.  Selected Acute Incidence (Cases / Person-Year) 

Endpoint Age Parameter Rate Source 

Acute Bronchitis 8-12 Incidence 0.043 
(American Lung Association, 2002, 

Table 11) 

Lower Respiratory 

Symptoms (LRS) 
7-14 Incidence 430.483 (Schwartz et al., 1994, Table 2) 

Minor Restricted Activity 

Days (MRAD) 
18-64 Incidence 7.8 (Ostro & Rothschild, 1989, p. 243) 

Work Loss Day (WLD) 18-64 Incidence 2.172 

(Adams, Hendershot, & Marano, 

1999, Table 41; U.S. Bureau of the 

Census, 1997) 

Acute Bronchitis 

The annual rate of acute bronchitis for children ages 5 to 17 was obtained from the American 

Lung Association (2002). The authors reported an annual incidence rate per person of 0.043, 

derived from the 1996 National Health Interview Survey. 

Lower Respiratory Symptoms 

Lower respiratory symptoms (LRS) are defined as two or more of the following: cough, chest 

pain, phlegm, and wheeze. The proposed yearly incidence rate for 100 people, 43.8, is based on 

the percentiles in Schwartz et al (1994, Table 2). The authors did not report the mean incidence 

rate, but rather reported various percentiles from the incidence rate distribution. The percentiles 

and associated per person per day values are 10th = 0 percent, 25th = 0 percent, 50th = 0 percent, 

75th = 0.29 percent, and 90th = 0.34 percent. The most conservative estimate consistent with the 

data are to assume the incidence per person per day is zero up to the 75th percentile, a constant 

0.29 percent between the 75th and 90th percentiles, and a constant 0.34 percent between the 90th 

and 100th percentiles. Alternatively, assuming a linear slope between the 50th and 75th, 75th and 

90th, and 90th to 100th percentiles, the estimated mean incidence rate per person per day is 0.12 

percent.51 We used the latter approach in this analysis, and then multiplied by 100 and by 365 to 

calculate the incidence rate per 100 people per year. 

Minor Restricted Activity Days (MRAD) 

Ostro and Rothschild (1989, p. 243) provide an estimate of the annual incidence rate of MRADs 

(7.8). We multiplied this estimate by 100 to get an annual rate per 100 people. 

Work Loss Days 

The yearly work-loss-day incidence rate per 100 people is based on estimates from the 1996 

National Health Interview Survey (Adams et al., 1999, Table 41). They reported a total annual 

work loss days of 352 million for individuals ages 18 to 65. The total population of individuals 

of this age group in 1996 (162 million) was obtained from (U.S. Bureau of the Census, 1997). 

                                                 
51 For example, the 62.5th percentile would have an estimated incidence rate per person per day of 0.145 percent. 
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The average annual rate of work loss days per individual (2.17) was multiplied by 100 to obtain 

the average yearly work-loss-day rate of 217 per 100 people.   

Asthma-Related Health Effects  

Several studies have examined the impact of air pollution on asthma development or 

exacerbation in the asthmatic population. Many of the baseline incidence rates used in the C-R 

functions are based on study-specific estimates. The baseline rates for the various endpoints are 

described below and summarized in Exhibit D-11. 

Exhibit D-11.  Asthma-Related Health Effects Rates 

Endpoint Age Parameter a Rate Source 

Asthma Exacerbation, Cough 6-18 Incidence 24.46 

(Ostro, Lipsett, Mann, Braxton-Owens, 

& White, 2001, p. 202) b 

 

  Prevalence 14.50% 

Asthma Exacerbation, Shortness of 

Breath 
6-18 Incidence 13.51  

  Prevalence 7.40% 

Asthma Exacerbation, Wheeze 6-18 Incidence 27.74  

  Prevalence 17.3% 

Asthma 6-17 Prevalence 10.70% (American Lung Association, 2010, 

Table 7) c  18 Prevalence 7.19% 

Upper Respiratory Symptoms (URS) 9-11 Incidence 124.79 
(Pope, Dockery, Spengler, & Raizenne, 

1991, Table 2) 

a The incidence rate is the number of cases per person per year.  Prevalence refers to the fraction of people that 

have a particular illness during a particular time period. 

b the rates in the study were for African American children of ages 8-13. We apply it to children aged 6-18 to 

match what was used in the selected epidemiological studies. 

c The American Lung Association (2010, Table 7) estimates asthma prevalence for children 5-17 at 10.70% and for 

adults ages 18-44 at 7.19% (based on data from the 2008 National Health Interview Survey).  
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Appendix E: Population Forecasts 
 

To estimate the change in population exposure to air pollution, we use projections based on US 

Census of Population and Housing 2010 and forecasting models developed by Woods & Poole 

(2015). The Woods and Poole (WP) database contains county-level projections of population by 

age, sex, ethnicity, and race out to 2050. Projections in each county are determined 

simultaneously with every other county in the United States to take into account patterns of 

economic growth and migration. The sum of growth in county-level populations is constrained to 

equal a previously determined national population growth, based on Bureau of Census estimates. 

The projection years used for COBRA are 2016, 2023, and 2028. 

According to WP, linking county-level growth projections together and constraining to a 

national-level total growth avoids potential errors introduced by forecasting each county 

independently. County projections are developed in a four-stage process. First, national-level 

variables such as income, employment, and populations are forecasted. Second, employment 

projections are made for 172 economic areas defined by the Bureau of Economic Analysis, using 

an “export-base” approach, which relies on linking industrial sector production of non-locally 

consumed production items, such as outputs from mining, agriculture, and manufacturing with 

the national economy. The export-based approach requires estimation of demand equations or 

calculation of historical growth rates for output and employment by sector. Third, population is 

projected for each economic area based on net migration rates derived from employment 

opportunities and following a cohort component method based on fertility and mortality in each 

area. Fourth, employment and population projections are repeated for counties, using the 

economic region totals as bounds. The age, sex, ethnicity, and race distributions for each region 

or county are determined by aging the population by single year of age by sex and race for each 

year through 2050 based on historical rates of mortality, fertility, and migration. 
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Appendix F: Economic Value of Health Effects 
 

This Appendix presents the mean estimate of the unit values used in this analysis. Exhibit F-1 

lists these unit values for 2028, Exhibit F-2 lists these unit values for 2023 and Exhibit F-3 lists 

these unit values for 2016. 

