©EPA CENTER FOR CORPORATE CLIMATE LEADERSHIP U.S. Environmental Protection Agency

Center for Corporate Climate Leadership

EPA's GHG Management Tools & Resources

May 19, 2021

Presented by:

Melissa Klein, Lead, Center for Corporate Climate Leadership, U.S. EPA

Guest Speakers:

Jessie Curry, Manager, Sustainable Business Innovation, Outdoor Industry Association (OIA) Nick Holt, PE, Sourcing Assistant, Big Agnes Katie Eisenbrown, Project Director, Sustainability, Energy and Climate Change, WSP USA

Supporting organizations in GHG measurement and management • www.epa.gov/climateleadership

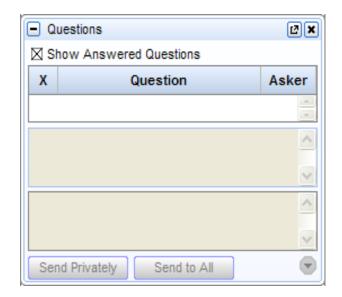
Today's Agenda

Introduction and Webinar Logistics

Speaker Introductions

Topics

- Quick Poll
- About the Center
- The GHG Inventory Development Process
- Center for Corporate Climate Leadership Tools and Resources
- Organizational use case of SGEC: hear from OIA & Big Agnes

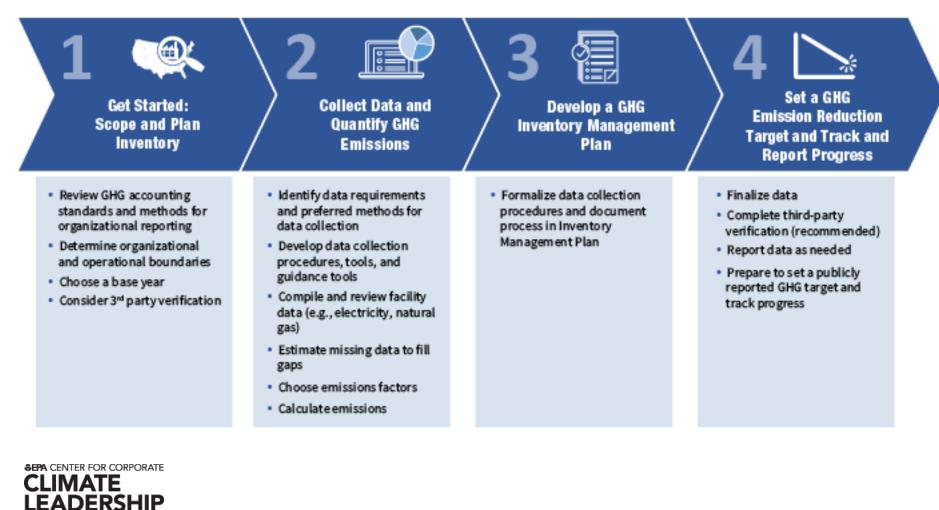

Q&A

Post-webinar Survey

Webinar Logistics

- Attendees are muted to minimize background noise.
- Submit questions in writing via the Questions box on your GoTo control panel. → → →
- To minimize or maximize the control panel, click on the button at the top left of the tool bar.

 Today's presentation will be available at: <u>https://www.epa.gov/climateleadership/center-corporate-climate-leadership-webinars-and-events</u>


About the Center

The U.S. EPA Center for Corporate Climate Leadership serves as a comprehensive resource to help organizations of all sizes measure and manage greenhouse gas (GHG) emissions.

- Provides technical tools, ground-tested guidance, educational resources, and opportunities for information sharing and peer exchange. Promote practices that reduce GHG emissions.
- Co-sponsor the Climate Leadership Conference & Awards with TCR & C2ES. 2021 10th Annual event: May 25 (virtual) and October 13-15 in New Orleans.

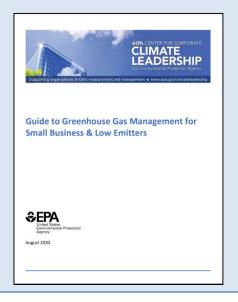
The GHG Inventory Development Process

U.S. Environmental Protection Agency

Step 1: Get Started: Scope and Plan Inventory

What's Involved

- Review GHG accounting standards and methods for organizational reporting
- Determine organizational and operational boundaries
- Choose a base year
- Consider 3rd party verification


GHG Protocol Chapters

- Chapter 1: GHG Accounting and Reporting Principles
- Chapter 2: Business Goals and Inventory Design
- Chapter 3: Setting Organizational Boundaries
- Chapter 4: Setting Operational Boundaries
- Chapter 5: Tracking Emissions Over Time
- Chapter 10: Verification of GHG Emissions

EPA Resources

Small Business and Low Emitter Guide to Greenhouse Gas Management

- Provides an overview of the four steps to developing a GHG inventory.
- Intended for small businesses and low emitters, but the concepts are applicable to all organizations.

