

WaterSense® Draft Technical Evaluation Process for Approving Home Certification Methods

Version 1.0

April 18, 2019

Table of Contents

1.0 2.0					ation Process			
3.0		chnical Evaluation Details and Assumptions						
	3.1							
	3.2							
	3.3		se					
		3.3.1	pancy	7				
		3.3.2	Baseline and Water-Efficient Home Water Use	9				
					ter Use			
			3.3.2.2		/ater Use			
				3.3.2.2.1	Savings From Thermostatic Shutoff Valves	13		
			3.3.2.3	Lavatory I	Faucet Water Use	14		
			3.3.2.4	Kitchen F	aucet Water Use	16		
			3.3.2.5	Clothes W	Vasher Water Use	18		
			3.3.2.6	Dishwash	er Water Use	19		
			3.3.2.7	Bathtub V	Vater Use	20		
			3.3.2.8	Water Waste From Hot Water Delivery		21		
			3.3.2.9	Water Wa	ste From Household Leaks	23		
	3.4	5 • • • • • • • • • • • • • • • • • • •						
		3.4.1	3.4.1 Establishing Baseline Outdoor Water Use					
		3.4.2 Establishing Outdoor Water-Efficient Home Water Use						
			3.4.2.1		Landscape Type and Irrigation Feature-Based	29		
					Savings From Pressure Regulation			
					Savings From Irrigation Scheduling Technologies.			
				3.4.2.1.3				
					Installation or Audit	31		
			3.4.2.2	Option 2:	Irrigation System Capacity Control	32		
	3.5	3.6 Generating Total Water Efficiency Percent Savings						
	3.6							
1.0		A Response to HCOs						
5.0			,		Revisions			
5.0		Definitions						
7 N	I\/l∩re	Intorm	ation			'36		

WaterSense Draft Technical Evaluation Process for Approving Home Certification Methods

1.0 Introduction and Purpose

Under the *WaterSense Specification for Homes, Version 2.0*, the U.S. Environmental Protection Agency (EPA) requires homes that earn the WaterSense label to be at least 30 percent more water-efficient than a comparable home of typical new construction using national codes, standards and common landscape practices. To confirm adherence to this requirement, homes are required to be certified under a Home Certification Organization's (HCO's) WaterSense Approved Certification Method (WACM), as described in the *WaterSense Home Certification System, Version 2.0*. To become a WACM, WaterSense must confirm a proposed certification method (PCM) is able to differentiate homes that meet WaterSense's efficiency requirement (i.e., be at least 30 percent more water-efficient than typical new home construction) from homes that do not.

This WaterSense Technical Evaluation Process for Approving Home Certification Methods, Version 1.0 (Technical Evaluation) describes WaterSense's process for assessing PCMs. The purpose of the process is to provide reasonable assurance that in instances where the PCM's requirements are met, the evaluation indicates water savings of at least 30 percent. Only PCMs that are capable of consistently achieving the WaterSense program's required water efficiency criteria will be approved by the WaterSense program, thus becoming a WACM. The technical evaluation represents a protection of WaterSense's brand promise to only allow the WaterSense label to be associated with homes that demonstrate significant, quantifiable water savings, as defined in the specification.

The purpose of this document is to explain the EPA's process and assumptions to be used to evaluate the water efficiency level achieved by a PCM. Section 2.0 below provides a brief overview; Section 3.0 provides the details of the technical evaluation process and assumptions; and Section 4.0 discusses the EPA's approval of PCMs that achieve 30 percent water efficiency, as determined by the technical evaluation.

2.0 Summary of the Technical Evaluation Process

Proposed Certification Method Scope Identification

As described in the *WaterSense Home Certification System, Version 2.0*, an HCO shall supply the EPA with a copy of its PCM and additional supporting documentation. The HCO's application to the EPA must indicate the PCM's building eligibility (single-family and/or multifamily, new and/or existing construction) and geographic scope (i.e., national, regional, local). The HCO must also indicate the certification threshold of the PCM for which it is seeking WaterSense approval. For example, an HCO could supply the EPA with an application indicating that its PCM is intended to certify single-family homes in the Southwest region of the contiguous United States, and that homes that earn Gold certification (which requires 50 points) will be eligible to earn the WaterSense label.

The EPA will use the HCO's stated scope to perform its technical evaluation. The technical evaluation will compare water use in a predefined set of reference homes. Each reference home

will be compared between a baseline configuration that reflects typical design features and a water-efficient home expected to achieve certification under a PCM. This process is explained in more detail in Section 3.2. Using the example provided above, the PCM would be evaluated using the single-family reference home designs with dry climate characteristics. However, once approved, the HCO's WACM will only be approved for WaterSense use with the stated building type and geographic region.

Determining "Least Efficient" Home and Landscape Design

Once the scope of the HCO's PCM is clearly defined, the EPA will define one or more home and landscape designs based on the minimum requirements a home must meet to achieve the PCM's certification threshold for which it intends to issue the WaterSense label. The EPA's goal is to determine the home and landscape designs that represent the criteria that potentially result in "least efficient" homes that could earn the WaterSense label. The process is intended to identify a set of requirements or features from the PCM that would achieve the certification threshold, but result in the least likely quantifiable water savings.

The WaterSense Specification for Homes, Version 2.0 includes the Mandatory Checklist for WaterSense Labeled Homes (see Section 2.1 and Appendix B of the WaterSense Specification for Homes, Version 2.0) that requires all homes that earn the WaterSense label to be equipped with WaterSense labeled toilets, lavatory faucets, and showerheads and be free of leaks. Therefore, the least efficient home design(s) that the EPA evaluates will automatically include these features.

Water Savings, Technical Evaluation and Approval

The EPA will use the assumptions and calculations detailed here to evaluate water savings from homes with the features for the least efficient home and landscape design(s). The features included in this process are described in more detail in Sections 3.3 and 3.4. These represent features for which the EPA has identified studies, research or other data that suggest quantifiable water savings can be achieved from implementation of that feature. Wherever possible, The EPA utilized industry recognized studies, such as the Water Research Foundation's *Residential End Uses of Water, Version 2,* to identify water use, water savings, or usage patterns of different water-using fixtures, appliances, or systems. Throughout, the EPA's objective is to use the best available data and to evaluate a home's potential water use in realistic (albeit sometimes fringe) scenarios.

Unless specifically included in Sections 3.3 and 3.4, all other requirements or features included in a PCM are not assessed for water savings in the EPA's technical evaluation. This is not to suggest that other requirements or features that could be included in a PCM do not have the potential to provide water savings, energy savings or other environmental benefit. However, as the WaterSense label is meant to recognize homes that are assured to achieve a certain minimum level of water efficiency, features for which water savings cannot yet be reliably quantified are omitted.

The EPA will identify the least efficient home and landscape design(s) by applying the assumptions across the reference homes. These scenarios are described in more detail in Section 3.2. The objective is to ensure the requisite 30 percent water efficiency criteria can be

met under the entire scope of the PCM. If achieved, the EPA will approve the certification method as a WACM, as discussed in Section 4.0.

3.0 Technical Evaluation Details and Assumptions

The EPA's technical evaluation involves applying a series of calculations and assumptions to estimate baseline water use for several reference home scenarios intended to represent a range of home and lot sizes, as well as common features. Similarly, the technical evaluation applies a series of calculations and assumptions to estimate water use associated with specific water efficiency features based on the criteria for the water-efficient home(s) in the same reference home scenarios. The EPA will evaluate the water savings between the baseline and water-efficient home(s) under each reference home scenario.

The outdoor water use and savings assumptions vary depending upon the geographic scope of the PCM; therefore, the EPA takes location into consideration when establishing the reference homes. Section 3.1 discusses this geographic scope factor. Section 3.2 provides a detailed explanation of the reference homes and Sections 3.3 and 3.4, respectively, describe the assumptions and methods for calculating indoor and outdoor water use for each baseline and water-efficient reference home.

3.1 Scope

As identified in the application found in Appendix A to the *WaterSense Home Certification System, Version 2.0*, a prospective HCO submits its PCM's building eligibility (single-family and/or multifamily, new and/or existing construction) and geographic scope (i.e., national, regional, local) to the EPA as part of its program application. The EPA will evaluate the PCM based on the specific scope identified by the HCO applicant.

Geographic scope impacts the reference home's anticipated outdoor water use since climate has a well-documented impact on outdoor water use. For PCMs intended to certify homes at the local level (i.e., within a specific city or county), the EPA will use local zip codes to determine a modified net evapotranspiration (NetET)¹ with effective rainfall (ModNetET₀, explained in more detail in Section 3.4) to include in the technical evaluation. For PCMs to be used to certify homes across a larger region, the EPA will use a range of ModNetET₀ values to represent the geographic scope. For reference, values for ModNetET₀ across the continental United States range from approximately 20 inches per year to approximately 100 inches per year.² For national certification methods, the EPA will use ModNetET₀ values toward both ends of this range to conduct the technical evaluation.

3.2 Reference Home Design

The EPA will analyze the expected differences in water use between a baseline and water-efficient home in a series of reference homes with the same designs and characteristics (e.g., lot sizes, number of bedrooms, number of bathrooms, minimum features installed). The series

Version 1.0 - Draft 3 April 18, 2019

¹ Evapotranspiration is a measurement of the amount of water a plant requires from optimal growth.

² See Section 3.4 for information on how the EPA calculates ModNetET_o.

of basic reference homes serves as a template for evaluating water efficiency gains associated with homes that could be labeled under a PCM.

Both single- and multifamily homes can vary significantly in size and design. To avoid the need to develop an overly complex procedure to normalize all possible variations of home size and design, the EPA has identified "reference home designs" that represent a broad range of typical home designs. These reference home designs are intended to ensure that WaterSense labeled homes will be able to meet the EPA's water efficiency requirements across a large range of likely home configurations that are possible under the PCM.

