2018 U.S. EPA International Decontamination R&D Conference Durham, North Carolina, May 8–10, 2018

Mapping the Great Indoors: Spatial context through indoor maps

Jorge Chen, Ph.D., P.E. Department of Geography University of California, Santa Barbara May 10, 2018

Background 000

Image

SMART CITIES

What is a smart city?

11 ideas & 15 definitions^[1]

- ► Wired city
- ► Intelligent city
- Sustainable city, etc.

"City designed to facilitate information exchange and data analysis"

> 00101111 111000

437891940 Mapping the Great Indoors: Spatial context through indoor maps

SA 2.0 license.

/28650310590

< E ► E E

Bac	kg	roi	un	c
000)			

Image b

on the rise

Studies 1994-2012^[1]

Europe (36%)

North America (9%)

Theoretical us Case Shuth

Theoretical

Asia (49%)

SMART CITIES

What is a smart city?

11 ideas & 15 definitions^[1]

- ► Wired city
- Intelligent city
- Sustainable city, etc.

"City designed to facilitate information exchange and data analysis"

43789194 Mapping the Great Indoors: Spatial context through indoor maps

SA 2.0 license.

(28650310590

	00					
					SMART CI	ΓIES
	What is a smart city?	0101	Interest in smart cities on the rise		But what about indoors?	
	 11 ideas & 15 definitions^[1] Wired city Intelligent city Sustainable city, etc. "City designed to facilitate information exchange and data analysis" 		 Studies 1994-2012^[1] Asia (49%) Europe (36%) North America (9%) 		 Observations City, not building, sc City-dwellers spend 90% of time indoors 2D floor plans remai prevailing paradigm since ancient times 	ale 2] n
Image by URL http Mappin	the Great Indoors: Spatial context through in	90 indoor ma	DS	T	< □ > < ∅ > < ≧ > < ≧	王国 のQC

Innovation of indoor maps through the ages

2150 BC Ningirsu Temple [4]

210 AD Forma Urbis Romae [5]

1700 Saint-Denis Abbey [6]

1800s House of Parliament, Westminster, England [7]

2017 Westfield Shopping Mall, Culver City [8]

Indoor reality capture

Automated data conversion

▲ 御 ▶ ▲ 国 ▶ ▲ 国 ▶

Indoor modeling

standards

Building modeling standards

Standards driven by (\$\$\$) potential return on investment

Industry Foundation Classes (IFC)

Architecture, engineering, & construction (AEC)

- Supports BIM data
- Interior & exterior
- Extremely fine details
- Level of development

City Geography Markup Language (CityGML)

Urban-scale GIS including emergency management

- Buildings & surroundings
- Mostly exterior
- Level of *detail*

Indoor Geography Markup Language (IndoorGML)

Indoor positioning & navigation

- Building interiors
- ► Topology, not geometry

 Integrates w/ CityGML & IFC

315

Indoor considerations for IFC and CityGML

- BIM-GIS integration already existing & improving
 - Facilities Information Spatial Data Model (FISDM)
 - Safe Software's Feature Manipulation Engine (FME)
- Indoor cartographic features are lacking
 - ► BIM/IFC: uses level of development
 - CityGML: single indoor LOD

(4) (E) (A) (E) (A)

Indoor reality capture

- Reality capture
 - Marketing term for non-technical audience
 - ▶ Really just remote sensing close-range remote sensing
- Why capture reality?
 - Measurements \Rightarrow basic building blocks of models
 - Many buildings have only 2D drawings, if any
 - ► Capture *as-is* condition ... buildings change with time

▶ ∢ ⊒ ▶

		Indoor reality capture	
hods	Mechanical	Energy-based	
surement met			
Meas			

<ロ> <同> <同> <目> <同> <日> <同> <同> <日> <同> <同> <日> <同> <日 < 同 < () <

Background	Modeling standards 00	Indoor reality capture o●ccccco	Automated indoor 000	mapping	Conclusi 00
	Mechanical	Energy-based		Sound	
hods				Other energ	у У
Measurement me		Light			

<ロ> <四> <四> <日> <日> <日> <日> <日</p>

Background	Modeling standards 00	Indoor reality capture ○●○○○○○○	Automated indo 000	or mapping Conclu 00	usi
	Machanical	Energy-based		Sound	
thods	Mechanica	Energy-bused		Other energy	_
ement me	Time-of-flight	SfM-MVS	Structured light	Image recognition	
Measure	Manual Surveying	Shading	Focusing	Others	
		Image-ba	ased: Photogra	mmetry	
		Ligh	t	~ 티트 《로》《트》《팀》	ິ ຄ

