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CHAPTER 1  |  INTRODUCTION  

The United States Environmental Protection Agency (USEPA) and the Ministry of the 

Environment of Peru (MINAM) are collaborating under the USEPA Megacities 

Partnership to: 

• Strengthen air quality management in the Lima-Callao region through policy 

development, community outreach, and stakeholder engagement;  

• Support air quality monitoring initiatives; and  

• Build technical capacity in Lima-Callao for scientific and economic analyses and 

communication planning in support of air quality management plan (AQMP) 

development.  

This report presents results from assessments of the current overall mortality burden 

attributable to concentrations of fine particulate matter (PM2.5) in the region. In addition 

to estimating total PM2.5-attributable health burden with respect to premature deaths, we 

employ emissions inventories and reduced-form air quality modeling techniques to 

analyze the burden attributable to concentrations of  PM2.5 associated with emissions 

from on-road motor vehicles. We further evaluate the burden of a subset of these 

vehicles—those out of compliance with currently established emissions limits—and 

highlight the potential benefits associated with increased enforcement and expanded 

vehicle inspections and maintenance (I&M) programs. 

1.1  BACKGROUND  

The Lima-Callao metropolitan region is home to approximately 10 million people, nearly 

one-third of Peru’s total population. This large and growing population is exposed to 

significant air pollutant concentrations due to emissions from sources such as motor 

vehicles. These exposures can be exacerbated by Lima-Callao’s meteorological 

conditions, primarily the Humboldt ocean current and the Andes Mountains to the east. 

The Humboldt ocean current carries cold water north from the tip of South America, 

which lowers atmospheric temperatures and prevents the formation of rain clouds (Thiel 

et al. 2007). The Humboldt ocean current is also responsible for persistent fog in Lima-

Callao. The fog, combined with the obstruction of warmer and more humid air masses 

from the Amazon, by the Andes, results in frequent air inversions in Lima-Callao. These 

air inversions trap ambient pollutants at the surface level, causing pollutants to 

accumulate rather than disperse via coastal winds. As a result, Lima-Callao is ranked 

among the most polluted cities in Latin America by the World Health Organization 

(WHO, 2016). 
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Transportation sources are responsible for much of the region’s air pollution. Despite 

comprising one-third of the country’s population, Lima-Callao is home to roughly two-

thirds of Peru’s vehicle fleet. In addition to the size of the vehicle fleet, its age plays a 

significant role in resulting air pollution (MINAM, 2018). According to surveys of 

registered vehicles from 2016-2019, approximately 34 percent of the on-road vehicles in 

Lima-Callao are greater than 15 years old. These older vehicles tend to have poor fuel 

economy and lack the emissions controls required of new vehicles. Based on emissions 

tests, MINAM partners note that many vehicles are non-compliant with national 

emissions standards; however, empirical estimates of non-compliance rates are currently 

limited. 

To address emissions from the transportation sector, the Government of Peru has passed 

several laws and regulations concerning emissions standards and vehicle inspection 

requirements. For example, in 2008, Peru established the National System of Technical 

Vehicle Inspection, which is responsible for inspecting and testing vehicles for safety and 

compliance with emissions standards. More recently, Peru adopted the Euro 4 vehicle 

emissions standards for all new vehicles and is considering implementing Euro 6 

standards. Because of the slow rate of turnover in the vehicle fleet—as shown by the 

prevalence of old vehicles in circulation—additional measures may be needed to address 

the sector’s emissions. In this report, we provide insight into the potential magnitude of 

these on-road vehicle emissions and associated adverse health outcomes. 

1.2  ANALYTIC OVERVIEW  

In this section, we summarize our analytic approach to estimating the mortality burden 

associated with PM2.5 concentrations in Lima-Callao. We first define our research 

objectives and then outline the analytic steps we follow in the remainder of the report. 

1.2.1  RESEARCH OBJECTIVES  

In close consultation with MINAM and USEPA, we developed three research objectives 

addressed in this report. First, we aim to quantify and value the premature deaths 

associated with overall ambient PM2.5 concentrations in Lima-Callao. Second, we aim to 

quantify and value the premature deaths associated with emissions from Lima-Callao’s 

on-road vehicles, to better understand how vehicles contribute to the overall burden of 

premature deaths. Third, we aim to quantify and value the premature deaths associated 

with emissions from non-compliant vehicles in the Lima-Callao on-road vehicle fleet, to 

help MINAM understand the potential health gains from focusing on the non-compliance 

issue. For each research objective, we consider annual impacts using data that best 

characterize recent conditions for air quality, population, baseline health, and other 

relevant data. In Chapter 7, we highlight additional areas of future research that could 

complement this report. We hope that the analytical framework IEc applied in this 

analysis will serve as a useful guide for addressing these research topics, including 

estimating the benefits of specific transportation emissions control measures. 
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1.2.2  ANALYTIC STEPS  

Our methodology is comprised of five key steps: 

• Step 1: Scenario development. Define the research objectives and the spatial and 

temporal scale of our analyses. Specify conditions under a “business-as-usual” or 

“baseline” scenario and under a “regulatory” scenario in which the proposed 

regulation is implemented. Based on these scenario definitions, develop baseline 

and regulatory air quality surfaces. 

• Step 2: Emissions estimation. Develop or obtain emissions inventories for the 

transportation sector. Develop estimate of the fraction of non-compliant vehicles.  

Estimate the excess emissions associated with non-compliant vehicles in the 

Lima-Callao fleet. (Note: this step is not needed for assessing the total PM2.5-

attributable mortality burden.) 

• Step 3: Air quality modeling. Obtain and process air quality data, such as 

satellite-based estimates and data from air quality monitors to characterize 

baseline conditions in Lima-Callao. Use air quality modeling methods to estimate 

the impact of  vehicle emissions on ambient PM2.5 concentrations. 

• Step 4: Health impact estimation. Quantify premature deaths associated with 

PM2.5 concentrations using BenMAP-CE and relevant datasets, including 

population, air quality, baseline mortality incidence, and concentration-response 

relationships from the epidemiological literature. 

• Step 5: Valuation. Apply economic valuation estimates to quantified mortality 

values to characterize the PM2.5-attributable mortality burden in monetary terms.  

These steps are described in greater detail throughout the report. 

1.3  REPORT ORGANIZATION  

The remainder of this report is organized as follows: 

• In Chapter 2, we briefly summarize our scenario development efforts, including 

defining baseline and regulatory air quality conditions needed for estimating 

PM2.5-attributable mortality burden. 

• In Chapter 3 we detail our methods for quantifying emissions from the on-road 

vehicle fleet, including accounting for empirically-derived estimates of non-

compliance with emissions standards. 

• In Chapter 4, we summarize available air quality data in Lima-Callao and methods 

for estimating changes in air quality stemming from emissions changes. 

• In Chapter 5, we describe our methods for conducting health impact estimation 

and valuation using USEPA’s BenMAP-CE tool, including summaries of key data 

inputs such as population, baseline mortality incidence, health impact functions, 

and valuation estimates. 
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• In Chapter 6, we present the results of our health burden analyses, including an 

all-PM2.5 mortality estimate, a transportation-attributable PM2.5 mortality estimate, 

and an estimate associated with excess PM2.5 mortality resulting from non-

compliant vehicle emissions. 

•  In Chapter 7, we discuss the findings of this research and notable data and 

methodological limitations. We then provide recommendations for next steps to 

build upon this collaborative research effort. 

•  In Appendices A-D, we provide supplemental methods discussions and results 

beyond the primary estimates provided in the main text. 
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CHAPTER 2  |  SCENARIO DEVELOPMENT  

In this chapter, we define the scenarios assessed in the remainder of the report to estimate 

the number of premature deaths attributable to PM2.5 concentrations in Lima-Callao. As 

described in Chapter 1, a key element of scenario development involves defining 

temporal and geographic scope. First, we focus on estimating recent mortality burden 

associated with ambient PM2.5. Therefore, we employ datasets that best characterize 

conditions in recent years, including air quality, population, and baseline mortality 

incidence. 1 Second, we consider emissions, air quality, and associated health impacts in 

the Lima-Callao region. We work to employ spatially resolved datasets and report results 

at fine geographic resolutions (e.g., districts) where data allow.2 Pollutant emissions, air 

quality, and health impacts outside of Lima-Callao are not considered in our analysis.  

For regulatory benefit-cost analysis, we typically define business-as-usual and regulatory 

scenarios. In a forward-looking analysis of a proposed regulation, the business-as-usual 

scenario reflects conditions as they are now (or are expected to be in the future) without 

the proposed emissions control measures in place. The regulatory scenario reflects 

expected conditions now or in the future if the proposed regulation is implemented. In the 

context of burden analyses—the focus of this report—we similarly define baseline and 

control scenarios. The baseline scenario reflects observed, recent PM2.5 concentrations in 

the region. The control scenarios are hypothetical representations of what recent PM2.5 

concentrations would be absent contributions from some or all emissions sources. While 

our baseline scenario is the same across our three analyses, the control scenario differs for 

each run. These scenarios are summarized in Exhibit 2-1. Importantly, air quality is the 

only data input that varies across baseline and control scenarios. 

  

                                                      
1
 Our estimates do not account for any effects of the COVID-19 pandemic. To the extent that the virus has affected air 

quality, population, and baseline death rates in Lima-Callao, these impacts are not quantified in our analysis. 

2
 In Peru, administrative divisions are geographically resolved, from largest to smallest, into regions, provinces, and districts. 

Lima and Callao are the names of both a province and a district within a province. This analysis encompasses the Lima and 

Callao provinces, which are comparable to US states. The districts analyzed are comparable to US counties and range in size 

from 1 to 2,800 km2.  
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EXHIBIT 2-1.  DEFINING  AIR QUALITY SCENARIOS  

ANALYSIS BASELINE AIR QUALITY CONTROL AIR QUALITY 

Total PM2.5 burden 

Recent characterization of 
observed PM2.5 concentrations 

PM2.5 concentrations set to 0 
µg/m3 

Transportation sector 
PM2.5 burden 

Observed PM2.5 concentrations 
minus transportation sector 

contributions 

Non-compliant vehicles 
PM2.5 burden 

Observed PM2.5 concentrations 
minus contributions from non-

compliant vehicles3 

 

By comparing the estimated health impacts between baseline and control air quality 

conditions, we can attribute the mortality burden to various sources. For example, by 

comparing recent PM2.5 concentrations with a hypothetical scenario where we reduce 

PM2.5 concentrations by the transportation sector’s contribution, we can quantify the 

mortality burden associated with the sector as a whole. In the following chapters, we 

explain how we estimate the contributions of transportation sources—and non-compliant 

vehicle emissions alone—to ambient PM2.5 concentrations. 