Exhibit F-1. Unit Values for Economic Valuation of Health Endpoints in 2028 (2017 $) 

NOTE: a Mortality value after adjustment for 20-year lag. 
b Infant mortality value is not adjusted for 20-year lag. 
c Based on Russell (1998) 
d Based on Wittels (1990) 

 

 

 

  

  Unit Value (2028 Income Level) 

Health Endpoint Age Range 3% DR 7% DR 

Mortalitya 25 - 99 $10,040,738 $8,943,125 

Infant Mortalityb 0 - 0 $11,191,541 $11,191,541 

Acute Myocardial Infarction, Nonfatalc 0 - 24 $39,174 $37,038 

Acute Myocardial Infarction, Nonfatalc 25 - 44 $52,999 $49,415 

Acute Myocardial Infarction, Nonfatalc 45 - 54 $59,550 $55,281 

Acute Myocardial Infarction, Nonfatalc 55 - 64 $156,951 $142,483 

Acute Myocardial Infarction, Nonfatalc 65 - 99 $39,174 $37,038 

Acute Myocardial Infarction, Nonfatald 0 - 24 $192,048 $192,048 

Acute Myocardial Infarction, Nonfatald 25 - 44 $205,873 $204,425 

Acute Myocardial Infarction, Nonfatald 45 - 54 $212,424 $210,291 

Acute Myocardial Infarction, Nonfatald 55 - 64 $309,825 $297,494 

Acute Myocardial Infarction, Nonfatald 65 - 99 $192,048 $192,048 

HA, All Cardiovascular (less AMI) 18 – 64 $47,652 $47,652 

HA, All Cardiovascular (less AMI) 65 - 99 $44,727 $44,727 

HA, All Respiratory 65 - 99 $37,569 $37,569 

HA, Asthma 0 - 17 $17,707 $17,707 

HA, Chronic Lung Disease 18-64 $23,362 $23,362 

Asthma ER Visit (Smith et al. 1997) 0 - 99 $547 $547 

Asthma ER Visit (Stanford et al. 1999) 0 – 99 $457 $457 

Acute Bronchitis 8 - 12 $556 $556 

Lower Resp. Symptoms 7 - 14 $24 $24 

Upper Resp. Symptoms 9 - 11 $39 $39 

MRAD 18 - 64 $79 $79 

Work Loss Days 18 - 64 $178 $178 

Asthma Exacerbation (Cough, Shortness of 

Breath, or Wheeze) 6 - 18 $67 $67 
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Exhibit F-2. Unit Values for Economic Valuation of Health Endpoints in 2023 (2017 $) 

NOTE: a Mortality value after adjustment for 20-year lag. 
b Infant mortality value is not adjusted for 20-year lag. 
c Based on Russell (1998) 
d Based on Wittels (1990) 

 

 

  Unit Value (2023 Income Level) 

Health Endpoint Age Range 3% DR 7% DR 

Mortalitya 25 - 99 $9,748,682 $8,682,996 

Infant Mortalityb 0 - 0 $10,866,012 $10,866,012 

Acute Myocardial Infarction, Nonfatalc 0 - 24 $39,174 $37,038 

Acute Myocardial Infarction, Nonfatalc 25 - 44 $52,999 $49,415 

Acute Myocardial Infarction, Nonfatalc 45 - 54 $59,550 $55,281 

Acute Myocardial Infarction, Nonfatalc 55 - 64 $156,951 $142,483 

Acute Myocardial Infarction, Nonfatalc 65 - 99 $39,174 $37,038 

Acute Myocardial Infarction, Nonfatald 0 - 24 $192,048 $192,048 

Acute Myocardial Infarction, Nonfatald 25 - 44 $205,873 $204,425 

Acute Myocardial Infarction, Nonfatald 45 - 54 $212,424 $210,291 

Acute Myocardial Infarction, Nonfatald 55 - 64 $309,825 $297,494 

Acute Myocardial Infarction, Nonfatald 65 - 99 $192,048 $192,048 

HA, All Cardiovascular (less AMI) 18 - 64 $47,581 $47,581 

HA, All Cardiovascular (less AMI) 65 - 99 $44,642 $44,642 

HA, All Respiratory 65 - 99 $37,463 $37,463 

HA, Asthma 0 - 17 $17,655 $17,655 

HA, Chronic Lung Disease 18-64 $23,294 $23,294 

Asthma ER Visits (Smith et al. 1997)  0 - 99 $547 $547 

Asthma ER Visits (Stanford et al. 1999) 0 - 99 $457 $457 

Acute Bronchitis 8 - 12 $550 $550 

Lower Resp. Symptoms 7 - 14 $24 $24 

Upper Resp. Symptoms 9 - 11 $38 $38 

MRAD 18 - 64 $78 $78 

Work Loss Days 18 - 64 $178 $178 

Asthma Exacerbation (Cough, Shortness of 

Breath, or Wheeze) 6 - 18 $66 $66 
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Exhibit F-3. Unit Values for Economic Valuation of Health Endpoints in 2016 (2017 $) 

NOTE: a Mortality value after adjustment for 20-year lag. 
b Infant mortality value is not adjusted for 20-year lag. 
c Based on Russell (1998) 
d Based on Wittels (1990) 

 

  

  Unit Value (2017 Income Level) 

Health Endpoint Age Range 3% DR 7% DR 

Mortalitya 25 - 99 $9,480,981 $8,444,559 

Infant Mortalityb 0 - 0 $10,567,629 $10,567,629 

Acute Myocardial Infarction, Nonfatalc 0 - 24 $39,174 $37,038 

Acute Myocardial Infarction, Nonfatalc 25 - 44 $52,999 $49,415 

Acute Myocardial Infarction, Nonfatalc 45 - 54 $59,550 $55,281 

Acute Myocardial Infarction, Nonfatalc 55 - 64 $156,951 $142,483 

Acute Myocardial Infarction, Nonfatalc 65 - 99 $39,174 $37,038 

Acute Myocardial Infarction, Nonfatald 0 - 24 $192,048 $192,048 

Acute Myocardial Infarction, Nonfatald 25 - 44 $205,873 $204,425 

Acute Myocardial Infarction, Nonfatald 45 - 54 $212,424 $210,291 

Acute Myocardial Infarction, Nonfatald 55 - 64 $309,825 $297,494 

Acute Myocardial Infarction, Nonfatald 65 - 99 $192,048 $192,048 

HA, All Cardiovascular (less AMI) 18 - 64 $47,480 $47,480 

HA, All Cardiovascular (less AMI) 65 - 99 $44,524 $44,524 

HA, All Respiratory 65 - 99 $37,316 $37,316 

HA, Asthma 0 - 17 $17,582 $17,582 

HA, Chronic Lung Disease 18-64 $23,200 $23,200 

Asthma ER Visits (Smith et al. 1997) 0 - 99 $547 $547 

Asthma ER Visits (Stanford et al. 1999) 0 - 99 $457 $457 

Acute Bronchitis 8 - 12 $550 $550 

Lower Resp. Symptoms 7 - 14 $24 $24 

Upper Resp. Symptoms 9 - 11 $38 $38 

MRAD 18 - 64 $77 $77 

Work Loss Days 18 - 64 $178 $178 

Asthma Exacerbation (Cough, Shortness of 

Breath, or Wheeze) 6 - 18 $65 $65 



 

 

 F - 4     June 2020 

Selecting Unit Values for Monetizing Health Endpoints 

The appropriate economic value for a change in a health effect depends on whether the health 

effect is viewed ex ante (before the effect has occurred) or ex post (after the effect has occurred). 

