US AIR FORCE AIRCRAFT DECONTAMINATION DEMONSTRATIONS

EPA International Decontamination Conference 9 May 2018

> William T. Greer william.greer.5@us.af.mil

MEISS CORPORATION Angela Theys, PhD atheys@metss.com

88 ABW-2018 2276, Cleared 1 May 2018

PAORCE RESEARCH LABORD

Two Key Programs

JBADS versus JSF

JBADS

- Objective: Develop a decontamination system for large frame aircraft
- Emphasis on the system design
 Efficacy
 - Compatibility
 - Transportability
 - Logistics

JSF

- Objective: Verify aircraft design requirements for CB decontamination
 - First aircraft with quantitative requirements for chem & bio decon
- Emphasis on aircraft materials and test methods
- Decon system is needed for demonstration

1998 – Cargo Aircraft Contamination Control (CACC) Field Test (AMC)

- Chemical decon by flight
- Effective for vapor exposures but not very effective for liquid exposures

2001-2003 – Large Frame Aircraft Decontamination Demonstration (DTRA)

- Chemical decon by flight and Hot Soapy Water
- "Exploration of more effective, extractive decontamination procedures is recommended."

2003-2004 – Hot Air Decontamination of the C-141 Aircraft Technology Development Program (ECBC)

- Chemical decon by "Hot Air System"
- Effective but dependent on airflow and materials

JSF CB Decon Options

2005 JSF Risk Reduction Exercise (CB-08)

CB-08 Path Forward

2008-2009 JBADS Demonstration

DC-9, Orlando, FL

- 5-6 log reduction of Btk within 48 hours in 3 trials:
 - 176 F & 87% RH
 - 168 F & 91% RH
 - 176 F & 90% RH
- No degradation of materials
- Difficult to maintain skin temps with variable ambient temps

2009-2011 DTRA Tier I Testing

- Three government labs: AFRL–Brooks City, ECBC, NSWC-Dahlgren
- Confirmed efficacy and agent-simulant correlation for endospore-forming BWAs

2011 JBADS Demonstration

C-130, Little Rock Air Force Base

- 6-log reduction of Btk in 4 trials:
 - 170 F & 80% RH
 - 160 F & 80% RH
 - 160 F & 90% RH
 - 180 F & <10% RH
- Minimal material impact not a flyable asset
- Skin temperatures ~15 F cooler than air, despite insulation and summer temps
 - Skin-mounted coupons not decontaminated at the same rate

Build an insulated enclosure for simultaneous interior and exterior decontamination

88 ABW-2018 2276, Cleared 1 May 2018

2012-2014 JSF Shelter/Decon Demos

Decontamination Containment System (exterior shelter and interior liner) Modified Large Capacity Field Heaters (6) Sept 2013 - St. Louis, MO Tactical, Cargo and Rotary Wing Aircraft Decon System (TCRWADS) JPM P Decon System Design • Make use of existing equipment: • Ames airbeam shelter • Large Capacity Field Heaters Jan 2012 - Lake Elsinore, CA • TCRWADS – an adaptation of the Environmentally-Friendly Aircraft Decontamination System (EFADS) • Create sealed, closed-loop environment insulated liner system (R2/4) Sept 2013 - St. Louis, MO • No simulant efficacy testing in these demos

2014-2015 JBADS JCTD

C-130, Orlando, FL

- Joint Capability Technology Demonstration (JCTD)
- Conformal Aircraft Enclosure
 - Structural Insulated Panels (R32)
 - Not vapor tight but sufficient for bio decon
- Two Operational Demonstrations BTD at 170 F & 90% RH with inoculated coupons
 - OD#1 5.9-log reduction of Btk in 72 hours
 - OD#2 7.0-log reduction of Btk in 96 hours
- Aerosol Test (DTRA/NSWC-DD)
 - Bt HD-1 cry- aerosol released in cargo bay
 - Swabs and coupons used to confirm >6-log reduction within 7 days at 170 F & 90% RH

2014-2016 JSF Shelter/Decon Demos

2014 – Edwards AFB

- Blanketed-liner system
- HAD was sufficient
- BTD humidity could not be maintained
- Excessive condensation

2016 – St Louis, MO

- SIP-liner system
- HAD was sufficient
- BTD humidity could not be maintained
- Excessive condensation

2016 – HAD effective against BWA (JSF/NSWC-DD) Decision to use HAD for both chem and bio decon

88 ABW-2018 2276, Cleared 1 May 2018

Airflow Testing

Materials Compatibility

Agent/Material Agent/Simulant

88 ABW-2018 2276, Cleared 1 May 2018

Methyl Salicylate • Oil of Wintergreen • Food Additive • Used as a CWA simulant for many years • No EPA or OSHA limits

Btk

Bacillus thuringiensis variety Kurstaki

- Readily available organic insecticide
- Correlation to BWA established
- No EPA or OSHA limits

Challenge Delivery

Simulant diluted with water to increase spray volume. Water evaporates quickly from small droplets in high air flow, leaving "dry" simulant in air stream.

2016 JSF LFT Decon Enclosure

Process Monitoring

Testing Sequence

CB Tests (Top Level)

Simulant Ingestion

- Simulant sprayed directly into the engine inlets while engine at idle
- Aircraft relocated and run at MIL power for 2 minutes; additional Lift Fan Vibe BIT for STOVL

Decontamination

- Aircraft towed into the decon enclosure
- Heated to 170-180 °F (same for chem and bio)

Post-Decon Engine Run

- Aircraft towed to a clean area
- High-Speed, Low-Thrust engine run at idle to see what "shakes loose"

Sampling before during and after each phase of testing

88 ABW-2018 2276, Cleared 1 May 2018

Representative CHEM Results

		Airbeam Shelter Heaters Containment Liner Decontaminant Delivery System				
Before Contamination	After Engine Ingestion	After Liquid Deposition	ZO	Immediately After Decon	Before Engine Run	After Engine Run
 No simulant detected Clean baseline 	 No simulant detected!! 	 High vapor levels throughout aircraft inside enclosure (max 733 Ct) 	DECONTAMINATIO	 Trace amounts remain on aircraft inside enclosure (max 0.09 Ct) PASS 	 Trace amounts diminish slightly outside (max 0.02 Ct) 	 Trace amounts diminish further (max 0.01 Ct)

Representative BIO Results

		Airbeam Shelter Heaters Heaters Containment Liner Decontaminant Delivery System				
Before Contamination	After Engine Ingestion	Before Decon	N	Immediately After Decon	Before Engine Run	After Engine Run
 No simulant detected Clean baseline 	 6-7 log₁₀/m² in air inlets 0-4 log₁₀/m² throughout 	 6-7 log₁₀/m² in air inlets 0-4 log₁₀/m² throughout 	DECONTAMINATIO	 NO viable simulant spores PASS 	 NO viable simulant spores 	 NO viable simulant spores

Current Status

Acknowledgements

- Bill Greer
- Tim Provens (ret.)

- Brant Lagoon
- Steve Beaudoin (ret.)

- Larry Magnuson
- Otto Zahn
- Randy Follensbee
- TSgt Chad Wooldridge

METSS CORPORATION

Dan Lorch, Angela Theys, Mark Docter, Michelle Docter, Dan Badowski, Joe Nemes (not pictured: Bill Davis, Brian Collett, Austin Hutchinson, Tess Zangrilli)