In-Use Emission Rates for MY 2010+ Heavy-Duty Diesel Vehicles

Gurdas S. Sandhu, ORISE Fellow, US EPA Darrell Sonntag, US EPA James Sanchez, US EPA

27th CRC Real-World Emissions Workshop, March 26-29, 2017, CA, USA

- 1. Compare Heavy-Duty In-Use Testing and MOVES2014
- 2. Inter-engine and intra-engine variability
- 3. SCR efficacy analysis: exhaust temperature
- 4. Real-world NOx in g/bhp-hr and g/mile

Heavy-duty In-use Testing (HDIUT)*

- Each year, US EPA selects a few engine families with production volume ≥ 1,500 units
- Engine manufacturer contacts customers to recruit vehicles operating in the real-world that have the selected engine family
 - Typically, five vehicles are tested for each engine family
 - Vehicles have good maintenance history and no malfunction indicators on
 - Vehicle mileage within the Useful Life (110K, 185K, 435K miles for light-/medium-/heavy- heavy-duty, respectively)
- Engine manufacturer conducts emissions measurements and submits 1 Hz data to EPA
 - Vehicles are tested "in-use" that is, doing normal work and operated by regular driver
 - Measurements made with instruments certified per 40 CFR 1065

* 40 CFR Part 86 Subpart T: Manufacturer-Run In-Use Testing Program for Heavy-Duty Diesel Engines.

HDIUT Data Overview

- Service Class: Light-/Medium-/Heavy-Heavy-Duty Diesel (LHDD, MHDD, HHDD) and Urban Bus (URBU)
- MY 2010-2013 engine families
- Over 30 unique engine families
- Over 230 vehicles
- Over 6 million seconds of data
- Current work based on HDIUT data from engines selected for testing in CY 2010-2014. Data for engines selected in CY 2015 will soon be added.

HDIUT Data: Number of Test Vehicles

	NOx F			
Service Class	0.20	0.35	0.50	Total
LHDD	42		10	52
MHDD	16	23	10	49
HHDD	65	21	35	121
URBU	0	10		10
Total	123	54	55	232

MOVES Operating Modes (OpMode)

Compare HDIUT and MOVES2014

HHDD - NO_x, HDIUT vs. MOVES2014

Based on HHDD 0.20, 0.35, and 0.50 groups >> 121 vehicles, 3.77 million seconds of data HDIUT rates have MY specific production volume weighting Error bars are 95% confidence intervals of the mean

High-power OpMode gap filling method was presented at the December 2016 MOVES Review Work Group meeting, https://www.epa.gov/moves/moves-model-review-work-group

Inter- and Intra-Engine Variability within a NOx FEL

Differences between Engines Certified to the Same Level

Based on HHDD 0.20 group >> 65 vehicles, 2.20 million seconds of data Error bars are 95% confidence intervals of the mean

SCR Efficacy Analysis: Exhaust Temperature

NOx Emissions by Temperature Modes

Based on HHDD 0.20 group >> 53 vehicles, 1.84 million seconds of data 12 vehicles did not report after-treatment (AT) temperature and are excluded from this analysis Error bars are 95% confidence intervals of the mean

Time Spent by Temperature Modes

Based on HHDD 0.20 group >> 53 vehicles, 1.84 million seconds of data 12 vehicles did not report after-treatment (AT) temperature and are excluded from this analysis Bars for a color add up to 1.00

Cycle Total NOx Contribution: Trucks with SCR

Contribution (Ratio)					
	Time	NO _x	Based on 53 HHDD vehicles in the 0.20 FFI		
T < 250 degC	0.48	0.61	group		
T ≥ 250 degC	0.52	0.39			

	Contributior	n (Ratio)	
	Time	NO _x	Presented at CRC 2016
T < 250 degC	0.49	0.65	Based on 9 HHDD Vehicles
$T \ge 250 \text{ degC}$	0.51	0.35	in the 0.20 FEL group

Real-world NOx: Work-window Speed-mode Cycle average

FTP Work-window based NOx Emissions

Based on HHDD 0.20 group >> 53 vehicles, 1.58 million FTP work-windows 12 vehicles did not report after-treatment (AT) temperature and are excluded from this analysis Work-windows are calculated over continuous seconds. Consecutive windows have overlapping seconds.

Vehicle Speed based NOx Emissions

0.20 group >> 65 vehicles, 2.20 million seconds of data 0.35 group >> 21 vehicles, 0.55 million seconds of data 0.50 group >> 35 vehicles, 1.02 million seconds of data

Driving Cycles for Cycle Average Comparisons

Each driving cycle was converted to an OpMode based time distribution based on the MOVES default roadload coefficients for combination long-haul trucks. Road grade was set to zero for the UDDS and Transient Cycles.

