The Decontamination Effluent Treatment System (DETS): Mass Personnel Decontamination, Road Testing, and Integration

Jacob M. Lalley

Research Environmental Engineer

U.S. Army Engineer Research & Development Center Environmental Engineering Branch Vicksburg, MS 39180

20 November 2019

Engineer Research and Development Center (ERDC)

Environmental Engineering Branch

- Integrate science, engineering, and technology to solve environmental problems,
- Research and develop bench, pilot, and full-scale field systems, and
- Promote understanding through technology transfer.

The Problem

 The Army has no capability to treat and/or recycle the effluent from its aqueous based chemical, biological, radiological and nuclear (CBRN) decontamination operations. This effluent is still very hazardous and a major handling, logistical, and potentially a political burden.

The Solution: The Decontamination Effluent Treatment System (DETS)

DETS Treatment Strategy

Oils/Greases/Miscellaneous Chemical warfare agents

Process control and power supply

- Control architecture: EZAutomation EZ-Touch HMI/PLC
 - Customizable and programmable interface with ladder logic control
 - Data recording
 - Modular I/O
 - Pressure sensitive touch screen compatible with heavy gloves

- Kubota Diesel 9875 240 V, 40 amp Watt Generator
 - 60 gallon subbase fuel tank and a two-wire auto start control.
 - Sound enclosure keeps noise at 68 dB(A) at 7 m (23 ft), which is helpful for communications.
 - The system is also designed to be suitable for operation of sensitive electronic equipment.
 - Fuel consumption varies from 0.41 to 0.84 gal/hr.
 - The system can also simply be plugged into a 240 V, 60 Hz, single phase, 40 amp source.

Cost

Unit	Cost	Comment	
Reverse osmosis unit with pump and prefilter Cleaning units for scale and organics Sand filter media unit Carbon filter media unit Water softener media unit Ultraviolet sterilization unit (not used in these studies)	\$13,621.44	Price is for all the units described	
Kubota Generator	\$9,922.45		
Bredel pumps with mounting equipment and hoses	\$13,283.09	We purchased 2, but only 1 was used. Cost is for 1 unit.	
Flanges	\$1,066.00		
Hose reels	\$8,939.92		
Trailer Trailer upgrades	\$5,000.00 \$1,000.00	We determined upgrades were needed after the initial demonstration	
EZ Touch Control units with associated software	\$1,800.00		
Pressure gauges	\$1,000.00	Estimated	
Wiring	\$500.00	Estimated	
Total	\$56,632.90		

- Table to the left summarizes costs of elements of the system
- The equipment costs were less than \$60,000
- Keeping costs low allows for a unit to be disposed of in its entirety if it gets highly contaminated during treatment
- Enhancement of monitoring equipment is the greatest estimated additional cost

Innovative solutions for a safer, better world

Alpha Version of Mobile Treatment System

Our system treated a simulated effluent with soap, bleach, clay and cesium. The removal was >99 percent of each constituent.

Flow Rate

- Battalion Sized Event
- Adapted from planning factors of operational DECON (Army G3/5/7 Decontamination Planning factors)
- 10 gpm

Our pilot reactor capable of treating aqueous effluent from decontamination of 200 people and 10 large vehicles per day for 3 to 5 days.

ERDC Demonstration: Simulated Decontamination

ERDC Demonstration: Results

Constituent	Analytical Method	Influent Concentration (mg/L)	Effluent Concentration (mg/L)	Removal
Hardness	Summation of Ca ²⁺ and Mg ²⁺ concentrations as measured by ion chromatography	$\textbf{82.36} \pm \textbf{40.79}$	0	100.0%
Total Chlorine	Standard Method 4500-Cl G	$\textbf{0.26} \pm \textbf{0.07}$	0	100.0%
Surfactants	Spectrophotometric method as given in Kloos (2015)	1.422 ± 0.359	$\textbf{0.019} \pm \textbf{0.017}$	98.7%
Total Organic Carbon	USEPA 5310B	58.23 ± 29.7	$\textbf{1.18} \pm \textbf{0.84}$	98.0%
Malathion	Phosphorus balance	26.71 ± 12.16	0.08 ± 0.05	99.7%
Malathion	USEPA 8141A	24.7	0.000097	100.0%
Cesium	USEPA 6020A	$\textbf{2.97} \pm \textbf{4.21}$	0	100.0%
Turbidity	USEPA Method 180.1	>4200 (NTU)	1.825 ± 1.145	100.0%

All measurements indicate that the DETS is highly effective at treating constituents found in decontamination wash water (98% removal or greater).

Innovative solutions for a safer, better world

Mass Personnel Decontamination Field Evaluation

Details

- 24 May 2018
- DETS operation 2.5 hours at 12 gpm
- 1800 gallons collected and spiked with Malathion, cesium, surfactants, and sediment/ash.

Contaminant	Target Concentration (mg/L)
Malathion	1
Cesium (CsCl)	5
Surfactants	20
Sediment	5
Ash	6

Mass Personnel Decontamination Field Evaluation: Results

Figure 8. Removal of cesium during the MPD evaluation

Treatment of target constituents exceeded 99.8%

Pretreatment step (i.e., sand/GAC filtration) removed >97% of contaminants

RO proved to be an effective polishing step for surfactant and cesium removal

LA National Guard Demonstration

- 10 January 2019
- Integrate DETS into National Guard CBRNE Enhanced Response Force Package (CERFP)

Schematic of water flow in current CERFP shower system

Future Work: Adapting DETS to PETS for PFAS Pilot System Construction and Application

- Found in Aqueous Firefighting Foams (AFFF)
- Very challenging to degrade, particularly PFOS
- EPA Drinking Water Health Advisory: 70 ppt

ERDC

Innovative solutions for a safer, better world

BUILDING STRONG®

US Army Corps of Engineers • Engineer Research and Development Center

15

Future Work: Adapting DETS to PETS for PFAS Pilot System Construction and Application

• PFAS Treatment Systems

- Media filter treatment train
- Primary filtration/ GAC/ RO
- Mobile trailer 10-30 GPM
- Recovers over 90% of the influent water
- Treatment of concentrate approaches zero discharge
- Goal will be to produce effluent with total PFAS measurements of 70 ppt or less

74,000 gallons (2 sites) with C6 AFFF

ERDC

Innovative solutions for a safer, better world

Future Work: Adapting DETS to PETS for PFAS Preliminary Results

RO Only

Sand/GAC Filtration & RO

Figure 15. Results of PFAS removal by the DETS using the pretreatment steps up to the GAC process and the RO process.

Innovative solutions for a safer, better world

Conclusion

- DETS is a low cost treatment system, the first of its kind to treat and recycle decontamination effluent
- An effective means of capturing wash water from vehicle decontamination and MPD was demonstrated
 - The process was effective at 98% removal of all constituents tested
- The system was easily integrated into the National Guards CERFP decontamination practices
- Early studies have demonstrated effectiveness at removing PFAS

Innovative Solutions for a Safer, Better World

We are interested in collaborating to develop the best solutions for clean water!

Engineer Research & Development Center

Jacob M. Lalley Research Environmental Engineer U.S. Army Engineer Research and Development Center (ERDC) 3909 Halls Ferry Rd Vicksburg, MS 39180 (601) 634-7480 Jacob.M.Lalley@usace.army.mil