

Laboratory to Field: Characterizing Decontamination Efficacy Through Exposure Assessments

8 May 2018

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Brent Mantooth Decontamination Sciences Branch Edgewood Chemical Biological Center (ECBC)

U.S. Environmental Protection Agency (EPA) International Decontamination Research And Development Conference

Approved for Public Release, Distribution Unlimited

Objective: Compare the analysis of Efficacy with hazard mitigation for vapor exposure

- Identify the types of measurements to characterize decontaminants
- Demonstrate how to measure vapor source terms and conduct vapor exposure assessments
- Demonstrate correlation of efficacy to vapor source terms
- Through this process see how to progress from lab testing to understanding exposure in the field

Assessing Decontamination Efficacy Is it Clean Enough?

Example: Decontaminant with 99.7% efficacy used after chemical contamination (e.g., VX).

Would these personnel exhibit acute health effects during their mission if their vehicle, weapons, and radios were just decontaminated?

Could you return an airport to use?

Purpose of Measurements

	Metric Material Efficacy	Objective	Measurement & Analysis	Context Laboratory
1- —	How much Agent Remains after Decon	Removal of Agent from a Material	Material Extraction	
	How much Agent you Started With		99.9% Efficacy!	GD on CARC Panel
	Health Effects			Operational cereing
Do n	ot Exceed Health Effect Toxicity Levels	Returning asset to use will produce no negative health	Measure source termsPerform exposure	50 ^{UIScale}
e.g. AEGI	, toxicity levels: IDLH, 3 (4 hr, 0.0052 mg/m ³)	effects	assessments	Exposurent Assessment

What is the correlation of efficacy to preventing health effects?

How clean is clean enough? ...it depends on what you want to do with the decontaminated materials.

NERI

Challenges with Material Decontamination: Transport Limited Rates

٠

Materia

Π Ŧ

- Longer duration contamination allows more absorption
- The decontaminant should remove the absorbed agent from the ٠ material to minimize vapor emission or contact transfer
- The decontamination process is rate limited by agent transport to the ٠ material surface, or the ability of the decontaminant to penetrate the material*
 - The rate limiting process is the primary difference between liquid reactor efficacy (reactivity) and material efficacy (transport)**

Output: Vapor Source Term (mg agent m⁻² min⁻¹)

*Varady et al., Ind. Eng. Chem. Res., 2016, 55 (11), pp 3139 **ECBC-TR-1383 (available at www.dtic.mil)

Testing to Vapor Requirements

Vapor Source Terms & Dispersion Models

- The vapor source term is a description of how chemicals are introduced into an environment determined by testing* or modeling**
- Exposure is a result of how source terms are carried from asset to personnel via *transport & dispersion* in a vignette

Vignette – Description of environment, asset, and personnel during mission

*ECBC-TR-980 (available at <u>www.dtic.mil</u>) **Varady et al. *Ind. Eng. Chem. Res.,* **2017**, 56, 10911 TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Vapor Source	Industrial - Smoke stack	Military - Vehicle
Source Emission Rate	1000 g/min H ₂ O	1 mg/min VX from vehicle
Source Flux (rate/area)	1 g m ⁻² min ⁻¹	Paint: 1 × 10 ⁻³ mg VX m ⁻² min ⁻¹

Exposure Durations: Acute Through Chronic

Work Environments Repeated, long term	vet a)	Catastrophic release Single, short term						
Chronic exposure criteria (dose	rate)	acute exposure criteria (dose)						
Chronic effects:	End	End Points Casualties:						
e.g., cancer		skin/eye irritation, miosis, death						
Dose								
Smaller repeated doses		Larger single dos	es					
	Typical Exposu	re Concentrations						
Lower concentrations	Higher concentrations							
ambient air Daily 8-hr lifetime worker "GPL" "TWA" "DEI"	15 min 4x per day "STEL"	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 Lethal					
"WPL"		AEGLs	\rightarrow					
Longer multiple exposu	 Dose Dura Short single exposu 	tion res						
		IDLH: single exposure 0.5	h ←					
	Thoroug	gh to clerance decon, threshold levels: 1 h	א 🔶					
Thorough to clerance decon, objective levels: 8 h 🗲 🗕 🛶 🛶 🛶 🛶 🛶 🛶 🛶 🛶 🛶 🛶 🛶 🛶 🛶								
	Potential mission duration: 12 h 🗲							
	Potential missio	n duration: 24 h 🗲	—					
STEL: fo	ur 15-min exposui	res over one day 🗲 🗕 🗕 🗕 –						
WPL: Continuous	8-h exposures, 5 d	ays a week, 50 weeks/year, over years.						
GPL: Continuou	s 24-h exposures,	7 days a week, over years.						

