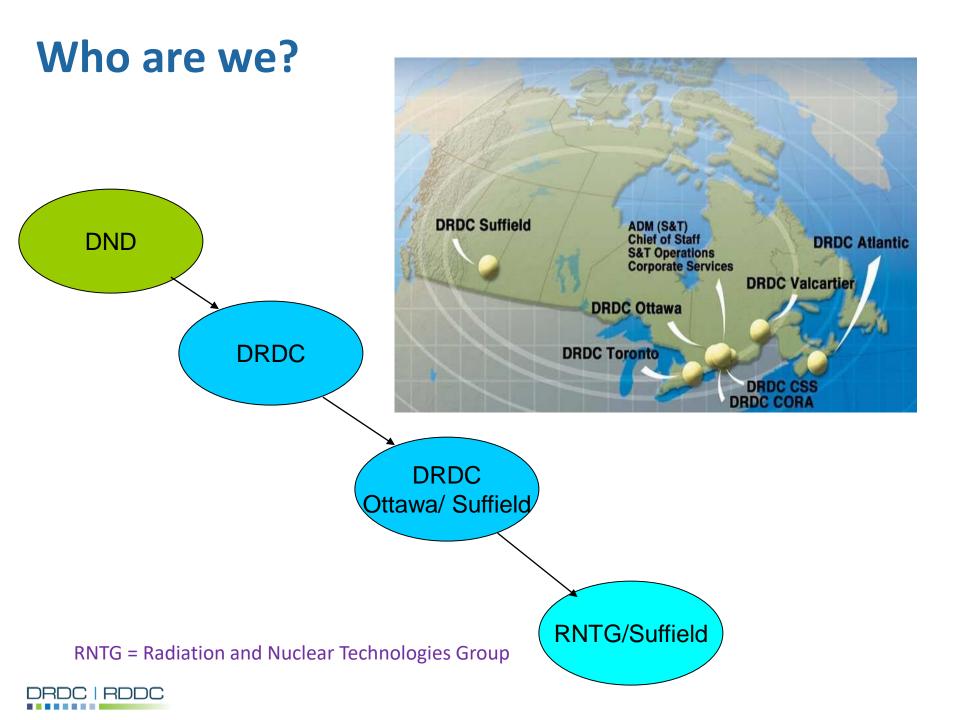
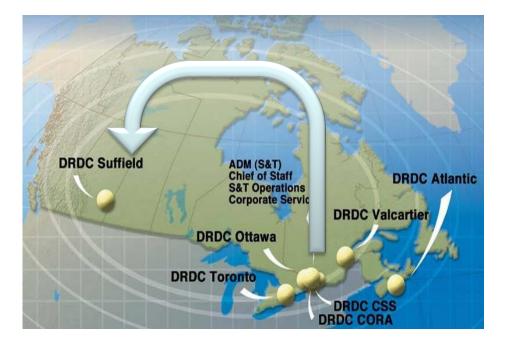
Effective RN Decontamination of Sensitive Equipment Method Formulation Using Non-Radiological Contaminants

Zakir Kazi^{1*}, Marc Desrosiers², Aimee Jones³, Ian Watson¹, Hillary Boulay-Greene¹, Jason Brown³, Trevor Jones¹, Anna Rae Green¹ ¹Defence Research & Development Canada; ²Health Canada ³Quality Engineering Test Establishment

EPA International Decontamination Research and Development Conference, 2019 November 19-21, Norfolk, VA


© Her Majesty the Queen in Right of Canada (Department of National Defence), 2019

Outline


- DRDC Radiation and Nuclear (RN) Research Capability
 - Transition
- Decontamination of Sensitive Equipment (DOSE) Research
 - Significance
- DOSE Method Formulation
 - Approach: Use of Non-Radiological Contaminants
- Future Outlook
 - Efficiency Testing

Transition

- DND has carried out RN Research at Ottawa Research Centre (ORC) for over six decades
- February 2017 ADM(S&T) announced movement of RN Research program from ORC to Suffield Research Centre
 - Mandated to pursue the DOSE work

Radiological Decontamination

Sensitive Equipment

 Small individual equipment such as masks, helmets, electronics, optics and the interior of equipment

- Essential for mission accomplishment
- Enabling Safety and Security
- Hard problem faced by military:

"How do you decontaminate something that would not survive the traditional military decontamination procedure?"

- Establishing RN Decon Program at SRC: DOSE work
 - Survivability/ functionality testing of representative sensitive equipment (e.g.; electronic and gun parts)

Objective

Find formulations to decontaminate to allow reuse of RNcontaminated sensitive equipment

- Reproducing a field situation, critical challenges are as follows:
 - Consider potential contaminants/ rad isotopes in play
 - Level of contamination (radioactivity)
 - Environmental conditions (Temperature, Humidity)
 - Effective decontamination procedures using commercial offthe-shelf (COTS) products
- Use of non-rad contaminants to look at possible chemical reaction and the physical interaction of the contaminants onto the test pieces

