

www.newfield.com

Oil and Gas Well Cementing

D. Steven Tipton, P.E. April 16-17, 2013 EPA Technical Workshop on Well Construction/Operation and Subsurface Modeling Research Triangle Park, NC

NEWFIELD EXPLORATION COMPANY

Protecting Water is Essential For Everyone

NEWFIELD EXPLORATION COMPANY

Cementing

- Cementing is one of the most critical steps in the drilling and completion of oil or gas wells
- Well cementing technology is the application of many scientific and engineering disciplines

Primary Cementing

- Process of placing cement in the annulus between the casing and the wellbore
- Objectives:
 - Provide Hydraulic Seal
 - Create Zonal Isolation
 - Protect Useable Water
 - Provide Structural Support for Casing
 - Protect Casing from Corrosion
 - Isolate Casing Seat for Subsequent Drilling

Primary Cementing Starts with a Plan

- The plan should take well from drilling through plugging
- The well plan includes:
 - Wellbore Environment
 - Well Type
 - Casing and Cement Program
 - Mud System
 - Type of Completion

Effective Primary Cementing

- Good drilling practices and mud properties
- Casing movement while cementing
- Centralization of the casing
- Optimal borehole pipe clearance
- Use of spacers and mud flushes

Fundamentals of Cement Placement

Casing Hardware

- Float Equipment
- Centralizers
- Wiper Plugs
- Multi-stage tools

Hole conditioning and mud properties

- Mud Rheology
- Gel Strength
- Fluid Loss
- Circulation Rate
- Filter cake removal

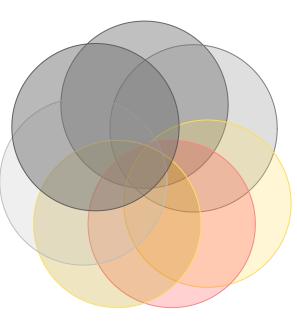
Casing movement while cementing

- Rotation
- Reciprocation

Use of spacers and mud flushes

Variables Affecting Zonal Isolation

GEOMECHANICS:


In-situ stresses, change in stresses along borehole, change in stresses in cement and pipe

CHEMISTRY: Corrosion and chemical resistance of casing and cement

GEOLOGY/GEOCHEMISTRY:

Formation type, structure, formation fluid chemistry

BOREHOLE: Size, shape, uniformity

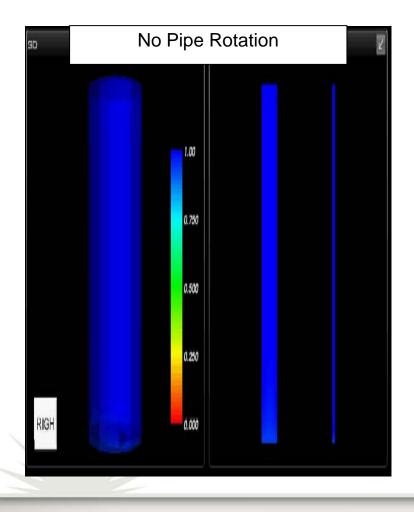
PRESSURE AND TEMPERATURE CHANGES/CYCLING Over the life of the well

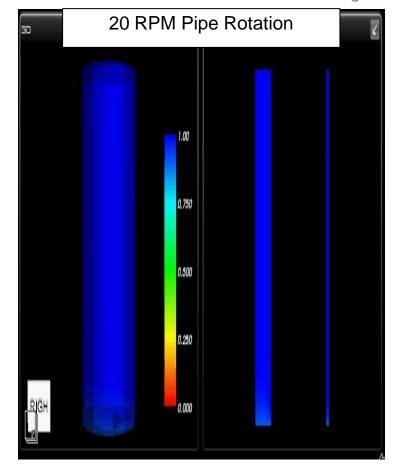
BOREHOLE STABILITY:

Lost circulation, flows, structural integrity and characteristics of formations

CEMENTING PROCESS:

Displacement design, job execution, cement volumes, cement material properties


MATERIAL PROPERTIES:


Cement, relationships between pipe-cement-formation

NEWFIELD EXPLORATION COMPANY

Benefits of Pipe Rotation During Cementing

3-D Computer Modeling of Displacement of Mud by Spacer and Cement

Courtesy of <u>AXPC</u> anga

NEWFIELD EXPLORATION COMPANY

Current Well Design – Deep Intermediate Casing

FORM. / CSG	TVD	MD	CAS		E HOLE SIZE	CSG SPECS	MUD INFO	NOTES	
	50'	50'			20"	00001200		110120	
			Ť۴.	1 11	10				
			1.740.0			100% Excess			
Shallow Shales			No.		17 1/2'	Cmt to Surf.		Vertical	
			20.25		100			< 2º	
			2013			13 3/8", J-55			
13 3/8" Shoe	1,500'	1,500'	100			54.5#			
			~						
			1			CIT 300 PSI / 30 min			
			i i		12 1/4"	11.0 PPG FIT			
Base/Heebner Shale (GDS)	6,861'		- i - i						
9 5/8" TOC	7,500'	7,500'	No. State	1.45		TOC ~1,000'		Vertical	
			30			above Deese			
Deese (GDS)	8,789'								
				E.					
			1	1 A A					
5 1/2" TOC	10,800'	10,800'	1						
Primrose (Morrow)	11,459'		13.3						
Springer Shale	11,838'		55			9 5/8", L-80			
9 5/8" Shoe	11,900'	11,900'	55			40#			
						CIT 1500 PSI / 30 min			
			-			12.5 PPG FIT			
			_			Swell packer @ 7,000'			
			-		A A (/ / /	TOC 1,000 into		Build: 14-16%/100	
Black Marker	13,174'			1	8 3/4"	9 5/8" Csg			
Springer 2 (false caney)	13,743'			1		00// D 440 DL			
Springer 3 (false caney)	14,059'	4.4.40.01				23#, P-110, Blue			
KOP	14,400'	14,400'		1					
1			-) 20.00	和金融 拉爾德利	的是 ¹⁹ 14年代的1914年(1914年)			
Caney	14,414'								
Woodford	14,731'	45.040	- 1						
EOB	14,901'	15,310'		NY NY AVERAGE			19 20 4 19 19 19 19 19 19 19 19 19 19 19 19 19		
						4.050	TO	20,000	
			_		LOL:	4,950	TD: TD TVD:	20,260 14,721	
	I.							14,721	

NEWFIELD EXPLORATION COMPANY

Newfield Mid-Continent Operations

Drilling

- Mud circulated until it has the required properties
- Casing is Centralized
- Casing is reciprocated rotated during cementing
- On the production casing a swell packer is run and set inside intermediate casing string

• Using TergoVis! Efficiency Fluid

Newfield Mid-Continent Operations

Completions

- Test annulus between the production casing and intermediate casing for pressure
- Annular pressure monitored during hydraulic fracture treatment
- Production casing pressure tested to 80% of yield before pumping hydraulic fracture treatment
- Production casing attached to automatic shut downs and relief lines while pumping job

Summary

- Zonal isolation for each well must be designed and constructed with regard to its unique geological environment.
- There is no single fit-for-purpose design, well construction, or barrier verification process that is right for all wells.
- The barrier system that protects usable water includes surface casing and cement.
- Verification of the barriers is typically accomplished by both pressure testing (direct measurements of casing and shoe cement) and by an operational evaluation (cement placement behind pipe).
- There is no direct measurement available to verify a cement barrier behind casing at this time.

Conclusions

- Casing has been cemented in wells for more than 100 years
- Cementing best practices have been known for more than 60 years.
- Best practices have to be used by everyone to
 - Protect the environment and community
 - Obtain maximum value from your wells

THERE IS NO LIFE WITHOUT WATER.

BECAUSE WATER IS NEEDED TO MAKE COFFEE.

NEWFIELD EXPLORATION COMPANY