The EPA identified features to include in the reference home designs from the U.S. Department of Housing and Urban Development (HUD) 2017 Survey of Construction. U.S. Census data were reviewed to inform the range of typical design features—such as number of bedrooms, bathrooms and lot size—that were included in the reference home designs.^{3,4}

The EPA established the landscape area for single-family reference homes based on a best fit equation that was developed using observed field data from *Residential End Uses of Water, Version 2.* Where the lot size of the reference home is less than 7,000 square feet, landscape area is calculated according to Equation 1. Where the lot size of the reference home is greater than or equal to 7,000 square feet, the landscape area is calculated according to Equation 2.⁵

Equation 1: Landscape Area for Single-Family Reference Homes With Lot Size Less Than 7,000 Square Feet

Landscape area = Lot size \times (0.002479 \times Lot size^{0.6157})

Equation 2: Landscape Area for Single-Family Reference Homes With Lot Size Greater Than or Equal to 7,000 Square Feet

Landscape area = Lot size \times 0.577

Landscape area for multifamily reference homes was established based on the EPA's review of multiple data sources including the Fannie Mae Multifamily Energy and Water Market Research Survey⁶ and entries in ENERGY STAR® Portfolio Manager® pertaining to the EPA Water Score. These data sources indicate that, while it is extremely common for multifamily buildings to exhibit little to no outdoor water use, it is also observed that many properties have landscape

Version 1.0 - Draft 4 April 18, 2019

³ U.S. Census Bureau. Characteristics of New Single-Family Houses Completed. <u>www.census.gov/construction/chars/completed.html</u>

⁴ U.S. Census Bureau. Characteristics of Units in New Multifamily Buildings Completed.

www.census.gov/construction/chars/mfu.html

⁵ Board of Standards Review (BSR)/Residential Energy Services Network (RESNET)/International Code Council (ICC) Draft Standard 1101. *Draft Standard for the Calculation and Labeling of Water Use Performance of One- and Two-Family Dwellings Using the Water Rating Index*. July 3, 2018.

⁶ Fannie Mae, 2012. Fannie Mae Multifamily Energy and Water Market Research Survey. www.fanniemae.com/multifamily/green-initiative-market-research-survey

areas several times larger than their floor area. As a result, the EPA set the landscaped area for multifamily reference homes at extreme values to capture all potential situations.

The EPA assumes that an in-ground irrigation system is installed for each reference home. While this does not necessarily represent standard practice for typical new construction in all regions, the EPA intends for the technical evaluation to assess homes with features likely to result in higher water use. In fact, available data strongly indicates that a home constructed without an in-ground irrigation system is likely to consume less water than a home with inground irrigation,⁷ and therefore the EPA is confident a PCM that can effectively differentiate homes with in-ground irrigation could also do so where an in-ground irrigation system is absent.

Table 3-1 summarizes the characteristics of the single-family reference homes. Table 3-2 summarizes the characteristics of the multifamily reference buildings.

Through the technical evaluation, the EPA will evaluate each reference home (that falls within the scope of the PCM) for baseline water use (both indoor and outdoor combined), as well as anticipated water use and savings (indoor and outdoor combined) from applying features of the water-efficient design(s) for water-efficient homes from the PCM. Sections 3.3 and 3.4 explain the calculations and assumptions used to conduct this evaluation in more detail.

Single-Family Single-Family Single-Family Single-Family Reference Reference Home Reference Home Reference Home Home 1: 3: Small Footprint Large Footprint Large Footprint **Small Footprint** and Large Lot and Small Lot and Large Lot and Small Lot Feature 2 4 **Bedrooms** 2 1 **Bathrooms** 1 2.5 2.5 Footprint (sq. ft.) 1.000 1.000 2.500 2.500 Lot size (sq. ft.) 22,000 4,400 22,000 4,400 Landscaped area 12,694 1,910 12,694 1,910 (square feet) Number of toilets 1 1 3 Number of 1 1 2 2 showerheads **Number of** 5 2 2 5 lavatory faucets Number of 1 1 1 1 kitchen faucets Number of 1 1 1 1 clothes washers

Table 3-1. Single-Family Reference Homes

Version 1.0 - Draft 5 April 18, 2019

⁷ Water Research Foundation (WRF), 2016. *Residential End Uses of Water, Version 2*.

Table 3-1. Single-Family Reference Homes

Feature	Single-Family Reference Home 1: Small Footprint and Large Lot	Single-Family Reference Home 2: Small Footprint and Small Lot	Single-Family Reference Home 3: Large Footprint and Large Lot	Single-Family Reference Home 4: Large Footprint and Small Lot
Number of dishwashers	1	1	1	1
Irrigation season ⁸	Determined based on climate data			

Table 3-2. Multifamily Reference Buildings

	Multifamily	Multifamily	Multifamily	Multifamily
	Reference Home	Reference Home	Reference Home	Reference Home
	1:	2:	3:	4:
Feature	Small Building; No Irrigated Area	Small Building With Irrigated Area	Large Building; No Irrigated Area	Large Building With Irrigated Area
Bedrooms	20 units x 1 bedroom/unit = 20	20 units x 1 bedrooms/unit = 50	300 units x 2 bedrooms/unit = 600	300 units x 2 bedrooms/unit = 600
Bathrooms	1 bathroom per unit	1 bathroom per unit	2 bathrooms per unit	2 bathrooms per unit
Landscaped area (square feet)	None	40,000	None	600,000
Number of toilets	20 units x	20 units x	300 units x	300 units x
	1 bathroom/unit =	1 bathroom/unit=	2 bathrooms/unit =	2 bathrooms/unit =
	20	20	600	600
Number of showerheads	20 units x	20 units x	300 units x	300 units x
	1 bathroom/unit =	1 bathroom/unit =	2 bathrooms/unit =	2 bathrooms/unit =
	20	20	600	600
Number of lavatory faucets	20 units x	20 units x	300 units x	300 units x
	1 bathroom/unit =	1 bathroom/unit =	2 bathrooms/unit =	2 bathrooms/unit =
	20	20	600	600
Number of kitchen faucets	20 units x	20 units x	300 units x	300 units x
	1 kitchen/unit = 20	1 kitchen/unit = 20	1 kitchen/unit = 300	1 kitchen/unit = 300

Version 1.0 - Draft 6 April 18, 2019

⁸ The EPA uses a value for ModNetET_o as an indicator of irrigation season. See Section 3.4 for more information.

	Multifamily	Multifamily	Multifamily	Multifamily
	Reference Home	Reference Home	Reference Home	Reference Home
	1:	2:	3:	4:
Feature	Small Building; No Irrigated Area	Small Building With Irrigated Area	Large Building; No Irrigated Area	Large Building With Irrigated Area
Number of	20 units x	20 units x	300 units x	300 units x
clothes	1 machine/unit =	1 machine/unit =	1 machine/unit =	1 machine/unit =
washers	20	20	300	300
Number of dishwashers	20 units x	20 units x	300 units x	300 units x
	1 machine/unit =	1 machine/unit =	1 machine/unit =	1 machine/unit =
	20	20	300	300
Irrigation season ⁹	Determined based on climate data	Determined based on climate data	Determined based on climate data	Determined based on climate data

3.3 Evaluating Indoor Water Use

Generally, indoor water use is heavily influenced by occupancy in addition to the efficiencies of its technology and design features. Therefore, the technical evaluation estimates indoor water use under each reference home scenario for a baseline home, with features and efficiencies typical of new construction, and a water-efficient home, with features and efficiencies based on the water-efficient home design(s) from the PCM.

The indoor water use reduction is considered with the outdoor water use reduction, discussed in Section 3.4, to determine the total water savings for the home over the baseline, which must meet the EPA's water efficiency criteria of 30 percent across all reference home scenarios.

The subsections below describe how the EPA estimates indoor water use within its technical evaluation.

3.3.1 Establishing Occupancy

Indoor water use is largely influenced by home occupancy. Generally, the more occupants in a home, the more water used within the household, since most major end uses of water in homes (e.g., toilet flushes, showers) rise proportionally with the number of occupants.

To maintain a focus on the physical home or building as opposed to future occupants, the EPA uses the number of bedrooms to predict occupancy. For the technical evaluation, the EPA determines occupancy based on Equation 3 and Equation 4, which were derived from the

Version 1.0 - Draft 7 April 18, 2019

⁹ EPA uses a value for ModNetET₀ as an indicator of irrigation season. See Section 3.4 for more information.

Residential Energy Consumption Survey (RECS) and presented in the Florida Solar Energy Center's *Estimating Daily Domestic Hot-Water Use in North American Homes*.¹⁰

Equation 3: Single-Family Occupancy

Occupants = $1.09 + 0.54 \times \text{Number of bedrooms}$

Equation 4: Multifamily Occupancy

Occupants = $1.49 + 0.45 \times \text{Number of bedrooms}$

Where:

• Number of bedrooms is determined by the respective single-family and multifamily reference homes discussed in Section 3.2.

Version 1.0 - Draft 8 April 18, 2019

¹⁰ Parker, Danny S. and Philip W. Fairey. Florida Solar Energy Center, 2015. *Estimating Daily Domestic Hot-Water Use in North American Homes*. FSEC-PF-464-15. June 30, 2015. www.fsec.ucf.edu/en/publications/pdf/FSEC-PF-464-15.pdf

3.3.2 Establishing Indoor Baseline and Water-Efficient Home Water Use

The annual baseline indoor water use for each reference home is determined based on Equation 5. The baseline water use is intended to represent the anticipated water use from a home constructed using typical design practices and standard plumbing fixture, fitting and appliance efficiencies.

