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Executive Summary 

Excess nutrients can degrade the condition of water bodies worldwide; in lakes and reservoirs 

(hereafter, referred to only as “lakes” unless noted otherwise), the effects of excess nitrogen (N) 

and phosphorus (P) may be particularly evident. High levels of nutrient loading commonly 

stimulate excess growth of phytoplankton, which can limit the recreational use of lakes. 

Overabundant phytoplankton also increase the amount of organic matter in a lake, which, when 

decomposed, can depress dissolved oxygen (DO) concentrations below the levels needed to 

sustain aquatic life. In extreme cases, the depletion of DO causes fish kills. Nutrient pollution can 

stimulate the excess growth of nuisance phytoplankton, such as cyanobacteria, which can 

produce cyanotoxins that are toxic to animals and humans. Elevated concentrations of 

cyanotoxins can reduce the suitability of a lake for recreation and as a source of drinking water. 

Numeric nutrient criteria provide an important tool for managing the effects of nutrient 

pollution by providing nutrient goals that ensure the protection and maintenance of designated 

uses. The United States (U.S.) Environmental Protection Agency (EPA) published recommended 

numeric nutrient criteria for lakes and reservoirs in 2000 and 2001 for 12 out of 14 ecoregions of 

the conterminous United States. Those criteria were derived by analyzing available data on the 

concentrations of total nitrogen (TN), total phosphorus (TP), chlorophyll a (Chl a), and Secchi 

depth. 

Scientific understanding of the relationships between nutrient concentrations and deleterious 

effects in lakes has increased since 2001, and standardized, high-quality data collected from 

lakes across the United States have become available. In this document, EPA describes analyses 

of these new data and provides models from which numeric nutrient criteria can be derived. The 

criterion models replace the recommended numeric nutrient criteria of 2000 and 2001 and are 

provided in accordance with the provisions of Section 304(a) of the Clean Water Act (CWA) (Title 

33 of the United States Code [U.S.C.] § 1314(a)) for EPA to revise ambient water quality criteria 

from time to time to reflect the latest scientific knowledge. CWA Section 304(a) water quality 

criteria serve as recommendations to states and authorized tribes for defining ambient water 

concentrations that will protect against adverse effects to aquatic life and human health. The 

ecological and health protective responses on which the criterion models are based were 

selected by applying a risk assessment approach to explicitly link nutrient concentrations to the 

protection of designated uses. 
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The criterion models are nonregulatory, and this document describes the models and their 

inputs. States may use the recommended models to derive candidate nutrient criteria for each 

applicable designated use and, after demonstrating that the criteria protect the most sensitive 

designated use, adopt the criteria into their state standards. States may also modify the criteria 

to reflect site-specific conditions or establish criteria based on other scientifically defensible 

methods (Title 40 of the Code of Federal Regulations [CFR] 131.11(b)). The updated 

recommended CWA Section 304(a) nutrient criteria for lakes do not compel a state to revise 

current EPA-approved and adopted criteria, total daily maximum load nutrient load targets, or N 

or P numeric values established by other scientifically defensible methods. As part of their 

triennial review, if a state uses its discretion to not adopt new or revised nutrient criteria based 

on these CWA Section 304(a) criterion models, then the state shall provide an explanation when 

it submits the results of its triennial review (40 CFR 131.20(a)). 

Following the risk assessment paradigm, EPA first defined water quality management goals for 

numeric nutrient criteria, and then defined assessment endpoints and metrics that are 

associated with achieving these goals and are sensitive to increased nutrient concentrations. 

The water quality management goals are articulated as designated uses in Section 101(a)(2) of 

the CWA (33 U.S.C. § 1251) (i.e., the protection and propagation of fish, shellfish, and wildlife 

[aquatic life] and recreation in and on the water). Another common designated use for lakes is 

to serve as drinking water sources. Excess loads of nutrients can lead to excessive growth of 

phytoplankton that can adversely impact designated uses in different ways, described below as 

assessment endpoints and metrics. EPA modeled stressor-response relationships using these 

endpoints and metrics to derive recommended numeric nutrient criterion models (Table 1). 