Experimental Design

- Non-rad Contaminants
 - Ir and Co (powder) for ¹⁹²Ir and ⁶⁰Co, respectively
 - CsCl, (powder) for ¹³⁷Cs
 - SrTiO₃ (in solution) for ^{85,90}Sr
 - Sand mixture with NaNO₃, SrTiO₃ and La₂O₃ for ²⁴Na, ^{85,90}Sr and ¹⁴⁰La, respectively for Nuclear fallout simulant (Sim NF): Developed in collaboration with US EPA
- Sensitive Equipment being examined
 - Electronic (Raspberry Pi[™])
 - Gun Parts: Barrel, Butt Stock
- Environmental conditions: Ambient temperature; RH = Relative humidity
 - Ambient: ~ 60% RH; dwelling time, 1 hour
 - Dry : < 50 % RH; time, 7 days</p>
 - Humid: > 60 % RH; time, 7 days
 - Contaminants, contamination methods, environmental conditions are based on the SOPs from the CBR MOU

Environ Chamber

Raspberry Pi

Butt Stock

Experimental Design (continued)

- Work Flow
 - Contamination
 - Dwelling/ conditioning
 - Decon approach
 - Inspection
- Contamination Methods
 - Shake n Bake (powder, dust)
 - Microspray (liquid)
- Decontamination Methods
 - Mostly mechanical removal from the surface
 - Vacuuming
 - Duct Tape
 - Compressed Air
 - Wet Wipes
 - Water

DC | RDD(

∎ Cyber Putty (Cyber Clean™)

Experimental Design (continued)

- Equipment Damage Inspection
 - Visual & Microscopic (Hirox System) Inspection
 - Dry coupon
 - Takes 1-2 h for coupons to dry from Wet Wipes & Water Decon
- Functionality Testing
 - Raspberry Pi[™]

Contaminants on Gun Barrel

Raspberry Pi Testing

Hirox System

Results/ Discussion

- Gun Parts (Barrel, Butt Stock) Decon
 - CsCl and Ir- powder react with gun barrel; rust is observed on barrel coupon in humid condition, and using Wet Wipes and Water decon methods
 - Contaminants (e.g.; Sim NF, SrTiO₃ and Ir-powder) stick on butt stock coupons using Vacuum and Duct Tape methods
 - Decon using aqueous media is not an ideal option for gun parts

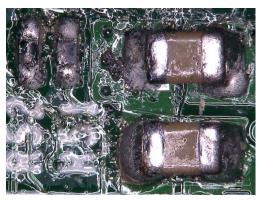
Humid, CsCl: Rusted Gun Barrel

Contaminants on Butt Stock

Table: Comparison - Gun Parts Decon

Methods	Observations/Hirox images	Prospect	Merit Rating
Vacuum	Vacuum does not remove much of any contaminants	Poor performance	5
Duct Tape	Tape does very little for the SimNF, Ir-powder and SrTiO ₃	Poor performance	4
Wet Wipes	On order to use the wet wipes effectively, needed to hold both wipes and gun part in hands. It leaves clumpy fibers behind	Cumbersome	3
Water (Milli-Q)	SrTiO ₃ and Ir-powder stick on the coupons, rust due to CsCl	Not a preferred method	6
Compressed Air	Works fine for most contaminants; requires a lot of effort and handling	Potential method but cumbersome	2
Cyber Putty (Cyber Clean [™])	All contaminants are removed to a much greater extent compared to the other decon methods tested	Easy and convenient, best results	1

Results/ Discussion (continued)

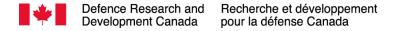

- Raspberry Pi[™] Decon
 - Like gun barrel coupons, CsCl react with the Pi components resulting discoloration, corrosion and rust in humid condition and using the Wet Wipes and Water decon methods
 - Overall high retention of functionality of the Pis is observed from all the methods tested

Before contamination

Component discoloration

Component damaged

Table: Comparison - Raspberry Pi™ Decon


Methods	Observations/ Hirox images	Prospect	Functionality (%), n=24	Merit Rating
Vacuum	Works well, sometimes Sim NF sands stuck in components	Potential method	100	2
Duct Tape	Tape does very little for CsCl, Ir- powder and SrTiO ₃ , pin damaged	Cumbersome	75	4
Wet Wipes	Lots of fibers and residues are left behind, discoloration	Poor performance	100	5
Water (Milli-Q)	Cobalt powder sticks, CsCl reacts with components, rust is observed	Poor performance	96	6
Compressed Air	Works quite well with most contaminants, requires a lot of effort and handling	Potential method	100	3
Cyber Putty (Cyber Clean™)	Cyber Putty takes off most and sometimes all of the contaminants, no rust or damage is observed	Easy and convenient, best results	96	1

Conclusions

- Several decon approaches are examined in order to define a logistically and operationally simple method for sensitive equipment. The following recommendations are proposed:
 - Aqueous methods have deleterious effect on the equipment
 - Compressed Air is a promising method though it is a bit cumbersome
 - Use of Cyber Clean[™] scores the highest caliber for both the gun parts and the Raspberry Pi[™]
 - Consider exploring the effectiveness of Cyber Putty using some other putties with different viscosities
- Future Outlook
 - Apply the Putty Method for decon efficiency estimation using short- and long-lived rad isotopes

DRDC | RDDC

SCIENCE, TECHNOLOGY AND KNOWLEDGE FOR CANADA'S DEFENCE AND SECURITY SCIENCE, TECHNOLOGIE ET SAVOIR POUR LA DÉFENSE ET LA SÉCURITÉ DU CANADA

