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A.1 Background 

The AP-42 emissions factors examined are based on the average, or the mean, of the 
supporting emissions data.  As any statistic the emissions factors are subject to several 
sources of variation such as measurement error and non-representativeness of the 
available data.  See Frey and Li (2003) for more detail with respect to sources of 
variability and uncertainty in the AP-42 emissions factors.  The objective of this task 
focuses on developing uncertainty ratios for a range of probability levels.  Even though 
this approach did not directly address all variability and uncertainty issues, it accounts for 
some fraction of the sampling error by adjusting for the number of tests used to produce 
the AP-42 Emissions Factors. Simulation techniques used in this approach allows to 
account for the uncertainty due to measurement error, since several simulations of the 
data are used to calculated different values of the EF. 

This approach focuses on the basic idea that the emissions factor is a statistic, usually an 
average, and that the uncertainty associated with emissions factors used to represent 
emissions from a single or limited number of sources may be expressed/explained as a 
population parameter, which will be referred to as the Target Statistic; examples of 
Target Statistics are the 5th percentile, the median, and the 99th percentile. This 
statement leads to the following equation: 

 
    )(EF ratioy uncertaintstatistictarget EFEF ×=   (1) 
 

where EF denotes the emissions factor based on n tests, and EFuncertainty ratio denotes the 
uncertainty ratio value for an emissions factor based on n tests,  Solving Equation (1) for 
EFuncertainty ratio results in the following equation: 

 

      EF
EF

EF
ratioy uncertaint

statistictarget =   (2) 

 

If values for the Target Statistics were known, then Equation (2) can be used to estimate 
the uncertainty ratio. 

A.2 Methodology 

A first step in characterizing the uncertainty ratio consisted of applying exploratory data 
analysis techniques to obtain measures of skewness, centrality, and spread of the data. 

A second step required the specification of a parametric probability distribution for the 
data.  Parametric probability distributions are determined by a finite number of 
parameters which can be estimated as functions of the data.  Parametric distributions 
make it possible to obtain interpolations (prediction within the limits of the data) and 
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extrapolations (prediction outside the limits of the data), which will allow the generation 
of many values that otherwise would not be observed. 

Goodness of fit tests are used to assess how well a model fits the data. One of the most 
popular goodness of fit tests is the Komogorov-Smirnov test. The Kolgomorov-Smirnov 
Goodness of fit test (KS test) is used to assess the fit of the parametric distribution to the 
data; in other words, the KS-test is used to decide if a sample comes from a population 
with a specific distribution.  The KS test has the advantage of making no assumptions 
about the distribution of data. The KS test is based on the empirical distribution function 

(ECDF).  Given n ordered data points nYY ,,1 K , the ECDF is defined as 
n
inEn
)(= , where 

n(i) is the number of points less than iY , and the iY values are ordered from smallest to 
the largest value. Lillifors (1969, 1967) and Pierce (1982) showed that when the 
parameters of the distribution are estimated from the sample, the KS test provides non-
correct p-values. Corrections for the KS tests are available for the normal and exponential 
distribution (Stephens, 1976,1970, 1974; Dallal and Wilkinson, 1986; Iman 1982 and 
Finkelsen and Schafer, 1971) but not for the Gamma distribution. Cheng and Stephens 
(1986) proposed a goodness of fit test based on the Moran’s statistic. The proposed 
goodness of fit test has the same asymptotic distribution when the parameters are 
estimated from the sample as when the parameters are known. The test is based on the 
spacing of the data and provides reliable statistics for small sample sizes. The Moran’s 
statistic has the form: 

( )∑
=

−−=
M

i
ii XXM

1
1log where )( ii YFX = , nYY ,,1 K  are the ordered data points, F is the 

ECDF defined above, and M=n+1. 

Once a parametric distribution was determined for the data, the parameters of the 
distribution were estimated using the ms function in Splus.  The function ms 
maximizes the likelihood function using the Newton-Raphson algorithm. The ms 
function requires the user to provide initial values for the parameters. The Newton-
Raphson algorithm is an iterative procedure that can be used to calculate maximum 
likelihood estimators (MLEs), which are the maximum of the likelihood function. Based 
on the initial values, the Newton-Raphson algorithm will search for a maximum using 
information from the first and second derivatives, which must be provided by the user. 
Initial values for the parameters were obtained using the maximum likelihood and Taylor 
approximations or the method of moments approach. 