 Table 1. Summary of designated uses and associated measures of effect and exposure 

Designated use Assessment endpoint Risk metric Applicability 

Aquatic life Zooplankton biomass 
Rate of change of zooplankton 

biomass relative to 
phytoplankton biomass 

All lakes 

Aquatic life Cool- and cold-water fish Daily depth-averaged DO 
below the thermocline  

Seasonally stratified 
lakes with cool- or 

cold-water fish 

Recreation Human health Microcystin concentration to 
prevent liver toxicity in children All lakes 

Drinking water Human health Microcystin concentration to 
prevent liver toxicity in children All lakes 
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For aquatic life, EPA identified two assessment endpoints. The first endpoint is zooplankton 

biomass, and the risk metric is the slope of the relationship between zooplankton and 

phytoplankton biomass, which quantifies the degree to which energy produced by 

phytoplankton at the base of the food web is transferred to zooplankton and subsequently to 

higher trophic levels. When excess nutrients are available, phytoplankton biomass can increase 

at rates that exceed the capacity of zooplankton to consume. The threshold for the risk metric is 

one in which the rate of change of zooplankton biomass relative to phytoplankton biomass is 

approximately zero. This condition describes a lake in which the biomass of grazing biota (i.e., 

zooplankton) does not increase with increases in food (i.e., phytoplankton), and primary 

production at the base of the food web is weakly linked to production at higher trophic levels. 

This endpoint applies to all lakes in the conterminous U.S. 

The second aquatic life endpoint is health and survival of cool- and cold-water fish, and the risk 

metric is the DO concentration in deep water that protects against mortality of these fish. Excess 

nutrients typically increase primary productivity, which then increases the amount of organic 

matter in a lake. Then, in the deep waters of a lake, DO is consumed as this organic matter is 

decomposed, leading to hypoxic and anoxic conditions. The risk metric is defined more 

specifically as the daily DO concentration, calculated as a depth-averaged value below the 

thermocline, which can be reduced to concentrations insufficient to support some fish species 

during the critical period of the summer when they require deep, cold waters to escape high 

temperatures at shallower depths. This endpoint applies to seasonally stratified lakes harboring 

cool- and cold-water fish. 

For recreational uses and drinking water sources, the assessment endpoint is human health. 

For recreational uses, EPA selected the threshold for the risk metric as the concentration of 

microcystin associated with adverse effects on children (specifically, liver toxicity) from 

incidental ingestion of water during recreation. When excess nutrients are available, 

phytoplankton communities can shift toward a greater abundance of cyanobacteria that can 

release cyanotoxins, and microcystins are the most commonly monitored and measured 

freshwater cyanotoxin in the U.S. The threshold for the risk metric is 8 micrograms per liter 

(μg/L), based on recently published national recommendations for human health recreational 

water quality criteria and swimming advisories for cyanotoxins (US EPA 2019). For the drinking 

water use, EPA selected the threshold for the risk metric as the concentration of microcystins 



xi 

associated with adverse effects on children resulting from oral exposure to drinking water 

(0.3 μg/L), consistent with the health advisory for microcystins (US EPA 2015b). The 

microcystin concentration from the health advisory applies to finished drinking water; 

however, EPA is aware that states and authorized tribes express water quality standards for 

protecting drinking water sources as either protecting the ambient source water before 

treatment or after treatment. The ability of treatment technologies to remove microcystin is 

too variable for EPA to set a national recommendation for an ambient source water 

concentration that would yield a protective concentration after treatment. If a state or 

authorized tribe applies the health advisory standard to drinking water after treatment, then 

they can account for the expected treatment in their facilities and select a higher microcystin 

concentration in the ambient source water that would result in the targeted microcystin 

concentration in the finished drinking water. 

Data used in this analysis were collected in EPA’s National Lakes Assessment (NLA), which 

sampled lakes across the conterminous U.S. in 2007 and 2012. Most of the sampled lakes were 

selected randomly so the resulting data represent the characteristics of the full population of 

lakes in the conterminous U.S. At each lake, standardized protocols were used to collect 

extensive measurements of biotic and abiotic characteristics. 

