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What is a
smart city?

11 ideas & 15 definitions[1]

I Wired city

I Intelligent city

I Sustainable city, etc.

“City designed to facilitate
information exchange

and data analysis”

Interest in smart cities
on the rise

Studies 1994-2012[1]

I Asia (49%)

I Europe (36%)

I North America (9%)

But what about
indoors?

Observations

I City, not building, scale

I City-dwellers spend
90% of time indoors[2]

I 2D floor plans remain
prevailing paradigm . . .
since ancient times
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Innovation of indoor maps through the ages
3000 BC
Girsu [3]

2150 BC
Ningirsu Temple [4]

210 AD
Forma Urbis Romae [5]

1700
Saint-Denis Abbey [6]

1800s
House of Parliament, Westminster, England [7]

2017
Westfield Shopping Mall, Culver City [8]

Mapping the Great Indoors: Spatial context through indoor maps 3 / 23



Background Modeling standards Indoor reality capture Automated indoor mapping Conclusion

Mapping the “Great Indoors”

“A bargain is struck in which technology giveth
and technology taketh away.”

— Neil Postman, Technopoly

Manual measurementsBlueprints/CAD Modeling by hand

⇓ ⇓ ⇓
3D

building models

3D
remote sensing

Automation

Indoor modeling
standards

Indoor reality
capture

Automated
data conversion
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Building modeling standards

I Standards driven by ($$$) potential return on investment

Industry
Foundation Classes

(IFC)

Architecture, engineering,
& construction (AEC)

I Supports BIM data

I Interior & exterior

I Extremely fine details

I Level of development

City Geography
Markup Language

(CityGML)

Urban-scale GIS including
emergency management

I Buildings & surroundings

I Mostly exterior

I Level of detail

Indoor Geography
Markup Language

(IndoorGML)

Indoor positioning &
navigation

I Building interiors

I Topology, not geometry

I Integrates w/
CityGML & IFC
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Indoor considerations for IFC and CityGML

I BIM-GIS integration already existing & improving

I Facilities Information Spatial Data Model (FISDM)

I Safe Software’s Feature Manipulation Engine (FME)

I Indoor cartographic features are lacking

I BIM/IFC: uses level of development

I CityGML: single indoor LOD
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Indoor reality capture

I Reality capture

I Marketing term for non-technical audience

I Really just remote sensing . . . close-range remote sensing

I Why capture reality?

I Measurements ⇒ basic building blocks of models

I Many buildings have only 2D drawings, if any

I Capture as-is condition . . . buildings change with time
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Top 3 reality capture techniques

Light detection and ranging

More common name for ToF;
uses speed of light ⇒ distance

I LiDAR or “laser scanning”

I Distance ≈ (c × t)/2

I Pulse vs. phase-based

Pulse LiDAR

Phase-based LiDAR

Image by Dr. Schorsch, distributed under a CC BY-SA 3.0 license.
URL https://commons.wikimedia.org/wiki/File:3D-Laserscanner on tripod.jpg
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Top 3 reality capture techniques

SfM-MVS

Derives 3D structure from sets
of overlapping 2D images

I Structure-from-motion (SfM)

I Multiview stereo (MVS)

I Parallax phenomenon

I Requires scaling info

Image by Kobbaka, distributed under a CC BY-SA 4.0 license.
URL https://commons.wikimedia.org/wiki/File:View-Master model L.jpg

Parallax demo
(click for animation)
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Top 3 reality capture techniques

Structured light

Triangulation based on cali-
brated infrared light pattern

I Based on triangulation

I Aka “RGB-D”

I Intro’d via XBox Kinect

I iPhone 8 3D sensor

Image by Kolossos, distributed under a CC BY-SA 3.0 license.
URL https://commons.wikimedia.org/wiki/File:Kinect2-ir-image.png

Microsoft Kinect
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Top 3 reality capture pros and cons

Light detection and ranging

Pros: Fast; most accurate and
precise*; min. post-processing;
long measuring range 30m+

Cons: Expensive @ $16K+

SfM-MVS

Pros: Low entry cost; easy-to-
learn; measurements w/ color;
unlimited measuring range

Cons: Requires many photos;
challenging indoor lighting;
labor-intensive; extremely long
processing times; distortions
& uncertainties; unscaled*

Structured light

Pros: Easy to operate; in-
expensive @ $100 to $4K

Cons: Short range 4m; averse
to bright light; alignment drift

Image by Dr. Schorsch, distributed under a CC BY-SA 3.0 license.
URL https://commons.wikimedia.org/wiki/File:3D-Laserscanner on tripod.jpg
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Reality capture ⇒ point clouds
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Image recognition for indoor mapping

Current state-of-the-art:
panoramic images placed over LiDAR

[A]

A. Image by Sgeureka, distributed under a CC BY-SA 3.0 license. URL
https://commons.wikimedia.org/wiki/File:Image-Omnidirectional image computer lab.jpg

[B]

[B]

Indoor Reality

B. Courtesy of Indoor Reality, Inc.
URL http://www.indoorreality.com/

Structure from single images

PlaneNet[9]

LayoutNet[10]
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Automated indoor mapping

I Current practices

I Manual drafting from point clouds

I Cost and time reduce frequency of updates

I Automation mostly for outdoor features,
e.g., facades, windows, etc.

I Challenges in indoor automation

I Geometrically complex environment in space & time

I Clutter and obstructions ⇒ voids in data

I Geometry and semantics

Image used by permission from the U.S. Air Force.
URL:http://www.eglin.af.mil/News/Photos/igphoto/2001033029/
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Challenges in indoor automation
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Research in automation

I Current research

I Mostly geometric and simple semantics, e.g., floor, ceiling, wall, etc.

I Applied statistics and machine learning

I Context dependent ⇒ easily broken

I Emerging research

I Apply deep learning to point clouds ⇐ requires lots of data

I Deduce geometry and semantics, including furniture

I DL for autonomous vehicles, e.g., VoxelNet & predecessors[11, 12, 13]

I DL for indoors, e.g., PointNet, PointNet++[14, 15]
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Research gap

I Indoor cartographic research
I Level of detail (geometric, semantic, appearance)[16, 17]

I Indoor mapping vs. BIM & GIS

I Potential uses
• Disaster simulation & training
• Emergency response
• Smart buildings & IoT
• Hazmat planning

• Mining of urban metals
• Autonomous vehicles
• Gamification
• And many, many more!

BIM GIS

BIM X GIS
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Conclusion

I 3D indoor maps ⇒ vital part of smart city infrastructure

I Three key processes

I Mapping conventions: Goldilocks principle . . .
BIM (too detailed), CityGML (too generalized), missing “just right”

I Reality capture: many approachs, and more coming

I Automation: just getting started with AI revolution

I Operationalizing indoor maps

I Technology exists, trees ⇔ forest

I Missing unifying theories and conventions . . . subject of research!
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