Background 000	Modeling standards 00	Indoor reality capture 0●000000	Automated indo 000	or mapping Conclus
	Machanical	Energy_based		Sound
hods	Mechanica	Lifergy based		Other energy
net				
ment n	Time-of-flight	SfM-MVS	Structured light	Image recognition
Measure	Manual Surveying	Shading	Focusing	Others
		l iøh	ŀ	
		<u>– 1811</u>	• ∢ □	· · · · · · · · · · · · · · · · · · ·

Top 3 reality capture techniques

Light detection and ranging

More common name for ToF; uses speed of light \Rightarrow distance

- ► LiDAR or "laser scanning"
- Distance $\approx (c \times t)/2$
- Pulse vs. phase-based

Image by Dr. Schorsch, distributed under a CC BY-SA 3.0 license. URL https://commons.wikimedia.org/wiki/File:3D-Laserscanner_on_tripod.jpg

Phase-based LiDAR

イロト 不得下 イヨト イヨト

315

Top 3 reality capture techniques

Image by Kobbaka, distributed under a CC BY-SA 4.0 license. URL https://commons.wikimedia.org/wiki/File:View-Master_model_L.jpg

SfM-MVS

Derives 3D structure from sets of overlapping 2D images

- Structure-from-motion (SfM)
- Multiview stereo (MVS)
- Parallax phenomenon
- Requires scaling info

Parallax demo (click for animation)

포니크

Top 3 reality capture techniques

Structured light

Triangulation based on calibrated infrared light pattern

Image by Kolossos, distributed under a CC BY-SA 3.0 license. URL https://commons.wikimedia.org/wiki/File:Kinect2-ir-image.png

Based on triangulation

- ► Aka "RGB-D"
- Intro'd via XBox Kinect
- iPhone 8 3D sensor

Top 3 reality capture pros and cons

Light detection and ranging

Pros: Fast; most accurate and precise*; min. post-processing; long measuring range 30m+

Cons: Expensive @ \$16K+

Image by Dr. Schorsch, distributed under a CC BY-SA 3.0 license. URL https://commons.wikimedia.org/wiki/File:3D-Laserscanner_on_tripod.jpg

SfM-MVS

Pros: Low entry cost; easy-tolearn; measurements w/ color; unlimited measuring range

Cons: Requires many photos; challenging indoor lighting; labor-intensive; extremely long processing times; distortions & uncertainties; unscaled*

Structured light

Pros: Easy to operate; inexpensive @ \$100 to \$4K

Cons: Short range 4m; averse to bright light; alignment drift

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ▲□ ▶

Modeling standards

Indoor reality capture

Conclusior

Reality capture \Rightarrow point clouds

Mapping the Great Indoors: Spatial context through indoor maps

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□□ のへで

Image recognition for indoor mapping

Current state-of-the-art: panoramic images placed over LiDAR

Image recognition for indoor mapping

Current state-of-the-art: panoramic images placed over LiDAR

Structure from single images LayoutNet^[10] LavoutNet PlaneNet^[9]

Automated indoor mapping

- Current practices
 - Manual drafting from point clouds
 - Cost and time reduce frequency of updates
 - Automation mostly for outdoor features, e.g., facades, windows, etc.
- Challenges in indoor automation

Image used by permission from the U.S. Air Force. URL:http://www.eglin.af.mil/News/Photos/igphoto/2001033029/

- Geometrically complex environment in space & time
- Clutter and obstructions \Rightarrow voids in data
- Geometry and semantics

315

Challenges in indoor automation

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 のへで

Research in automation

- Current research
 - ► Mostly geometric and simple semantics, e.g., floor, ceiling, wall, etc.
 - Applied statistics and machine learning
 - Context dependent \Rightarrow easily broken
- Emerging research
 - ► Apply deep learning to point clouds ← requires lots of data
 - Deduce geometry and semantics, including furniture
 - ► DL for autonomous vehicles, e.g., VoxelNet & predecessors^[11, 12, 13]
 - ► DL for indoors, e.g., PointNet, PointNet++^[14, 15]

		Conclusion •0

Research gap

- Indoor cartographic research
 - ► Level of detail (geometric, semantic, appearance)^[16, 17]
 - Indoor mapping vs. BIM & GIS

		Conclusion

Research gap

- Indoor cartographic research
 - ▶ Level of detail (geometric, semantic, appearance)^[16, 17]
 - Indoor mapping vs. BIM & GIS

		Conclusion ●○

Research gap

- Indoor cartographic research
 - ▶ Level of detail (geometric, semantic, appearance)^[16, 17]
 - Indoor mapping vs. BIM & GIS

- Potential uses
 - Disaster simulation & training
 - Emergency response
 - Smart buildings & IoT
 - Hazmat planning

- Mining of urban metals
- Autonomous vehicles
- Gamification
- And many, many more!