Equation 5: Annual Baseline Indoor Water Use

Annual baseline indoor water use (gallons)

- = [daily toilet use + daily shower use + daily lavatory faucet use
- + daily kitchen faucet use + daily clothes washer use
- + daily dishwasher use + daily bathtub use
- + daily structural water waste from hot water delivery
- + daily use from household leaks + other use (if applicable)]
- \times 365 days

Where:

- Daily toilet use is established using Equation 7.
- Daily shower use is established using Equation 8.
- Daily lavatory faucet use is established using Equation 10.
- Daily kitchen faucet use is established using Equation 12.
- Daily clothes washer use is established using Equation 14.
- Daily dishwasher use is established using Equation 15.
- Daily bathtub use is established using Equation 16.
- Daily structural water waste from hot water delivery is established using Equation 17.
- Daily use from household leaks is established based on Section 3.3.2.9.
- Daily other use (if applicable) is determined based on information supplied by the HCO and reviewed by the EPA, as explained in Section 3.5.

Version 1.0 - Draft 9 April 18, 2019

Annual water-efficient home indoor water use for each reference home is determined based on Equation 6. The efficient home indoor water use is intended to represent the anticipated water use from the water-efficient home constructed using practices and efficiency measures adopted from the PCM.

Equation 6: Annual Efficient Home Indoor Water Use

Annual efficient home indoor water use (gallons)

- = [daily toilet use + daily shower use
- daily savings from thermostatic shutoff valves
- + daily lavatory faucet use + daily kitchen faucet use
- + daily clothes washer use + daily dishwasher use + daily bathtub use
- + daily structural water waste from hot water delivery
- daily savings from hot water recirculation
- + daily use from household leaks + other use (if applicable)]
- \times 365 days

Where:

- Daily toilet use is established using Equation 7.
- Daily shower use is established using Equation 8.
- Daily savings from thermostatic shutoff valves is established using Equation 9.
- Daily lavatory faucet use is established using Equation 11.
- Daily kitchen faucet use is established using Equation 13.
- Daily clothes washer use is established using Equation 14.
- Daily dishwasher use is established using Equation 15.
- Daily bathtub use is established using Equation 16.
- Daily structural water waste from hot water delivery is established using Equation 18.
- Daily savings from hot water recirculation is established using Equation 19.
- Daily use from household leaks is established based on Section 3.3.2.9.
- Daily other use (if applicable) is determined based on information supplied by the HCO and reviewed by the EPA, as explained in Section 3.5.

3.3.2.1 Toilet Water Use

Toilet water use for each baseline and water-efficient reference home is determined based on Equation 7.

Equation 7: Daily Toilet Water Use

Daily toilet water use (gallons) = Occupants \times Daily use \times Toilet flush volume

Where:

- "Occupants" is established using Equation 3 or Equation 4, depending on the reference home.
- Daily use = 5.0 flushes per person per day.¹¹
- Toilet flush volume (gallons per flush [gpf]) is dependent on whether the daily toilet water use is being determined for the baseline or the water-efficient home.
 - For baseline homes, assume a toilet flush volume of 1.6 gpf. The Energy Policy Act of 1992 (EPAct 1992) established this as the maximum allowable flush volume for all gravity, flushometer-tank and flushometervalve toilets.¹²
 - For the water-efficient homes, flush volume is determined based on requirements or features included in the water-efficient home(s) under the PCM; however, the flush volume cannot exceed 1.28 gpf. To earn the WaterSense label, homes must meet the Mandatory Checklist, as discussed in the *WaterSense Specification for Homes, Version 2.0*, which requires all toilets installed within a home to be WaterSense labeled. WaterSense labeled tank-type and flushometer-valve toilets are required to have a flush volume of 1.28 gpf or less.^{13,14}

Version 1.0 - Draft 11 April 18, 2019

¹¹ Water Research Foundation (WRF), 2016. Residential End Uses of Water, Version 2. Table 6.7.

¹² The maximum flush volume for toilets is codified in the Code of Federal Regulations (CFR) at 10 CFR Part 430.32.

¹³ EPA, 2014. *WaterSense Specification for Tank-Type Toilets, Version 1.2.* June 2, 2014. www.epa.gov/sites/production/files/2017-01/documents/ws-products-spec-toilets.pdf

¹⁴ EPA, 2015. WaterSense Specification for Flushometer-Valve Water Closets, Version 1.0. December 17, 2015. www.epa.gov/sites/production/files/2017-01/documents/ws-products-spec-fv-toilets.pdf

3.3.2.2 Shower Water Use

Shower water use for each baseline and water-efficient reference home is determined based on Equation 8.

Equation 8: Daily Shower Water Use

Daily shower water use (gallons)

- = Occupants × Daily use × Minutes per use
- × Shower compartment flow rate

Where:

- "Occupants" is established using Equation 3 or Equation 4, depending on the reference home
- Daily use = 0.69 showers per person per day.¹⁵
- Minutes per use = 7.8 minutes per shower.¹⁶
- Shower compartment flow rate (gallons per minute [gpm]) is dependent on whether the daily shower water use is being determined for the baseline or the water-efficient home.
 - For baseline homes, a shower compartment flow rate of 2.5 gpm is used, as EPAct 1992 established this as the maximum allowable flow rate for all showerheads.¹⁷
 - For the water-efficient homes, the shower compartment flow rate(s) is determined based on requirements or features included in the water-efficient home(s) under the PCM; however, the flow rate cannot exceed 2.0 gpm per showerhead within a shower compartment. To earn the WaterSense label, homes must meet the Mandatory Checklist, which requires all showerheads installed within a home be WaterSense labeled. WaterSense labeled showerheads are required to have a flow rate of 2.0 gpm or less.¹⁸

Multiple spray showers (individual shower compartments with either multiple showerheads, supplemental body sprays or supplemental hand wands) are frequently observed in homes and can substantially increase shower water use. A PCM may fail to appropriately account for multiple spray showers, specifically when incentive measures (i.e. points or credits) are awarded on a per product basis or when calculations do not account for the full shower compartment flow rate. In instances where this may be the case, WaterSense may increase the estimated flow rate for one shower compartment of the water-efficient home (by up to 2.0 gpm) to recognize this practice and ensure it does not result in erroneous home certification. In its

Version 1.0 - Draft 12 April 18, 2019

¹⁵ WRF, 2016. Residential End Uses of Water, Version 2. Table 6.9.

¹⁶ WRF, 2016. Residential End Uses of Water, Version 2. Table 6.9.

¹⁷ The maximum water use (i.e., flow rate) for showerheads is codified in 10 CFR Part 430.32.

¹⁸ EPA, 2018. WaterSense Specification for Showerheads, Version 1.1. July 26, 2018.

www.epa.gov/sites/production/files/2018-07/documents/ws-products-specification-showerheads-v1-1.pdf

technical evaluation, the EPA will not increase the flow rate input if measures are in place to limit the total flow rate of all devices.

3.3.2.2.1 Savings From Thermostatic Shutoff Valves

There are two types of water waste associated with hot water distribution and use: structural waste and behavioral waste. Structural waste, which is discussed further in Section 3.3.2.8, represents the cooled-off hot water that often must be cleared from the hot water pipe that connects the water heater to the plumbing fitting (e.g., showerhead, faucet) or other end use. Behavioral waste constitutes water that has reached the desired temperature, but that runs down the drain before the occupant uses the water (e.g., gets into the shower). Bathers could walk away from the shower or tub while the water heats up, performing other tasks prior to entering the shower. Any hot water that flows down the drain in the period after the water arriving at the point of use is hot and before the user begins their activity is considered behavioral waste.

Thermostatic shutoff valves (TSVs) can be used to eliminate behavioral waste from showering events. TSVs shut off (or greatly reduce) the flow of water to the showerhead when water reaches a certain temperature (hot enough for bathing). When the user is ready to enter the shower, the TSV can be reopened to allow the flow of water.

For baseline reference homes, no water savings are applied for TSVs, since these devices are not required by code and WaterSense does not have any information to suggest these devices are typically installed in new construction. Water savings are applied only if a PCM requires or credits for installation of TSVs and the EPA has included it as part of the water-efficient home(s) design. Water savings to be applied to each water-efficient reference home are determined using Equation 9.

Equation 9: Efficient Home Daily Water Savings from TSVs

Daily efficient home water savings from TSVs (gallons)
= Occupants × Daily use × Volume saved per use

Where:

- "Occupants" is established using Equation 3 or Equation 4, depending on the reference home.
- Daily use = 0.69 showers per person per day.²⁰
- Volume saved per use = 1.13 gallons per showering event.²¹

Version 1.0 - Draft 13 April 18, 2019

¹⁹ Lutz, Jim, 2011. Water and Energy Wasted During Residential Shower Events: Findings from a Pilot Field Study of Hot Water Distribution Systems. Lawrence Berkeley National Laboratory. LBNL-5115E. September 2011.
²⁰ WRF, 2016. Residential End Uses of Water, Version 2. Table 6.9.

²¹ Sherman, Troy, 2014. *Disaggregating Residential Shower Warm-Up Waste: An Understanding and Quantification of Behavioral Waste Based on Data from Lawrence Berkeley National Labs.* August 11, 2014.

3.3.2.3 Lavatory Faucet Water Use

Baseline lavatory (bathroom) faucet water use for each reference home is determined based on Equation 10.

Equation 10: Baseline Daily Lavatory Faucet Water Use

Baseline daily lavatory faucet water use (gallons)
= Occupants × Daily use × Gallons per use

Where:

- "Occupants" is established using Equation 3 or Equation 4, depending on the reference home
- Daily use = 5.7 lavatory faucet uses per person per day²²
- Gallons per use = 0.5 gallons²³

Faucet flow rate cannot be directly used to estimate water use because of user behavior. Frequently, a faucet is not turned entirely open during use, but is adjusted to meet the end user's needs for hand washing, teeth brushing or other behaviors. *Residential End Uses of Water, Version 2,* found a volume per faucet use of 0.5 gallons. The EPA uses this value, along with expected uses per person per day, to establish water use for a baseline home.