 

 

                                                      

3
 We do not remove all PM2.5-relevant emissions associated with non-compliant vehicles. Rather, we only assess the emissions 

in excess of comparable vehicles compliant with vehicle emissions standards. 
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CHAPTER 3  |  EMISSIONS ESTIMATION  

In this chapter, we explain our data sources and methods for characterizing emissions 

from the transportation sector in Lima-Callao. While MINAM possesses a comprehensive 

emissions inventory for on-road vehicles, the inventory assumes that vehicles emit at 

fixed emissions rates representing “compliant” rates for a given vehicle class (e.g., bus, 

passenger vehicle), fuel type (e.g., gasoline, diesel), and emissions class (e.g., Euro 2, 

Euro 6). Yet, inspection data from the Urban Transport Management Office (UTMO) of 

the Municipality of Lima indicates a significant fraction of the vehicle fleet is out of 

compliance. This may be due to several factors including the potential tampering of 

emission control devices, the age of the vehicle fleet, and driving cycles in Lima-Callao. 

Therefore, the inventory likely underestimates emissions from the vehicle fleet. Although 

the true rate of non-compliance is not known, it is expected to be significant based on 

recent data collected by the UTMO. We used these estimates to update the emissions 

inventory to account for observed rates of non-compliant emissions in the region so that it 

better reflects the true rate of emissions. 

3.1  BASELINE EMISSIONS INVENTORY  

The calculations in this section detail IEc’s implementation of the MINAM transportation 

sector emissions inventory model. This model generates annual emissions estimates 

based on the size and composition of the region’s on-road vehicle fleet. The model 

summarizes emissions in tons per year for seven pollutants: PM2.5, NOX, CO, total 

hydrocarbon, black carbon, SO2 and CO2. Estimates were derived for each combination 

of vehicle type, emissions class, and fuel type (e.g., Euro 2 diesel automobiles). 

Additional detail on these vehicle characteristics is summarized in Exhibit 3-1. 

EXHIBIT 3-1.  TRANSPORTATION EMISS IONS INVENTORY DATA ELEMENTS  

VARIABLE VALUES 

Fuel type 
Diesel, high octane gasoline, low octane gasoline, liquified 
petroleum, natural gas 

Emissions class Pre-Euro, Euro 2, Euro 3, Euro 4 

Vehicle type 
Automobile, station wagon, pick-up truck, rural truck, panel truck, 
omnibus, heavy-duty truck, tow truck, motorcycle 
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To generate emissions estimates for each vehicle group, the model utilizes information on 

vehicle counts, average distance driven per year, and emissions factors to calculate annual 

emissions estimates. First, we multiplied vehicle category counts by the fraction of 

vehicles with each fuel type to estimate vehicle counts by fuel type and category.4,5 Next, 

we multiplied vehicle counts by average annual distance for each fuel type and vehicle 

category to estimate total annual distance driven for all vehicles by fuel type and 

category.6 We then multiplied the total annual distances by the percentage of vehicles in 

each Euro level, specific to fuel type and vehicle category, to determine total annual 

distance by fuel type, vehicle category and Euro emissions level.7 Finally, we applied 

emissions factors to total distance estimates. Emissions factors reflect the rate of 

emissions per unit of distance traveled (e.g., 0.05 grams of PM2.5 emitted per kilometer 

traveled). These steps result in 180 emissions estimates (all combinations of nine vehicle 

categories, five fuel types, and four Euro levels). Example calculations with hypothetical 

values are illustrated in Exhibit 3-2. 

EXHIBIT 3-2.  ILLUSTRATIVE EMISS IONS ESTIMATION CALCULATIONS  

STEP EXAMPLE 

1 
100,000 automobiles * 30% diesel fuel use 

= 30,000 diesel automobiles 

2 
30,000 diesel automobiles * 10,000 km avg. distance 

= 300,000,000 km traveled by diesel automobiles 

3 
300,000,000 km * 10% Euro 4 

= 30,000,000 km traveled by Euro 4 diesel automobiles 

4 
30,000,000 km * 0.05 g PM2.5/km  

 = 1,500,000 g = 1.5 tons PM2.5 emitted annually by Euro 4 diesel automobiles 

                                                      
4
 Estimates of vehicle category counts are derived from a sum of the Peruvian National Statistical System (INEI) vehicle 

registry from 2011 to 2016. See 

https://www.inei.gob.pe/media/MenuRecursivo/publicaciones_digitales/Est/Lib1483/cap20/ind20.htm 

5
 Estimates of the share of vehicles with each fuel type are from the 2012 MINAM National Inventory of Greenhouse Gases. 

See http://infocarbono.minam.gob.pe/annios-inventarios-nacionales-gei/ingei-2012/ 

6
 Average annual distances are provided by the Climate Change Planning Project. See http://planccperu.org/wp-

content/uploads/2016/05/informe_final.pdf. These data are supplemented by information on total distance per year for 

diesel and gas vehicles within the automobile category in Lima from MINAM, in cooperation with the CALAC+ and GIZ 

projects. 

7
 The portion of the Lima vehicle fleet within each Euro-level are provided by a Nationally Appropriate Mitigation Action 

(NAMA) Support Project report. See http://www.transferproject.org/projects/transfer-partner-countries/peru/. Vehicles 

15 years or older are classified as emitting at the Pre-Euro level, vehicles between the ages of 15 and 12 years are classified 

as Euro 2, vehicles between the ages of 11 and one years are classified as Euro 3, and vehicles less than 1 year old are 

classified as Euro 4.  

 

https://www.inei.gob.pe/media/MenuRecursivo/publicaciones_digitales/Est/Lib1483/cap20/ind20.htm
http://infocarbono.minam.gob.pe/annios-inventarios-nacionales-gei/ingei-2012/
http://planccperu.org/wp-content/uploads/2016/05/informe_final.pdf
http://planccperu.org/wp-content/uploads/2016/05/informe_final.pdf
http://www.transferproject.org/projects/transfer-partner-countries/peru/
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In the example above, Euro 4 diesel automobiles are estimated to emit 1.5 tons of PM2.5 

annually. These estimates would be compiled with the emissions from the 179 other 

vehicle type, fuel type, emissions class combinations to yield total transportation sector 

emissions in the region. As noted above, the inventory implicitly assumed perfect 

compliance in its application of emissions factors – vehicles cannot emit above (or 

below) the rates established by each Euro class. In the section below, we explain how we 

adapted these values to account for non-compliance in the vehicle fleet. 

3.2  ACCOUNTING FOR NON-COMPLIANCE  

Empirical evidence demonstrates that many on-road vehicles in Lima-Callao do not 

comply with emissions limits established by MINAM. In a 2017 analysis of 2,625 

vehicles in Lima-Callao conducted by the UTMO, roughly half of vehicles tested as out 

of compliance with emissions limits.8 Compliance rates, depicted in Exhibit 3-3, varied 

by vehicle fuel type. 

EXHIBIT 3-3.  COMPLIANCE RATES BY FUEL TYPE  

 

Notes: GLP = liquified petroleum, GNV = natural gas, n = sample size. 

                                                      

8
 For diesel vehicles, compliance is determined using an opacity standard and for gasoline, natural gas and liquefied 

petroleum compliance is based on combined CO, CO2, and HC standards. 

0%

20%

40%

60%

80%

100%

Diesel Gasoline GLP GNV

Pass Fail

n = 1,306 n = 77 n = 119 n = 1,123
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Compliance rates were found to range from 40 percent for liquified petroleum vehicles to 

66 percent for gasoline vehicles. We used these data to adjust the emissions inventory 

estimates to account for emissions rates that likely exceed those quantified in the model’s 

emissions factors. For each fuel type, we divided total annual distances (by vehicle 

category, fuel type and emissions class) into compliant and non-compliant designations. 

For compliant vehicles, we applied the conventional emissions factors associated with the 

vehicle category, fuel type, and emissions class. Non-compliant vehicles, however, were 

assumed to emit at higher rates (i.e., more pollution per kilometer driven). Given 

uncertainty in the true emissions rates of non-compliant vehicles, we estimated a lower- 

and upper-bound emissions estimate using alternative assumptions: 9 

• Lower bound emissions estimate: Non-compliant vehicles were assumed to emit 

at one emissions standard older than previously assigned. For example, a non-

compliant Euro 4 vehicle was assumed to emit at a rate consistent with Euro 3 

emissions factors. 

• Upper bound emissions estimate: All non-compliant vehicles were assumed to 

emit at the Pre-Euro level. 

Notably, IEc only adjusted emissions for PM2.5 and NOX, i.e., the precursors of ambient 

PM2.5 to account for non-compliance. We were unable to adjust for SO2 emissions as the 

data were not broken out by Euro-level. However, it is reasonable to assume that 

compliant and non-compliant vehicles emit comparable SO2 per kilometer traveled (for a 

given fuel type and vehicle type) as SO2 emissions are a function of distance traveled and 

sulfur content in fuel—not emissions class.  

We summed the non-compliant and compliant emissions for each vehicle category and 

Euro-level to determine annual emission estimates of PM2.5 and NOX for each fuel type. 

Finally, IEc summed across fuel type to determine estimates of total annual PM2.5 and 

NOX emissions.  

3.3  EMISSIONS MODELING RESULTS  

The results of emissions inventory model are summarized in Exhibit 3-4. 

 

                                                      

9
 In estimating non-compliance rates, we assumed a random sampling of vehicles and accuracy of the inspection testing 

method by the UTMO. We explored our assumption that non-compliance corresponded to older Euro standards of emissions 

using the following sensitivity analysis. IEc assessed the distributions of opacity inspection measurements for diesel vehicles 

and the distributions of CO measurements for gasoline, natural gas and liquified petroleum vehicles. The percent increase 

in opacity for compliant to non-compliant diesel vehicles was comparable to the percent increase in PM2.5 emissions for 

changing from the Euro 4-2 level to the Pre-Euro level. Therefore, IEc determined that accounting for non-compliant 

vehicles in the inventory model by scaling diesel emissions factors by opacity would likely not change the result 

significantly. Additionally, the percent increase in CO for compliant to non-compliant gasoline, natural gas and liquified 

petroleum vehicles was orders of magnitude higher than the percent increase in PM2.5 emissions for changing from the Euro 

4-2 level to the Pre-Euro level. IEc determined that scaling gasoline, natural gas and liquified petroleum emissions factors 

by CO measurements to account for non-compliance would not be appropriate.  
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EXHIBIT 3-4.  2018 VEHICLE EMISSIONS ESTIMATES FOR PM 2 . 5 ,  NOX ,  AND SO 2  

SCENARIO 

TOTAL VEHICLE EMISSIONS (TONS/YEAR) 

PM2.5 NOX SO2 

Full Compliance 4,092 164,038 21,908 

Non-
Compliance 

Adjusted 

Upper 
Bound 

5,176 203,564 21,908 

Lower 
Bound 

4,297 175,097 21,908 

 

Implementing the MINAM emissions model assuming perfect compliance results in 

estimates of PM2.5 emissions of 4,092 tons per year, NOX emissions of 164,038 tons per 

year, and SO2 emissions of 21,908 tons per year. We found that accounting for non-

compliance resulted in a 5 to 26 percent increase in PM2.5 emissions and a 6 to 24 percent 

increase in NOX emissions (Exhibits 3-5 and 3-6). SO2 emissions were not adjusted and 

therefore do not vary between the full compliance and non-compliance adjusted 

scenarios. Appendix A provides greater detail on these estimates, including the share of 

emissions by vehicle fuel type. 