		Conclusion ⊙●
Conclusion		

- 3D indoor maps \Rightarrow vital part of smart city infrastructure
- Three key processes
 - Mapping conventions: Goldilocks principle . . .
 BIM (too detailed), CityGML (too generalized), missing "just right"
 - ▶ Reality capture: many approachs, and more coming
 - Automation: just getting started with AI revolution
- Operationalizing indoor maps
 - Technology exists, trees \Leftrightarrow forest
 - Missing unifying theories and conventions ... subject of research!

Acknowledgements

This research was supported by the

National Geospatial-Intelligence Agency Academic Research Program Grant # HM0476-17-1-2002

All unattributed images produced by Jorge Chen, Department of Geography, University of California, Santa Barbara.

References I

- Annalisa Cocchia. "Smart and Digital City: A Systematic Literature Review". In: Smart City. Progress in IS. Springer, Cham, 2014, pp. 13–43. ISBN: 978-3-319-06159-7. DOI: 10.1007/978-3-319-06160-3_2. URL: https://link.springer.com/chapter/10.1007/978-3-319-06160-3_2.
- [2] Neil E. Klepeis et al. "The National Human Activity Pattern Survey (NHAPS): A Resource for Assessing Exposure to Environmental Pollutants". In: Journal of Exposure Science and Environmental Epidemiology 11.3 (July 2001), pp. 231–252. DOI: 10.1038/sj.jea.7500165. URL: https://www.nature.com/articles/7500165.
- [3] Musée du Louvre. Plans of a Six-Room Building from Late 3rd Millenium BC in Ancient Girsu. N.d. URL: https://commons.wikimedia.org/wiki/File:Building_plans_Louvre_A0338.jpg.
- [4] British Museum. "L'Architecte Au Plan" from 2120 BC. N.d. URL: http://www.britishmuseum.org/research/collection_online/collection_object_details/ collection_image_gallery.aspx?partid=1&assetid=180998001&objectid=1488751.
- [5] Rudolfo Lanciani. Floorplan of the Baths of Diocletian from the Forma Urbis Romae. In collab. with DieBuche. 1893. URL: https://commons.wikimedia.org/wiki/File:Baths_Diocletian-Lanciani.png (visited on 12/04/2017).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□□ のへで

References II

- [6] Alison Stones. Floorplan of the Abbey of Saint-Denis c.1700. 2006. URL: http://www.medart.pitt.edu/image/France/St-denis/plans/plan-felebien-s.jpg.
- Florida Center for Instructional Technology. Houses of Parliament, Westminster; Plan of Principal Floor.
 N.d. URL: http://etc.usf.edu/clipart/74200/74281/74281_parli.htm.
- [8] Google. Indoor Map of Westfield Culver City Shopping Mall. 2015.
- [9] Chen Liu et al. "PlaneNet: Piece-Wise Planar Reconstruction from a Single RGB Image". In: (Apr. 17, 2018). arXiv: 1804.06278. URL: http://arxiv.org/abs/1804.06278.
- [10] Chuhang Zou et al. "LayoutNet: Reconstructing the 3D Room Layout from a Single RGB Image". In: (Mar. 23, 2018). arXiv: 1803.08999. URL: http://arxiv.org/abs/1803.08999.
- [11] Xiaozhi Chen et al. "Multi-View 3D Object Detection Network for Autonomous Driving". In: (Nov. 23, 2016). arXiv: 1611.07759. URL: http://arxiv.org/abs/1611.07759.
- [12] Bo Li. "3D Fully Convolutional Network for Vehicle Detection in Point Cloud". In: (Nov. 24, 2016). arXiv: 1611.08069. URL: http://arxiv.org/abs/1611.08069.
- [13] Yin Zhou and Oncel Tuzel. "VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection". In: (Nov. 16, 2017). arXiv: 1711.06396. URL: http://arxiv.org/abs/1711.06396.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□□ のへで

References III

- Charles R. Qi et al. "PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation". In: (Dec. 2, 2016). arXiv: 1612.00593. URL: http://arxiv.org/abs/1612.00593.
- [15] Charles R. Qi et al. "PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space". In: (June 7, 2017). arXiv: 1706.02413. URL: http://arxiv.org/abs/1706.02413.
- [16] Joachim Benner et al. "Enhanced LOD concepts for virtual 3D city models". English. In: ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. II-2-W1. Copernicus GmbH, 2013, pp. 51-61. DOI: https://doi.org/10.5194/isprsannals-II-2-W1-51-2013. URL: https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/II-2-W1/51/2013/.
- [17] Marc-O. Loewner et al. "New Concepts for Structuring 3D City Models An Extended Level of Detail Concept for CityGML Buildings". In: Computational Science and Its Applications – ICCSA 2013. Vol. 7973. Springer Berlin Heidelberg, 2013, pp. 466–480. ISBN: 978-3-642-39645-8. URL: http://link.springer.com/10.1007/978-3-642-39646-5_34.

・ロト ・ 日本 ・ ヨト ・ ヨヨ ・ クタマ