To estimate lavatory faucet savings for the water-efficient home, the EPA utilizes the same information that was examined during the development of WaterSense's *High-Efficiency Lavatory Faucet Specification*. The EPA reviewed two retrofit studies prepared by Aquacraft Inc., one in Seattle, Washington in 2000,²⁴ and one in the service area of East Bay Municipal Utility District (EBMUD) in 2003,²⁵ where 1.5 gpm aerators were installed in place of existing faucet aerators. Post-faucet retrofit, the weighted average daily per capita reduction in water consumption achieved was 0.6 gallons per capita per day (gcpd).²⁶ For a lavatory faucet flow rate below 1.5 gpm, the EPA intends to extrapolate these savings linearly, so additional savings in the technical evaluation are proportionally applied to a flow rate reduction beyond 1.5 gpm. Therefore, the daily lavatory faucet water use for an efficient home is determined based on Equation 11.

Version 1.0 - Draft 14 April 18, 2019

²² Because WRF's *Residential End Uses of Water, Version 2* does not differentiate between lavatory faucet and kitchen faucet uses, the EPA assumes that the number of lavatory faucet uses per occupant per day is equal to the number of toilet flushes per occupant (5.0) plus the number of showers per occupant (0.69), as determined by *Residential End Uses of Water, Version 2*.

²³ WRF, 2016. Residential End Uses of Water, Version 2. Table 6.10.

²⁴ Mayer, Peter W., William B. DeOreo, and David M. Lewis. 2000. *Seattle Home Water Conservation Study: The Impacts of High-Efficiency Plumbing Fixture Retrofits in Single-Family Homes*. December 2000.

²⁵ Mayer, Peter W., William B. DeOreo, Erin Towler, and David M. Lewis, 2003. *Residential indoor Water Conservation Study: Evaluation of High-Efficiency Indoor Plumbing Fixture Retrofits in Single-Family Homes in the East Bay Municipal Utility District Service Area*. July 2003.

²⁶ EPA, 2007a. *WaterSense High-Efficiency Lavatory Faucet Specification Supporting Statement*. October 1, 2007. www.epa.gov/sites/production/files/2017-01/documents/ws-products-support-statement-faucets.pdf

Equation 11: Efficient Home Daily Lavatory Faucet Water Use

Efficient home daily lavatory faucet water use (gallons) = Baseline daily lavatory faucet water use - [Occupants \times (Standard lavatory faucet flow rate - Efficient lavatory faucet flow rate) \times ($\frac{Post-retrofit\ savings}{Retrofit\ flow\ rate\ reduction}$)]

Where:

- Baseline daily lavatory faucet water use is established using Equation 10.
- "Occupants" is established using Equation 3 or Equation 4, depending on the reference home.
- Standard lavatory faucet flow rate = 2.2 gpm.²⁷
- Efficient lavatory faucet flow rate = 1.5 gpm or less, as determined based on the requirements or features of the water-efficient home(s) under the PCM.
- Post-retrofit savings = 0.6 gallons per person per day.
- Retrofit flow rate reduction = 0.7 gpm, based on faucet flow rate reduction from the Seattle and EBMUD retrofit studies from 2.2 gpm to 1.5 gpm.

For the water-efficient homes, the efficient lavatory faucet flow rate is determined based on requirements or features included in the water-efficient home(s) under the PCM; however, the flow rate cannot exceed 1.5 gpm. To earn the WaterSense label, homes must meet the Mandatory Checklist, which requires all lavatory faucets installed within a home to be WaterSense labeled. WaterSense labeled lavatory faucets are required to have a flow rate of 1.5 gpm or less.²⁸

Version 1.0 - Draft 15 April 18, 2019

²⁷ The maximum water use (i.e., flow rate) for lavatory faucets is codified in 10 CFR Part 430.32.

²⁸ EPA, 2007b. *WaterSense High-Efficiency Lavatory Faucet Specification, Version 1.*0. October 1, 2007. www.epa.gov/sites/production/files/2017-01/documents/ws-products-spec-faucets.pdf

3.3.2.4 Kitchen Faucet Water Use

Baseline kitchen faucet water use for each reference home is determined based on Equation 12.

Equation 12: Baseline Daily Kitchen Faucet Water Use

Baseline daily kitchen faucet water use (gallons)
= Occupants × Daily use × Gallons per use

Where:

- "Occupants" is established using Equation 3 or Equation 4, depending on the reference home.
- Daily use = 14.3 kitchen faucet uses per person per day.²⁹
- Gallons per use = 0.5 gallons.³⁰

As with lavatory faucets, kitchen faucet flow rate cannot be directly used to estimate water use because of user behavior. In addition, a kitchen faucet could only be turned entirely open for pot filling or other volumetric-based needs. In this case, flow rate would have an impact on run time, but not total water use.

For the water-efficient homes, the EPA estimates kitchen faucet savings based on a similar methodology it uses for lavatory faucets in Section 3.3.2.3; however, the methodology is modified to apply a ratio of kitchen faucet uses to lavatory faucets, accounting for increased daily uses of kitchen faucets compared to lavatory faucets. The EPA is using this method because it is not aware of any field studies to suggest estimated daily, annual or per capita water savings from reducing the flow rate of kitchen faucets.

Version 1.0 - Draft 16 April 18, 2019

²⁹ Because WRF's *Residential End Uses of Water, Version 2* does not differentiate between lavatory faucet and kitchen faucet uses, the EPA assumes that the number of kitchen faucet uses per occupant per day is equal to the total number of faucet uses per occupant (20) minus the number of lavatory faucet uses estimated from Section 3.3.2.3. Information on total daily faucet uses was determined in *Residential End Uses of Water, Version 2*, Table 6.10.

³⁰ WRF, 2016. Residential End Uses of Water, Version 2. Table 6.10.

The daily kitchen faucet water use for an efficient home is determined based on Equation 13.

Equation 13: Efficient Home Daily Kitchen Faucet Water Use

Efficient home daily kitchen faucet water use (gallons) = Baseline daily kitchen faucet water use - [Occupants \times (Standard kitchen faucet flow rate - Efficient kitchen faucet flow rate) \times ($\frac{\text{Kitchen faucet daily use}}{\text{Lavatory faucet dail use}}$) \times ($\frac{\text{Post-retrofit savings}}{\text{Retrofit flow rate reduction}}$)]

Where:

- Baseline daily kitchen faucet water use is established using Equation 12.
- "Occupants" is established using Equation 3 or Equation 4, depending on the reference home.
- Standard kitchen faucet flow rate = 2.2 gpm.³¹
- Efficient kitchen faucet flow rate = 2.2 gpm or less, as determined based on the requirements or features of the water-efficient home(s) under the PCM.
- Kitchen faucet daily use = 14.3 uses per person per day.
- Lavatory faucet daily use = 5.7 uses per person per day.
- Post-retrofit savings = 0.6 gallons per person per day.³²
- Retrofit flow rate reduction = 0.7 gpm, based on faucet flow rate reduction from the Seattle and EBMUD retrofit studies from 2.2 gpm to 1.5 gpm.

For the water-efficient homes, unless a more efficient flow rate is required or credited under a PCM, the EPA defaults the kitchen faucet flow rate at 2.2 gpm (the national standard flow rate) and assumes no water savings are achieved. WaterSense does not currently label kitchen faucets, but could in the future.

Version 1.0 - Draft 17 April 18, 2019

³¹ The maximum water use (i.e., flow rate) for kitchen faucets is codified in 10 CFR Part 430.32.

³² The post-retrofit savings are based on the per capita per day water savings from retrofitting lavatory faucets, as explained in Section 3.3.2.3; however the EPA is not aware of comparable savings data specific to kitchen faucets.

3.3.2.5 Clothes Washer Water Use

Clothes washer water use for each baseline and water-efficient reference home is determined based on Equation 14.

Equation 14: Daily Clothes Washer Water Use

Daily clothes washer water use (gallons)

- = Occupants × Daily use × Clothes washer capacity
- × Clothes washer integrated water factor

Where:

- "Occupants" is established using Equation 3 or Equation 4, depending on the reference home.
- Daily use = 0.3 loads per person per day.³³
- Clothes washer capacity = 3.9 cubic feet.³⁴
- The clothes washer integrated water factor is dependent on whether the daily clothes washer water use is being determined for the baseline or the waterefficient home.
 - For baseline homes, the EPA uses an integrated water factor of 6.5 gallons per cycle per cubic foot, based on the federal requirements for toploading clothes washers with a capacity of 1.6 cubic feet or greater, as codified in 10 CFR § 430.32.
 - o For the water-efficient homes, the clothes washer integrated water factor is determined based on requirements or features included in the water-efficient home(s) of the PCM. If the PCM requires or provides credit for ENERGY STAR certified clothes washers, the EPA uses an integrated water factor of 4.3, as this is the ENERGY STAR requirement for top-loading clothes washers with a capacity greater than 2.5 cubic feet.³⁵

Version 1.0 - Draft 18 April 18, 2019

³³ WRF. 2016. Residential End Uses of Water. Version 2. Table 6.14.

 ³⁴ Based on the average capacity (cubic feet) of clothes washers from U.S. Department of Energy (DOE) Energy Efficiency and Renewable Energy (EERE) Compliance Certification Database. Accessed March 6, 2019.
 ³⁵ ENERGY STAR Clothes Washers Program Requirements, Version 8.0. Effective February 5, 2018.
 www.energystar.gov/products/appliances/clothes washers/partners

3.3.2.6 Dishwasher Water Use

Dishwasher water use for each baseline and water-efficient reference home is determined based on Equation 15.

Equation 15: Daily Dishwasher Water Use

Daily dishwasher water use (gallons)

= Occupants × Daily use × Dishwasher gallons per cycle

Where:

- "Occupants" is established using Equation 3 or Equation 4, depending on the reference home.
- Daily use = 0.1 loads per person per day.³⁶
- Dishwasher gallons per cycle is dependent on whether the daily dishwasher water use is being determined for the baseline or the water-efficient home.
 - For baseline homes, the EPA uses 5.0 gallons per cycle, based on the federal requirements for dishwashers codified in 10 CFR § 430.32.
 - For the water-efficient homes, the dishwasher gallons per cycle are determined based on requirements or features included in the waterefficient home(s) under the PCM. If the PCM requires or provides credit for ENERGY STAR certified dishwashers, the EPA uses 3.5 gallons per cycle.³⁷

Version 1.0 - Draft 19 April 18, 2019

³⁶ WRF, 2016. Residential End Uses of Water, Version 2. Table 6.15.