The Weibull, Gamma, and Log-normal distributions were considered.  The distribution, 
likelihood, gradient, Hessian and initial values calculations are shown in Section A.3. 

After the parameters of the probability distribution that best fit the data were obtained, a 
numerical method known as the Monte Carlo approach was used to generate 10,000 
possible outcomes from the selected parametric distribution.  The 10,000 simulations are 
referred to from now on as the hypothetical distribution.  From the hypothetical 
distribution it is possible to obtain the mean, which is estimated by the AP-42 emissions 
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factor, and any population parameter or Target Statistic, such as the 1st percentile, 5th 
percentile, median, and 99th percentile. 

It was of interest to obtain EFuncertainty ratio for AP-42 emissions factors based on the 
following number of tests, (n), 1, 3, 5, 10, 15, 20, and 25.  For each specific number of 
tests (n), 10,000 samples of size equal to n were drawn with replacement, and the mean 
was calculated for each sample. 

The 10,000 means of size n produced a distribution of emissions factors based on n tests.  
Figure A-1 shows in the first row the distribution of 10,000 emissions factors (means) 
based on 3 tests. 

The next step towards the characterization of the EFuncertainty ratio consisted of substituting 
each of the 10,000 emissions factor values based on a specific number of tests in 
Equation (2).  This step resulted in a collection of distributions of EFuncertainty ratio, one for 
each Target Statistic of interest and specified number of tests, n.  The second row of 
Figure A-1 shows three EFuncertainty ratio 3 (Uncertainty ratio based on n = 3 tests) 
distributions corresponding to the following Target Statistics for carbon monoxide from 
Wood Residue Combustion: mean, 10th percentile, and 90th percentile, respectively.  
The three EFuncertainty ratio 3 distributions are highly skewed, suggesting the mean of the 
EFuncertainty ratio is affected by the extreme values.  

Figure A-1. Distribution of 10,000 Emissions Factors Based on Three Tests and 
EFuncertainty ratio for Selected Target Statistics for Carbon Monoxide. 
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By selecting the Median of the distribution of EFuncertainty ratio to adjust the Target Statistic 
equal to the Mean, it is safe to conclude that 50 percent of all possible adjusted emissions 
factors are less than or equal to the value Median(EFuncertainty ratio)*EF; while the 
remaining 50 percent of all possible adjusted emissions factors are greater than or equal 
to the value Median(EFuncertainty ratio)*EF. Furthermore, the values 95th 
percentile(EFuncertainty ratio)*EF and 5th percentile(EFuncertainty ratio)*EF can be interpreted as 
Monte Carlo Upper and Lower Confidence Limits for the (EFuncertainty ratio)*EF, which is 
estimating the Target Statistic. These Monte Carlo Upper and Lower Confidence Limits 
provide upper and lower bounds for the EF based on n tests. 

A.3 Density, Log-likelihood, Gradient, Hessian and Initial Values for 
Probability Distributions Considered 

A.3.1 Weibull Distribution 

1. Density: 
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2. Log-likelihood: 

( )
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛=
⎟
⎠
⎞⎜

⎝
⎛−

− γ

β
γ

ββ
γ x

exxf
1

log)(log γ

γ

β
βγγβγ xx −−−−+−= )log()1()log()1()log()log(  

3. Partial Derivatives (gradient): 
 

=
∂
∂
β
l

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+− γ

γ

ββ
γ x1  

 

γ∂
∂l

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛+=
βββγ

γ
xxx lnlog1  

 
4. Hessian matrix components: 
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5. Initial values for the NR-approach: The initial values were obtained using a method 
of moments approach. For the Weibull, the non-central moments are defined as: 
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Using the following Taylor approximation (Abramowitz et al., 1968): 
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the positive values from the above equation is selected as an initial value for gamma 
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A.3.2 Gamma Distribution 
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4. Initial values for the NR-approach: 
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A.3.4 Lognormal Distribution 
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2. Log-likelihood: 
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3. Partial Derivatives (Gradient): 
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5. Initial values for the NR-approach: 
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