EXHIBIT 3-5.  ESTIMATED PRIMARY PM 2 . 5  EMISSIONS,  2018  
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EXHIBIT 3-6.  ESTIMATED NOX  EMISSIONS,  2018  
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CHAPTER 4  |  AIR QUALITY DATA AND MODELING  

In this chapter, we describe our approach to characterizing recent PM2.5 concentrations in 

Lima-Callao. First, we describe available air quality monitor data and satellite-derived 

PM data in the region, as well as our approaches to fuse these data sources. Second, we 

outline our approach to estimating the contribution of transportation sources to ambient 

PM2.5 concentrations based on the emissions data described in the previous chapter. 

4.1  AIR QUALITY SURFACES  

Several data sources provide estimates of ambient PM2.5 concentrations in Lima-Callao. 

We describe these air quality surfaces below and weigh the relative benefits and 

limitations of each data source. 

4.1.1  MONITOR SURFACES  

Monitor data in Lima-Callao were provided by MINAM covering a range of pollutants 

(PM2.5, PM10, SO2, NO2, O3, and CO) and temporal scales. Pollutant concentrations were 

summarized at hourly, daily, monthly, and annual timesteps since 2000.10 The monitors 

analyzed are owned and operated by two separate agencies: Ministry of Health (MINSA) 

and the National Meteorology and Hydrology Service of Peru (SENAMHI).  

To best depict the air quality in the Lima-Callao metropolitan area, including “hot spots” 

of concern to MINAM (e.g., localized high pollutant concentrations in Callao), we used 

hourly PM2.5 measures from 10 monitors in 2019 and supplemented these values with 

daily PM2.5 measures from two active samplers in the Callao district.11,12 We combined 

the measures into a single dataset by converting hourly PM2.5 concentrations to daily 

averages for each 24-hour period.13  

Exhibit 4-1 maps these air quality monitor stations in Lima-Callao. Since monitor data 

provides concentrations at a fixed location, we used the Voronoi Neighborhood 

Averaging (VNA) method in BenMAP-CE to interpolate PM2.5 concentrations at a 1km x 

                                                      

10
 Some pollutants and metrics are only available in select years. 

11
 Daily monitoring data in Callao are only available for approximately one week of each month in 2019 from the 

Environmental Assessment and Enforcement Agency (OEFA). 

12
 Additional monitors provide data in earlier years (e.g., 27 in 2016), but these data risk reflecting older air quality levels 

and distributions. 

13
 After converting the hourly data to daily averages, we excluded eight outlier daily values for three monitors.  
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1km grid (not pictured). The VNA method calculates an inverse-distance weighted 

average for each grid cell from the monitors surrounding the grid’s center.
14

  

EXHIBIT4-1.  AVAILABLE AIR QUALITY MONITORING STATIONS IN LIMA-CALLAO (2019)  

 

                                                      

14
 See Appendix B in the BenMAP-CE user manual for a detailed discussion of VNA methods: 

https://www.epa.gov/sites/production/files/2015-04/documents/benmap-ce_user_manual_march_2015.pdf  

https://www.epa.gov/sites/production/files/2015-04/documents/benmap-ce_user_manual_march_2015.pdf
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4.1.2  SATELLITE SURFACES  

In areas lacking monitor coverage, satellite data can be useful for estimating ambient 

surface concentrations of PM2.5. In areas with robust monitoring networks, those data are 

likely to best represent ground-level ambient concentrations (assuming appropriate 

quality control procedures are followed); however, satellite data still play an important 

role by filling gaps between monitored locations and providing information on the spatial 

distribution of PM2.5 at finer resolutions. Lima-Callao has an established network of 

monitors; however, coverage is more limited in outer districts. Therefore, we leveraged 

two satellite-based estimates for the Lima-Callao metropolitan area: an estimated surface 

from van Donkelaar et al. (2016) and an estimated surface from Shaddick et al. (2017). 

The van Donkelaar surfaces provide annual estimates of PM2.5 at 0.01° resolution (1km x 

1km) for 1998-2016 and the Shaddick surfaces provide annual estimates of PM2.5 at 0.1° 

(10km x 10km) resolution for 2014 and 2016. 

The van Donkelaar et al. (2016) and Shaddick et al. (2017) surfaces combined 

information from satellites, model simulations and ground-level monitors. Their methods 

are explained in further detail in Appendix B. Notably, both surfaces incorporate monitor 

data from the WHO Global Ambient Air Quality Database, which contains only one 

monitor with a directly measured estimate for PM2.5 for Lima-Callao.15 As such, while the 

surfaces may provide insight into the spatial distribution of air pollution, the magnitude of 

PM2.5 concentrations may not accurately reflect real-world conditions (as measured by 

monitors). 

Therefore, IEc performed additional local calibration of the van Donkelaar and Shaddick 

surfaces for 2016 using data from twelve SENAMHI and MINSA monitoring stations. 

Satellite surface calibration was broken into four steps: (1) calculating annual PM2.5 

averages at the monitor locations, (2) calculating the ratio between monitor and satellite 

annual PM2.5 averages, (3) spatially interpolating the ratios to create a calibration surface, 

and (4) multiplying the calibration surface against the satellite surface to create a locally 

calibrated air quality surface. These steps, implemented in ArcMap version 10.4.1 using 

the Spatial Analyst package, are explained in greater detail in Appendix B.  

4.1.3  SUMMARY OF AIR QUALITY SURFACES  

Exhibit 4-2 displays the three final surfaces used to assess the mortality burden of 

ambient PM2.5 in Lima-Callao. Exhibit 4-2 (a) shows 2019 monitor data interpolated to a 

1km x 1km grid. The 2019 monitor surface had an average daily PM2.5 concentration of 

33.0 µg/m3, with a minimum and maximum observed concentration of 16.2 µg/m3 and 

46.9 µg/m3, respectively. Exhibit 4-2 (b) is the 10km x 10km 2016 Shaddick model 

surface, locally calibrated using monitor data (see Appendix B). The Shaddick model 

surface had an annual average PM2.5 concentration of 21.4 µg/m3, with a minimum and  

                                                      

15
 World Health Organization. WHO Global Ambient Air Quality Database (Update 2018); WHO: Geneva, 2018: 

https://www.who.int/airpollution/data/cities/en/ 

https://www.who.int/airpollution/data/cities/en/
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EXHIBIT 4-2.  AIR QUALITY SURFACES16 

 

+

                                                      

16
 There are numerous ways one could interpolate between monitors to develop an air quality surface. Exhibit 4-2a was developed using the BenMAP-CE default interpolation 

procedure, Voronoi Neighborhood Averaging (VNA). The VNA interpolation method may or may not accurately reflect ground-level conditions in Lima-Callao. 

a) 2019 Monitors 

b) 2016 Shaddick Model  

(locally calibrated) 

c) 2016 Van Donkelaar Model 

(locally calibrated) 
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maximum observed concentration of 11.8 µg/m3 and 36.4 µg/m3, respectively. Lastly, 

Exhibit 4-2 (c) is the 1km x 1km van Donkelaar model surface, calibrated using monitor 

data (see Appendix B). The van Donkelaar model surface had an annual average PM2.5 

concentration of 21.6 µg/m3, with a minimum and maximum observed concentration of 

10.5 µg/m3 and 53.5 µg/m3, respectively. 

4.2  AIR QUALITY MODELING  

In the previous section, we presented data sources and methods used to characterize 

recent concentrations of PM2.5 in the Lima-Callao region. The resulting air quality 

surfaces are used to assess the mortality burden associated with all sources of PM2.5. To 

assess the transport-attributable mortality burden, we needed a means of quantifying the 

effect of transportation emissions on ambient PM2.5 concentrations. We employed a 

reduced-form air quality modeling technique employed in past studies commissioned by 

MINAM: emissions concentration factors (FECs, from the Spanish factor emisión-

concentración). The FECs used in this report were developed for vehicle emissions in the 

Valparaiso region of Chile.17 While FECs exist for Lima, they are not specific to the 

transportation sector. After consultation with MINAM, we elected to use the Valparaiso 

FECs, as this coastal and mountainous region may be similar to the Lima-Callao 

Metropolitan area in important meteorological and topographical respects. FECs are 

modeled by the following equation: 

𝐹𝐸𝐶𝑖
𝑡 =  (

δC𝑖
𝑡

𝛿𝐸𝑡)

−1

 ≈  
𝐸𝑖

𝑡

𝐶𝑡
 

where 𝐹𝐸𝐶𝑖
𝑡  is the emission-concentration factor in zone i for year t in tons/(µg/m3), C𝑖

𝑡 is 

the ambient concentration of PM2.5 in zone i for year t in µg/m3, and 𝐸𝑖
𝑡 is pollutant 

emissions in zone i for year t in tons. Pollutant-specific FECs for vehicle emissions are 

shown in Exhibit 4-3.  

EXHIBIT 4-3.  POLLUTANT-SPECIFIC EMISSION-CONCENTRATION FACTORS (FEC)  

POLLUTANT 

FEC 

(TON/YEAR PER µg/m3) 

PM2.5 1,148.106 

SO2 15,220.700 

NOx 18,867.925 

                                                      

17
 GreenLab, 2011: https://silo.tips/download/estudio-co-beneficios-de-la-mitigacion-de-gei 

https://silo.tips/download/estudio-co-beneficios-de-la-mitigacion-de-gei
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We estimated the total contribution to ambient concentrations from primary PM2.5 from 

NOX, SO2 and PM2.5 vehicle emissions according to the following equation: 

𝐶𝑝 = (
1

𝐹𝐸𝐶𝑝
) ∗ 𝐸𝑝, 

 

where C is the contribution to ambient PM2.5 concentrations of pollutant p, FECp is the 

emission-concentration factor for pollutant p, and Ep are the primary emissions for 

pollutant p. We estimated contributions to ambient PM2.5 concentrations for the full 

compliance, non-compliance upper bound, and non-compliance lower bound scenarios. 

Finally, we isolated the contribution of non-compliant emissions by subtracting the full 

compliance total emissions from the non-compliant vehicle emissions, such that: 

𝐶𝑛𝑐 = 𝐶𝑛𝑐_𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 − 𝐶𝑓𝑢𝑙𝑙 

where Cnc are non-compliant emissions, Cnc_adjusted are total vehicle emissions adjusted for 

non-compliance, and Cfull are total vehicle emissions assuming full compliance. This 

estimated non-compliant emissions rather than the total emissions of non-compliant 

vehicles. Specifically, a non-compliant vehicle has a portion of emissions that are 

compliant (i.e. would have still been emitted if they met standards) and a portion of 

emissions that are in exceedance of the standard. To address the mortality burden of non-

compliance, we determined the contribution of only the excess emissions. Results of FEC 

calculations are shown in Exhibit 4-4.  