³⁷ ENERGY STAR Program Requirements for Residential Dishwashers, Version 6.0. Effective January 29, 2016. www.energystar.gov/products/appliances/dishwashers/partners

3.3.2.7 Bathtub Water Use

Bathtub water use for each baseline and water-efficient reference home is determined based on Equation 16.

Equation 16: Daily Bathtub Water Use

Daily bathtub water use (gallons) = Occupants \times Daily use \times Volume per bath

Where:

- "Occupants" is established using Equation 3 or Equation 4, depending on the reference home.
- Daily use = 0.07 baths per person per day.³⁸
- Volume per bath = 20.2 gallons.³⁹

Because bath consumption is a fixed, volumetric use, the EPA uses Equation 16 and the associated inputs to generate water use for the baseline and water-efficient reference homes. Under the technical evaluation, there is not a means to reduce water use from baths.

Although it may not be a significant use, water use from baths is accounted for, since it is a likely use of water within a home. Therefore, to ensure WaterSense labeled homes are able to reduce water use by 30 percent, the EPA must establish a realistic baseline against which to compare water savings, even if it means accounting for uses for which there are not options to achieve savings.

Version 1.0 - Draft 20 April 18, 2019

³⁸ WRF, 2016. Residential End Uses of Water, Version 2. Table 6.17.

³⁹ WRF, 2016. Residential End Uses of Water, Version 2. Table 6.17.

3.3.2.8 Water Waste From Hot Water Delivery

In a typical home, there is potential for significant water waste while a user waits for hot water to reach the showerhead or faucet. By improving hot water distribution system design or installing an on-demand hot water recirculation system, the amount of water wasted while waiting for hot water can be substantially reduced.

The EPA establishes baseline water waste from hot water delivery based on Equation 17.

Equation 17: Baseline Daily Water Waste From Hot Water Delivery

Daily water waste from hot water delivery (gallons)

- = Occupants × Daily useful hot water draws
- × Standard volume wasted per hot water draw

Where:

- "Occupants" is established using Equation 3 or Equation 4, depending on the reference home.
- Daily useful hot water draws = 1.22 useful hot water draws per person per day.^{40,41}
- Standard volume wasted per hot water draw = 1.77 gallons.⁴²

The technical evaluation can estimate water savings from two methods for reducing water waste from hot water delivery: 1) efficient design that reduces the piping distance and/or diameter between the hot water heater and the point of use, thus reducing the amount of water that needs to be cleared from the system before hot water arrives; or 2) inclusion of a hot water recirculation system. The EPA assigns savings for the water-efficient home(s) based on the hot water delivery requirements of the PCM from either approach, but not both.

Version 1.0 - Draft 21 April 18, 2019

⁴⁰ A useful hot water draw is characterized as an instance where the user waits for hot water to reach the plumbing fitting (e.g., showerhead) prior to performing a task (e.g., showering).

⁴¹ The EPA estimates the number of useful hot water draws per person per day to be the number of showers per person per day (0.69; based on WRF, 2016. *Residential End Uses of Water, Version 2.* Table 6.9) and the number of long faucet draws per person per day (0.53, based on Lutz, James, 2005. *Estimating Energy and Water Losses in Residential Hot Water Distribution Systems*).

⁴² Based on Lutz, James, 2005. *Estimating Energy and Water Losses in Residential Hot Water Distribution Systems*. The study estimated household daily water waste at 6.35 gallons, with an average occupancy of 2.8 persons per household and 1.28 faucet and shower draws per capita per day.

To account for efficient design that reduces the piping distance and/or diameter between the hot water heater and point-of-use, the EPA establishes water waste from hot water delivery for the water-efficient reference homes using Equation 18.

Equation 18: Efficient Home Daily Water Waste From Hot Water Delivery

Efficient home daily water waste from hot water delivery (gallons)

- = Occupants × Daily useful hot water draws
- × Efficient home volume wasted per hot water draw

Where:

- "Occupants" is established using Equation 3 or Equation 4, depending on the reference home.
- Daily useful hot water draws = 1.22 useful hot water draws per person per day. 43,44
- Efficient home volume wasted per hot water draw is determined based on requirements or features included in the water-efficient home(s) under the PCM. For example, if a program requires or provides credit for designing a hot water delivery system such that the volume of water stored in the piping must be less than 0.5 gallons, then 0.5 gallons would be used.

Alternatively, if reduction in hot water delivery water waste is accounted for in a water-efficient home(s) through installation of hot water recirculation systems, the EPA applies water savings to the water-efficient reference homes, as determined by Equation 19.

Equation 19: Water-Efficient Home Savings From Hot Water Recirculation System

Efficient home daily water savings waste from hot water recirculation (gallons)

- = Occupants × (Daily faucet savings attributable to recirculation
- + Daily showerhead savings attributable to recirculation)

Where:

- "Occupants" is established using Equation 3 or Equation 4, depending on the reference home.
- Daily faucet savings attributable to recirculation = 0.97 gallons per person per day.⁴⁵
- Daily showerhead savings attributable to recirculation = 1.11 gallons per person per day.⁴⁶

Version 1.0 - Draft 22 April 18, 2019

⁴³ A useful hot water draw is characterized as an instance where the user will wait for hot water to reach the plumbing fitting (e.g., showerhead) prior to performing a task (e.g., showering).

⁴⁴ The EPA estimates the number of useful hot water draws per person per day to be the number of showers per person per day (0.69; based on WRF, 2016. *Residential End Uses of Water, Version 2*. Table 6.9) and the number of long faucet draws per person per day (0.53, based on Lutz, James, 2005. *Estimating Energy and Water Losses in Residential Hot Water Distribution Systems*).

⁴⁵ WRF, 2016. Residential End Uses of Water, Version 2. Table 6.29.

⁴⁶ WRF, 2016. Residential End Uses of Water, Version 2. Table 6.29.

Savings calculated in Equation 19 are subtracted from the overall indoor water use for each water-efficient reference home.

3.3.2.9 Water Waste From Household Leaks

Household water leaks are a reality in many homes, including newly constructed homes. According to *Residential End Uses of Water, Version 2,* only 5 percent of existing homes included in the study were completely free of leaks during the data collection period.⁴⁷ A similar study completed in 2011 by Aquacraft that assessed the water use patterns of new homes designed and constructed to be high-efficiency (considered to be roughly equivalent to homes built to the *WaterSense Specification for New Homes, Version 1.0*) found a median daily leak rate of 2.8 gallons across the study homes.⁴⁸ Therefore, to properly account for all anticipated water uses in a home, the EPA is including water waste from leaks in its technical evaluation of baseline and water-efficient reference homes.

For baseline homes, the EPA assumes that each reference home has a daily leak rate of 4.3 gallons, based on the median daily household leak volume identified in *Residential End Uses of Water, Version 2.* ⁴⁹ In contrast to other information cited from *Residential End Uses of Water, Version 2*, where the mean value is used, the EPA uses the median daily household leak volume. This is because some study homes had cases of extreme water leaks, therefore contributing disproportionately to the average leak rate. *Residential End Uses of Water, Version 2* noted that 80 percent of homes in the study had daily leak volumes of 20 gallons or less, contributing to only 17 percent of the total leaked volume identified in the study. The EPA is also using a per household leak rate rather than a per capita leak rate. While most indoor water uses are largely dependent on occupants and their daily behaviors (e.g., toilet flushes, showers), leaks are independent of occupancy. Therefore, the 4.3 gallons for household water leaks is applied across all baseline reference homes.

The Mandatory Checklist requires homes earning the WaterSense label to be free of leaks at all fixtures, fittings, and appliances and throughout the plumbing system and irrigation system (if applicable). Therefore, the EPA has assurance that homes are leak-free at the time of final completion and sale. While this process is intended to identify and correct for any leaks at time of certification, it would be unrealistic to expect these actions will impact all subsequent leaks. To account for this verification, the EPA's technical evaluation assumes the amount of water waste from leaks is reduced by 50 percent (2.15 gallons per day) for all water-efficient reference homes.

While the technical evaluation assumes the actions including in the Mandatory Checklist reduce water waste from leaks by 50 percent, the remaining 50 percent (2.15 gallons per day) can be influenced if a leak detection and/or flow sensing system is required or credited for in the water-efficient home(s) under a PCM. Leak detection or flow-sensing systems are used to monitor water flows and detect if a household leak is occurring. The system will then either alert the homeowner or shut off the water until the issue is resolved.

Version 1.0 - Draft 23 April 18, 2019

⁴⁷ WRF, 2016. Residential End Uses of Water, Version 2. Page 130.

⁴⁸ DeOreo, William B, 2011. Analysis of Water Use in New Single-Family Homes.

⁴⁹ Based on the median daily household leak volume identified in WRF, 2016. *Residential End Uses of Water, Version 2*. Table 6.18.

The EPA is aware that there are data needs associated with this new type of technology. It is difficult to estimate daily or annual water savings from leak detection devices, because actual water savings are dependent on instances where significant water leaks are prevented; however, the EPA wants to recognize the benefits of these technologies and encourage their use by accounting for savings in its technical evaluation. As better data become available, the technical evaluation can be updated to reflect the best available data.

3.4 Evaluating Outdoor Water Use

Generally, outdoor water use is influenced by climate, irrigated area, irrigation (type of technology and irrigation schedule/maintenance), and landscape features (e.g., plant type). The EPA uses this information within its technical evaluation to establish baseline and water-efficient home outdoor water use, using the results from each reference home scenario to compare the reduction in outdoor water use from installing water-efficient features and implementing water-efficient practices. The outdoor water use reduction is considered with the indoor water use reduction discussed in Section 3.3 to determine the total water savings for the home compared to the baseline, which must meet the EPA's water efficiency criteria of 30 percent across all reference home scenarios for each water-efficient design evaluated.