Reductions in ambient concentrations of air pollution generally lower the risk of future adverse 

health effects by a small amount for a large population. The appropriate economic measure is 

therefore ex ante WTP for changes in risk. However, epidemiological studies generally provide 

estimates of the relative risks of a particular health effect avoided due to a reduction in air 

pollution. A convenient way to use this data in a consistent framework is to convert probabilities 

to units of avoided statistical incidences. This measure is calculated by dividing individual WTP 

for a risk reduction by the related observed change in risk.  

For example, suppose a measure is able to reduce the risk of premature mortality from 2 in 

10,000 to 1 in 10,000 (a reduction of 1 in 10,000). If individual WTP for this risk reduction is 

$100, then the WTP for an avoided statistical premature mortality amounts to $1 million 

($100/0.0001 change in risk). Using this approach, the size of the affected population is 

automatically taken into account by the number of incidences predicted by epidemiological 

studies applied to the relevant population. The same type of calculation can produce values for 

statistical incidences of other health endpoints. 

For some health effects, such as hospital admissions, WTP estimates are generally not available. 

In these cases, we use the cost of treating or mitigating the effect. For example, for the valuation 

of hospital admissions EPA used the avoided medical costs as an estimate of the value of 

avoiding the health effects causing the admission. These COI estimates generally understate the 

true value of reductions in risk of a health effect, because, while they reflect the direct 

expenditures related to treatment, they omit the value of avoiding the pain and suffering from the 

health effect itself. 

Updating Values for Inflation 

The studies based on which the unit values were developed report estimates for a range for years 

prior to 2017. To allow for the effect of inflation, we have adjusted these values to reflect prices 

in 2017$. Because some functions are based on willingness to pay to avoid illness, while others 

are based on cost of illness and/or lost wages, three different inflation indices are used. These are 

the All Goods Index, the Medical Cost Index, and the Wage Index, respectively. Exhibit F-4 

summarizes the types of inflation indices and their sources used to adjust different types of unit 

values in COBRA.  
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Exhibit F-4.  Type of Inflation Index Used for Adjust Unit Values for Health Effects Endpoints 

Index Source Health Effects Endpoints 

All Goods Index Bureau of Labor Statistics’ 

(BLS) Consumer Price Index 

(CPI) 

Acute Bronchitis 

Asthma Exacerbation 

Lower Respiratory Symptoms 

Mortality 

Minor Restricted  Activity Days 

Upper Respiratory Symptoms 

Medical Cost Index BLS/CPI Acute Myocardial Infarction 

Emergency Room Visits 

Hospital Admissions 

Wage Index BLS Employment Cost Index for 

private industry workers, 2001-

2015 

Acute Myocardial Infarction 

Hospital Admissions 

 

Growth in Unit Values Reflecting Growth in National Income 

The unit value estimates reflect expected growth in real income over time. This is consistent with 

economic theory, which argues that WTP for most goods (such as health risk reductions) will 

increase if real incomes increase. There is substantial empirical evidence that the income 

elasticity of WTP for health risk reductions is positive, although there is uncertainty about its 

exact value (and it may vary by health effect). Although one might assume that the income 

elasticity of WTP is unit elastic (e.g., a 10 percent higher real income level implies a 10 percent 

higher WTP to reduce health risks), empirical evidence suggests that income elasticity is 

substantially less than one and thus relatively inelastic. As real income rises, the WTP value also 

rises but at a slower rate than real income.  

The effects of real income changes on WTP estimates can influence benefits estimates in two 

ways: through real income growth between the year a WTP study was conducted and the year for 

which benefits are estimated, and through differences in income between study populations and 

the affected populations at a particular time.  Following the analysis in the 2006 PM2.5 NAAQS 

regulatory impact assessment (U.S. EPA, 2006), we have focused on the former. 

The income adjustment in COBRA follows the approach used by EPA (2005, p. 4-17), who 

adjusted the valuation of human health benefits upward to account for projected growth in real 

U.S. income. Faced with a dearth of estimates of income elasticities derived from time-series 

studies, EPA applied estimates derived from cross-sectional studies.52 The available income 

elasticities suggest that the severity of a health effect is a primary determinant of the strength of 

the relationship between changes in real income and changes in WTP. As a result, EPA (2005, p. 

4-18) used different elasticity estimates to adjust the WTP for minor health effects, severe and 

chronic health effects, and premature mortality (see Exhibit F-5). 

                                                 
52 Details of the procedure can be found in Kleckner and Neumann 1999. 
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Exhibit F-5.  Elasticity Values Used to Account for National Income Growth 

Benefit Category 
Central Elasticity 

Estimate 

Minor Health Effect 0.15 

Severe & Chronic Health Effects 0.45 

Premature Mortality 0.40 

In addition to elasticity estimates, projections of populations and real gross domestic product 

(GDP) are needed to adjust benefits to reflect real per capita income growth. COBRA uses 

population and GDP projections developed by EPA, which are described in EPA (2005, p. 4-17). 

To estimate national population growth rates for the years between 1990 and 1999, EPA used 

national population estimates U.S. Census Bureau (Hollman, Mulder, & Kallan, 2000). These 

population estimates are based on an application of a cohort-component model to 1990 U.S. 

Census data projections (U.S. Bureau of the Census, 2000). For the years between 2000 and 

2010, EPA applied growth rates based on the U.S. Census Bureau projections to the U.S. Census 

estimate of national population in 2000. EPA used projections of real GDP provided in Kleckner 

and Neumann (1999) for the years 1990 to 2010, and projections of real GDP (in chained 1996 

dollars) provided by Standard and Poor’s (2000) for the years 2010 to 2025. 

Using the method outlined in Kleckner and Neumann (1999) and the population and income data 

described above, EPA (2005, p. 4-18) calculated WTP adjustment factors for each of the 

elasticity estimates. Benefits for each of the categories (minor health effects, severe and chronic 

health effects, premature mortality, and visibility) are adjusted by multiplying the unadjusted 

benefits by the appropriate adjustment factor. 

Note that because of a lack of data on the dependence of COI on income, and a lack of data on 

projected growth in average wages, no adjustments are made to benefits estimates based on the 

COI approach or to work loss days benefits estimates. This lack of adjustment would tend to 

result in an under-prediction of benefits in future years, because it is likely that increases in real 

U.S. income would also result in increased COI (due, for example, to increases in wages paid to 

medical workers) and increased cost of work loss days and lost worker productivity (reflecting 

that if worker incomes are higher, the losses resulting from reduced worker production would 

also be higher). 