EXHIBIT 4-4.  TRANSPORTATION AND NON-COMPLIANT VEHICLE EMISSION CONTRIBUTIONS TO 

AMBIENT PM 2 . 5  CONCENTRATIONS  

SCENARIO 

CONTRIBUTION OF VEHICLE EMISSIONS TO AMBIENT 

PM2.5 CONCENTRATIONS (µg/m3) 

CONTRIBUTION 

OF NON-

COMPLIANT 

EMISSIONS PM2.5 NOX SO2 TOTAL 

Full Compliance 3.56 8.69 1.44 13.70 N/A 

Non-
Compliance 

Adjusted 

Upper 
Bound 

4.51 10.79 1.44 16.74 3.04 

Lower 
Bound 

3.74 9.28 1.44 14.46 0.76 

 

Exhibit 4-5 shows the relative contributions of the transport sector (compliant and non-

compliant emissions) and other sources to ambient concentrations of PM2.5. We estimated 

the contribution of other sources, both anthropogenic and non-anthropogenic, by 
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subtracting the total vehicle contribution to ambient PM2.5 concentrations from the 2016 

annual average of ambient PM2.5 concentrations in Lima-Callao18.  

The annual average PM2.5 concentration for 2016 was 25.0 µg/m3. Vehicle emissions 

contribute between 67 and 58 percent (upper and lower bounds) of ambient PM2.5 

concentrations and non-compliant emissions contribute between 12 and 3 percent (upper 

and lower bounds). 

EXHIBIT 4-5.  CONTRIBUTIONS OF TRANSPORT SECTOR AND  OTHER SOURCES TO 2016 AVERAGE 

PM 2 . 5  CONCENTRATIONS   

 
 

We note that the PM2.5 contributions displayed in Exhibit 4-5 reflect mean effects in the 

region. While this analysis evaluates transportation emissions impacts and contributions 

to air pollution at the regional and district level, research has shown that air pollution can 

be significantly higher within a short distance of large roadways and other transportation 

facilities, especially within the first 150-300 meters, compared with district-level air 

pollution concentrations (Karner et al., 2010). Individuals living, working and going to 

school within this short distance of roadways have increased risks for adverse health 

effects, including premature mortality (Health Effects Institute 2010). As a result, relying 

on district-level air quality analyses may underestimate the impacts of transportation 

sources on the overall mortality burden to the population of Lima-Callao.

                                                      

18
 The annual average was estimated in BenMAP-CE using 2016 monitor data and is population- and spatially-weighted. The 

other sources category is expected to include both anthropogenic and non-anthropogenic sources of emissions. 
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CHAPTER 5  |  MORTALITY BURDEN ESTIMATION AND VALUATION  

In this chapter, we detail our methods for assessing the mortality burden associated with 

PM2.5 concentrations in Lima-Callao. In total, we performed three health benefits 

analyses: 

1. The total mortality burden of current PM2.5 concentrations in Lima-Callao; 

2. The contribution of transportation emissions to the total mortality burden; and 

3. The contribution of non-compliant vehicle emissions to the total mortality 

burden. 

For these analyses, we used the USEPA’s Environmental Benefits Mapping and Analysis 

Program – Community Edition (BenMAP-CE) version 1.5.2.0, an open-source program 

that quantifies and values the adverse health effects associated with changes in pollutant 

concentrations. The remainder of this chapter provides an overview of our approach, 

including our data sources for key inputs such as population, baseline incidence rates, and 

concentration-response functions from the epidemiological literature. Finally, we provide 

an overview of our valuation approach. 

5.1  OVERVIEW OF APPROACH  

We used BenMAP-CE to estimate the impact of PM2.5 concentrations on premature 

mortality by assessing the difference in the risk of those endpoints under the baseline and 

control scenarios presented in Chapter 2. BenMAP-CE relies on health impact functions 

to quantify the change in incidence of adverse health impacts stemming from changes in 

ambient pollutant concentrations: 

∆𝑦 =  𝑦𝑜 ∙ (1 − 𝑒−𝛽∙∆𝑃𝑀) ∙ 𝑃𝑜𝑝 

where ∆𝑦 is the change in the incidence of the adverse health effect, 𝑦𝑜 is the baseline 

incidence rate for the health effect, beta (𝛽) is a coefficient derived from a relative risk 

(RR) estimate associated with a change in exposure (i.e., pollutant concentration) as 

expressed in concentration-response functions, ∆𝑃𝑀 is the change in concentrations of 

fine particulate matter, and Pop is the exposed population.
19  

                                                      

19 Based upon the functional form of the underlying concentration-response function, the functional form of the health 

impact function may differ. ∆𝑃𝑀 may also be replaced by concentrations of other pollutants (e.g., ozone) or conditions 

(e.g., temperature).  
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5.2  DATA INPUTS  

We drew upon multiple data sources to parameterize and implement the generic health 

impact function presented above. These data sources are described below. 

5.2.1  POPULATION  

MINAM provided district-level population data from the Peruvian National Statistical 

System (INEI) for the period 2005 to 2015, as well as national projected population data 

from 1950 through 2070 in five-year increments. Both population datasets include age 

stratification into five-year age bins. To account for population growth since 2015 (the 

most recent year with district-level population estimates), we projected the 2015 district-

level population to the year 2020 by applying age-specific national growth rates. Finally, 

we formatted these data for use in BenMAP-CE.  

5.2.2  BASELINE MORTALITY INCIDENCE  

To characterize baseline rates of death, we processed data from the Peruvian Ministry of 

Health (MINSA) National Center for Epidemiology, Prevention and Control of Disease 

(CNEPCE). These data include counts for a range of mortality and morbidity endpoints 

from 1986 through 2016. Available mortality data are reported by district, gender, and 

five-year age increments. For this analysis, we focused on the mortality incidence for the 

following endpoints: Ischemic Heart Disease (IHD), Acute Lower Respiratory Infection 

(LRI), Chronic-Obstructive Pulmonary Disease (COPD), Lung Cancer, Cerebrovascular 

Disease, and Natural Causes (hereafter referred to as Non-Communicable Diseases 

(NCD) plus LRI). These endpoints were selected to match the health impact functions 

described in the following section. 

Prior to use in BenMAP-CE, we converted mortality count data to incidence rates (cases 

per person per year). First, we formatted the mortality data to align with the level of 

aggregation in the population dataset (year, district, endpoint, and age group). We then 

divided the counts by the district- and age-specific population for corresponding years. 

To minimize variability across years, we estimated incidence rates for a five-year period 

(2011 to 2015). In some cases, we aggregated incidence rates from various causes to align 

with the endpoint definitions in the health impact functions (described below). For 

example, Tapia et al. (2020) reflects respiratory and circulatory mortality. 

5.2.3  HEALTH IMPACT FUNCTIONS  

As described above, health impact functions provide the quantitative framework to 

estimate changes in health outcomes resulting from changes in pollutant concentrations, 

incorporating data on population and baseline incidence. These functions are derived 

from concentration-response relationships published in epidemiological research, which 

provide insight into the strength of a pollutant’s effect on health. For example, a study 

may suggest that for every 10 µg/m3 change in PM2.5, we can expect baseline mortality 

incidence to change by 6 percent. Exhibit 5-1 summarizes our selected health impact 

functions for assessing mortality burden. 
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EXHIBIT 5-1.  BENMAP-CE HEALTH IMPACT FUNCTIONS  

AUTHOR MORTALITY ENDPOINT GROUP AGES 

Burnett et al. (2018)  

Non-communicable diseases plus lower respiratory 
infection (NCD + LRI) 

25-99 

Cerebrovascular disease 25-99 

Chronic obstructive pulmonary disease (COPD) 25-99 

Ischemic heart disease (IHD) 25-99 

Lung cancer 25-99 

Lower respiratory infection (LRI) 25-99 

Tapia et al. (2020) All respiratory and circulatory 0-99 

 

Two epidemiological studies provide the concentration-response relationships 

summarized in Exhibit 5-1. First, we utilized the Global Exposure Mortality Model 

(GEMM) health impact functions pre-loaded into BenMAP-CE. The GEMM is a family 

of functions developed by Burnett et al. (2018) to estimate the global burden of disease 

attributable to PM2.5 exposure over the entire global exposure range. The GEMM consists 

of risk functions for six mortality endpoints: NCD + LRI, Cerebrovascular Disease, 

COPD, IHD, Lung Cancer, and LRI.20 Notably, the GEMM is a meta-analytic function 

developed based on high-quality PM2.5 studies conducted globally. Additionally, the 

functions are non-linear. That is, the strength of the effect of PM2.5 on premature deaths 

depends upon the observed PM2.5 concentrations. In general, the functions suggest that 

the marginal effect of PM2.5 lessens at higher concentrations. 

Second, we utilized Tapia et al. (2020) estimates of PM2.5-attributable respiratory and 

circulatory mortality.21 While these estimates are specific to Lima, Peru, the study 

                                                      
20

 While age-specific GEMM functions are presented in Burnett et al. (2018), we leverage the all-ages (25-99) functions to 

capture population-wide effects. Similarly, Burnett et al. (2018) provide estimates with and without a Chinese male cohort 

included in their meta-analysis. We leverage the GEMM functions with the Chinese male cohort because these estimates 

are, in part, informed by higher PM2.5 exposure levels experienced by the Chinese cohort. These higher concentrations may 

be relevant to air quality conditions in Lima-Callao. 

21
 We identified the Tapia et al. (2020) study by conducting a literature review for PM2.5 epidemiological studies local to 

Lima-Callao, Peru, or South America using a broad keyword search in Google Scholar and PubMed. We identified 17 

potentially relevant papers and abstracts, then narrowed this list to three potential candidates for health impact 

calculation in BenMAP-CE: Hansel et al. (2018), Tapia et al. (2019) and Tapia et al. (2020). The three studies were selected 

due to their relevant respiratory and cardiovascular endpoints. Hansel et al. (2018) provided functions that relate PM2.5 

exposure to asthma morbidity, including uncontrolled asthma, adverse asthma-related quality of life, health care utilization 

and missed school days. Tapia et al. (2019) provided functions that relate PM2.5 exposure with cardiorespiratory emergency 

room visits and Tapia et al. (2020) provided functions that relate PM2.5 exposure with cardiorespiratory mortality. We did 

not apply the other functions identified as they are for morbidity endpoints and this report focuses solely on the mortality 

health burden.   
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assesses mortality associated with short-term PM2.5 exposures. As such, we expect the 

study to understate the total impacts of PM2.5 due to strong empirical evidence that much 

of the pollutant’s effect is associated with its long-term exposure. 

