Chapter 7 Changes

Location	Text	Change	
7.1-1	Figure 7.1-21. Ladder- slotted guidepole	Added '-slotted' to provide	
	combination with ladder sleeve	clarification	
7.1-3	Use of the terminology "routine	Added the word 'to' and deleted	
	emissions" to refer to standing and	stray question mark at end of	
	working losses applies only for the	sentence	
	purposes of this document, and not for		
	any other air quality purposes such as		
7 4 4 4	New Source Review (NSR) permitting."?		
7.1-14	I anks are sometimes equipped with a	The paragraph initially read	
	which and ar both logg of the ladder is a	with a ladder/quidenale	
	slotted pipe that serves as a guidepole for	combination in which one or both	
	nurposes such as level dauging and	leas of the ladder is a slotted nine	
	sampling A ladder-slotted quidepole	that serves as a quidepole for	
	combination is shown in Figure 7.1-21	purposes such as level gauging	
	with a ladder sleeve to reduce emissions.	and sampling. A ladder/guidepole	
		combination is shown in Figure	
		7.1-21 with a ladder sleeve to	
		reduce emissions." The '/' was	
		removed and '-slotted' was added	
		to provide clarification	
7.1-21	D _E should be used in place of D in	Added the following sentence to	
	Equation 1-4 for calculating the standing	the paragraph: "However,	
	loss (or in Equation 1-3, if calculating the	standing losses from underground	
	affective beight H, should be used as	gasoline tanks, which can	
	the vapor space outage. Hug, in these	growth after the indestion of air	
	equations. This method vields only a very	and dilution of the headspace are	
	approximate value for emissions from	addressed in Section 5.2 of AP-	
	horizontal storage tanks. For underground	42."	
	horizontal tanks, assume that no		
	breathing or standing losses occur (LS =		
	0) because the insulating nature of the		
	earth limits the diurnal temperature		
	change. No modifications to the working		
	loss equation are necessary for either		
	aboveground or underground horizontal		
	tanks. However, standing losses from		
	underground gasoline tanks, which		
	growth after the indestion of air and		
	dilution of the headspace are		
	addressed in Section 5.2 of AP-42.		
7.1-24	ASTM D 5191 may be used as an	Added the phrase "however, it	
	alternative method for determining Reid	should not be used for crude oils"	
	vapor pressure for petroleum products,	to the end of the sentence	
	however, it should not be used for		
	crude oils.		

7.1-28	For horizontal tanks, use D_E (Equation 1- 14) in place of D in Equation 1-37 HLX = maximum liquid height, ft If the maximum liquid height is unknown, for vertical tanks use one foot less than the shell height and for horizontal tanks use ($\pi/4$) D where D is the diameter of a vertical cross-section of the the -horizontal tank	Corrected 'Equation 1-4' to 'Equation 1-14' and removed the duplicative 'the'		
7.1-29	Use of gross throughput to approximate the sum of increases in liquid level will significantly overstate emissions if pumping in and pumping out take place at the same time. However, use of gross throughput is still allowed, since it is clearly a conservative estimate of emissions.	Added the phrase "However, use of gross throughput is still allowed, since it is clearly a conservative estimate of emissions."		
7.1-40	K _s = standing idle saturation factor, dimensionless, calculated from Equation 1-21.	ctor, Added 'standing idle' to provide Equation clarification		
7.1-41	The term with the highest amount of uncertainty is the saturation of the vapor beneath the landed floating roof. The standing idle saturation factor, K _S , is estimated with the same method used to calculate the vented vapor saturation factor for fixed roof tanks in Equation 1- 21. In order to establish limits on the value of KS, the estimated factor is assumed to be less than or equal to the filling saturation factor (S). (For more information see Filling Losses.)	Added 'standing idle saturation' and 'vented vapor' to provide clarification		
7.1-45	This equation should be used to estimate accounts for both the arrival losses, then used again to estimate generation losses The main concern with this component and the generated component of the filling loss. This equation is the estimation of the saturation factor. All other components are based on the displaced volume times the ideal gas laws. vapor density, modified by a saturation factor.	Sentence was changed from 'This equation should be used to estimate arrival losses, then used again to estimate generation losses. The main concern with this equation is the estimation of the saturation factor. All other components are based on the ideal gas laws' to 'This equation accounts for both the arrival component and the generated component of the filling loss. This equation is based on the displaced volume times the ideal vapor density, modified by a saturation factor.'		
7.1-45	In that the landed floating roof in an internal or domed external floating roof	Removed the 'or'		

	tank- or is shielded from wind by the fixed			
7.1-46	For external floating roof tanks with a liquid heel, the amount of vapor lost during filling will be less than the amount for internal or domed external floating roof tanks because of wind effects. The "arrival" component will have been partially flushed out of the tank by the wind, so the preceding equation requires evaluation of the filling saturation correction factor for wind, C _{sf} . The basic premise of the correction factor is that the vapors expelled by wind action will not be present in the vapor space when the tank is refilled, so the amount of saturation is lowered.	The word 'filling' was added for clarification		
7.1-46	The equation for the filling saturation correction factor can be simplified based on other equations contained in this section as shown in Equation 3-20 and Equation 3-21.	The words 'filling' and 'correction' were added to provide clarification		
7.1-86	Figure 7.1-21. Ladder- slotted guidepole combination with ladder sleeve	The '-slotted' was added to provide clarification		
7.1-91	SBS	The 'S _B ' was changed to 's' to stay consistent with the chapter		
7.1-139	^a Reference 14. Data for this table are 20- year averages for the years 1991 through 2010, prepared by the National Renewable Energy Laboratory and compiled in the National Solar Radiation Database. Only Class I sites are summarized in this table, but similar meteorological data for several hundred Class II sites may be obtained from this reference. Similar historical averages of meteorological data from nearby National Weather Service sites or site-specific data may also be used. <i>NOTE: The current</i> <i>table reflects the hourly average</i> <i>minimum and maximum ambient</i> <i>temperatures while this table in the</i> <i>previous version of Chapter 7</i> <i>contained the average daily minimum</i> <i>and maximum ambient temperatures.</i> $T_{AX} = hourly average daily-maximumambient temperatureT_{AN} = hourly average daily-minimumambient temperature$	The following note was added to clarify the data used in the table: "NOTE: The current table reflects the hourly average minimum and maximum ambient temperatures while this table in the previous version of Chapter 7 contained the average daily minimum and maximum ambient temperatures" and the word 'hourly' was added and 'daily' removed from the descriptions of the temperature data to provide correction/clarification		

7.1-166	$K_S = \frac{1}{2}$	1 L + 0.053 (0.901 = 0.899	0. 920) (2.36) 0. 897	Numbers were corrected in the equation and in following steps
7.1-173	= 610 57	2 lb/yr of VOC er	nitted from tank	Number was corrected
7.1-199	<u>Calculate</u> <u>cleaning</u> of the va the conti each day volatile n These en follows:	e total losses for t event. The total l por space purge nued ventilation e of forced ventila naterial remained missions are sum	Total was corrected	
		LP	L _{CV}	
	Day 1	37	410	
	Day 2	0	360	
	Day 3	49	190	
	Total	67 86	960	