This document describes statistical stressor-response models that relate Chl a concentrations to 

each of the risk metrics and that relate TN and TP concentrations to Chl a. A hierarchical 

Bayesian network is specified for each model to represent the effects of different variables on 

the relationship of interest. For example, microcystin is related to cyanobacteria biovolume, 

which is then linked to Chl a concentration. The models directly represent the processes that 

govern the relationships of interest and facilitate the use of other data sets in conjunction with 

data from EPA’s NLA. When coupled with the targets for each response, the models provide 

candidate Chl a, TN, and TP criteria recommendations that states may then use with state risk 

management decisions to demonstrate they are protective of different designated uses. For 

lakes with multiple use designations, the states shall adopt criteria from these candidate criteria 

that protect the most sensitive use. 

Models provided in this document are based on national data, but states often collect extensive 

data during routine monitoring. Incorporating local data into the national models can refine and 

improve the precision of the stressor-response relationships. In the appendices of this 
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document, EPA describes three case studies in which state monitoring data have been combined 

with national data, yielding models that can be used to derive recommended numeric nutrient 

criteria that account for both unique local conditions and national, large-scale trends. 
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1 Introduction and Background 

Nutrient pollution, or the excess loading of nitrogen (N) and phosphorus (P), can degrade the 

conditions of water bodies worldwide, and in lakes the effects of nutrient pollution are often 

most evident. One visible consequence of nutrient pollution in lakes and reservoirs (hereafter, 

referred to only as “lakes” unless noted otherwise) is cultural eutrophication, an increase in 

primary productivity and algal abundance that increases the amount of organic matter in a 

water body (Smith et al. 2006, Smith and Schindler 2009). Decomposition of organic matter 

reduces dissolved oxygen (DO) concentrations in the water column, especially in deeper waters 

under stratified conditions. These hypoxic conditions are inhospitable to most aquatic species 

and reduce their ability to survive within a particular lake (Jones et al. 2011, Scavia et al. 2014). 

Nutrient pollution also favors the growth of undesirable, nuisance phytoplankton (e.g., 

cyanobacteria), some of which produce cyanotoxins (Paerl and Otten 2013). Many species of 

cyanobacteria are superior competitors for light compared to other phytoplankton. Hence, in 

lakes with nutrient pollution, cyanobacteria can dominate by reducing the light available to 

other phytoplankton (Carey et al. 2012). A number of other mechanisms, including superior 

uptake rates for carbon dioxide and an ability to migrate vertically in the water column, also 

may explain the frequent occurrence of cyanobacteria dominance in eutrophic systems (Dokulil 

and Teubner 2000). Cyanobacteria dominance can interfere with the designated uses of a lake 

because cyanobacteria not only can form unsightly and odorous surface scums (reducing the 

aesthetic appeal of the lake for recreation) (Paerl and Ustach 1982), but also can produce 

cyanotoxins that can limit the use of the lake as both a source of drinking water and for 

recreation (Cheung et al. 2013). Many species of cyanobacteria are also less palatable than 

other phytoplankton to grazing organisms, and so, increases in cyanobacterial abundance can 

alter lake food webs and reduce the efficiency with which energy from primary production is 

transferred to higher trophic levels (Elser 1999, Filstrup et al. 2014a, Heathcote et al. 2016). 

Nutrient pollution in lakes and resulting adverse environmental effects are widespread in the 

United States (U.S.). Nutrient pollution occurs in lakes of different sizes, in catchments with 

varying land uses, and in different climates. The U.S. Environmental Protection Agency (EPA) has 

long recognized the effects of nutrient pollution and has recommended that states and 

authorized tribes (hereafter, “states”), acting under their Clean Water Act (CWA) authorities, 



2 

adopt numeric nutrient criteria as one way to facilitate the management of these effects. A 

state’s numeric nutrient criteria (1) provide nutrient goals to protect and maintain the 

designated uses of a water body (Title 33 of the United States Code [U.S.C.] § 1313(c)), 

(2) provide thresholds that allow the state to make accurate water quality assessment decisions 

(33 U.S.C. § 1313(d)), and (3) provide targets for restoration of water bodies that can guide 

waste load allocation decisions (33 U.S.C. § 1313(d)). To assist states and authorized tribes in 

deriving numeric nutrient criteria, EPA has published a series of technical support documents on 

methods for deriving criteria for lakes and reservoirs (US EPA 2000a), streams and rivers (US EPA 