Valuation Pooling 

In some cases there are multiple valuations available for a health effect, with no one valuation 

clearly superior to another. In such cases we pooled valuations in COBRA.  

 Smith et al. (1997) and Stanford et al. (1999) both evaluate asthma ER visits using COI. 

We assign equal weight to each study (i.e., 0.5) and COBRA will then use the weighted 

average to value ER visit.   

 To value Acute Myocardial Infarction, we pool Russell (1998) and Wittels (1990) by 

assigning equal weight (i.e., 0.5) to each. 
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 To value respiratory hospitalization, we sum across non-overlapping respiratory 

hospitalization effects, i.e., Asthma HA (age 0-17), Chronic Lung Disease HA (age 18-

64), All Respiratory HA (age 65-99). 

 Similarly, we sum across non-overlapping cardiovascular hospitalization effects, i.e., we 

sum the value for cardiovascular less AMI hospitalization for ages 18-64 and that for 

ages 65+. 

Valuing Premature Mortality 

To estimate the monetary value of risk change in premature death, we used the “value of 

statistical lives” saved (VSL) approach, which is a summary measure for the value of small 

changes in mortality risk for a large number of people. The VSL approach applies information 

from several published value-of-life studies to determine a reasonable monetary value of 

preventing premature mortality. Based on 26 published studies,53  the mean value of avoiding 

one statistical death is estimated to be roughly $9.5 million in 2016, $9.7 million in 2023, and 

$10 million in 2028 (all values are in 2017$ at the 2016, 2023, and 2028 income levels, 

respectively). 

There are a number of uncertainties in this estimate. The health science literature on air pollution 

indicates that several human characteristics affect the degree to which mortality risk affects an 

individual. For example, some age groups appear to be more susceptible to air pollution than 

others (e.g., the elderly and children). Health status prior to exposure also affects susceptibility. 

An ideal benefits estimate of mortality risk reduction would reflect these human characteristics, 

in addition to an individual’s WTP to improve one’s own chances of survival plus WTP to 

improve other individuals’ survival rates. 

The ideal measure would also take into account the specific nature of the risk reduction 

commodity that is provided to individuals, as well as the context in which risk is reduced. To 

measure this value, it is important to assess how reductions in air pollution reduce the risk of 

dying from the time that reductions take effect onward and how individuals value these changes. 

Each individual’s survival curve, or the probability of surviving beyond a given age, should shift 

as a result of an environmental quality improvement. For example, changing the current 

probability of survival for an individual also shifts future probabilities of that individual’s 

survival. This probability shift will differ across individuals because survival curves depend on 

such characteristics as age, health state, and the current age to which the individual is likely to 

survive. 

There are other potentially important factors that go beyond the scope of this discussion. For 

additional details, EPA (2005, p. 4-57) has an in-depth discussion of the uncertainties underlying 

mortality valuation. 

                                                 
53 These 26 studies have been identified in the Section 812 Reports to Congress as “applicable to policy analysis.” 

This represents an intermediate value from a variety of estimates, and it is a value EPA has frequently used in 

Regulatory Impact Analyses (RIAs) as well as in the Section 812 Retrospective and Prospective Analyses of the 

Clean Air Act. 
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Present Discounted Value of Avoiding Future Mortality 

The delay, or lag, between changes in PM2.5 exposures and changes in mortality rates is not 

precisely known. The current scientific literature on adverse health effects, such as those 

associated with PM2.5 (e.g., smoking-related disease), and the difference in the effect size 

estimated in chronic exposure studies versus daily mortality studies, suggests that it is likely that 

not all cases of avoided premature mortality associated with a given incremental reduction in 

PM2.5 exposure would occur in the same year as the exposure reduction. 

Current EPA benefits analyses (U.S. EPA, 2006, p. 5-21) assume a 20-year lag structure, with 30 

percent of premature deaths occurring in the first year, 50 percent occurring evenly over years 2 

to 5 after the reduction in PM2.5, and 20 percent occurring evenly over years 6 to 20 after the 

reduction in PM2.5. It should be noted that the selection of a 20-year lag structure is not directly 

supported by any PM2.5-specific literature. Rather, it is intended to be a best guess at the 

appropriate time distribution of avoided cases of PM2.5-related mortality. As noted by EPA, the 

distribution of deaths over the latency period is intended to reflect the contribution of short-term 

exposures in the first year, cardiopulmonary deaths in the 2- to 5-year period, and long-term lung 

disease and lung cancer in the 6- to 20-year period. Finally, it is important to keep in mind that 

changes in the lag assumptions do not change the total number of estimated deaths but rather the 

timing of those deaths. 

Specifying the lag is important because people are generally willing to pay more for something 

now than for the same thing later. They would for example, be willing to pay more for a 

reduction in the risk of premature death in the same year as exposure is reduced than for that 

same risk reduction to be received the following year. This time preference for receiving benefits 

now rather than later is expressed by discounting benefits received later. There is an ongoing 

discussion within the federal government about the choice of a discount rate in this context: a 3% 

discount rate is recommended by EPA, while a 7% is recommended by OMB. Therefore, the 

users now have the ability to specify the discount rate–3% or 7%–for a COBRA session. 

Following EPA’s Guidelines for Preparing Economic Analyses (U.S. EPA, 2010a), COBRA 

users are recommended to calculate monetized health benefits using both discount rates and to 

evaluate whether (and to what extent) the overall outcome of their analysis is affected by the 

choice of discount rate. 

Following EPA (2006, p. 5-21), COBRA assumes that some of the incidences of premature 

mortality related to PM2.5 exposures occur in a distributed fashion over the 20 years following 

exposure. To take this into account in the valuation of reductions in premature mortality, we 

applied an annual 3 percent discount rate to the value of premature mortality occurring in future 

years. Note that this lag adjustment does not apply to infant mortality, because Woodruff et al. 

(1997) estimate the number of infant deaths occurring in the same year as the emissions change. 

Valuing Non-Fatal Myocardial Infarction 

We are not able to identify a suitable WTP value for reductions in the risk of non-fatal heart 

attacks. Instead, we have used a cost-of-illness unit value with two components: the direct 

medical costs and the opportunity cost (lost earnings) associated with the illness event. Because 
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the costs associated with a heart attack extend beyond the initial event itself, we considered costs 

incurred over several years. For opportunity costs, we used values derived from Cropper and 

Krupnick (Cropper & Sussman, 1990), originally used in the 812 Retrospective Analysis of the 

Clean Air Act (U.S. EPA, 1997). For the direct medical costs, we found three possible sources in 

the literature. 

