# Laboratory Decontamination Using Low-Concentration Hydrogen Peroxide



U.S. EPA International Decontamination Research and Development Conference November 2019



**R. Leroy Mickelsen, EPA** 

Chemical, Biological, Radiological, and Nuclear Consequence Management Advisory Division (CBRN CMAD)

# **Contributors to Low-Concentration HP Study**



#### **EPA's CBRN Consequence Management Advisory Division /OLEM**

• Shannon Serre

#### EPA's Center for Environmental Solutions & Emergency Response /ORD

- Joseph Wood
- M. Worth Calfee
- Shawn Ryan

#### Jacobs Technology, Inc.

- Abderrahmane Touati
- Rob Delafield
- Ahmed Abdel-Hady
- Denise Aslett

Disclaimer: This product has been subjected to the Agency's review and has been approved for publication. Note that approval does not signify that the contents necessarily reflect the views of the Agency. Mention of trade names, products, or services does not convey official EPA approval, endorsement, or recommendation.

# **Problem Statement**



- <u>Limited resources available to respond</u> to a large *Bacillus anthracis* release.
- Many efficacious decontamination options have issues:
  - Produce highly toxic environments,
  - Require <u>specialized equipment</u> and <u>expertise</u>,
  - Have material compatibility issues, and
  - They are costly

# Overview



### Background

EPA laboratory study found:

- Hydrogen peroxide (HP) vapor at <u>5 ppm</u> for four to seven days was efficacious for both *Bacillus anthracis* and surrogate spores
- The "low-concentration" HP vapor could be achieved using commercially available vaporizers or humidifiers
- This approach was efficacious when deployed in a 1200 square foot home

### Health Frame of Reference:

- HP Immediately Dangerous to Life and Health (IDLH) = 75 ppm
- HP Threshold Limit Value (TLV<sup>®</sup>) = 1 ppm

#### AND CONSEQUENCE MANAGEMENT ADVISORY DIVISION CHARACTER CONSECUENCE MANAGEMENT ADVISORY DIVISION CONSECUENCE MANAGEMENT ADVISORY DIVISION

# **Overview (continued)**

# Objective

• To test this methodology in full-scale laboratory settings

# Methodology

- Location: EPA wind tunnel & High-bay laboratory
- Equipment: Commercially-available off-the-shelf humidifiers
- **Decon Agent:** Commercially-available liquid HP
- Efficacy Evaluation: Surrogate spores on structures & coupons

# Concept

- Measure volume of contaminated space
- Purchase humidifiers & HP
- Fill humidifiers w/ HP liquid
- Turn on humidifiers
- Exit and secure space
- Return in several days



#### \* CBRN CMAD CONSEQUENCE MANAGEMENT ADVISORY DIVISION

# **EPA Wind Tunnel**

- Plastic sealed-off section
- 12' x 30' x 10' +
- 6' x 20' x 5' + Transition
- = 4,500 cubic ft
- No air flow
- Three humidifiers
- Total of 30 liters of 3% HP
- Surface samples (21)
- Measured HP vapor concentration, T, RH



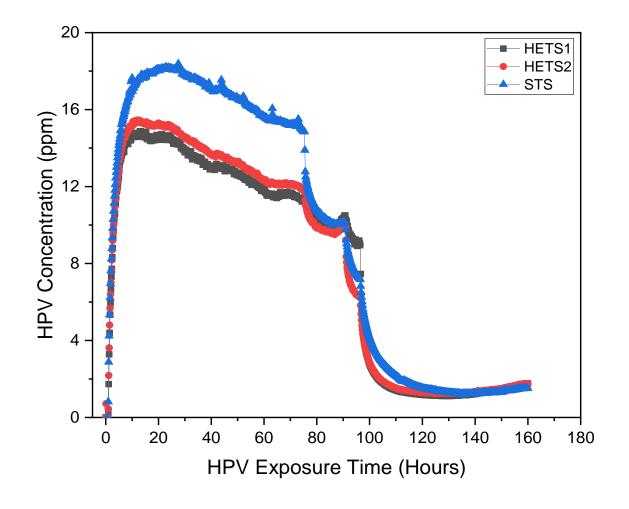
# Section of EPA High-Bay Laboratory

- Plastic tarps
- 15' x 25' x 12'
- One humidifier
- 12 liters of 6% HP liquid
- Surface samples (12)
- Concrete coupons
- Estimated 1-ACH exhaust



# **Efficacy Testing**

### Wind Tunnel


- Surface sampling pre- & post-decon
  - Glass, Painted steel plate,
  - Painted Plywood, Polyethylene trap,
  - Aluminum plate, Polypropylene table,
  - Vinyl fabric covering table
- 21 biological indicators (BIs)
  - Geobacillus stearothermophilus:
  - 10<sup>6</sup> CFU/BI steel disk
- Temperature & humidity sensors (HOBO)

### **High-Bay Laboratory**

- Surface sampling pre- & post-decon
- Concrete test coupons old and new
  - Bacillus atrophaeus:
  - 10<sup>7</sup> CFU/coupon
- Six biological indicators (BIs)
  - Geobacillus stearothermophilus:
  - 10<sup>6</sup> CFU/BI on steel disks
- Temperature & humidity sensors (HOBO)