The EPA uses a theoretical irrigation requirement (TIR) method to determine landscape water use, for both the baseline (Section 3.4.1) and water-efficient landscape scenarios (Section 3.4.2). The TIR accounts for factors such as irrigated area, plant types, reference evapotranspiration (ET_o) and allowance for irrigation inefficiencies. TIR is meant to determine how much water is required for optimum plant growth. This method is based, with modification, on Residential End Uses of Water, Version 2.⁵⁰ As acknowledged in Residential End Uses of Water, Version 2, these methods have been used for many years. Additionally, Residential End Uses of Water, Version 2 reiterates that it is important to acknowledge that the TIR is a "theoretical number designed to optimize plant growth by fully supplying all of the water requirements as if for a commercial or agricultural operation." It is not a predictive value and should not be used as such; however, the EPA intends to use it as a starting point to evaluate potential reduction in water use.

Version 1.0 - Draft 24 April 18, 2019

⁵⁰ WRF, 2016. *Residential End Uses of Water, Version 2* (methodology is based on the landscape coefficient method described in the University of California Cooperative Extension's *A Guide to Estimating Irrigation Water Needs of Landscape Plantings in California*, which itself was derived from standard water engineering techniques such as the U. S. Department of Agriculture, *SCS Technical Release 21* and the American Society of Civil Engineers, *Evapotranspiration and Irrigation Water Requirements.*)

The calculation employed in the technical evaluation uses Equation 20⁵¹ to determine the TIR:

Equation 20: Theoretical Irrigation Requirement

$$TIR = 0.6233 \times ModNetET_o \times \sum_{i=1}^{n} [\frac{A_i}{Eff_i} \times K_{species}]$$

Where:

- TIR = theoretical irrigation demand (gallons per year).
- 0.6233 = conversion factor for inches of ModNetET_o to gallons per square foot.
- ModNetET_o = Modified net ET_o based on effective rainfall (inches), explained in more detail below.
- n = number of irrigated zones in the landscape.
- i = individual zone.
- A_i = irrigated area of individual zone (square feet).
- Eff_i = irrigation efficiency allowance of individual zone (taken from Table 3-3).
- K_{species} = species coefficient (taken from Table 3-3).

Key TIR inputs are further described in the subsections below. Sections 3.4.1 and 3.4.2 describe how TIR is applied to estimate outdoor water use for a baseline and water-efficient home, respectively.

Modified Net ETo Based on Effective Rainfall

The purpose of this calculation is to determine the theoretical amount of water a reference plant needs in the form of supplemental irrigation. It is calculated using monthly ET_o and rainfall data. The EPA uses reference ET (ET_o) and rainfall data from the *World Water and Climate Atlas*, a project of the International Water Management Institute (IWMI).⁵² The EPA processed data from 1961 to 1990 to determine monthly ET_o and rainfall for each zip code in the United States. For additional information on data processing, please visit the WaterSense Water Budget Data Finder webpage⁵³ for details on converting IWMI data into monthly values.

ET_o is the rate of evapotranspiration from an extensive surface of cool-season grass cover of uniform height of 12 centimeters, actively growing, completely shading the ground, and not short of water.⁵⁴ Theoretically, ET_o minus effective rainfall is the amount of supplemental water the reference crop needs for optimum growth.

Version 1.0 - Draft 25 April 18, 2019

⁵¹ Note that this equation is a modified version of Equation 3 in *Residential End Uses of Water, Version 2.*

⁵² www.iwmi.cgiar.org/resources/world-water-and-climate-atlas/

⁵³ WaterSense Water Budget Data Finder. www.epa.gov/watersense/water-budget-data-finder

⁵⁴ Food and Agriculture Organization (FAO). 1998. *Crop evapotranspiration—Guidelines for computing crop water requirements—FAO Irrigation and drainage paper 56*; and ASCE, 1990. *ASCE Manual and Reports on Engineering Practice 70*. American Society of Civil Engineering in Irrigation Association. 2005. *Landscape Irrigation Scheduling and Water Management*.

Annual modified NetET_o based on effective rainfall (ModNetET_o) is calculated according to Equation 21.

Equation 21: Annual Modified Net ET_o Based on Effective Rainfall

Where (Monthly ET_o – Monthly effective rainfall) is greater than 0:

 $Annual\ ModNetET_o = \sum (Monthly\ ET_o - Monthly\ effective\ rainfall)$

Where:

- Only positive values of (Monthly ET_o Monthly effective rainfall) are used as an indicator for the irrigation season.
- ET_o = Reference ET_o (inches).
- Monthly effective rainfall = 25 percent of rainfall for a given month (inches).

Equation 21 modifies rainfall to acknowledge that not all the rain that falls is available to the plant. The EPA determined the effective rainfall to be 25 percent of total rainfall as a conservative estimate to prevent underestimating the TIR in parts of the country with sustained rainfall during the growing season.⁵⁵ Then, effective rainfall is subtracted from ET_o. The months with positive values are then summed to determine annual modified NetET_o based on effective rainfall.

Note that only months with positive values of ET_o minus effective rainfall are included in the sum, as these months more likely correspond to the irrigation season. Theoretically, during months where effective rainfall exceeds ET_o , a household's landscape should not require supplemental irrigation. Therefore, the EPA assumes that irrigation is only applied in months where ET_o exceeds the effective rainfall. Months with negative values of ET_o minus effective rainfall are assumed to be zero.

Irrigation Efficiency Allowance and Species Coefficient

Both the efficiency of an irrigation system and plant water needs impact the theoretical amount of water required by a landscape. In the technical evaluation, the EPA uses the values included in *Residential End Uses of Water, Version 2* in order to remain consistent with peer reviewed literature. The values used are displayed in Table 3-3.

Version 1.0 - Draft 26 April 18, 2019

⁵⁵ The Irrigation Association's "Landscape Irrigation Scheduling and Water Management" (2005) states that effective rainfall should not exceed 50 percent for planning purposes. The EPA selected 25 percent to remain consistent with the *WaterSense Water Budget Approach* (2014; www.epa.gov/sites/production/files/2017-01/documents/ws-homes-water-budget-approach.pdf), so as to not underestimate the amount of supplemental water required by irrigation.

Table 3-3. Landscape Parameters⁵⁶

Landscape type	Species Coefficient (K _{species})	Irrigation Efficiency Allowance (Eff _i)	Combined Factor
Entire lot	NA	NA	NA
Non-turf plants with spray irrigation ^a	0.65	71%	0.92
Pool or fountain	1.25	100%	1.25
Cool season turf	0.8	71%	1.13
Warm season turf	0.6	71%	0.85
Vegetable garden	0.8	71%	1.13
Xeriscape	0.3	90%	0.33
Non-turf plants with microirrigation ^b	0.65	90%	0.59
Non-irrigated ground	0	0%	0

^a The EPA modified this row to clarify that the combination is for non-turf plants irrigated with spray irrigation.
^b The EPA added this row to the table. This type of landscape (non-turf plants) watered with microirrigation is not included in *Residential End Uses of Water, Version 2*. The EPA incorporated this additional combination because it is a common practice in irrigated landscapes. While *Residential End Uses of Water, Version 2* includes xeriscape with an irrigation efficiency allowance assumed to be equated with microirrigation (90 percent), The EPA is reserving the species coefficient associated with xeriscape plants for only those regions in warm, arid climates; and therefore, needed a combination representing other non-turf plants that are watered with microirrigation. The EPA selected 0.65 as the species coefficient and 90 percent as the irrigation efficient allowance to remain consistent with *Residential End Uses of Water, Version 2*.

The species coefficient allows the TIR to account for the different plant water requirements. For example, some plants require consistent irrigation, resulting in a higher species coefficient, while others can exist on little, if any, supplemental irrigation.⁵⁷ These values were developed as a percentage of ET_o. Additional information on how the species coefficients were determined is included in *Residential End Uses of Water, Version 2*.

Irrigation efficiency allowance allows the TIR to account for inefficiencies in irrigation systems and the fact that not all water that is distributed from the system is usable by plants, as some is lost to evaporation, wind or overspray. The irrigation efficiency allowances included in *Residential End Uses of Water, Version 2* are based on well-designed irrigation systems, not those typically found in the field. Spray irrigation is typically the lowest efficiency form of irrigation (assigned 71 percent in *Residential End Uses of Water, Version 2*), due to factors such as evaporation and run-off, whereas microirrigation is typically more efficient (assigned 90 percent in *Residential End Uses of Water, Version 2*) due to slower water delivery that is targeted to plants' roots. *Residential End Uses of Water, Version 2* assigned each ground cover an irrigation efficiency based on whether it was expected to have spray or microirrigation. Additional information regarding how these values were determined is included in *Residential End Uses of Water, Version 2*. As explained in the footnotes of Table 3-3, the EPA created an

Version 1.0 - Draft 27 April 18, 2019

⁵⁶ Modified from WRF, 2016. Residential End Uses of Water, Version 2. Table 2.1.

⁵⁷ WRF, 2016. Residential End Uses of Water, Version 2.

additional combined value to account for a common combination of plant type and irrigation type found in many water-efficient homes programs (i.e., non-turf plants watered with microirrigation).

3.4.1 Establishing Baseline Outdoor Water Use

Baseline outdoor water use is determined for each reference home using Equation 22:

Equation 22: Annual Baseline Outdoor Water Use

Annual baseline outdoor water use (gallons)
= Baseline TIR × Actual irrigation factor

Where:

- Baseline TIR = theoretical irrigation requirement for the baseline scenario (assume 100 percent cool season turfgrass watered with spray irrigation) (gallons per year).
- Actual irrigation factor = 0.58.⁵⁸

For the baseline outdoor water use estimate, the EPA assumes the entire landscaped area, as determined according to Section 3.2, is comprised entirely of cool season turfgrass irrigated with spray irrigation. This assumption allows the EPA to account for the highest likely water use. As described in Section 3.1, the EPA uses a specific, or range of, ModNetET_o(s) within the TIR equation to account for the geographic area and the climate where the reference home(s) are located.