Wittels et al. (1990) estimated expected total medical costs of myocardial infarction over five 

years to be $51,211 (in 1986$) for people who were admitted to the hospital and survived 

hospitalization. (There does not appear to be any discounting used.) Using the CPI, the Wittels et 

al. estimate is $192,048 in year 2017$. This estimated cost is based on a medical cost model, 

which incorporated therapeutic options, projected outcomes and prices (using “knowledgeable 

cardiologists” as consultants). 

The model used medical data and medical decision algorithms to estimate the probabilities of 

certain events and/or medical procedures being used. The authors noted that the average length 

of hospitalization for acute myocardial infarction has decreased over time (from an average of 

12.9 days in 1980 to an average of 11 days in 1983). Wittels et al. used 10 days as the average in 

their study. It is unclear how much further the length of stay may have decreased from 1983 to 

the present. The average length of stay for ICD code 410 (myocardial infarction) in 2009 is 4.9 

days (Agency for Healthcare Research and Quality, 2010). However, this may include patients 

who died in the hospital (not included among our non-fatal cases), whose length of stay was 

therefore substantially shorter than it would be if they hadn’t died. 

Eisenstein et al. (2001) estimated 10-year costs of $44,663, in 1997$, or $87,102 in 2017$ for 

myocardial infarction patients, using statistical prediction (regression) models to estimate 

inpatient costs. Only inpatient costs (physician fees and hospital costs) were included. 

Russell et al. (1998) estimated first-year direct medical costs of treating nonfatal myocardial 

infarction of $15,540 (in 1995$), and $1,051 annually thereafter. Converting to year 2017$, that 

would be $39,174 (3% discount rate) and $37,038 (7% discount rate) for a 5-year period. 

As seen in Exhibit F-6, the three different studies provided significantly different values. We 

have not adequately resolved the sources of differences in the estimates. Because the wage-

related opportunity cost estimates from Cropper and Krupnick (1990) cover a 5-year period, we 

used a simple average of the two estimates for medical costs that similarly cover a 5-year period 

(i.e., assign a subjective weight of 0.5 to each estimate). We added this to the 5-year opportunity 

cost estimate. Exhibit F-7 gives the resulting estimates. 

Exhibit F-6 Summary of Studies Valuing Reduced Incidences of Myocardial Infarction 

Study Direct Medical Costs 

 (2017 $, 3% DR)  

Direct Medical Costs 

 (2017 $, 7% DR)  

Over an x-year period, for 

x = 

Wittels et al., 1990a $192,048  $192,048  5 

Russell et al., 1998 $39,174  $37,038  5 

Eisenstein et al., 2001 $87,102  $87,102  10 
a Wittels et al. did not appear to discount costs incurred in future years. 
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Exhibit F-7.  Estimated Costs Over a 5-Year Period of a Non-Fatal Myocardial Infarction 

Age Group 

Opportunity 

Cost  (2017 $, 

3% DR)  a 

Opportunity 

Cost  (2017 $, 

7% DR)  a 

Medical Cost 

(2017 $, 3% 

DR)  b 

Medical Cost 

(2017 $, 7% 

DR)  b 

Total Cost  

(2017 $, 3% 

DR) 

Total Cost  

(2017 $, 7% 

DR) 

0 - 24 $0 $0 $115,611 $114,543 $115,611 $114,543 

25-44 $13,273 $11,883 $115,611 $114,543 $128,884 $126,426 

45 - 54 $19,564 $17,516 $115,611 $114,543 $135,175 $132,059 

55 - 65 $113,085 $101,245 $115,611 $114,543 $228,696 $215,788 

> 65 $0 $0 $115,611 $114,543 $115,611 $114,543 
a From Cropper and Krupnick (1990).  Present discounted value of 5 years of lost earnings, adjusted from 1977$ to 2017$ 

using CPI. 
b An average of the 5-year costs estimated by Wittels et al. (1990) and Russell et al.(1998).  Note that Wittels et al. appears 

not to have used discounting in deriving a 5-year cost; Russell et al. estimated first-year direct medical costs and annual 

costs thereafter.   

Valuing Hospital Admissions 

Society’s WTP to avoid a hospital admission includes medical expenses, lost work productivity, 

the non-market costs of treating illness (i.e., air, water and solid waste pollution from hospitals 

and the pharmaceutical industry), as well as WTP of the affected individual, as well as of that of 

relatives, friends, and associated caregivers, to avoid the pain and suffering.54 

Because medical expenditures are to a significant extent shared by society, via medical 

insurance, Medicare, etc., the medical expenditures actually incurred by the individual are likely 

to be less than the total medical cost to society. The total value to society of an individual’s 

avoidance of hospital admission, then, might be thought of as having two components: (1) the 

cost of illness (COI) to society, including the total medical costs plus the value of the lost 

productivity, as well as (2) the WTP of the individual, as well as that of others, to avoid the pain 

and suffering resulting from the illness. 

In the absence of estimates of social WTP to avoid hospital admissions for specific illnesses 

(components 1 plus 2 above), estimates of total COI (component 1) are typically used as 

conservative (lower bound) estimates. Because these estimates do not include the value of 

avoiding the pain and suffering resulting from the illness (component 2), they are biased 

downward. Some analyses adjust COI estimates upward by multiplying by an estimate of the 

ratio of WTP to COI, to better approximate total WTP. Other analyses have avoided making this 

adjustment because of the possibility of over-adjusting – that is, possibly replacing a known 

                                                 
54 Some people take action to avert the negative impacts of pollution. While the costs of successful averting behavior 

should be added to the sum of the health-endpoint-specific costs when estimating the total costs of pollution, these 

costs are not associated with any single health endpoint. It is possible that in some cases the averting action was not 

successful, in which case it might be argued that the cost of the averting behavior should be added to the other costs 

listed (for example, it might be the case that an individual incurs the costs of averting behavior and in addition incurs 

the costs of the illness that the averting behavior was intended to avoid). Because averting behavior is generally not 

taken to avoid a particular health problem (such as a hospital admission for respiratory illness), but instead is taken 

to avoid the entire collection of adverse effects of pollution, it does not seem reasonable to ascribe the entire costs of 

averting behavior to any single health endpoint. However, omission of these averting behavior costs will tend to bias 

the estimates downward. 
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downward bias with an upward bias. The COI values used in this benefits analysis will not be 

adjusted to better reflect the total WTP. 

Following the method used in the §812 analysis (U.S. EPA, 1999), ICD-code-specific COI 

estimates used in our analysis consist of two components: estimated hospital charges and the 

estimated opportunity cost of time spent in the hospital (based on the average length of a hospital 

stay for the illness). The opportunity cost of a day spent in the hospital is estimated as the value 

of the lost daily wage, regardless of whether or not the individual is in the workforce. The 

median annual wages for 2017 were obtained from the U.S. Census Bureau, 2017 American 

Community Survey, 1-year estimates, Table B20017: “Median earnings in the past 12 months (in 

2017 inflation-adjusted dollars) by sex by work experience in the past 12 months for the 

population 16 years and over with earnings in the past 12 months”.  The median daily wage was 

calculated as the simple average of full-time male earnings ($51,284) and full-time female 

earnings ($41,453), divided by 52 × 5, resulting in an estimate of $178. 