Vehicle FTP Cycle -> Andreae et al., DOI: 10.4271/2012-01-0878, http://papers.sae.org/2012-01-0878/

Cycle Average NOx Emissions

Cycle Average NOx Emissions (g/mile)

Conclusions

- In the real-world, MY 2010+ vehicles have higher NOx rates than indicated by the standards and current MOVES2014 estimates
- There is significant variability across the engines and among trucks with the same engine
- Driving/Duty cycles are a key contributor to real-world variability
- MOVES OpMode framework can be used to capture variability in SCR-equipped HD diesel truck emission rates across drive cycles

Acknowledgements

- US EPA OTAQ
 - David Choi, Prashanth Gururaja, Fakhri Hamady, and Chris Laroo

Contact Info

- sandhu.gurdas@epa.gov
- sonntag.darrell@epa.gov
- sanchez.james@epa.gov

Supplemental Information

Engine Families Grouped by NOx FEL

- Group engines within a service class by NO_x FEL.
- NO_x FEL grouping is applied across all pollutants because NO_x FEL data is more widely available and best captures the differences in emission levels.
- Find average emission rates for the given NO_x
 FEL group and weight it by the production volume for the same group for a given MY.

	NO _x FEL Limits	
Group Name	(g/bhp-hr)	
0.20	(0.00, 0.20]	
0.35	(0.20, 0.35]	
0.50	(0.35, 0.50]	

Engine Families by NOx FEL Group

Method to Estimate Production Volume Weighted Emission Rate, MY 2010-2015

$$ER_{C,MY,pol} = \frac{\sum_{FEL} \left(ER_{C,pol,FEL} * PV_{C,MY,FEL} \right)}{PV_{C,MY}}$$

Class (C) = LHDD, MHDD, HHDD

Model Year (MY) = 2010 to 2015

Pollutant (pol) = NOx, HC, CO

FEL = NO_x FEL of engine family, grouped in to 0.20 g/bhp-hr, 0.35 g/bhp-hr, and 0.50 g/bhp-hr.

ER_{C.MY.pol} = Emission Rate (ER) for a given Class (C), Model Year (MY), and Pollutant (pol).

ER_{C,pol,FEL} = Emission rate by class, pollutant, and NOx family emission limit (FEL). This is average of all HDIUT data for selection order years 2010-2015 for the *C,pol,FEL* criteria.

PV_{C,MY,FEL} = Production volume by class, model year, and NOx FEL group

PV_{C,MY} = Total production volume for a class and model year

MOVES Scaled Tractive Power: ECU Torque

$$\begin{split} P_{eng} &= \omega_{eng} \tau_{eng} \\ P_{axle} &= \eta_{driveline} (P_{eng} - P_{loss,acc}) \\ STP &= \frac{P_{axle}}{f_{scale}} \end{split}$$

 $\begin{array}{l} \mathsf{P}_{eng} \\ \boldsymbol{\omega}_{eng} \\ \boldsymbol{\tau}_{eng} \\ \boldsymbol{\eta}_{driveline} \\ \mathsf{P}_{loss,acc} \\ \mathsf{P}_{axle} \\ \mathsf{f}_{scale} \end{array}$

- = engine out power
- = engine angular speed
- = ECU reported engine out torque
- = driveline efficiency (90%)
- = power loss due to accessory loads
 - = power at the wheel
 - = scaling factor (used to align STP values for OpMode bins with the VSP values from light-duty analysis)

MOVES Scaled Tractive Power: Road-Load Coeff

$$STP_{t} = Av_{t} + Bv_{t}^{2} + Cv_{t}^{3} + mv_{t}(a_{t} + g \frac{r_{t}}{100})$$
$$f_{scale}$$

- STP_t = scaled tractive power at time t, skW
- A = rolling resistance coefficient [kW-s/m]
- B = rotational resistance coefficient $[kW-s^2/m^2]$
- C = aerodynamic drag coefficient [kW-s³/m³]
- a_t = vehicle acceleration at time t [m/s²]
- g = acceleration due to gravity $[9.81 \text{ m/s}^2]$
- m = vehicle mass [metric ton]
- r_t = road grade at time t [%]
- v_t = vehicle speed at time t [m/s]
- f_{scale} = scaling factor, unitless

OpMode Time Distribution for Cycle Average Comparisons

MOVES National Run OpMode distribution is for RegClass 47. The runspec is: Scale: Onroad, National, Inventory | Time Spans: Year, CY 2016, All Months, Weekend and Weekday, All Hours Geographic Bounds: Nation | Vehicles: Diesel Fuel | Road Type: Rural and urban, Restricted and Unrestricted