The EPA acknowledges that homeowners do not typically irrigate landscapes to their full water plant demand. Therefore, the EPA applies a factor of 58 percent to the baseline TIR to account for actual anticipated irrigation. This factor is based on results generated in *Residential End Uses of Water, Version 2*, which indicated that, on average, homeowners watered landscapes to 58 percent of their TIR.

3.4.2 Establishing Outdoor Water-Efficient Home Water Use

There are several different approaches that PCMs could implement to encourage water savings outdoors. In general, these approaches fall into two categories: 1) an approach based on landscape type and irrigation features (i.e., requiring or rewarding for more efficient plant choices and/or irrigation systems, and/or promoting other water-efficient practices associated with outdoor water use); and 2) an approach that promotes irrigation system capacity control (i.e., limiting irrigation system flow rate and/or irrigated area).

The technical evaluation can assess both approaches. The EPA will select Option 1 or Option 2, explained in more detail below, to evaluate the water-efficient home's outdoor water use based on how the PCM is structured.

Version 1.0 - Draft 28 April 18, 2019

⁵⁸ Based on WRF,2016. *Residential End Uses of Water, Version 2.* Page 157. Average actual water use by residents in the study was 58 percent of their TIR.

3.4.2.1 Option 1: Landscape Type and Irrigation Feature-Based Approach

Several home certification programs in the marketplace aim to impact outdoor water use by influencing decisions made about landscape features and/or irrigation features. There are two common approaches that intend to reach the same goal. The first is a water budget, which aims to influence design decisions about plant type (e.g., turf or shrubs/ornamentals) and irrigation type (e.g., spray irrigation or microirrigation). The budget is typically developed using landscape area and climate data (ETo and rainfall), as well as plant type and irrigation type. The second approach is a more prescriptive approach that either limits plants that typically consume more water, limits certain types of irrigation, and/or rewards efficient design practices, such as hydrozoning or head-to-head coverage for spray irrigation. Option 1 of the technical evaluation is designed to determine outdoor water savings for PCMs that either implement the water budget or prescriptive approach to encourage reductions in outdoor water use.

The following steps and calculations establish the outdoor water use for water-efficient homes using the landscape and irrigation feature-based approach. For purposes of this next section, the TIR for water-efficient reference homes will be indicated as TIR_{eff} to differentiate it from the baseline TIR.

• **Step 1:** Calculate the TIR_{eff}, using Equation 20, based on the plant types and irrigation type for the water-efficient landscape design(s) included in a PCM (see Section 3.2 for information on determining the water-efficient landscape design for the reference home).

A TIR_{eff} is calculated for each zone and summed to calculate the TIR_{eff} for the total landscaped area for each reference home.

 Step 2: Subtract water savings associated with efficient irrigation technologies and efficient practices from the TIR_{eff}, based on the technologies included in the water-efficient landscape design(s) included for the PCM.

In addition to placing requirements on plant type and irrigation type to achieve savings, many PCMs require or provide credit for efficient irrigation technologies and/or practices. The technical evaluation includes these requirements or credits by subtracting potential water savings for each technology or practice included in the water-efficient home design(s) from the TIR_{eff}.

Technologies and practices for which additional savings are accounted for in the technical evaluation are discussed in in the subsections below. Throughout the technical evaluation, the EPA considered technologies and practices with proven, quantifiable water savings.

3.4.2.1.1 Savings From Pressure Regulation

Landscape irrigation sprinklers are often installed at sites where the system pressure is higher than what is recommended for the sprinkler nozzle. This can lead to excessive flow rates, misting, fogging and uneven coverage, all of which results in inefficient irrigation and water waste. In irrigation systems, pressure can either be regulated at the valve or at the sprinkler body, providing a consistent flow rate at the sprinkler nozzle. Additionally, when a sprinkler is operating at its optimal pressure, the nozzle is better able to generate the right amount of water

Version 1.0 - Draft 29 April 18, 2019

spray and coverage for more uniform distribution of water across the landscape. For PCMs that require or credit for installation of pressure-regulating valves or WaterSense labeled spray sprinkler bodies⁵⁹ in the water-efficient home(s), the EPA applies 22 percent water savings to the TIR_{eff.} The water savings estimate of 22 percent is based on the reduction in flow calculated in the *WaterSense Specification for Spray Sprinkler Bodies Supporting Statement.*⁶⁰ In either case, the water savings only apply to areas irrigated with spray irrigation, as the 22 percent savings identified by the EPA only applies to spray sprinklers. Savings are not applied to areas irrigated with microirrigation, since pressure regulation for microirrigation/drip irrigation systems is typical practice.

3.4.2.1.2 Savings From Irrigation Scheduling Technologies

The most common method used to schedule irrigation is a manually programmed clock timer that irrigates for a specified amount of time on a preset schedule programmed by the user. In these systems, the responsibility of changing the irrigation schedule to meet landscape water needs lies with the end user or a contracted irrigation professional. Clock timer controllers can be a significant source of wasted water, because irrigation schedules are often set to water at the height of the growing season, and the homeowner is unlikely to adjust the schedule to reflect seasonal changes or changes in plant watering needs. For example, plant water requirements decrease in the fall, but many homeowners forget to adjust their irrigation schedules to reflect this change. Therefore, a homeowner could be watering in October as if it were July. As an alternative to a clock timer controller, "smart" scheduling technology, such as weather-based irrigation controllers and soil moisture-based irrigation controllers, can make irrigation schedule adjustments automatically by tailoring the amount, frequency, and timing of irrigation events based on landscape conditions and either current weather data or soil moisture levels. To a lesser extent, rainfall shutoff devices (also known as rain sensors) can also provide a level of savings by interrupting the irrigation schedule during periods of rain.

Within the technical evaluation, for PCMs that require or provide credit for one or more of these technologies, the EPA subtracts applicable water savings from the TIR of the water-efficient reference home (TIR_{eff}) after savings from pressure regulation are subtracted (if applicable), as follows:

Soil moisture-based control technologies make irrigation schedule adjustments by automatically tailoring the amount and/or frequency and timing of irrigation events based on the moisture content of the soil in the landscape. The technical evaluation applies 20 percent water savings to the TIR_{eff} if soil moisture-based irrigation controllers are required or provided credit for in a PCM. The savings value of 20 percent is based on the water savings estimates included in the WaterSense Notice of Intent to Develop a Draft Specification for Soil Moisture-Based Control Technologies.^{61,62}

Version 1.0 - Draft 30 April 18, 2019

 ⁵⁹ Spray sprinkler bodies that have earned the WaterSense label are required to have integral pressure regulation.
 ⁶⁰ EPA, 2017. WaterSense Specification for Spray Sprinkler Bodies Supporting Statement.

www.epa.gov/sites/production/files/2017-09/documents/ws-products-support-statement-ssb.pdf

61 EPA, 2013. WaterSense Notice of Intent (NOI) to Develop a Draft Specification for Soil Moisture-Based Control Technologies. May 16, 2013. www.epa.gov/sites/production/files/2017-01/documents/ws-products-noi-sms.pdf

62 Note that 20 percent water savings is based on data that WaterSense collected as part of the notice of intent to develop a specification for this product category prior to 2013. WaterSense is currently developing a draft specification for soil moisture-based control technology, and as part of that effort, is examining more recent water

- WaterSense labeled weather-based irrigation controllers create or modify irrigation schedules based on landscape attributes and real-time weather data, applying water only when the landscape needs it. The technical evaluation applies 15 percent water savings to the TIR_{eff} if WaterSense labeled weather-based irrigation controllers are required or provided credit for in a PCM. The savings value of 15 percent is based on the water savings estimates calculated in the WaterSense Specification for Weather-Based Irrigation Controllers Supporting Statement.^{63,64}
- Rain shutoff devices are products designed to interrupt a scheduled irrigation event
 when a certain amount of rain has fallen. The technical evaluation applies a 6.7 percent
 water savings to the TIR_{eff} if rainfall shut devices are required or provided credit for in a
 PCM. The savings value of 6.7 percent is based on the water savings estimates included
 in the Landscape Irrigation Controllers document developed by the Codes and
 Standards Enhancement (CASE) Initiative in California.⁶⁵

Each of these technologies functionally accomplish the same thing—using some indicator of weather conditions (i.e., local weather data, soil moisture, rain) to alter the irrigation schedule. Therefore, savings from these technologies are not additive. Thus, for PCMs that require or provide credit for more than one of these technologies in the water-efficient home(s), only the greatest water savings will be applied to the water-efficient reference homes. For example, if a PCM requires or provides credit for installation of a rainfall shutoff device and a WaterSense labeled weather-based irrigation controller, the technical evaluation will only apply a water savings of 15 percent to the TIR_{eff}.

3.4.2.1.3 Savings From Professional Irrigation Design, Installation or Audit

As much as half of water used outdoors is wasted due to evaporation, wind or runoff, often caused by improper irrigation system design, installation, maintenance or scheduling. Proper commissioning of a system through efficient design, correct installation, and/or an audit done by an irrigation professional can all reduce water wasted in an irrigation system. The EPA provides water savings within its technical evaluation to PCMs that require or provide credit for an irrigation system that is designed, installed and/or audited by an irrigation professional certified by a WaterSense labeled program. These certified professionals are familiar with WaterSense and the best practices for designing, installing or maintaining an irrigation system. ⁶⁶ The EPA based the inclusion of professionally designed, installed and/or audited systems on a research project based in Colorado that examined pre/post audit usage of over 2,000 participants. While the study has limitations, results suggest that irrigation audits can save approximately 5

Version 1.0 - Draft 31 April 18, 2019

savings studies. WaterSense will harmonize the two efforts to the extent feasible, which may result in this value changing for the final *WaterSense Specification for Homes, Version 2* and this technical evaluation.