### **EPA Wind Tunnel HPV Fumigation Concentrations**





### Wind Tunnel Surface Sample Results

| Test Condition                 |         | Pro                 | Post-Decontamination          |                     |                               |                      |  |
|--------------------------------|---------|---------------------|-------------------------------|---------------------|-------------------------------|----------------------|--|
| Spores Types                   | Btk     |                     |                               | Bg                  |                               | Btk/Bg               |  |
| Material                       |         | CFU/ft <sup>2</sup> | Log<br>(CFU/ft <sup>2</sup> ) | CFU/ft <sup>2</sup> | Log<br>(CFU/ft <sup>2</sup> ) | CFU/ ft <sup>2</sup> |  |
| Aluminum<br>Plate              | Average | 9.6 10 <sup>4</sup> | 4.9                           | 3.1 10 <sup>2</sup> | 2.4                           |                      |  |
| Polypropylene<br>Folding Table | Average | 6.4 10 <sup>7</sup> | 7.4                           | 1.9 10 <sup>2</sup> | 2.3                           |                      |  |
| Painted<br>plywood             | Average | 1.3 10 <sup>7</sup> | 7.1                           | 3.7 10 <sup>3</sup> | 3.0                           | No                   |  |
| Polyethylene<br>Tarp           | Average | 3.0 10 <sup>5</sup> | 5.2                           | 3.1 10 <sup>2</sup> | 2.4                           | Detectable<br>Spores |  |
| Painted Steel<br>Plate         | Average | 7.3 10 <sup>5</sup> | 5.5                           | 9.9 10 <sup>2</sup> | 2.7                           |                      |  |
| Vinyl Fabric                   | Average | 4.6 10 <sup>5</sup> | 5.7                           | 1.9 10 <sup>2</sup> | 2.3                           |                      |  |
| Glass                          | Average | 2.0 10 <sup>4</sup> | 4.0                           | 1.9 10 <sup>2</sup> | 2.3                           |                      |  |

\* BI Results: 19 of 21 no growth

# **High Bay Laboratory Surface Sample Results**

|                               |                  | Pre-decon           | Pre-decon    | Post -decon         |  |
|-------------------------------|------------------|---------------------|--------------|---------------------|--|
| Location                      | Material         | CFU/ft <sup>2</sup> | Log          | CFU/ft <sup>2</sup> |  |
| Column base front             | Painted concrete | 2.65E+03            | 3.4          |                     |  |
| Column base back              | Painted concrete | 3.30E+03            | 3.5          |                     |  |
| Floor (front)                 | Painted concrete | 3.44E+03            | 3.5          |                     |  |
| Floor (mid)                   | Painted concrete | 2.79E+03            | 3.4          |                     |  |
| Floor (back)                  | Painted concrete | 8.73E+04            | 4.9          |                     |  |
| Table                         | Plastic          | 1.49E+03            | 3.2          | No<br>Detectable    |  |
| Counter top                   | Soapstone        | 9.41E+02            | 3.0          | Spores              |  |
| Computer monitor              | Video screen     | 9.78E+01            | 2.0          |                     |  |
| Small chamber front           | Plexiglass       | 1.16E+01            | 1.16E+01 1.1 |                     |  |
| Small chamber back            | Plexiglass       | 5.88E+01            | 1.8          |                     |  |
| Refrigerator top metal        |                  | 9.50E+01            | 2.0          |                     |  |
| Refrigerator kick plate metal |                  | 1.25E+04            | 4.1          |                     |  |

### High Bay Laboratory Concrete Coupon Surface Sample Results

| Material         | P                   | re-decon | Post -decon         |     | Efficacy |
|------------------|---------------------|----------|---------------------|-----|----------|
|                  | CFU/ft <sup>2</sup> | Log      | CFU/ft <sup>2</sup> | Log | LR       |
| Fresh concrete 1 | 5.36E+04            | 4.7      | 4.87E+03            | 3.7 | 1.0      |
| Fresh concrete 2 | 1.52E+05            | 5.2      | 3.01E+03            | 3.5 | 1.7      |
| Fresh concrete 3 | 5.26E+04            | 4.7      | 9.79E+03            | 4.0 | 0.7      |
| Aged concrete 1  | 9.61E+05            | 6.0      | 3.81E+05            | 5.6 | 0.4      |
| Aged concrete 2  | 6.91E+06            | 6.8      | 5.16E+04            | 4.7 | 2.1      |
| Aged concrete 3  | 2.73E+06            | 6.4      | 1.45E+04            | 4.2 | 2.3      |

# Summary: Improved EPA Response Capabilities

- $\checkmark$  Scale up lab test to field study
- ✓ Affordable off-the-shelf equipment
  - \$180 vs. \$80,000
- ✓ Easy to use
- $\checkmark$  Low vapor concentrations
  - Below IDLH
- ✓ Longer exposure times
  - Days vs. 4 hours
- ✓ Green tech: By-products, water & oxygen
- ✓ 1.5-gal 3% HP liquid/1000 cubic feet, @ 70°F
- Conclusion: Effective &

**Increases Response Readiness** 

CBRN CMAD

CONSEQUENCE

MANAGEMENT

ADVISORY

### What Next?



- Follow-on research: Desorption: When is it safe to put your head to a pillow after an LCHP decontamination effort is conducted?
- Legal: How to provide self-help guidance for emergency responders and general public? Guidance vs. Standard Operating Procedures?
- Any other testing ideas? Let me know what you think.

Questions?