Step 2: Collect Data and Quantify GHG Emissions

What's Involved

- Identify data requirements and preferred methods for data collection
- Develop data collection procedures, tools, and guidance materials
- Compile and review facility data (e.g., electricity, natural gas)
- Estimate missing data to fill gaps
- Choose emissions factors
- Calculate emissions

GHG Protocol Chapters

• Chapter 6: Identifying and Calculating GHG Emissions

EPA Resources

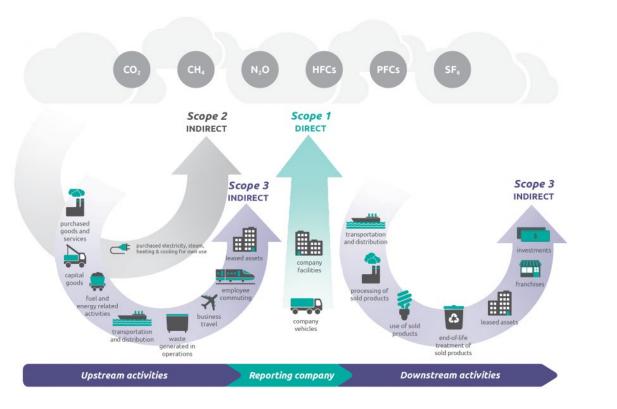
Scope 1 and Scope 2 Inventory Guidance

• Provides methods to calculate and report GHG emissions from these sources.

Scope 3 Inventory Guidance

 Provides resources and emission factors to help organizations develop a scope 3 emissions inventory.

GHG Emission Factors Hub


 Provides organizations with a regularly updated, easy-to-use, and consolidated set of default emission factors with streamlined units for organizational GHG reporting.

Simplified GHG Emissions Calculator

- Simplified calculation tool to help small business and low emitter organizations estimate and inventory their annual GHG emissions.
- Determines the direct and indirect emissions from all sources at a company when activity data are entered into the various sections of the workbook for one annual period.

Scope 1, 2, 3 Inventory Guidance

- Scope 1 Guidance Documents:
 - <u>Direct Emissions From</u> <u>Stationary Combustion</u>
 - Direct Emissions From Mobile Combustion Sources
 - <u>Direct Fugitive Emissions</u> from Refrigeration, Air Conditioning, Fire Suppression, and Industrial Gases
- Scope 2 Guidance Documents:
 - <u>Indirect Emissions From</u> <u>Purchased Electricity</u>
- Scope 3 Guidance
 - <u>Center's webpage</u>

GHG Emission Factors Hub

Provides organizations with a regularly updated and easy-to-use set of default emission factors for organizational greenhouse gas reporting

Scope 1 Factors

- Stationary combustion
- Mobile combustion

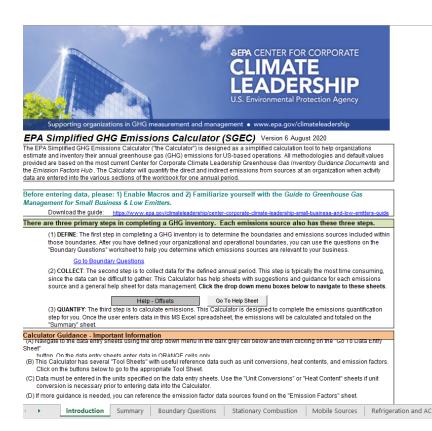
Scope 2 Factors

- Electricity
- Steam and heat

Scope 3 Factors

- Upstream/downstream transportation and distribution
- Waste generated in operations
- End-of-life treatment of sold products
- Business travel and employee commuting