63 EPA, 2011. *WaterSense Specification for Weather-Based Irrigation Controllers Supporting Statement.* November 3, 2011. www.epa.gov/sites/production/files/2017-01/documents/ws-products-support-statement-irrigation-controllers.pdf

⁶⁴ Note that 15 percent water savings is based on data that WaterSense collected as part of the specification development process for weather-based irrigation controllers prior to 2011. This estimate was later supported by research conducted by Lawrence Berkeley National Laboratory (LBNL, 2014). However, WaterSense is currently reviewing the specification for weather-based irrigation controllers for potential revision, including examining more recent water savings studies. WaterSense will harmonize the two efforts to the extent feasible, which may result in this value changing for the final *WaterSense Specification for Homes, Version 2* and this technical evaluation.

⁶⁵ Codes and Standards Enhancement (CASE) Initiative, 2017. Landscape Irritation Controllers. September 18, 2017.

⁶⁶ For more information, visit the WaterSense Irrigation Professionals webpage: www.epa.gov/watersense/irrigation-pro

percent.⁶⁷ The EPA conservatively assumes that savings from professional irrigation design and installation are commensurate. Therefore, in instances where the PCM requires a professional irrigation design, installation and/or audit, water savings of 5 percent is applied within the EPA's technical evaluation to the TIR_{eff} (after savings from pressure regulation and irrigation scheduling technologies are applied).

3.4.2.2 Option 2: Irrigation System Capacity Control

Research suggests that irrigation system flow rate and irrigated area significantly impact outdoor water use, and can be used as a method to reduce outdoor water use in place of prescriptive or water budget approaches that focus of specific plant types or irrigation equipment.⁶⁸ Therefore, some PCMs may be designed to influence outdoor water use by limiting capacity (i.e., irrigation flow rates and irrigated area), instead of implementing a water budget or more prescriptive approach.

The following calculations establish the outdoor water use for water-efficient homes in certification methods using the capacity control approach:

Step 1: Apply capacity adjustment to the baseline reference home's TIR

Irrigation capacity can be determined by calculating a Residential Irrigation Capacity Index (RICI) score, as described in *Estimating Annual Water Demands from Irrigation Flow Rates*, prepared by Kent Sovocool from the Southern Nevada Water Authority (SNWA). A RICI score is based on the flow rate for each irrigation valve and the corresponding irrigated area. In the most basic sense, RICI demonstrates that higher water use is associated with the higher capacity of the irrigation system (e.g., higher flow rates and larger areas result in higher outdoor water use).

Version 1.0 - Draft 32 April 18, 2019

 ⁶⁷ The Center for ReSource Conservation. 2014. Water Conservation Impact Assessment 2013 Final Report.
 ⁶⁸ Sovocool, Kent, 2018. Estimating Annual Water Demands from Irrigation Flow Rates. Southern Nevada Water

Authority (SNWA).

www.irrigation.org/IA/FileUploads/IA/Resources/TechnicalPapers/2018/Estimating Annual Water Demands SOVO COOL.pdf

RICI is calculated in Equation 23.

Equation 23: Residential Irrigation Capacity Index

$$RICI = \frac{Sum of flows for all irrigation valves}{Irrigation area} \times 1,000$$

Where:

- Sum of flows for all irrigation valves (gpm).
- Irrigation area (square feet).

As part of the research study, during the standard development process for BSR/RESNET/ICC Draft Standard 1101: Draft Standard for the Calculation and Labeling of Water Use Performance of One- and Two-Family Dwellings Using the Water Rating Index, the author evaluated data from Residential End Uses of Water, Version 2 and established a baseline RICI of 5. During this evaluation, the author also determined that a 20 percent reduction in irrigation system flow rate (equivalent to a RICI score reduction of 1) resulted in approximately 10 percent outdoor water savings. Therefore, to determine outdoor water use for a water-efficient home, the EPA applies 10 percent water savings to the baseline outdoor water use for every RICI score reduction of 1.

If a PCM requires or provides credits for capacity reduction, the EPA will convert capacity reduction to an applicable RICI score using Equation 23. The EPA will then use Equation 24 to calculate the outdoor water use for the water-efficient reference homes considering the certification method's reduction in RICI.

Equation 24: Annual Water-Efficient Outdoor Water Use Based on Capacity Adjustment

Annual efficient home outdoor water use (gallons)

- = Annual baseline outdoor water use
- [Annual baseline outdoor water use * (RICI_{Baseline} RICI_{Eff})
- * 10 percent]

Where:

- Annual baseline outdoor water use is calculated based on Equation 22.
- RICI_{Baseline} = 5.
- RICI_{Eff} is the RICI score of the water-efficient home, based on the capacity reduction required or provided credit for in the water-efficient home(s) under the PCM.

⁵⁹ Ibid.			

Version 1.0 - Draft 33 April 18, 2019

• **Step 2:** Similar to Step 2 of Option 1, subtract water savings for the technologies and practices listed in Sections 3.4.2.1.2 and 3.4.2.1.3 from the baseline TIR to determine the final use for the water-efficient landscape.

The EPA is not including savings from irrigation technologies that impact irrigation system flow rate, such as microirrigation, WaterSense labeled spray sprinkler bodies or pressure regulation at the valve. These savings are already accounted for in the capacity reduction captured by reduction in RICI, since RICI is a ratio that includes the total flow rate of the system.

3.5 Other Water Uses

While the EPA's technical evaluation is meant to assess all quantifiable water uses (and respective savings) expected for a home, it is possible that there are other potential water uses and/or savings for which the EPA has not accounted. If an HCO believes that water use or savings from a requirement or feature of its PCM is not adequately accounted for, the HCO can submit technical justification to the EPA for consideration. Technical justification shall include, but is not limited to:

- The expected impact on water use per household per day or per occupant per day for standard models or standard design.
- The expected water savings per household per day or per occupant per day from incorporation of more efficient product models or system design.
- Studies, data and other supporting materials on the use of the specific design or technology in the field that supports the HCO's claims.
- For systems that supply alternative water sources (such as rain water or greywater systems), the temporal resolution with which water collection and use is calculated.
- For systems that supply alternative water sources (such as rain water or greywater systems), the percentage of useful water that the system is anticipated to yield after treatment.

The EPA will review the technical merits of an HCO's request on a case-by-case basis. If sufficient technical justification is provided and approved, the EPA will incorporate anticipated water use and/or savings for the baseline and water-efficient reference homes in the technical evaluation, as applicable.

3.6 Generating Total Water Efficiency Percent Savings

As the last step of the technical evaluation, the EPA combines the indoor and outdoor water use generated for each respective baseline and water-efficient reference home to establish a total water use. Total water use for each water-efficient reference home, representing the least efficient home design(s) for the PCM, is compared to its respective baseline reference home to establish a percent savings. If the 30 percent water efficiency requirement is achieved across each reference home scenario, the EPA will approve the PCM, as discussed in Section 4.0.

4.0 EPA Response to HCOs

Upon technical evaluation, the EPA shall issue an evaluation report to the HCO to indicate whether its PCM demonstrated its ability to consistently differentiate homes that are at least 30

Version 1.0 - Draft 34 April 18, 2019

percent more water-efficient than typical new construction (as required in the *WaterSense Specification for Homes, Version 2.0*).

As part of the evaluation process, the EPA may submit comments or recommendations to the HCO for consideration during future revisions to the certification method to further enhance the water efficiency and/or performance requirements. Upon request from the HCO, the EPA may also provide recommendations for PCMs that were not able to consistently differentiate homes that are at least 30 percent more water-efficient than typical new construction. Following revision to its certification method, an HCO can resubmit a deficient PCM for technical evaluation.

The EPA will license HCOs whose PCMs are capable of consistently achieving WaterSense's efficiency requirements for homes in accordance with the *WaterSense Home Certification System, Version 2.0.* The PCM will subsequently be designated as a WACM.

As discussed in the *WaterSense Homes Certification System, Version 2.0*, the EPA's intent is to recognize a WACM for a period of five (5) years, as long as it is not revised by the HCO such that the revisions could impact its ability to differentiate homes that meet the EPA's water efficiency requirement.

5.0 Amendments, Modifications and Revisions

As required under the *WaterSense Home Certification System, Version 2.0,* an HCO shall notify the EPA in writing of any changes to its WACM that could materially affect its performance under the EPA's technical evaluation. Notification shall be made at least 60 days prior to the implementation of such changes and with sufficient time to allow for the EPA to evaluate the changes and determine if the WACM will continue to meet the efficiency requirements of the *WaterSense Specification for Homes, Version 2.0.* The EPA shall evaluate revisions to the HCO's WACM using the latest version of the *WaterSense Technical Evaluation Process for Approving Home Certification Methods.*

The EPA also reserves the right to revise the technical evaluation process, as described in the *WaterSense Home Certification System, Version 2.0*. The EPA will consider revisions should: 1) national product and appliance efficiency standards or typical construction practices change in the future such that it affects baseline water use estimates; 2) better data on water use by products, appliances, systems, and/or the whole household become available; and/or 3) technological and/or market changes affect its usefulness to consumers, industry, or the environment.

As described in the *WaterSense Home Certification System*, *Version 2.0*, EPA will only make major revisions to the technical evaluation process following an open public process, including discussion with builders, HCOs, verifiers and other interested stakeholders. Major revisions will typically require re-approval of existing WACMs to the new technical evaluation or the *WaterSense Home Certification System*, *Version 2.0*. Minor revisions or technical clarifications will generally be editorial in nature and serve to clarify vague or unclear requirements and will not require reapproval.

Version 1.0 - Draft 35 April 18, 2019

6.0 Definitions

Definitions within the *WaterSense Home Certification System, Version 2.0* are included by reference.

7.0 More Information

For inquiries or other questions related to this technical evaluation process document, the *WaterSense Specification for Homes, Version 2.0* or the WaterSense labeled homes program, please contact the WaterSense Helpline at (866) WTRSENS (987-7367) or watersense@epa.gov.