2000b), wetlands (US EPA 2008), and estuaries and coastal waters (US EPA 2001). A technical 

support document on using stressor-response relationships for deriving numeric nutrient 

criteria has also been published (US EPA 2010a). In 2000 and 2001, under its authority described 

in Section 304(a) of the CWA (33 U.S.C. § 1314(a)), EPA issued 12 documents that provided 

recommended numeric nutrient criteria for lakes, streams, and rivers in different ecoregions of 

the U.S. These criteria were derived by using available monitoring data to estimate the 

concentrations of total nitrogen (TN) and total phosphorus (TP) that were expected to occur in 

least-disturbed reference water bodies in different nutrient ecoregions. 

In accordance with the provisions of Section 304(a) of the CWA, which directs EPA to revise 

ambient water quality criteria from time to time to reflect the latest scientific knowledge, EPA is 

issuing revisions to numeric nutrient criteria recommendations for lakes based on analyses of 

newly available, national-scale data and reflecting advances in scientific understanding of the 

relationship between excess nutrients and adverse effects in lakes. The criterion 

recommendations are models that generate numeric nutrient criteria based on national data 

and state risk management decisions. State data, if available, can be incorporated into the 

national criterion models to compute relationships that more accurately represent local 

conditions. In deriving these models, EPA uses a risk assessment framework (Norton et al. 1992; 

US EPA 1998, 2014) to identify assessment endpoints that relate directly to the water quality 

management goals for U.S. lakes specified by the CWA and that are sensitive to increased 

concentrations of N and P. Then, EPA uses stressor-response analysis to estimate relationships 

between increased N and P (estimated by measurements of TN and TP) and different risk 

metrics directly linked to the assessment endpoints (US EPA 2010a). National criterion models 

are provided for both TN and TP as the simultaneous control of both nutrients provides the 

most effective means of controlling the deleterious effects of nutrient pollution 
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(US EPA 2015a, Paerl et al. 2016). These stressor-response criterion models replace the 

ecoregion-specific nutrient criteria recommended previously for lakes,1 which were derived 

using a reference distribution approach. 

 
1 Ecoregional nutrient criteria for lakes and reservoirs (EPA 822-B-00-007, EPA 822-B-01-008, EPA 822-B-
01-009, EPA 822-B-01-010, EPA 822-B-00-008, EPA 822-B-00-009, EPA 822-B-00-010, EPA 822-B-00-011, 
EPA 822-B-00-012, EPA 822-B-00-013, EPA 822-B-00-014, and EPA 822-B-01-011) 

The remaining sections of this document are organized broadly according to the steps of risk 

assessment: (1) problem formulation, (2) analysis, and (3) characterization. The purpose of this 

document is to provide the technical details underlying the estimation of relationships between 

increased nutrient concentrations and different responses, as well as details regarding the 

derivation of numeric nutrient criterion recommendations using the national models. States 

may use these criterion models to derive candidate nutrient criteria and, after demonstrating 

that the criteria protect designated uses, adopt the criteria into their state water quality 

standards. States may also modify the criteria to reflect site-specific conditions or establish 

criteria based on other scientifically defensible methods (40 CFR 131.11(b)). For waters with 

multiple use designations, the state shall adopt criteria from the candidate criteria that support 

the most sensitive designated use (40 CFR 131.11(a)(1)). Water quality standards adopted by 

states are subsequently subject to review by EPA, pursuant to Section 303(c) of the CWA 

(33 U.S.C. § 1313(c)). 

2 Problem Formulation 

Problem formulation is the first step in a risk assessment, in which “…the problem is defined, 

and a plan for analyzing and characterizing risk is determined” (US EPA 1998). More specifically, 

during problem formulation, the management goals are articulated, assessment endpoints and 

risk metrics are selected, and conceptual models are specified that link stressors with 

assessment endpoints. 