https://www.epa.gov/climateleadership/ghg-emissionfactors-hub



						_			
					LIMATE	ATE			
					EADERSHI	D			
					EADERSTIL . Environmental Protection Age	rey .			
			Supporting organizations in CH	Greensweet and manager	nert • non epoperistinateleat	h-si40			
		Emiee	ion Eactore	for Groon	nouse Gas I	avantoriae			
		EIIIISS		Modified: 1 April 2		iventones			
	Red text indicates an update from the	he 2020 version of			2021				
	Typically, greenhouse gas emissions are reported in ur	nts of carbon dioxide equivale	ent (CO2e). Gases a	re converted to C	D ₂ e by multiplying by	their global warming potent	lal (GWP). The emission f	actors listed in thi	
	to CO2e. To do so, multiply the emissions by the corre	b_ge. To do so, multiply the emissions by the corresponding GWP listed in the table below.							
		Gae	100-Year GWP						
		CH4	25						
		N ₂ O	298						
		Source: Interpovernmental P Report (AR4), 2007. See the							
		Report (AR4), 2007. See the	source note to Table 1	1 for further explan	ation.				
1	Stationary Combustion								
	Fuel Type	Heat Content (HHV)	CO ₂ Factor	CH ₄ Factor	N ₂ O Factor	CO ₂ Factor	CH ₄ Factor	N ₂ O Factor	
		mmBtu per short ton	kg CO ₂ per mmBtu	g CH ₄ per mmBtu	g N ₂ O per mmBtu	kg CO ₂ per short ton	g CH ₄ per short ton	g N ₂ O per short ton	
	Coal and Coke							ton	
	Anthracite Coal	25.09	103.69	11	1.6	2,602	276	40	
	Bituminous Coal	24.93	93.28	11	1.6	2,325	274	40	
	Sub-bituminous Coal Lignite Coal	17.25	97.17 97.72	11	1.6	1,676	190	28	
	Mixed (Commercial Sector)	21.39	94.27	11	1.6	2,016	235	34	
	Mixed (Electric Power Sector)	19.73	95.52	11	1.6	1,885	217	32	
	Mixed (Industrial Coking) Mixed (Industrial Sector)	26.28 22.35	93.90 94.67	11	1.6	2,468 2,116	289 246	42	
	Coal Coke	22.35	94.67	11	1.6	2,819	240	30	
	Other Fuels - Solid								
	Municipal Solid Waste	9.95	90.70	32	4.2	902	318	42	
	Petroleum Coke (Solid) Plastics	30.00	102.41	32	4.2	2.850	1.216	126	
	Tres	28.00	85.97	32	4.2	2,407	896	118	
	Biomass Fuels - Solid	8.25	118,17	32	4.2	975	264	35	
	Agricultural Byproducts Peat	8.25	118.17 111.84	32	4.2	975	264 256	35	
	Solid Byproducts	10.39	105.51	32	4.2	1,096	332	44	
	Wood and Wood Residuals	17.48	93.80	7.2	3.6	1,640	126	63	
		mmBtu per sof	kg CO ₂ per mmBtu	g CH ₄ per mmBtu	g N ₂ O per mmBtu	kg CO ₂ per sof	g CH ₄ per sof	g N ₂ O per sof	
	Natural Gas								
	Natural Gas	0.001026	53.06	1.0	0.10	0.05444	0.00103	0.00010	
	Other Fuels - Gaseous Blast Fumace Gas	0.000092	274.32	0.022	0.10	0.02524	0.000002	0.000009	
	Coke Oven Gas	0.000599	46.85	0.48	0.10	0.02806	0.000288	0.000060	
	Fuel Gas	0.001388	59.00 61.46	3.0	0.60	0.08189 0.15463	0.004164	0.000833	
	Propane Gas Biomass Fuels - Gaseous	0.002516	01.45	3.0	u.60	u. 15463	0.007548	0.001510	
	Landil Gas	0.000485	52.07	3.2	0.63	0.025254	0.001552	0.000306	
	Other Blomass Gases	0.000655	52.07	3.2	0.63	0.034106	0.002096	0.000413	
		mmBtu per gallon	kg CO ₂ per mmBtu	g CH ₄ per mmBtu	g N ₂ O per mmBtu	kg CO ₂ per gallon	g CH ₄ per gallon	g N ₂ O per gallon	
	Petroleum Products								
	Asphalt and Road OI	0.158	75.36	3.0	0.60	11.91	0.47	0.09	
	Aviation Gasoline Butane	0.120	69.25 64.77	3.0	0.60	8.31	0.36	0.07	
	Butylene	0.105	68.72	3.0	0.60	7.22	0.32	0.06	
	Crude OII	0.138	74.54	3.0	0.60	10.29	0.41	0.08	
	Distilate Fuel OII No. 1 Distillate Fuel OII No. 2	0.139	73.25	3.0	0.60	10.18	0.42	0.08	
	Distilate Fuel OII No. 2 Distilate Fuel OII No. 4	0.138	73.96 75.04	3.0	0.60	10.21	0.41	0.08	
	Ethane	0.068	59.60	3.0	0.60	4.05	0.20	0.04	
	Ethylene	0.058	65.96	3.0	0.60	3.83	0.17	0.03	
	Heavy Gas Olis Isobutane	0.148	74.92	3.0 3.0	0.60	11.09	0.44	0.09	
	Isobutylene	0.103	68.86	3.0	0.60	7.09	0.31	0.06	
	Kerosene	0.135	75.20	3.0	0.60	10.15	0.41	0.08	
	Kerosene-Type Jet Fuel Liquefled Petroleum Gases (LPG)	0.135	72.22 61.71	3.0 3.0	0.60	9.75 5.68	0.41	0.08	
	Liquered Petroleum Gases (LPG) Lubricants	0.144	74.27	3.0	0.60	10.69	0.43	0.09	
	Motor Gasolne	0.125	70.22	3.0	0.60	8.78	0.38	0.08	
	Naphtha (<401 deg F)	0.125	68.02 66.88	3.0	0.60	8.50 7.36	0.38	0.08	
	Natural Gasoline	0.110							