For all hospital admissions endpoints available in this analysis, estimates of hospital charges and 

lengths of hospital stays were based on discharge statistics provided by the Agency for 

Healthcare Research and Quality’s Healthcare Utilization Project National Inpatient Sample 

(NIS) database (2007). The NIS is the largest inpatient care database in the United States, and it 

is the only national hospital database containing charge information on all patients. It contains 

data from a very large nationally representative sample of about eight million hospital 

discharges, and therefore provides the best estimates of mean hospital charges and mean lengths 

of stay available, with negligible standard errors. The sampling frame for the 2007 NIS is a 

sample of hospitals that comprises approximately 90 percent of all hospital discharges in the 

United States. Since the NIS is based on discharge samples, the discharge-level weight was used 

to weight discharges in order to produce national estimates. The principle diagnoses (based on 

ICD-9 codes) were used to define the health endpoints. 

Since most pollution-related hospital admissions are likely unscheduled, the unit values of 

avoided hospital admissions used in COBRA are based solely on unscheduled hospitalizations. 

The total COI for an ICD-code-specific hospital stay lasting n days is estimated as the mean 

hospital charge plus n times the daily lost wage. The hospital admissions for which unit values 

are available in COBRA are given in Exhibit F-1.  

Because of distortions in the market for medical services, the hospital charge may exceed “the 

cost of a hospital stay.” We use the example of a hospital visit to illustrate the problem. Suppose 

a patient is admitted to the hospital to be treated for an asthma episode. The patient’s stay in the 

hospital (including the treatments received) costs the hospital a certain amount. This is the 

hospital cost – i.e., the short-term expenditures of the hospital to provide the medical services 

that were provided to the patient during his hospital stay. The hospital then charges the payer a 

certain amount – the hospital charge. If the hospital wants to make a profit,  is trying to cover 

costs that are not associated with any one particular patient admission (e.g., uninsured patient 

services), and/or has capital expenses (building expansion or renovation) or other long term 

costs, it may charge an amount that exceeds the patient-specific short term costs of providing 

services. The payer (e.g., the health maintenance organization or other health insurer) pays the 



 

 

 F - 12     June 2020 

hospital a certain amount – the payment – for the services provided to the patient. The less 

incentive the payer has to keep costs down, the closer the payment will be to the charge. If, 

however, the payer has an incentive to keep costs down, the payment may be substantially less 

than the charge; it may still, however, exceed the short-term cost for services to the individual 

patient. 

Although the hospital charge may exceed the short-term cost to the hospital of providing the 

medical services required during a patient’s hospital stay, cost of illness estimates based on 

hospital charges are still likely to understate the total social WTP to avoid the hospitalization in 

the first place, because the omitted WTP to avoid the pain and suffering is likely to be quite 

large. 

Valuing Emergency Room Visits for Asthma 

To value asthma emergency room (ER) visits, we used a simple average of two estimates from 

the literature. The first estimate comes from Smith et al.(1997), who reported that there were 

approximately 1.2 million asthma-related ER visits made in 1987, at a total cost of $186.5 

million, in 1987$. The average cost per visit was therefore $155 in 1987$, or $547 in 2017$. The 

second is from Stanford et al. (1999), who examined data from asthmatics from 1996-1997, and 

reported an average cost of $457 (2017$). We use a simple average of the two estimates, which 

yields a unit value of about $502 (2017$). 

In comparing their study to Smith et al. (1997), Stanford et al. (1999) noted that the data used by 

Smith et al., “may not reflect changes in treatment patterns during the 1990s.” In addition, its 

costs are the costs to the hospital (or ER) for treating asthma rather than charges or payments by 

the patient and/or third party payer. Costs to the ER are probably a better measure of the value of 

the medical resources used up on an asthma ER visit. 

Valuing Acute Symptoms and Illness Not Requiring Hospitalization  

Several acute symptoms and illnesses have been associated with air pollution, including acute 

bronchitis in children, upper and lower respiratory symptoms, and exacerbation of asthma (as 

indicated by one of several symptoms whose occurrence in an asthmatic generally suggests the 

onset of an asthma episode). In addition, several more general health endpoints which are 

associated with one or more of these acute symptoms and illnesses, such as minor restricted 

activity days and work loss days, have also been associated with air pollution. 

Valuing Acute Bronchitis in Children 

Estimating WTP to avoid a case of acute bronchitis is difficult for several reasons. First, WTP to 

avoid acute bronchitis itself has not been estimated. Estimation of WTP to avoid this health 

endpoint therefore must be based on estimates of WTP to avoid symptoms that occur with this 

illness. Second, a case of acute bronchitis may last more than one day, whereas it is a day of 

avoided symptoms that is typically valued. Finally, the C-R function used in the benefit analysis 

for acute bronchitis was estimated for children, whereas WTP estimates for those symptoms 

associated with acute bronchitis were obtained from adults. 
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In previous benefits analyses, such as in the §812 Prospective analysis (U.S. EPA, 1999), acute 

bronchitis was valued at $59.31 (in 2000 $ and at 1990 income level). This is the midpoint 

between a low estimate and a high estimate. The low estimate is the sum of the midrange values 

recommended by IEc (1994) for two symptoms believed to be associated with acute bronchitis: 

coughing and chest tightness. The high estimate was taken to be twice the value of a minor 

respiratory restricted activity day. For a more complete description of the derivation of this 

estimate, see Abt Associates (2000, p. 4-30). 

A unit value of $59.31 assumes that an episode of acute bronchitis lasts only one day. However, 

this is generally not the case. More typically, it can last for 6 or 7 days. We therefore made a 

simple adjustment, multiplying the original unit value of $59.31 by 6. The unit value thus 

derived and used was $356 in 2000 $ and at 1990 income level (=$59.31 × 6), $544 in 2017$.  

Valuing Upper Respiratory Symptoms (URS) in Children 

Willingness to pay to avoid a day of upper respiratory symptoms is based on symptom-specific 

WTPs to avoid those symptoms identified by Pope et al. (1991) as part of the complex of upper 

respiratory symptoms. Three contingent valuation studies have estimated WTP to avoid various 

morbidity symptoms that are either within the complex defined by Pope et al. (1991), or are 

similar to those symptoms. In each CV study, participants were asked their WTP to avoid a day 

of each of several symptoms. The WTP estimates corresponding to the morbidity symptoms 

valued in each study are presented in Exhibit F-8. 