5.2.4  VALUATION  

Based on direction from MINAM, we valued mortality using a value per statistical life 

(VSL) estimate from Seminario de Marzi (2017). The VSL represents the contribution to 

national income per avoided death, referred to as human capital. This approach values 

mortality effects by considering the labor productivity of individuals and their future 

income. The authors synthesize estimates by age and sex using an eight percent discount 

rate. The resulting average value, $0.14 million (2017$), is applied to premature deaths to 

reflect the costs of PM2.5-attributable mortality. As we note in the subsequent chapters, 

this estimate is associated with some uncertainty, and alternative valuation methodologies 

may result in different estimates. For example, MINAM’s analysis of the Euro 6 

standards included a range of estimates from $0.14 to $1.6 million (2017$).22   

 

 

                                                      
22

 An alternative to the human capital approach would be to use an estimate of willingness to pay (WTP) for mortality risk 

reductions, for example those provided by Robinson et al. (2018). The VSL represents individuals’ WTP for incremental 

reductions in their annual risk of death and is generally understood to be a more comprehensive approach to valuing 

mortality risk reduction. Robinson et al. (2018) extrapolate a Peru-specific VSL of $1.21 million (2015$) from the OECD VSL 

base ($3 million) using the ratio of gross national income per capita between Peru and OECD countries. While we are 

unaware of any WTP studies conducted in Peru, the Robinson et al. provides methods and results for transferring VSL values 

to countries without primary estimates. The authors synthesize available estimates in other countries and transfer these 

values to Peru, among many other countries, by accounting for differences in per capita income, a key factor influencing 

WTP and VSL. We use the human capital approach based on direction from MINAM. 
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CHAPTER 6  |  RESULTS  

In this chapter, we present the results of our mortality burden analyses using the methods 

and data sources described in previous chapters. First, we present the quantified and 

valued mortality impacts associated with total PM2.5 concentrations in Lima-Callao. 

Second, we present results specific to the transportation sector. Finally, we estimate the 

burden associated with excess emissions from non-compliant vehicles in the region. In 

Appendix D, we present these results stratified by Lima-Callao District. 

6.1  TOTAL PM2.5 ATTRIBUTABLE MORTALI TY BURDEN  

We estimate that ambient PM2.5 emissions in Lima-Callao result in over 10,000 deaths 

annually. These results, summarized in Exhibit 6-1, vary depending on the selected health 

impact function and baseline air quality surface. We highlight the GEMM NCD & LRI 

results as our preferred estimates. This HIF captures a broader range of air pollution 

attributable deaths relative to the five cause-specific (5 COD, i.e., cause-of-death) 

GEMM estimates and the local Tapia et al. (2020) results. Further, the Tapia et al. study 

only accounts for short-term exposure to PM2.5 and ignores the substantial long-term 

mortality impacts of air pollution. Results are largely stable across air quality surfaces, 

with the greatest burden resulting from the 2019 monitor data (12,016 deaths) relative to 

the Shaddick and van Donkelaar surfaces (10,556 and 10,838, respectively). For the 

remainder of this report, we present the Shaddick surface and GEMM NCD & LRI results 

as our primary estimates. We highlight the Shaddick surface results because Shaddick 

contains more recent data and was generated using a WHO model which builds upon 

earlier van Donkelaar methods. The model estimates the spatially varying relationship 

between ground measurements of PM2.5 and factors from the various air quality models 

(see Appendix B for details). 

EXHIBIT 6-1.  ESTIMATED PM 2 . 5  ATTRIBUTABLE MORTALITY BURDEN  

CAUSE OF MORTALITY 

PREMATURE DEATHS 

MONITORS SHADDICK 

VAN 

DONKELAAR 

GEMM: NCD + LRI 12,016 10,556 10,838 

GEMM: 5 COD 7,425 6,517 6,514 

Lower respiratory infection 4,022 3,538 3,531 

Ischemic heart disease 1,486 1,321 1,338 
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CAUSE OF MORTALITY 

PREMATURE DEATHS 

MONITORS SHADDICK 

VAN 

DONKELAAR 

Cerebrovascular disease 987 843 841 

Lung Cancer 590 524 508 

COPD 339 292 296 

Tapia: Respiratory & circulatory (short-term 
exposure) 

1,486 1,245 1,272 

 

Total PM2.5 attributable deaths, estimated at 10,556, represent the annual toll of air 

pollution in the region. To the extent that air quality, population, and baseline rates of 

death are relatively comparable over time, we expect that these adverse impacts are likely 

to occur each year. The costs associated with these deaths amount to $1.5 billion annually 

2017$).23 Notably, these costs are irrespective of source: both anthropogenic (e.g., 

industry, transportation) and non-anthropogenic (e.g., sea salt, crustal dust) sources 

contribute to the total ambient PM2.5 concentrations in the region. In the following 

sections, we present the burden associated with transportation sources. 

6.2  TRANSPORT ATTRIBUTABLE PM2.5 MORTALITY BURDEN  

Emissions from on-road vehicles in Lima-Callao result in 5,150 to 6,200 premature 

deaths each year. These results are summarized in Exhibit 6-2 along with the associated 

economic costs. It is important to note that the contribution of vehicle emissions to 

ambient PM2.5 assumes there is some level of non-compliance in meeting emissions 

standards (i.e. neither estimate represents 100 percent compliance with emissions 

standards). Additionally, the variance in vehicle emissions contribution is solely due to 

the variance in non-compliant vehicle emissions. 

EXHIBIT 6-2.  ESTIMATED PM 2 . 5  ATTRIBUTABLE ANNUAL MORTALITY BURDEN, TRANSPORTATION 

SECTOR  

VEHICLE EMISSIONS 

CONTRIBUTION 

ANNUAL PM2.5 ATTRIBUTABLE 

DEATHS (SHADDICK) 

ANNUAL ECONOMIC COSTS 

(2017$, MILLIONS) 

Lower bound 5,150 $710 

Upper bound 6,200 $860 

 

                                                      

23
 Using the range of VSL estimates in MINAM’s Euro 6 analysis, the total monetized mortality burden in Peru may range from 

$1.5 billion (VSL = $0.14 million) to $16.9 billion (VSL = $1.61 million). 
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The estimated mortality burden for transportation sources amounts to over half of the 

total PM2.5 mortality burden, reflecting the sector’s outsized influence on air pollution in 

the region. The range in mortality estimates reflects uncertainty in the exact emissions 

rates of non-compliant vehicles. As summarized in Exhibit 6-2, the economic costs 

associated with transportation-attributable PM2.5 concentrations are $710 to $860 million 

annually. As we describe in Appendix C, these estimates may understate the burden of 

transportation sources due to the non-linearity of the GEMM function. Additionally, as 

noted in Chapter 4, these results may not fully capture local-scale effects, including 

exposures to significant greater PM2.5 concentrations on or near roadways.  

6.3  PM2.5 MORTALITY BURDEN FROM NON-COMPLIANT VEHICLES  

As discussed in Chapter 3, MINAM emissions measurements suggest roughly half of all 

on-road vehicles in Lima-Callao are out of compliance with emissions standards. We 

adjust emissions inventories accordingly and estimate the resulting air quality and health 

impacts. In total, we find that emissions from non-compliant vehicles in excess of 

emissions standards are responsible for 248 to 991 deaths annually. These results are 

presented in Exhibit 6-3. Excess emissions (i.e., above and beyond compliant emission 

levels) from non-compliant vehicles account for  roughly 5 to 16 percent of the 

transportation mortality burden (comparing Exhibits 6-2 and 6-3). 

EXHIBIT 6-3.  ESTIMATED PM 2 . 5  ATTRIBUTABLE ANNUAL MORTALITY BURDEN, NON-COMPLIANT 

EMISSIONS  

VEHICLE EMISSIONS 

CONTRIBUTION 

ANNUAL PM2.5 ATTRIBUTABLE 

DEATHS (SHADDICK) 

ANNUAL ECONOMIC COSTS 

(2017$, MILLIONS) 

Lower bound 248 $34 

Upper bound 991 $140 

 

As noted above, the range in mortality estimates reflects uncertainty in the exact 

emissions rates of non-compliant vehicles. The associated economic costs for non-

compliant vehicle emissions amounts to $34 to $140 million annually. Policymakers may 

interpret these estimates as the potential annual benefits that may be achieved through 

regulatory measures that address the entirety of non-compliant emissions. That is, 

achieving perfect compliance with vehicle emissions standards would be expected to 

avoid 248 to 991 deaths annually, resulting in annual benefits of $34 to $140 million. 

While perfect compliance may be infeasible, the mortality burden associated with non-

compliant vehicle emissions is sizeable—any policy that materially improves compliance 

will produce significant public health benefits in Lima-Callao. 



  

 

7-1 

 

CHAPTER 7  |  DISCUSSION AND NEXT STEPS  

In the previous chapters, we described our analytic approach and findings in detail. In this 

chapter, we summarize our findings and discuss their implications. We also suggest 

possible next steps for researchers and MINAM staff. 

7.1  SUMMARY OF FINDINGS  

Our mortality burden analyses provide evidence that PM2.5 concentrations in the Lima-

Callao region represent a substantial public health concern. Overall, ambient 

concentrations typically range from 11.8 to 36.4 µg/m3 on an annual basis, with some 

“hot spots” likely to experience markedly higher pollution concentrations, particularly at 

shorter time and distance scales. These values exceed the WHO annual guideline of 10 

µg/m3. In total, we estimate that over 10,000 deaths each year result from PM2.5 exposure 

in Lima-Callao. The economic costs of this loss amount to $1.5 billion USD annually. 

The transportation sector represents a major contributor to ambient PM2.5—and premature 

mortality—in the region. We expand upon the overall PM2.5 burden analysis by more 

closely evaluating the mortality burden associated with PM2.5 concentrations originating 

from on-road vehicles. We estimate that 14.5 to 16.7 µg/m3 of ambient PM2.5 

concentrations (58 to 67 percent) result from on-road transportation emissions in the 

region. These emissions result in 5,150 to 6,200 premature deaths annually, equating to 

$710 to $860 million in economic costs. 

Regulatory interventions in Lima-Callao may lessen the mortality burden associated with 

transportation emissions. We highlight the role that non-compliant vehicles play in 

regional emissions by adjusting available emissions inventories using recent MINAM 

estimates of non-compliance rates (roughly 3 to 12 percent) in the region. We find that 1 

to 3 µg/m3 in the region may be explained by emissions from this subset of vehicles. The 

wide range in estimates stems from uncertainty in quantifying emissions from these 

vehicles. Emissions from non-compliant vehicles in excess of federal vehicle emissions 

standards result in 250 to 990 premature deaths annually, equating to $34 to $140 million 

in economic costs. These costs may be reduced through regulatory measures, such as 

increased enforcement or enhanced I&M programs. 

7.2  UNCERTAINTIES  

The results presented in this report are accompanied by numerous sources of uncertainty, 

of which the net effect on our estimates is ambiguous. We attempt to catalogue the major 

sources of uncertainty in Exhibit 7-1.  
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EXHIBIT 7-1.  KEY UNCERTAINTIES WITH BURDEN ANALYSES  

POTENTIAL LIMITATION / SOURCE 

OF ERROR 

DIRECTION OF POTENTIAL 

BIAS FOR ESTIMATED BURDEN 

Health impacts associated with 
other pollutants are not 
quantified. 

Underestimate. Epidemiological evidence supports a causal 
relationship between ozone exposure and mortality and 
morbidity effects. Quantifying and valuing these outcomes 
would increase the overall burden of air pollution in the 
region. 