2.1 Management Goals 

EPA focused on protecting uses that reflect management goals articulated in Section 101(a)(2) 

of the CWA (33 U.S.C. § 1251), which include maintaining conditions so different water bodies 

support aquatic life use (i.e., providing for the protection and propagation of fish, shellfish, and 
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wildlife), recreation (i.e., providing for recreation in and on the water), and use of the water 

body as a source of drinking water. Under the CWA, it is a state’s responsibility to designate uses 

for its waters, and many states have designated uses that provide for aquatic life and recreation 

uses. Some states have also designated waters as sources of drinking water. EPA focuses on 

aquatic life, recreation, and drinking water source because they represent uses that are 

particularly sensitive to increased concentrations of N and P. States can derive candidate 

nutrient criteria for each of the applicable designated uses in their lakes and, by comparing 

these criteria, identify the most sensitive use. Water quality criteria adopted by states for waters 

with multiple use designations must support the most sensitive use (40 CFR 131.11(a)). 

2.2 Assessment Endpoints and Risk Metrics 

The next step in problem formulation is to define assessment endpoints that can be used to 

quantify attainment of the management goals. Each of the management goals expressed in 

terms of different designated uses was associated with different assessment endpoints. 

Protection of recreational uses and drinking water sources pertains to public health rather than 

ecological health, and hence, the assessment endpoint is human health for these two 

designated uses. For aquatic life, the procedures of ecological risk assessment were followed to 

select assessment endpoints defined as “explicit expressions of the actual environmental values 

that are to be protected” (US EPA 1998). Three considerations guided the selection of these 

endpoints: ecological relevance, susceptibility to the stressor of interest (i.e., increased nutrient 

concentrations in the present case), and relevance to management goals. 

After selecting the assessment endpoints, EPA developed conceptual models that represented 

current understanding of the linkages between increased N and P concentrations and effects on 

the assessment endpoint and management goals (Figure 1). The conceptual models were used 

to select specific risk metrics that quantified key steps along the causal path linking increased N 

and P concentrations to deleterious effects on aquatic life and public health. The final selections 

for the criterion recommendations were also influenced by the availability of data at the 

continental spatial scales considered in this analysis. These risk metrics were used as the 

response variables in stressor-response analysis. For a narrative description of the conceptual 

model, refer to Using Stressor-Response Relationships to Derive Numeric Nutrient Criteria (US 

EPA 2010a). 
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Figure 1. Conceptual model linking increased nutrients to aquatic life use (Source: US EPA 2010a). 

2.2.1 Aquatic Life Use 

Nutrient pollution and eutrophication can affect the health of the lake biological community via 

many pathways (see Figure 1). As discussed earlier, increased nutrients typically stimulate 

primary productivity and increase the amount of organic matter in a lake. Decomposition of the 

organic matter depletes the DO in the water, reducing the suitability of deeper waters as habitat 

for fish and invertebrates (Cornett 1989). Increased production and respiration also can increase 

the range of acidity throughout the day-night cycle in some lakes (Schindler et al. 1985), 

reducing the suitability of shallow waters as habitat for certain species. Increased algal biomass 

also reduces water clarity, and the reduction in light availability limits the depths at which 

submerged aquatic vegetation can persist (Phillips et al. 2016). Reduced water clarity can also 

shift fish assemblage composition away from species that depend on sight for foraging  

(De Robertis et al. 2003). Further, high nutrient concentrations favor the growth of 

cyanobacteria, which are less palatable to grazing species than other phytoplankton, altering the 

food web of the lake (Haney 1987). 
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EPA selected two assessment endpoints to characterize the health of aquatic life in lakes: 

(1) zooplankton biomass, which is applicable to all lakes, and (2) the survival and growth of cool- 

and cold-water fish in seasonally stratified lakes. For the second endpoint, EPA selected depth-

averaged DO concentration as the risk metric. In seasonally stratified lakes with cool-water fish, 

criteria based on zooplankton biomass and DO can be compared, and the more stringent 

criterion is applied to ensure that aquatic life is protected. Collectively, the two assessment 

endpoints provide a broad assessment of the health of the lake biological community. Data 

were also available for each endpoint, and each endpoint quantified well-studied effects of 

nutrient pollution. 