The three individual symptoms listed in Exhibit F-8 that were identified as most closely 

matching those listed by Pope, et al. (1991) for upper respiratory symptoms are cough, 

head/sinus congestion, and eye irritation, corresponding to “wet cough,” “runny or stuffy nose,” 

and “burning, aching or red eyes,” respectively. A day of upper respiratory symptoms could 

consist of any one of the seven possible “symptom complexes” consisting of at least one of these 

three symptoms. We assumed that each of these seven complexes is equally likely.55 The point 

estimate of WTP is just an average of the seven estimates of WTP for the different complexes. 

 

                                                 
55 With empirical evidence, we could presumably improve the accuracy of the probabilities of occurrence of each 

type of URS. Lacking empirical evidence, however, a uniform distribution seems the most reasonable “default” 

assumption. 
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Exhibit F-8.  Median WTP Estimates and Derived Midrange Estimates (2017 $)a 

Symptom b 
Dickie et al. 

(1987) 

Tolley et al. 

(1986) 

Loehman et al. 

(1979) 

Mid-Range 

Estimate 

Throat congestion 7.11 30.84 - 18.87 

Head/sinus congestion 8.30 33.22 15.46 18.87 

Coughing 2.38 26.11 9.39 13.21 

Eye irritation - 29.64 - 29.64 

Headache 0.00 47.46 0.00 18.87 

Shortness of breath 8.33 - 19.93 9.42 

Pain upon deep inhalation 

(PDI) 4.75 - - 8.33 

Wheeze 5.19 - - 4.75 

Coughing up phlegm 5.19 - - 5.19 

Chest tightness 11.88 - - 11.88 

a Values were inflated to 2017 $ using CPI. 

b All estimates are WTP to avoid one day of symptom.  Midrange estimates were derived by IEc (1993). 

c 10% trimmed mean. 

 

 

Valuing Lower Respiratory Symptoms (LRS) in Children 

Schwartz et al. (1994, p. 1235) defined lower respiratory symptoms as at least two of the 

following symptoms: cough, chest pain, phlegm, and wheeze. To value this combination of 

symptoms, we used the same method as we did for upper respiratory symptoms. We chose those 

individual health effects that seem most consistent with lower respiratory symptoms, we derived 

all of the possible combinations of these symptoms, and then we valued these combinations. 

The symptoms for which WTP estimates are available that reasonably match lower respiratory 

symptoms are: cough (C), chest tightness (CT), coughing up phlegm (CP), and wheeze (W). A 

day of lower respiratory symptoms could consist of any one of the 11 combinations of at least 

two of these four symptoms.56 We assumed that each of the eleven types of lower respiratory 

                                                 
56 Because cough is a symptom in some of the upper respiratory symptom clusters as well as some of the lower 

respiratory symptom clusters, there is the possibility of a very small amount of double counting – if the same 

individual were to have an occurrence of upper respiratory symptoms which included cough and an occurrence of 

lower respiratory symptoms which included cough both on exactly the same day. Because this is probably a very 

small probability occurrence, the degree of double counting is likely to be very minor. Moreover, because upper 

respiratory symptoms is applied only to asthmatics ages 9-11 (a very small population), the amount of potential 

double counting should be truly negligible. 
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symptoms is equally likely,57 and the mean WTP is the average of the WTPs over all 

combinations.  

Valuing Work Loss Days (WLDs) 

Willingness to pay to avoid the loss of one day of work was estimated by dividing median annual 

earnings ($46,369 in 2017$) by (52 × 5), which resulted a unit value of $178 (2017$). The 

median annual earnings for males and females were obtained from U.S. Census Bureau, 2017 

American Community Survey, Table B20017: “Median earnings in the past 12 months (in 2010 

inflation-adjusted dollars) by sex by work experience in the past 12 months for the population 16 

years and over with earnings in the past 12 months.” Overall earnings were calculated as the 

simple average of full-time male earnings and full-time female earnings. Valuing the loss of a 

day’s work at the wages lost is consistent with economic theory, which assumes that an 

individual is paid exactly the value of his labor. 

The use of the median rather than the mean, however, requires some comment. If all individuals 

in society were equally likely to be affected by air pollution to the extent that they lose a day of 

work because of it, then the appropriate measure of the value of a work loss day would be the 

mean daily wage. It is highly likely, however, that the loss of work days due to pollution 

exposure does not occur with equal probability among all individuals, but instead is more likely 

to occur among lower income individuals than among high income individuals. It is probable, for 

example, that individuals who are vulnerable enough to the negative effects of air pollution to 

lose a day of work as a result of exposure tend to be those with generally poorer health care. 

Individuals with poorer health care have, on average, lower incomes. 

To estimate the average lost wages of individuals who lose a day of work because of exposure to 

PM2.5 pollution, then, would require a weighted average of all daily wages, with higher weights 

on the low end of the wage scale and lower weights on the high end of the wage scale. Because 

the appropriate weights are not known, however, the median wage was used rather than the mean 

wage. The median is more likely to approximate the correct value than the mean because means 

are highly susceptible to the influence of large values in the tail of a distribution (in this case, the 

small percentage of very large incomes in the United States), whereas the median is not 

susceptible to these large values. 

Valuing Minor Restricted Activity Days (MRADs) 

No studies are reported to have estimated WTP to avoid a minor restricted activity day (MRAD). 

However, IEc (1993) has derived an estimate of WTP to avoid a minor respiratory restricted 

activity day (MRRAD), using WTP estimates from Tolley et al. (1986) for avoiding a three-

symptom combination of coughing, throat congestion, and sinusitis. This estimate of WTP to 

avoid a MRRAD, so defined, is $38.37 (1990$), or after adjusting for inflation and income 

growth $79 in 2028 (2028 income level and 2017$), $78 in 2023 (2023 income level and 2017$), 

and $77 in 2016 (2016 income level and 2017$). Although Ostro and Rothschild (1989) 

                                                 
57 As with URS, if we had empirical evidence we could improve the accuracy of the probabilities of occurrence of 

each type of LRS. Lacking empirical evidence, however, a uniform distribution seems the most reasonable “default” 

assumption. 
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estimated the relationship between PM2.5 and MRADs, rather than MRRADs (a component of 

MRADs), it is likely that most of the MRADs associated with exposure to PM2.5 are in fact 

MRRADs. For the purpose of valuing this health endpoint, then, we assumed that MRADs 

associated with PM2.5 exposure may be more specifically defined as MRRADs, and therefore 

used the estimate of mean WTP to avoid a MRRAD. 