Simplified GHG Emissions Calculator

- Helps small business and low emitter organizations estimate and inventory their annual GHG emissions.
- Determines the direct and indirect emissions from all sources at a company when activity data are entered into the various sections of the workbook for one annual period.

https://www.epa.gov/climateleaders hip/simplified-ghg-emissionscalculator

Step 3: Develop a GHG Inventory Management Plan

What's Involved

 Formalize data collection procedures and document process in Inventory Management Plan

GHG Protocol Chapters

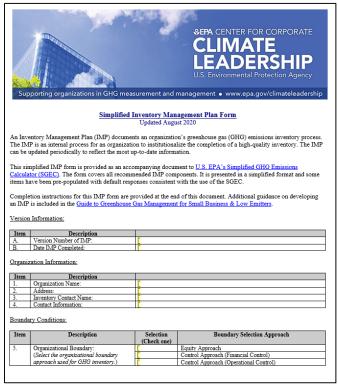
Chapter 7: Managing
 Inventory Quality

EPA Resources

GHG Inventory Management Plan Checklist

- Outlines the components that should be included in a high-quality IMP.
- Can be used as a guide for creating an IMP or pulling together existing documents.

Simplified Inventory Management Plan Form


• Provides a template for an organization to document its inventory development process.

IMP Checklist and Form

An Inventory Management Plan (IMP) describes an organization's process for completing a high-quality, corporate-wide greenhouse gas (GHG) inventory. Organizations use an IMP to institutionalize a process for collecting, calculating, and maintaining GHG data.

		U.S. EPA Center for Corporat	te Climate Leadership
		GHG Inventory Managem	ent Plan Checklist
/lar	nagement Plan (IMP) is an ines what components sho	internal process for an organization to institution	e gas (GHG) emissions inventory process. The Inventory alize the completion of a high-quality inventory. The IMP checklist guide for creating an IMP or pulling together existing documents.
	IMP Component	Detail Required	Issues to Consider
	Version Information		
A.	Version Number	Version number of IMP	
Β.	Date	Date IMP completed	
	Organization Information		
1.	Organization Name	Legal name of entity	
2.	Corporate Address	Physical and mailing address	
3.	Inventory Contact Name	Contact name and title	
4.	Contact Information	Contact information (telephone/fax/email)	
	Boundary Conditions		
	Organizational		
5.	Organizational Boundary Approach	The basis for reporting emissions data from partially owned or controlled assets:	How is operational control defined? How is equity defined (e.g., based on financial ownership or value derived from organization)?
		Equity Approach Control Approach: Financial control criterion Operational control criterion	Are leases adequately addressed?
6.	Facilities List	A list of all facilities with location, % ownership, or % control. Define if inventory is U.S. only or includes optional non-U.S.	Is the list complete and does it include all facilities (including leases if applicable)? Are fleet vehicles also included if not assigned to a facility?
		operations. Define the process for identifying facilities.	How does the list compare to other public sources listing organization holdings? Is the a method for identifying facilities to ensure that all are included, both for the initial inventory and then each subsequent year?
	Operational	Lienne the process for identifying facilities.	inventory and then each subsequent year?
7.	GHG List	A list of GHGs included in inventory, and those which are not emitted from organization operations.	Are all of the seven major GHGs (CO ₂ , CH ₄ , N ₂ O, HFCs, PFCs, SF ₆ and NF ₃) account for? Are small sources of a GHG overlooked? Has the organization at least made an estimate of the emissions from small sources and included those estimates in their inventory?