Focus: Asset/Material vs. Personnel

Vehicles

- Material Efficacy (e.g., 99.9%) focuses on a material response in a laboratory context
- Typically, decontamination assessments have focused on evaluating individual assets to toxicology-based levels
- Health effects result from the aggregate dose due to interacting with all contaminated materials in a vignette during the mission
- **Exposure** is a function of how *personnel* interact with all contaminated items
- Key Change: Move focus from assets to how personnel interact with multiple assets in the context of their use of the assets
- For simplicity, next demonstrations will focus on a single asset

Efficacy – The Material Perspective

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

10

- Efficacy changes with age time and indicates how much agent remains
- Vapor source term **magnitude** and **time evolution** are influenced by the **distribution** of the agent in the material

Material

From Testing To Health Effects: Source Term Measurement

Scaling Laboratory Data

TOP 8-2-060 TOP 8-2-061 SD2ED (ECBC-TR-980) Contaminated Paint 5. Rubb Panel

RDEHD

- 1. Define asset of interest (HMMWV)
- 2. Determine surface area of each material on HMMWV
- 3. Assume all surface area is contaminated to 10 g/m^2
- 4. Use Vapor Composite System Calculation in TOP 8-2-060 to calculate Asset Emission Rate (ER_{Asset})
- **Specify Vignettes**

Scale-Up

How to convert laboratory vapor data from a 2 inch panel to represent a full-scale asset/vehicle

TOP methods available at NIST: https://www.nist.gov/pml/radiation-physics/radioactivity/dod-test-operationsprocedures-documents/decontamination

Exposure Dose Changes with Vignette

Exposure & Health Effects are a Response to Many Factors

• Exposure is a 'systems' level output and is influenced by multiple inputs

V RDECON

- Health effects are a convolution of decontaminant performance, material hardness, and operational inputs
- The only factor a decontamination technology/process influences is the ability to
 Reduce source terms
 TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED

- Material decontamination is rate limited by transport, typically by rate of agent transport to material surface
- Efficacy changes with test conditions (such as contamination duration)
- The ability to determine health effects requires the measurement of source terms and exposure assessments
- The same assets used in a different vignette/context may produce different exposures
- Efficacy is a measure of decontaminant performance in the context of individual materials
- "Is it Clean Enough?" requires Source Term measurement and Exposure Assessments

Acknowledgements

dstl

Dr. Stuart Notman

RDERD

DTRA Funding

John Hannan Eric Lowenstein John Cusano

Charles Bass Glenn Lawson Mark Morgan

Research Team

Mark Varady, Tom Pearl, Stefan Bringuier, Shawn Stevenson, Joe Myers, Stefanie Smallwood, Janlyn Eikenberg, Michelle Sheahy, Mandy Schenning, Larry Procell, Jennifer Piesen, Brian Luthardt, Michael Chesebrough, Dave Gehring, Jill Ruth, Matt Shue, Patrick Riley, Janet Fouse

JRO: Scott Robinson. **Greg Marshall**

JPEO-CBD – Mark Thomas JPM-P – Erica Howell

Dr. Sharon Reutter-Christy (ECBC Op. Tox) Doug Sommerville (ECBC MS&A) Dr. Stephen Channel (Air Force) Dr. Candace Coyle (ECBC Eng.) Monicia Hall (ECBC Eng.)

DUSA-TE

Decon CAPAT

eidos

Kevin Ulmes

DoD Public Release Reports (available via https://www.dtic.mil)

- ECBC-TR-980 Chemical Contaminant and Decontamination Source Document 2nd Edition Test Methodologies
- ECBC-TR-1384 Interpretation of Liquid Reactor Results
- ECBC-TR-1383 Relationship of Liquid Reactor to Material Testing

Peer Reviewed Literature

- Journal of Physical Chemistry B, 2018, 122, 2155 Multi-species transport related to removing contaminants from materials
- Industrial & Engineering Chemistry Research, 2017, 56, 10911 Agent to Simulant Relationships for vapor emission
- Industrial & Engineering Chemistry Research, 2016, 55(11), 3139 Material decontamination dynamics for VX from a polymer
- ACS Appl. Mater. Interfaces, **2014**, 6, 16289 Chemical depth profiling in coatings