Any estimate of mean WTP to avoid a MRRAD (or any other type of restricted activity day other 

than WLD) will be somewhat arbitrary because the endpoint itself is not precisely defined. Many 

different combinations of symptoms could presumably result in some minor or less minor 

restriction in activity. Krupnick and Kopp (1988) argued that mild symptoms will not be 

sufficient to result in a MRRAD, so that WTP to avoid a MRRAD should exceed WTP to avoid 

any single mild symptom. A single severe symptom or a combination of symptoms could, 

however, be sufficient to restrict activity. Therefore WTP to avoid a MRRAD should, these 

authors argue, not necessarily exceed WTP to avoid a single severe symptom or a combination of 

symptoms. The “severity” of a symptom, however, is similarly not precisely defined; moreover, 

one level of severity of a symptom could induce restriction of activity for one individual while 

not doing so for another. The same is true for any particular combination of symptoms. 

Valuing Asthma Exacerbations 

Rowe and Chestnut (1986) surveyed asthmatics to estimate WTP for avoidance of a “bad asthma 

day,” as defined by the subjects. For purposes of valuation, an asthma attack is assumed to be 

equivalent to a day in which asthma is moderate or worse as reported in the Rowe and Chestnut 

study. Using the mean of average WTP estimates for the four severity definitions of a “bad 

asthma day,” the asthma exacerbation could be valued at $66.91 (2028 income level and 2017$), 

$66.11 (2023 income level and 2017$), and $65.43 (2016 income level and 2017$) per incidence 

in 2028, 2023, and 2016, respectively.  
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Appendix G: Instructions for Running COBRA Using Batch 
Files 
 

Batch files can be used to submit emissions data representing multiple years or scenarios, so that 

the scenarios will run in succession without additional input from the user. This feature enables 

analysis of multiple years or scenarios in a single modeling step.  

 

Running COBRA using batch files requires that users have some baseline understanding of what 

batch files are and how they function. Below, we describe how to (1) format emissions files for 

use in COBRA, (2) write a Windows command to conduct a single COBRA run, and (3) create 

and run a batch script for multiple COBRA runs. 

 

(1) Formatting emissions files for use in COBRA 

 

COBRA requires that imported baseline emission files be in a specific format.  To create 

properly formatted custom baseline and scenario emissions files, create a CSV file with the 

headings shown in Exhibit H-1. Each row of the file should correspond to a different source in a 

different county. 

Exhibit H-1. Format of Baseline and Scenario Emissions Files 

Column Heading Description of Column Headings 

typeindx1 Stack height associated with the emission 

sourceindx2 Source index, which COBRA uses in its source receptor model 

stid FIPS state ID (e.g., the state FIPS code for Pennsylvania is 42) 

cyid FIPS county ID (e.g., the county FIPS code for Swarthmore, PA is 045) 

TIER13 Emissions category to which emissions source corresponds, at tier 1 level 

TIER23 Emissions category to which emissions source corresponds, at tier 2 level 

TIER33 Emissions category to which emissions source corresponds, at tier 3 level 

NO2 NOx emissions from each source in the baseline 

SO2 SO2 emissions from each source in the baseline 

NH3 NH3 emissions from each source in the baseline 

PM25 Primary PM2.5 emissions from each source in the baseline 

VOC VOC emissions from each source in the baseline 

 Notes: 

1 A table of typeindx and name is saved on your computer after installing COBRA in the default location, 

C:/Program Files/COBRA/input files/data dictionary/typeindx – stack heights.csv. 
2 A table of sourceindx and FIPS is saved on your computer after installing COBRA in the default location, 

C:/Program Files/COBRA/input files/data dictionary/SOURCEINDX to FIPS crosswalk.csv 
3 A table of tier definitions and tier numbers is saved on your computer after installing COBRA in the 

default location, C:/Program Files/COBRA/input files/data dictionary/EmissionsTier Definitions.csv 

 

(2) Writing a Windows COBRA command to conduct a single COBRA run 

After formatting the baseline emission and scenario emission files, advanced users can run 

COBRA from the Windows command prompt using the following syntax: 
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"C:\Program Files\COBRA\cobra_console.exe" 
"C:\Program Files\COBRA\data\cobra.db" A B C D E 
 

where: 

 

A is the file path for the emissions baseline in a CSV file 

B is the file path for the emissions control scenario in a CSV file, formatted 

in the same way as the emissions baseline 

C is the file path for where you would like the results CSV to be saved 

D  is YES or NO, where YES runs COBRA with a 3% discount rate and NO 

runs COBRA with a 7% discount rate 

E is 2016, 2023, or 2028, which indicate the year for which population, 

incidence, and valuation files will be used  

 

Below, we illustrate how one could use this syntax to run COBRA for a single scenario, named 

Test 1, where A = "C:\Program Files\COBRA\cobra_console.exe", B = "C:\Program 

Files\COBRA\COBRA Tests\Test 1\Test1_Scenario.csv", C = "C:\Program 

Files\COBRA\COBRA Tests\Test 1\Test1_Results3pct.csv", and the user wants to run COBRA 

with a 7% discount rate for year 2023. 

 
"C:\Program Files\COBRA\cobra_console.exe" 
"C:\Program Files\COBRA\data\cobra.db" "C:\Program 
Files\COBRA\COBRA Tests\Test 1\Test1_Baseline.csv" 
"C:\Program Files\COBRA\COBRA Tests\Test 
1\Test1_Scenario.csv" "C:\Program Files\COBRA\COBRA 
Tests\Test 1\Test1_Results3pct.csv" YES 2023 
 

  
 
 

(3) Creating a batch script for multiple COBRA runs 

 

Users can run multiple scenarios in succession without any additional input from the user by 

creating batch files that contain Windows commands for multiple COBRA runs.  Below, we 

demonstrate how a user could use a batch file to run COBRA four times (1) “Test 1” with a 3% 

discount rate, (2) “Test 1” with a 7% discount rate, (3) “Test 2” with a 3% discount rate, and (4) 

“Test 2” with a 7% discount rate, all for year 2023.  First, the user would create the properly 

formatted baseline and scenario emissions files, as described above.  For this example, we 

assume that the following file paths are used: 
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 "C:\Program Files\COBRA\COBRA Tests\Test 
1\Test1_Baseline.csv" = file path for the emissions baseline for Test 1 

 "C:\Program Files\COBRA\COBRA Tests\Test 
1\Test1_Scenario.csv" = file path for the emissions scenario for Test 1 

 "C:\Program Files\COBRA\COBRA Tests\Test 
1\Test2_Baseline.csv" = file path for the emissions baseline for Test 2 

 "C:\Program Files\COBRA\COBRA Tests\Test 
1\Test2_Scenario.csv" = file path for the emissions scenario for Test 2 

 

Then, the user would open a simple text editor (e.g. Notepad) and write the series of Windows 

COBRA commands that describe which baseline emissions, scenario emissions, and discount 

rate to use for each run, using the syntax described in (2). 

 

 
 

Then, the user would save this file a batch file (.bat). To run the batch file, the user would double 

click the appropriate “.bat” file and the COBRA commands will run automatically in the 

command prompt. 
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