More info: <u>https://www.epa.gov/climateleadership</u> /inventory-management-plan-guidance

Step 4: Set a GHG Emission Reduction Target and Track and Report Progress

What's Involved

- Finalize data
- Complete third-party verification (optional)
- Report data as needed
- Prepare to set a publicly reported GHG target and track progress

GHG Protocol Chapters

- Chapter 8: Accounting for GHG
 Reductions
- Chapter 9: Reporting GHG Emissions
- Chapter 10: Verification of GHG Emissions
- Chapter 11: Setting a GHG Target

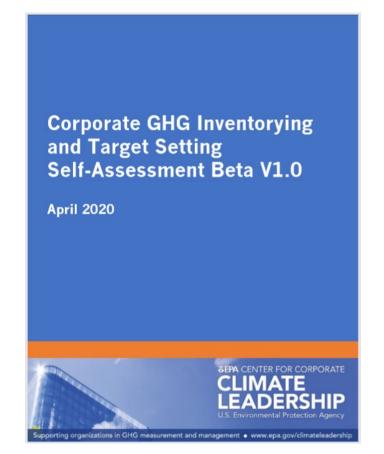
CLIMATE LEADERSHIP

EPA Resources

Corporate GHG Inventorying and Target Setting Self-Assessment

• Helps organizations evaluate their approaches to GHG inventorying and targetsetting.

Center for Corporate Climate Leadership Target Setting


• Provides information about and best practices for corporate target setting

Annual GHG Inventory Summary and Target Tracking Form

 Provides a format to summarize GHG emissions and track emissions over time against a GHG reduction target

Corporate GHG Inventorying and Target Setting Self-Assessment

- Companies are often in a stronger position to improve their GHG management efforts once they understand their relative performance compared to their peers.
- This tool is designed to help companies evaluate, at a high level, how their GHG inventorying and target-setting approaches compare to large peer companies representing different industry sectors.
- Can be used by both leading companies <u>and</u> companies beginning to address their GHG emissions as an internal communication and management resource and a high-level benchmarking assessment.
- Three resources available:
 - Self Assessment Tool
 - Appendix: Development and Methodology
 - Insights on Corporate GHG Management: Inventorying and Target Setting

Available at: <u>https://www.epa.gov/climateleadership/corporate-ghg-inventorying-and-target-setting-self-assessment</u>

Target Setting

Target Setting refers to organizations setting public GHG reduction targets, which can:

- Galvanize reduction efforts at an organization and often leads to the identification of additional reduction opportunities.
- Help garner senior management attention and increase funding for internal GHG reduction projects.
- Encourage innovation, improve employee morale, and help in the recruiting and retention of qualified employees.

"Science-based targets provide a clearly-defined pathway for companies to reduce GHG emissions, helping prevent the worst impacts of climate change and futureproof business growth" -SBTi

Target Setting

Best Practices:

- Targets should be publicly declared/reported
- Targets should include a base year and the target year
- > Targets should be aggressive
- > Targets should be for an absolute reduction in GHG emissions
- Targets should cover global operations in their geographic boundaries
- > Targets should address all three emission scopes

Publicly declared targets should include all the above information. Example: "ACME commits to a 35% absolute reduction of scope 1, 2, and 3 global emissions by 2030 from 2020 levels."

https://www.epa.gov/climateleadership/target-setting

Supply Chain Guidance

Information for Reducing Supply Chain Emissions:

- > Why engage suppliers?
- How to engage suppliers
- Building internal support
- Leveraging third-party programs
- Scope 3 inventory guidance
- Success stories
- Sector Spotlight: Electronics

https://www.epa.gov/climateleadership/supply-chain-guidance

Other EPA GHG Reduction Programs: Energy Efficiency, Renewable Energy, Supply Chain

- <u>ENERGY STAR</u>: delivers technical information and tools that organizations and consumers need to choose energy-efficient solutions and best management practices (e.g., <u>Portfolio</u> <u>Manager</u>, an online tool to measure and track energy and water consumption, as well as greenhouse gas emissions).
- <u>State and Local Energy Program</u>: helps state, local, and tribal governments develop policies and programs that can reduce GHG emissions, lower energy costs, improve air quality and public health, and help achieve economic development goals.
- <u>Green Power Partnership (GPP)</u>: encourages organizations to use green power as a way to reduce the environmental impacts associated with conventional electricity use.
- <u>Combined Heat and Power (CHP) Partnership</u>: promotes the use CHP to reduce the environmental impacts of power generation, increase facility operational efficiency, and decrease energy costs.
- <u>Green Suppliers Network</u>: works with large manufacturers to engage their suppliers in lowcost technical reviews to identify strategies for improving process lines, using materials more efficiently, and reducing waste.