Morbidity effects are not 
quantified. 

Underestimate. Epidemiological evidence supports a causal 
relationship between PM2.5 exposure and numerous non-
fatal respiratory and cardiovascular effects. Quantifying 
and valuing these outcomes would increase the overall 
burden. 

Mortality burden for near-road 
populations. 

Underestimate. Epidemiological evidence supports 
additional health effects to populations living very close to 
large roadways. Quantifying and valuing these outcomes 
would increase the overall burden of air pollution in the 
region.  

Prevalence of non-compliant 
vehicles. 

Unable to determine based on current information. Non-
compliance rates are calculated based on a limited sample 
(n = 2,625) but may be lower or higher in the entire 
vehicle fleet.  

Emissions rates for non-
compliant vehicles. 

Unable to determine based on current information. Non-
compliance is determined based on tests that do not 
measure for NOX or PM2.5. Empirical estimates of the 
effects on these pollutants are not available. We provide 
two potential assumptions on the emissions from non-
compliant vehicles; however, the true emissions may fall 
above or below these bounds. 

Air quality modeling approach. 

Unable to determine based on current information. 
Alternative air quality models may better characterize the 
magnitude and spatial distribution of PM2.5 concentrations 
stemming from one ton of precursor emissions. 

Concentration-response 
relationship between PM2.5 and 
mortality. 

Unable to determine based on current information. The 
GEMM function compiles results from many epidemiological 
studies, some of which find weaker or stronger PM2.5-
induced effects. We also do not have an estimate of long-
term mortality impacts based on a locally conducted 
study; the only local study of mortality impacts only 
assessed those associated with short-term exposures, 
which will underestimate longer-term mortality impacts. 

No cessation lag used for 
premature mortality. 

Overestimate. If there is a time lag between PM2.5 changes 
and premature mortality, then benefits occurring in the 
future should be discounted. 

Valuation of mortality benefits. 

Unable to determine based on current information. The 
human capital valuation approach is frequently thought to 
underestimate individual’s true willingness to pay to 
reduce their risk of death. However, no primary studies 
have been conducted in Peru to estimate WTP for 
mortality risk reductions. MINAM’s Euro 6 analysis includes 
several VSL estimates larger than the estimate employed 
in this analysis.  
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Addressing specific uncertainties, where possible, is an important next step MINAM staff 

and academic researchers. While the uncertainties presented in Exhibit 7-1 may be 

deemed acceptable for the types of analyses summarized in this report, addressing one or 

more of these limitations may be warranted for regulatory benefits analyses. We present 

our recommended topics for future research in the following section.  

7.3  NEXT STEPS  

As discussed above, our results are accompanied by data and methodological limitations, 

some of which may be addressed in future analyses by MINAM and academic 

researchers. We recommend several areas of focus for building upon the methods 

presented in this report: 

• Pursue more advanced air quality modeling, such as leveraging photochemical air 

quality models previously employed in Lima-Callao (see Sánchez-Ccoyllo et al. 

2016); 

• Quantify and value morbidity effects (e.g., onset asthma and exacerbations, 

respiratory and cardiovascular hospitalizations and emergency room visits); 

• Consider the impacts of transportation-attributable ozone formation and exposure; 

• More closely evaluate near roadway exposures (i.e., health impacts resulting from 

exposure to elevated PM2.5 and other pollutant concentrations near busy, polluted 

roads and highways). 

In addition to addressing the methodological limitations outlined above, this report 

presents a framework that may be expanded to answer related research questions. First, 

the burden analyses conducted thus far may be adapted to assess the benefits of specific 

regulatory measures, such as increased enforcement for vehicle emissions standards and 

enhanced vehicle I&M programs. Second, the burden analyses may be expanded to assess 

the PM2.5-attributable mortality burden stemming from other sources in Lima-Callao. For 

example, the results could be stratified further to highlight the mortality burden 

associated with specific sources within the transportation sector, such as buses or trucks. 

Additionally, this analysis could be expanded to assess the mortality burden attributed to 

PM2.5 generated through energy production or chemicals manufacturing, which are two 

prominent industries within Lima-Callao (MINAM, 2018). Such results could also be 

expressed at the vehicle level. Understanding the average mortality burden resulting from 

one non-compliant vehicle, for example, may serve as a useful guide for policymakers in 

(1) identifying vehicle types for targeted emissions controls and (2) assessing whether 

emissions control costs would be justified based on the societal costs associated with each 

vehicle. In addition, evaluations could be made for implementing PM2.5 mitigation 

strategies to reduce concentrations at the community-level, such as street cleaning, low 

emission zones, and roadside barriers as part of expanding this work to assess near-road 

exposures.  Additionally, this report presents a framework that could be expanded to 

include other sectors. Pending emissions data availability and compatibility with air 
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quality models, this framework could be applied to other sources, such as industrial point 

sources. 

Finally, we hope this report may serve as a conduit for continued technical capacity 

building for health benefits analysis. Similar analyses conducted under other Megacities 

efforts have been accompanied by workshops focused on the BenMAP-CE tool, best 

practices for conducting air pollution benefits analyses, and policy synthesis for 

advancing local air quality management efforts. We understand that MINAM is currently 

conducting a parallel analysis using the AirQ+ software. Comparing results and methods 

would serve to bolster the numbers presented in this report and to improve MINAM 

capabilities with each tool. Further, engaging additional MINAM staff and relevant 

stakeholders (e.g., academics, industry experts, municipalities) may serve to (1) 

disseminate the results more broadly and improve the usefulness of the report, and (2) 

enhance this study by incorporating alternative data sources and methods recommended 

by stakeholders. 
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APPENDIX A  |  SUPPLEMENTAL EMISSIONS ESTIMATION RESULTS  

In this section, we provide greater detail on estimated pollutant emissions from the 

transportation sector. In Chapter 3, we summarize emissions estimates by pollutant and 

compliance assumptions. Below, we further stratify these estimates to show the relative 

contributions by vehicle fuel type. 

For PM2.5 and NOx, diesel emissions comprise the majority of total annual emissions 

(Exhibits A-1, A-2). We determined that high diesel emissions are not caused by a greater 

share of diesel vehicles in the fleet. Diesel vehicles make up less than 20 percent of the 

fleet, whereas gasoline vehicles made up greater than 70 percent. Instead, diesel vehicles 

make up large share (more than 85 percent) of high emitting vehicle types such as pick-

up trucks, omnibuses, trucks, and tow trucks. In contrast, gasoline emissions are the 

largest contributor to SO2 emissions, as seen in Exhibit A-3. 

Notably, SO2 emissions are assumed to vary with sulfur content in fuels and total fuel 

consumption. Emissions controls, and thus compliance status, are assumed to not affect 

SO2 emissions in our model. 

EXHIBIT A-1.  2018 PM 2 . 5  EMISSIONS BY FUEL TYPE  

 

Notes: GLP = liquified petroleum, GNV = natural gas. 
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EXHIBIT A -2.  2018 NO X  EMISSIONS BY FUEL TYPE  

 

Notes: GLP = liquified petroleum, GNV = natural gas. 

EXHIBIT A -3.  2018 SO 2  EMISS IONS BY FUEL TYPE  

 

Notes: GLP = liquified petroleum, GNV = natural gas.
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APPENDIX B  |  SATELLITE MEASUREMENTS AND PROCESSING  

In Chapter 4, we summarize available data sources characterizing air pollution in Lima-

Callao, including both monitor and satellite data. In this Appendix, we provide greater 

detail on the satellite datasets and our methods for “ground-truthing” these datasets to 

more closely reflect monitor concentrations.  

Van Donkelaar et al. (2016) combine information from satellites, model simulations and 

monitors. Satellites provide global measurements of aerosol optical depth (AOD). The 

van Donkelaar surfaces combine AOD retrievals from the NASA Moderate Resolution 

Imaging Spectroradiometer, Multi-angle Imaging SpectroRadiometer and the Sea-

Viewing Wide Field-of-View Sensor. Next, model simulations from the GEOS-Chem 

chemical transport model are used to convert total column AOD to near-surface PM2.5 

concentrations. Finally, ground-based monitor measurements from the WHO Global 

Ambient Air Quality Database24 are used with a GWR to predict and adjust for residual 

PM2.5 bias in each grid cell from the initial satellite derived values.  

The Shaddick et al. (2017) surfaces are the result of the Data Integration Model for Air 

Quality (DIMAQ) developed by the WHO Data Integration Task Force. This model 

integrates monitor measurements from the WHO Global Ambient Air Quality Database, 

satellite remote sensing, population estimates, topography, and measures of specific 

contributors of air pollution from chemical transport models. The same methods as van 

Donkelaar et al. (2016) are used to combine AOD from multiple satellites with GEOS‐

Chem chemical transport model simulations to produce estimates of near-surface PM2.5 at 

0.1° resolution. DIMAQ goes beyond the methods of van Donkelaar et al. (2016) by 

using a Bayesian model to estimate the spatially varying relationship between ground 

measurements of PM2.5 and factors from the GEOS-Chem, TM5, and TM5-FASST 

chemical models that estimate air quality. 

Our methods for locally calibrating the satellite surfaces are broken into four steps: (1) 

calculate annual PM2.5 averages at the monitor locations, (2) calculate the ratio between 

2019 monitor and 2016 satellite annual PM2.5 averages, (3) spatially interpolate the ratios 

to create a calibration surface, and (4) multiply the calibration surface against the satellite 

surface to create a locally calibrated air quality surface.  

First, we determine the annual average PM2.5 concentration measured by monitors at each 

location. A 2016 PM2.5 annual average is available for the ten stations in the SENAMHI 

                                                      

24
 World Health Organization. WHO Global Ambient Air Quality Database (Update 2018); WHO: Geneva, 2018: 

https://www.who.int/airpollution/data/cities/en/  

https://www.who.int/airpollution/data/cities/en/
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ground monitoring network. Station information is available in Exhibit 1. Additionally, 

we use an adjusted 2019 PM2.5 annual average for two MINSA operated stations, “CA-

VMP-1” and “CA-VMP-2” as these new stations show a hotspot, or area of higher 

concentrations, in Callao which is not captured by the SENAMHI monitor network. To 

include as many monitoring locations as possible, we adjust the 2019 PM2.5 annual 

average at the Callao stations to 2016 concentrations using a ratio of 2016 to 2019 values. 

For numerator of the ratio, we use a distance-weighted average of the 2016 annual 

average from the two closest SENAMHI monitors. For the denominator of the ratio, we 

use the grid cell value at the Callao monitor locations of a 2019 annual average surface 

created using data from the ten SENAMHI monitors.  

We then determine the annual average satellite surface PM2.5 concentration at each 

location by creating a one kilometer buffer around each station and calculating an area-

weighted average within the buffer zone.  