2.2.1.1 Zooplankton biomass 

The rate of change of zooplankton biomass compared to the rate of change of phytoplankton 

biomass quantifies changes in the shape of biomass pyramids in lakes (Elton 1927). Biomass 

pyramids provide a graphical depiction of the amount of biomass at different trophic levels, and 

typically, the biomass of primary producers (at the bottom of the pyramid) exceeds the biomass 

of herbivores and carnivores at successively higher levels of the pyramid. In lakes, the ratio of 

herbivore biomass (i.e., zooplankton) to primary producer biomass (i.e., phytoplankton) (Z:P) 

has been observed to decrease along eutrophication gradients (Leibold et al. 1997). Reasons for 

the decreasing trend in Z:P have been the subject of some debate, much of which centers on the 

relative importance of top-down versus bottom-up food web effects. For zooplankton, top-

down forces consist mainly of the effects of planktivore fish consuming zooplankton biomass 

(Jeppesen et al. 2003) and bottom-up forces include changes in the quantity and quality of the 

phytoplankton assemblage on which zooplankton feed (Filstrup et al. 2014a). With excess 

nutrients, one particularly important bottom-up mechanism is the decrease in the edibility of 

the phytoplankton assemblage associated with the increased dominance of cyanobacteria with 

increasing levels of eutrophication. Laboratory studies demonstrate that the lack of highly 

unsaturated fatty acids in cyanobacteria negatively affects the growth rates of a common 

zooplankton species (Daphnia) (Demott and Müller-Navarra 1997, Persson et al. 2007). Field 

observations (Müller-Navarra et al. 2000) and microcosm experiments (Park et al. 2003) have 

added further support for this finding. Many cyanobacteria also present physical challenges to 

grazers, collecting in colonies or filaments that are too large to be consumed (Bednarska and 

Dawidowicz 2007), or surrounding themselves with gelatinous sheaths (Vanni 1987). Altered 
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elemental stoichiometry and, hence, nutritional quality of phytoplankton under different levels 

of eutrophication may also influence zooplankton biomass (Hessen 2008). 

The rate of change of zooplankton biomass with respect to increasing phytoplankton biomass 

(ΔZ/ΔP) provides an informative measure of the effects of eutrophication on food web function 

for the purposes of informing the derivation of numeric nutrient criteria (Yuan and Pollard 

2018). This rate of change can be thought of as the slope of the relationship between Z and P. In 

most lake food webs, any increase in the basal resources (i.e., phytoplankton biomass) would be 

expected to be associated with a corresponding increase in the biomass of consumers of those 

resources (i.e., zooplankton biomass), and the slope between Z and P would be positive. In 

eutrophic lakes, however, increases in phytoplankton biomass often are not associated with an 

increase in zooplankton biomass, and the slope (ΔZ/ΔP) approaches zero (Leibold et al. 1997, 

Hessen et al. 2006, Heathcote et al. 2016). Based on this observation, EPA used the rate of 

change in zooplankton biomass relative to changes in phytoplankton biomass (ΔZ/ΔP) as a 

measure of the effect of excess nutrients on lake food webs. 

2.2.1.2 Dissolved oxygen 

Excess nutrients typically increase primary productivity, which increases the amount of organic 

matter in a lake. Then, DO is consumed as the organic matter is decomposed, leading to hypoxic 

and anoxic conditions (see Figure 1). Low concentrations of DO limit the extent to which habitat 

is available to fish and zooplankton (Colby et al. 1972, Tessier and Welser 1991, Vanderploeg et 

al. 2009), and oxygen availability is a key determinant of the quality and quantity of habitat 

available to aquatic biota in many lakes (Evans et al. 1996). Although hypoxia occurs naturally in 

a small number of systems (Diaz 2001), anthropogenic nutrient loads have greatly increased the 

occurrence of hypoxia worldwide (Jenny et al. 2016). Deoxygenation of lake water typically 

begins near the lake bottom and proceeds to shallower depths over the summer, especially in 

stratified, relatively deep lakes, where the replenishment of DO from surface mixing is restricted 

(Cornett 1989, Wetzel 2001). Therefore, an increasing proportion of the deeper waters of a lake 

can become uninhabitable for certain organisms over the course of the summer (Molot et al. 

1992). Exclusion of deeper waters as viable habitat, in particular, can disproportionately affect 

particular species of adult and juvenile fish (Lienesch et al. 2005). 