Other EPA GHG Reduction Programs: Waste Reduction and Diversion

- <u>Resources for Waste Reduction and Recycling</u>: provides resources related to waste reduction and recycling in the workplace.
- <u>WasteWise</u>: helps partner companies meet goals to reduce and recycle municipal solid waste and selected industrial wastes.
- <u>WaterSense</u>: partners with manufacturers, retailers and distributors, and utilities to bring WaterSense labeled products to the marketplace and make it easy to purchase high-performing, water-efficient products.

Other EPA GHG Reduction Programs: Methane Emissions & Transportation

- <u>AgSTAR</u>: promotes the use of biogas recovery systems to reduce methane emissions from livestock waste.
- Landfill Methane Outreach Program (LMOP): promotes the use of landfill gas as a renewable, green energy source.
- <u>Natural Gas STAR</u>: provides a framework for companies with U.S. oil and gas operations to implement methane reducing technologies and practices and document their voluntary emission reduction activities.
- Natural Gas STAR Methane Challenge: recognizes oil and natural gas companies that make specific and transparent commitments to reduce methane emissions.
- <u>SmartWay</u>: a public/private collaboration between EPA and the freight transportation industry that helps freight shippers, carriers, and logistics companies improve fuel-efficiency and save money.

SICLIMATE ACTION CORPS

ROLE OF THE EPA'S GHG MANAGEMENT TOOLS

Jessie Curry Sustainable Business Innovation Manager Outdoor Industry Association

PATH TO CLIMATE POSITIVE

Companies who join the Climate Action Corps are taking steps to:

MEASURE + PLAN.

Build a company-specific plan.

Measure your scope 1, 2 and 3 emissions.

Set a science-based target (SBT) that includes all scopes within your 2nd year of joining.*

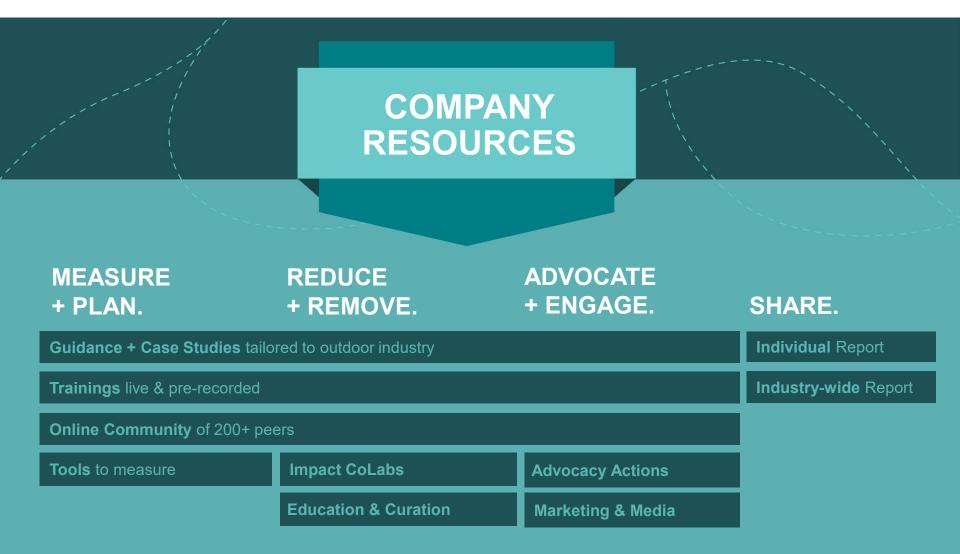
REDUCE + REMOVE.

Take immediate and ongoing action to drive down emissions in line with SBT.

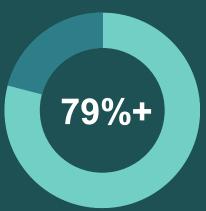
Remove >100% remaining emissions by investing in direct projects or offsets, ideally nature-based.

ADVOCATE + ENGAGE.

Participate in climate advocacy actions annually.