Second, we calculate a calibration factor for each station, which is equal to the monitor 

annual average divided by the satellite annual average for each station. A calibration 

factor greater than one adjusts satellite data upwards and a factor less than one adjusts 

satellite data downwards. Third, we interpolate the calibration factors across the domain 

using a Kriging function to create a calibration surface (Exhibit B-1). Finally, we 

multiply the calibration surface against the original satellite surface to create a locally 

calibrated final surface.  
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EXHIBIT B -1.  SHADDICK AND VAN DONKELAAR CALIBRATION SURFACES  

  

b) 2016 Van Donkelaar Calibration a) 2016 Shaddick Calibration  
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EXHIBIT B-2.  SHADDICK AND VAN DONKELAAR AIR QUALITY SURFACES PRE-  AND POST-  

CALIBRATION

a) 2016 Shaddick Model b) 2016 Shaddick Model 

ground truthed 

d) 2016 Van Donkelaar Model 

(ground truthed) 
c) 2016 Van Donkelaar Model 
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APPENDIX C  |  HEALTH IMPACT ESTIMATION  

In this Appendix we discuss additional health impact results, as well as the implication of 

using a non-linear mortality function. This Appendix will include discussion of the 

GEMM functions, alternative transport contribution results, alternative non-compliant 

vehicle contribution results, and the health endpoints not discussed in Chapter 6. 

GEMM NON-LINEARITY  

As discussed in Section 5.2.3, we utilized six of the 83 non-linear GEMM functions pre-

loaded into BenMAP-CE. It is important to note that these GEMM functions are non-

linear with a decreasing marginal relationship between PM2.5 concentration and the 

mortality hazard ratio (Exhibit C-1). Because we modeled mortality burden analyses by 

removing the transportation sector’s contribution from the high end of PM2.5 

concentrations (i.e., “rolling back” baseline values), we may understate mortality burden 

due to the lower mortality response per unit change in PM2.5 at these higher 

concentrations. 

EXHIBIT C-1.  BURNETT ET AL.  (2018 )  FIGURE S6  
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s a sensitivity analysis, we calculated the contribution of transport emissions and non-

compliant vehicle emissions to the total burden of PM2.5
 in Lima-Callao by calculating the 

mortality burden as a percentage of total mortality burden based on the sector’s 

contributions to ambient PM2.5 concentrations. That is, if the sector was responsible for 

50 percent of ambient concentrations, we would apportion 50 percent of the total Lima-

Callao mortality burden to this sector. Exhibits C-2 and C-3 compare the BenMAP-CE 

GEMM function results against a direct proportional analysis for the transport and non-

compliant vehicle burden contributions. Overall, the GEMM functions may 

underestimate the contribution of the transport sector and non-compliant vehicles to the 

total burden of PM2.5.  

EXHIBIT C-2.  TRANSPORT ATTRIBUTABLE PM 2 . 5  MORTALITY BURDEN  

CAUSE OF MORTALITY 

GEMM FUNCTION 

DIRECT PROPORTIONAL 

CONTRIBUTION 

LOWER UPPER LOWER UPPER 

GEMM: NCD + LRI  5,150   6,200   6,097   7,057  

GEMM: 5 COD  4,221   4,855   3,764   4,357  

Lower respiratory 
infection 

 2,522   2,855   2,044   2,365  

Ischemic heart disease  680   814   763   883  

Cerebrovascular disease  534   616   487   563  

Lung Cancer  315   368   302   350  

COPD  171   201   168   195  
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EXHIBIT C-3.  NON-COMPLIANT VEHICLE ATTRIBUTABLE PM2.5  MORTALITY BURDEN  

CAUSE OF MORTALITY 

GEMM FUNCTION 
DIRECT PROPORTIONAL 

CONTRIBUTION 

LOWER  UPPER  LOWER  UPPER  

GEMM: NCD + LRI  248   991   322   1,281  

GEMM: 5 COD  223   890   199   791  

Lower respiratory 
infection 

 135   541   108   429  

Ischemic heart disease  33   133   40   160  

Cerebrovascular disease  30   116   26   102  

Lung Cancer  16   65   16   64  

COPD  9   34   9   35  
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APPENDIX D  |  DISTRICT-LEVEL RESULTS  

In this Appendix, we highlight the variability in mortality burden results across districts. 

The tables highlight the importance of the geographic resolution of the selected air 

quality model when viewing district level results. We compare our primary results (10km 

x 10km grid, Shaddick) with a finer scale surface (1km x 1km grid, van Donkelaar) and 

present an average effect across these models. Exhibits D-1 through D-5 provide the 

district level NCD + LRI mortality results for: 

• Total mortality burden attributed to ambient PM2.5: Exhibit C-1 

• Transport sector mortality burden: Exhibits C-2 (lower bound) and C-3 (upper 

bound) 

• Mortality burden of non-compliant emissions: Exhibits C-4 (lower bound) and C-

5 (upper bound) 

Overall, while the regional-level differences in mortality burden are negligible across 

surfaces, we observe notable differences at the district level. Such results may motivate 

air quality controls be focused in regions with significant mortality burden. 
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EXHIBIT D-1.  DISTRICT-LEVEL TOTAL PM 2 . 5  MORTALITY BURDEN  

DISTRICT NAME 

DISTRICT 

POPULATION 

(AGES 25-99) 

SHADDICK VAN DONKELAAR AVERAGE 

DEATHS DEATHS DEATHS 

RATE PER 

100,000 

Overall  6,815,428  10,556  10,838  10,697  157  

San Juan De Lurigancho  695,326   1,054   1,009   1,031   148  

Comas  361,764   624   707   665   184  

San Martin De Porres  488,004   606   654   630   129  

Lima  207,527   538   646   592   285  

Callao  304,221   535   503   519   171  

Villa Maria Del Triunfo  294,591   504   397   451   153  

Ate  394,943   370   512   441   112  

Santiago De Surco  272,592   354   376   365   134  

Carabayllo  189,698   472   247   360   190  

Lurigancho  139,146   484   215   349   251  

Villa El Salvador  291,540   256   370   313   107  

Chorrillos  224,392   350   263   307   137  

La Molina  132,567   382   228   305   230  

Los Olivos  254,864   277   320   299   117  

San Juan De Miraflores  272,025   211   381   296   109  

Rimac  120,902   302   285   294   243  

Ventanilla  271,339   315   254   285   105  

La Victoria  125,163   225   314   270   216  

Puente Piedra  210,135   242   289   266   127  

Independencia  149,822   253   272   263   175  

San Miguel  108,804   217   196   207   190  

El Agustino  125,281   165   241   203   162  

Miraflores  74,718   127   229   178   238  

San Isidro  49,229   197   145   171   348  

San Borja  94,488   130   190   160   170  

Jesus Maria  61,365   108   174   141   230  

Magdalena Vieja  63,935   116   157   136   213  

Santa Anita  149,168   91   177   134   90  

Breña  60,003   80   144   112   187  

Cieneguilla  30,285   166   23   94   311  

Magdalena Del Mar  45,329   84   100   92   203  

Surquillo  72,492   61   116   89   122  

Lince  42,557   69   108   88   208  

Bellavista  59,552   66   97   81   137  

Lurin  52,254   101   48   75   143  
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DISTRICT NAME 

DISTRICT 

POPULATION 

(AGES 25-99) 

SHADDICK VAN DONKELAAR AVERAGE 

DEATHS DEATHS DEATHS 

RATE PER 

100,000 

Pachacamac  76,225   94   51   73   96  

San Luis  42,772   48   75   61   143  

La Perla  49,511   33   79   56   113  

Chaclacayo  31,232   33   78   55   176  

Ancon  27,202   69   38   53   196  

Barranco  24,956   38   57   48   191  

Carmen De La Legua 
Reynoso 

 31,190   48   37   42   135  

Santa Rosa  12,157   25   8   17   138  

La Punta  3,131   8   8   8   249  

Punta Hermosa  5,230   9   2   6   110  

Pucusana  10,443   5   4   5   46  

Mi Peru*  -     6   2   4  NA 

Punta Negra  5,400   5   3   4   68  

San Bartolo  4,845   2   3   3   54  

Santa Maria Del Mar  1,113   1   1   1   109  

*The Mi Peru district in Callao had zero population in our dataset. Because the Shaddick and van Donkelaar surfaces 
overlap the population grid (districts), BenMAP apportions incidence results from air quality grid cells into the 
overlapping districts (including Mi Peru). 

 

  



  

 

D-4 

 

EXHIBIT D-2.  DISTRICT-LEVEL PM 2 . 5  MORTALITY BURDEN,  TRANSPORTATION SECTOR (LOWER 

BOUND)  

DISTRICT NAME 

DISTRICT 

POPULATION 

(AGES 25-99) 

SHADDICK VAN DONKELAAR AVERAGE 

DEATHS DEATHS DEATHS 

RATE PER 

100,000 

Overall  6,815,428 5,150  5,195 5,173 76 

San Juan De Lurigancho  695,326   509                     476   492   71  

Comas  361,764   299                     333   316   87  

San Martin De Porres  488,004   296                     314   305   63  

Lima  207,527   265                     318   292   141  

Callao  304,221   287                     248   267   88  

Villa Maria Del Triunfo  294,591   242                     188   215   73  

Ate  394,943   178                     242   210   53  

Santiago De Surco  272,592   171                     177   174   64  

Carabayllo  189,698   227                     117   172   91  

Lurigancho  139,146   233                     102   168   120  

Villa El Salvador  291,540   123                     173   148   51  

Chorrillos  224,392   170                     123   147   65  

La Molina  132,567   183                     107   145   109  

Los Olivos  254,864   134                     152   143   56  

Rimac  120,902   149                     135   142   117  

San Juan De Miraflores  272,025   101                     179   140   51  

Ventanilla  271,339   153                     120   136   50  

La Victoria  125,163   111                     153   132   105  

Puente Piedra  210,135   116                     136   126   60  

Independencia  149,822   122                     128   125   83  

San Miguel  108,804   108                     100   104   96  

El Agustino  125,281   80                     113   97   77  

Miraflores  74,718   62                     110   86   115  

San Isidro  49,229   97                        73   85   172  

San Borja  94,488   63                        91   77   82  

Jesus Maria  61,365   53                        88   71   115  

Magdalena Vieja  63,935   57                        80   68   107  

Santa Anita  149,168   44                        83   63   43  

Breña  60,003   39                        72   56   93  

Magdalena Del Mar  45,329   41                        51   46   102  

Cieneguilla  30,285   80                        11   46   151  

Lince  42,557   34                        54   44   104  

Surquillo  72,492   30                        56   43   59  

Bellavista  59,552   35                        49   42   70  
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DISTRICT NAME 

DISTRICT 

POPULATION 

(AGES 25-99) 