Empower consumer climate action.

SHARE.


Submit your public Annual Progress Report.*

* Member requirement.

ALL MEMBERS COMMIT TO RECOGNIZE + REWARD THESE CLIMATE-LEADING PRACTICES W/ VENDORS

SET SCOPE

1&2 TARGETS

(OR IN PROGESS)

COMMITTED TO RENEWABLE ENERGY (U.S.)

45%+

MEASURED SCOPE 1&2 GHG

SI CLIMATE ACTION CORPS

JOIN THE CLIMATE ACTION CORPS

JOIN + LEARN MORE

outdoorindustry.org/CLIMATEACTION

Scope 1-2 Measurement with the Simplified EPA GHG Emissions Calculator (SGEC)

Nick Holt, PE Sourcing Assistant Big Agnes

Sustainability at Big Agnes

Committed at the core - founder Bill Gamber has lived off the grid for 25+ years

- Founding member of OIA Climate Action Corps & longtime OIA Sustainability Working Group member
- Two-year collaboration with OIA as HIGG Index Brand Module pilot brand
- Steamboat warehouse/ repair facility runs on wind power
- Adopted a Restricted Substance List to guide sourcing and production decisions

Product:

- 2021 Tiger Wall and Fly Creek models made with Solution Dyed fly and body fabrics an industry first.
- 2021 TwisterCane[™] Closed Cell Foam pad made with 70% sugarcane extract/ carbon negative foam an industry first.
- Pioneers with some of the first tents and sleeping bags made from 100% recycled fabrics
- All DAC tent poles used incorporate DAC proprietary Green Anodizing
- 100% of our down is RDS Certified DownTek with Downtracker traceability with a PFC-fre certified PFOA and PFOS free water-repellent chemistry
- Majority of synthetic sleeping bags feature recycled insulation
- 2020 Sleeping pads include Pad Inflation Sacks all made from upcycled fabric
- FSC Certified paper or paperboard used in all printed materials/ packaging

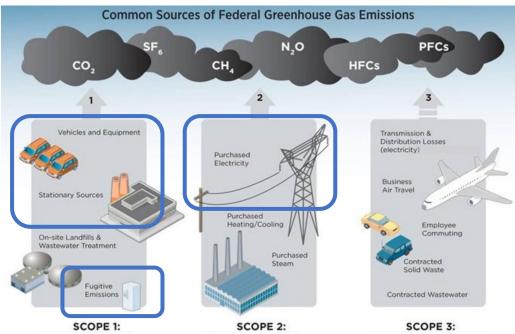
People:

- Industry Days benefit
- Staff commuter incentives
- 2018 CDT Hike and 72 mile adoption
- Ski Pass/Health reimbursement wellness benefits

"The data is out there."

- Professor James Hunt

Scope

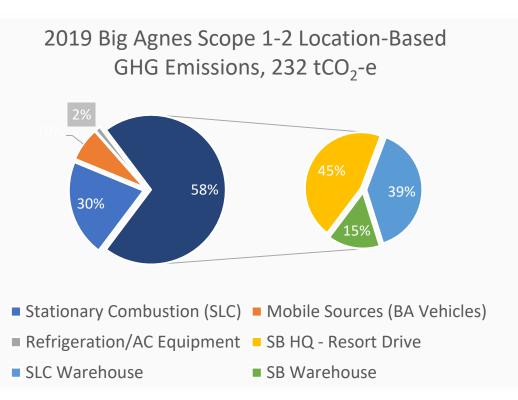


- Base Year = Calendar Year 2019
- Locations
 - HQ Steamboat Springs, CO
 - Warehouse Steamboat Springs, CO
 - Warehouse Salt Lake City, UT
- Markets
 - Steamboat Springs, CO and Salt Lake City, UT

Data Sources

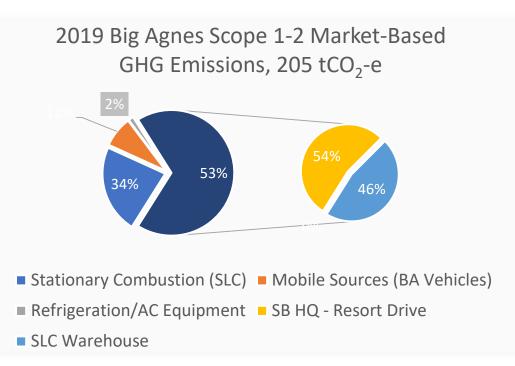
Scope	Category	Data Source	Frequency	Key Unit	Who to Contact
1	Stationary Combustion	Natural Gas Bills	Monthly	Therm - Energy	Accounting
1	Mobile Sources	Credit Card Receipts	Annual	Gallon - Gasoline	Accounting
1	Refrigeration/AC Equipment	HVAC Technician	Annual	Lb - Refrigerant	Facilities
2	Purchased Electricity	Electrical Bills	Monthly	kWh - Energy	Accounting