SHADDICK VAN DONKELAAR AVERAGE 

DEATHS DEATHS DEATHS 

RATE PER 

100,000 

Lurin  52,254   49                        24   37   70  

Pachacamac  76,225   46                        26   36   47  

San Luis  42,772   23                        36   29   69  

La Perla  49,511   18                        40   29   59  

Chaclacayo  31,232   16                        37   26   84  

Ancon  27,202   34                        18   26   95  

Barranco  24,956   19                        27   23   91  

Carmen De La Legua 
Reynoso 

 31,190   24                        18   21   67  

Santa Rosa  12,157   12                          4   8   66  

La Punta  3,131   4                          4   4   134  

Punta Hermosa  5,230   5                          1   3   56  

Pucusana  10,443   3                          2   3   24  

Mi Peru  -     3                          1   2  NA 

Punta Negra  5,400   2                          1   2   36  

San Bartolo  4,845   1                          2   1   29  

Santa Maria Del Mar  1,113   1                          1   1   57  

*The Mi Peru district in Callao had zero population in our dataset. Because the Shaddick and van Donkelaar surfaces 
overlap the population grid (districts), BenMAP apportions incidence results from air quality grid cells into the 
overlapping districts (including Mi Peru). 
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EXHIBIT D-3.  DISTRICT-LEVEL PM 2 . 5  MORTALITY BURDEN,  TRANSPORTATION SECTOR (UPPER BOUND)  

DISTRICT NAME 

DISTRICT 

POPULATION 

(AGES 25-99) 

SHADDICK VAN DONKELAAR AVERAGE 

DEATHS DEATHS DEATHS 

RATE PER 

100,000 

Overall  6,815,428 6,200  6,238 6,219 91 

San Juan De Lurigancho  695,326   607   564   585   84  

Comas  361,764   356   394   375   104  

San Martin De Porres  488,004   358   381   369   76  

Lima  207,527   323   387   355   171  

Callao  304,221   355   302   329   108  

Villa Maria Del Triunfo  294,591   290   224   257   87  

Ate  394,943   211   287   249   63  

Santiago De Surco  272,592   205   212   208   76  

Carabayllo  189,698   270   140   205   108  

Lurigancho  139,146   277   122   200   143  

Villa El Salvador  291,540   147   206   177   61  

Chorrillos  224,392   206   147   176   79  

La Molina  132,567   218   127   173   130  

Rimac  120,902   181   162   171   67  

Los Olivos  254,864   160   183   171   142  

San Juan De Miraflores  272,025   122   213   167   61  

Ventanilla  271,339   184   142   163   60  

La Victoria  125,163   135   186   160   128  

Puente Piedra  210,135   138   161   150   71  

Independencia  149,822   146   152   149   100  

San Miguel  108,804   132   123   128   117  

El Agustino  125,281   96   134   115   92  

Miraflores  74,718   75   134   104   140  

San Isidro  49,229   118   89   103   210  

San Borja  94,488   76   110   93   98  

Jesus Maria  61,365   65   108   86   141  

Magdalena Vieja  63,935   69   98   84   131  

Santa Anita  149,168   52   99   75   50  

Breña  60,003   48   88   68   113  

Magdalena Del Mar  45,329   50   63   57   125  

Cieneguilla  30,285   95   13   54   180  

Lince  42,557   41   67   54   127  

Surquillo  72,492   36   68   52   72  

Bellavista  59,552   43   60   51   86  

Lurin  52,254   59   29   44   84  
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DISTRICT NAME 

DISTRICT 

POPULATION 

(AGES 25-99) 

SHADDICK VAN DONKELAAR AVERAGE 

DEATHS DEATHS DEATHS 

RATE PER 

100,000 

Pachacamac  76,225   55   32   43   57  

La Perla  49,511   23   49   36   85  

San Luis  42,772   28   43   35   72  

Chaclacayo  31,232   19   44   31   101  

Ancon  27,202   41   22   31   114  

Barranco  24,956   23   32   27   109  

Carmen De La Legua 
Reynoso 

 31,190   29   22   26   82  

Santa Rosa  12,157   14   5   10   79  

La Punta  3,131   6   5   5   166  

Punta Hermosa  5,230   6   2   4   68  

Pucusana  10,443   3   3   3   30  

Mi Peru  -     4   1   2  NA 

Punta Negra  5,400   3   2   2   44  

San Bartolo  4,845   1   2   2   36  

Santa Maria Del Mar  1,113   1   1   1   71  

*The Mi Peru district in Callao had zero population in our dataset. Because the Shaddick and van Donkelaar surfaces 
overlap the population grid (districts), BenMAP apportions incidence results from air quality grid cells into the 
overlapping districts (including Mi Peru). 
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EXHIBIT D-4.  DISTRICT-LEVEL PM 2 . 5  MORTALITY BURDEN,  NON-COMPLIANT EMISS IONS (LOWER 

BOUND)  

DISTRICT NAME 

DISTRICT 

POPULATION 

(AGES 25-99) 

SHADDICK VAN DONKELAAR AVERAGE 

DEATHS DEATHS DEATHS 

RATE PER 

100,000 

Overall 6,815,428 248 250 249  4 

San Juan De Lurigancho  695,326   25   24   25   4  

Comas  361,764   15   17   16   4  

San Martin De Porres  488,004   14   15   14   3  

Lima  207,527   12   15   13   6  

Callao  304,221   13   11   12   4  

Ate  394,943   9   12   10   4  

Villa Maria Del Triunfo  294,591   12   9   10   3  

Carabayllo  189,698   11   6   9   3  

Santiago De Surco  272,592   8   9   8   4  

Lurigancho  139,146   12   5   8   6  

Villa El Salvador  291,540   6   9   7   3  

La Molina  132,567   9   5   7   3  

Chorrillos  224,392   8   6   7   5  

Los Olivos  254,864   7   7   7   3  

San Juan De Miraflores  272,025   5   9   7   6  

Rimac  120,902   7   7   7   2  

Ventanilla  271,339   7   6   7   2  

Puente Piedra  210,135   6   7   6   5  

Independencia  149,822   6   6   6   3  

La Victoria  125,163   5   7   6   4  

El Agustino  125,281   4   6   5   4  

San Miguel  108,804   5   4   5   4  

Miraflores  74,718   3   5   4   5  

San Isidro  49,229   5   3   4   8  

San Borja  94,488   3   4   4   4  

Jesus Maria  61,365   2   4   3   5  

Santa Anita  149,168   2   4   3   5  

Magdalena Vieja  63,935   3   4   3   2  

Breña  60,003   2   3   3   4  

Cieneguilla  30,285   4   1   2   5  

Magdalena Del Mar  45,329   2   2   2   7  

Surquillo  72,492   1   3   2   5  

Lince  42,557   2   2   2   3  

Bellavista  59,552   2   2   2   3  
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DISTRICT NAME 

DISTRICT 

POPULATION 

(AGES 25-99) 

SHADDICK VAN DONKELAAR AVERAGE 

DEATHS DEATHS DEATHS 

RATE PER 

100,000 

Lurin  52,254   2   1   2   3  

Pachacamac  76,225   2   1   2   2  

San Luis  42,772   1   2   1   3  

La Perla  49,511   1   2   1   3  

Chaclacayo  31,232   1   2   1   4  

Ancon  27,202   2   1   1   5  

Barranco  24,956   1   1   1   4  

Carmen De La Legua 
Reynoso 

 31,190   1   1   1   3  

Santa Rosa  12,157   1   0   0   3  

La Punta  3,131   0   0   0   6  

Punta Hermosa  5,230   0   0   0   3  

Pucusana  10,443   0   0   0   1  

Mi Peru  -     0   0   0  NA 

Punta Negra  5,400   0   0   0   2  

San Bartolo  4,845   0   0   0   1  

Santa Maria Del Mar  1,113   0   0   0   3  

*The Mi Peru district in Callao had zero population in our dataset. Because the Shaddick and van Donkelaar surfaces 
overlap the population grid (districts), BenMAP apportions incidence results from air quality grid cells into the 
overlapping districts (including Mi Peru). 
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EXHIBIT D-5.  DISTRICT-LEVEL PM 2 . 5  MORTALITY BURDEN,  NON-COMPLIANT EMISS IONS (UPPER 

BOUND)  

DISTRICT NAME 

DISTRICT 

POPULATION 

(AGES 25-99) 

SHADDICK VAN DONKELAAR AVERAGE 

DEATHS DEATHS DEATHS 

RATE PER 

100,000 

Overall 6,815,428  991  1,003 997 15 

San Juan De Lurigancho  695,326   101   95   98   14  

Comas  361,764   59   67   63   17  

San Martin De Porres  488,004   56   59   58   12  

Lima  207,527   49   59   54   26  

Callao  304,221   51   46   48   16  

Villa Maria Del Triunfo  294,591   47   37   42   14  

Ate  394,943   36   48   42   11  

Carabayllo  189,698   45   23   34   12  

Santiago De Surco  272,592   33   35   34   18  

Lurigancho  139,146   46   20   33   24  

Villa El Salvador  291,540   24   34   29   10  

La Molina  132,567   36   21   29   13  

Chorrillos  224,392   32   24   28   21  

Los Olivos  254,864   26   30   28   11  

San Juan De Miraflores  272,025   20   36   28   23  

Rimac  120,902   28   26   27   10  

Ventanilla  271,339   29   24   27   10  

Puente Piedra  210,135   23   28   25   20  

Independencia  149,822   24   25   25   12  

La Victoria  125,163   21   28   25   16  

El Agustino  125,281   15   23   19   18  

San Miguel  108,804   20   18   19   15  

Miraflores  74,718   12   21   16   22  

San Isidro  49,229   18   13   16   32  

San Borja  94,488   12   17   15   16  

Jesus Maria  61,365   10   16   13   21  

Santa Anita  149,168   9   17   13   20  

Magdalena Vieja  63,935   11   14   12   8  

Breña  60,003   7   13   10   17  

Cieneguilla  30,285   16   2   9   20  

Magdalena Del Mar  45,329   8   9   8   28  

Lince  42,557   6   10   8   19  

Surquillo  72,492   6   10   8   11  

Bellavista  59,552   6   9   8   13  
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DISTRICT NAME 

DISTRICT 

POPULATION 

(AGES 25-99) 

SHADDICK VAN DONKELAAR AVERAGE 

DEATHS DEATHS DEATHS 

RATE PER 

100,000 

Lurin  52,254   9   4   7   13  

Pachacamac  76,225   9   5   7   9  

San Luis  42,772   4   7   6   13  

La Perla  49,511   3   7   5   10  

Chaclacayo  31,232   3   7   5   16  

Ancon  27,202   6   3   5   18  

Barranco  24,956   3   5   4   18  

Carmen De La Legua 
Reynoso 

 31,190   4   3   4   12  

Santa Rosa  12,157   2   1   2   13  

La Punta  3,131   1   1   1   24  

Punta Hermosa  5,230   1   0   1   10  

Pucusana  10,443   0   0   0   4  

Mi Peru  -     1   0   0  NA 

Punta Negra  5,400   0   0   0   6  

San Bartolo  4,845   0   0   0   5  

Santa Maria Del Mar  1,113   0   0   0   10  

*The Mi Peru district in Callao had zero population in our dataset. Because the Shaddick and van Donkelaar 
surfaces overlap the population grid (districts), BenMAP apportions incidence results from air quality grid cells into 
the overlapping districts (including Mi Peru). 

 