Data Sources


MEASURI

. BASE YEAR 2019	QUICK TIP Track with your company fiscal	2. ORGANIZATIONAL BOUNDARY				
	year for	Big Agnes Headquarters/Office, Steamboat Springs, CO	NEED MORE SPACE TO WRITE?			
consistency. 3. TO DETERMINE OUR ORGANIZATIONAL BOUNDARY, WE ARE USING THE: Equity Approach		Big Agnes Warehouse/Repair Center, Steamboat Springs, CO Big Agnes Warehouse, Salt Lake City, UT	You can find an editable versio in the online community.			
Control Approach	acn					
boundary.	NAL BOUNDARY: Identify emission:	s sources you will include in your operational				
SCOPE 1	Natural Gas for heating SLC warehouse, BA company vehicle emissions, Refrigerants for Steamboat Springs HQ air conditioning					
SCOPE 2	Purchased electricity for all locations, offsets through electrical utility programs					
SCOPE 3						
. MEASUREM	IENT TOOL					
To calculate our and 2 emissions use the following approach(es):	, we will	HG Simplified Emissions Estimator)				
To calculate our Scope 3 TBD – mix of estir emissions, we will use the following approach(es):		nation based on material consumption, production, and transportation of goods				

2019 Location-Based Emissions


- Top Categories
 - #1 Electricity
 - #2 Natural Gas

• Top Facilities

- #1 Salt Lake City Warehouse
- #2 Steamboat Springs Headquarters

2019 Market-Based Emissions

- Yampa Valley Electric Association Green Power REC Program saved 27 tCO₂-e in 2019
 - 12% Scope 1-2 Reduction
- We'd been offsetting tons of carbon since 2006 without knowing the relative impact

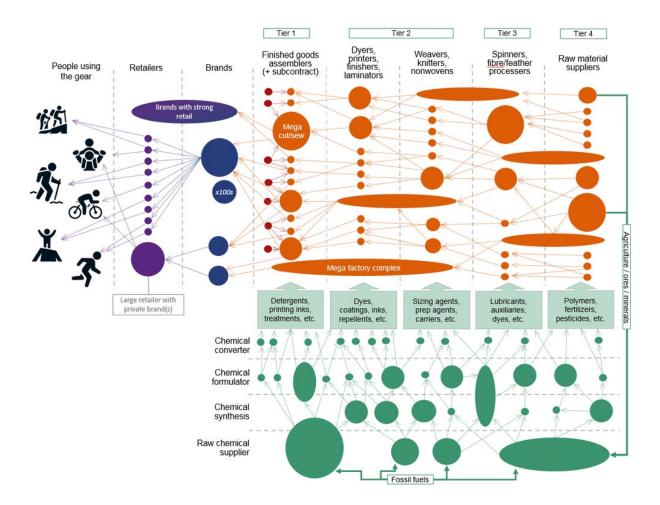
Impacts Since Measuring Scope 1-2

- The whole company knows about our GHG footprint
- Renewable Energy Credits (RECs) have more value
 - As of 2021, 100% of electricity in Big Agnes-controlled facilities are offset via utility-managed REC programs
- Actively seeking partnerships to offset remaining Scope 1-2 footprint, and future Scope 3 projects

Reducing greenhouse gas emissions and fostering resilience in the Yampa Valley.

CLIMATE ACTION AND ADAPTATION

Lessons Learned



- Define your boundaries
- Don't assume you know your biggest impacts
 Double check your figures
- Accounting and facilities staff are your friends
- Record enough utility bill details <u>the first time</u>
 Account #s, meter reads, billing periods, etc.
- Take regular readings going forward
 ➢ After New Year's → take odometer readings
- Ask for help from those who've come before you
 > It gets easier from here!
- Know your audience to pitch the benefits!

Scope 3 – The Final Frontier

U.S. Environmental Protection Agency

Melissa Klein Center for Corporate Climate Leadership, U.S. EPA (202) 343-9207; 202-316-7412 (C) klein.melissa@epa.gov

For more information, visit www.epa.gov/climateleadership