Another strong determinant of the available habitat for fish and zooplankton is water 

temperature. Summer brings a longer photoperiod and more intense solar insolation, which 
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increases water temperatures near the surface of many lakes to levels harmful to certain species 

(Ferguson 1958, Eaton and Scheller 1996). The viable habitat for cool- and cold-water species, in 

particular, can be restricted by surface warming (Jacobson et al. 2010, Arend et al. 2011). In 

contrast to deoxygenation, warming starts at the surface of the lake and proceeds to deeper 

depths over the course of the summer. Therefore, certain species of fish are “squeezed” 

between increasing temperatures at shallow depths and decreasing DO at deeper depths 

(Coutant 1985, Stefan et al. 1996, Lee and Bergersen 1996, Plumb and Blanchfield 2009), 

requiring them to choose between suboptimal temperatures or oxygen (Arend et al. 2011). 

Under those conditions, the metalimnion and the upper edge of the hypolimnion can provide an 

important refuge, and even a thin layer of cool water with sufficient DO can provide an 

important habitat for supporting fish health through the warmest summer days. Because they 

often can tolerate lower DO concentrations than fish, zooplankton can retreat to deeper depths 

of the hypolimnion to escape fish predation, but are also limited ultimately by low DO 

concentrations (Tessier and Welser 1991, Stemberger 1995). 

Based on these considerations, the mean concentration of DO below the thermocline was 

identified by EPA as an appropriate metric for assessing risks to cool- and cold-water fish in 

seasonally stratified lakes. In those lakes during the summer, the availability of cool-water 

habitat is constrained by deep water DO concentrations, and so, this risk metric links increased 

nutrient concentrations to deleterious effects affecting the survival of fish and zooplankton in 

deep lakes. 

2.2.2 Recreational Use 

EPA selected the concentration of cyanotoxins as the risk metric linking increased nutrients to 

the suitability of lake water for primary and secondary contact recreation. Increased nutrient 

concentrations and an attendant increase in cyanobacterial abundance can increase 

concentrations of cyanotoxins (Figure 2), which cause adverse effects on the health of people 

exposed to the water (US EPA 2019). One of the most commonly occurring types of cyanotoxins 

in freshwaters is microcystins (based on available data). To protect recreational uses of lakes, 

EPA identified microcystin concentration as the best risk metric because of the availability of 

National Lakes Assessment (NLA) data (US EPA 2010b) and because microcystin thresholds for 

recreational exposures have recently been published (US EPA 2019). 
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Figure 2. Conceptual model linking increased nutrient concentrations to public health endpoints. 

2.2.3 Drinking Water Source 

Increased nutrient concentrations and an attendant increase in cyanobacteria can increase 

concentrations of cyanotoxins, which are toxic when consumed at certain concentrations and 

quantities (see Figure 2) (Chorus 2001, Stewart et al. 2008, US EPA 2015b). As was done for 

recreational use, EPA selected microcystin in lake source water as the risk metric for the 

drinking water use. 

2.3 Risk Hypotheses 

EPA specified risk hypotheses for each of the selected assessment endpoints. Based on a survey 

of available literature, EPA concluded that increased concentrations of N and P increase the risk 

to both ecological and human health (Figure 3). For aquatic life, the risk hypotheses consist of 

the pathway in which increased nutrient concentrations increase phytoplankton biovolume 

(measured as chlorophyll a [Chl a]). Then, as phytoplankton biovolume and associated biomass 

increase, the relationship between zooplankton biomass and phytoplankton biomass (ΔZ/ΔP) 
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changes so that increases in phytoplankton biomass are no longer associated with increases in 

zooplankton biomass, and increases in primary production at the base of the lake food web are 

not transferred to higher trophic levels. For the case of deep water DO concentrations, 

increased phytoplankton biomass increases organic matter in the lake, which, when 

decomposed, consumes DO (Walker 1979). The decreased concentrations of DO then affect lake 

aquatic life. The risk hypotheses for both recreation and drinking water source designated uses 

state that increased nutrient concentrations increase the biovolume of cyanobacteria and 

concentrations of microcystin. 

Figure 3. Simplified conceptual model showing pathways selected for analysis. 

2.4 Analysis Plan 

An analysis plan outlines the scope, approaches, and methods to be used in the risk assessment. 

Here, the analysis plan consists of acquiring appropriate data and estimating relationships 

between phytoplankton biovolume and each of the risk metrics as well as between N, P, and 

phytoplankton biovolume. The critical measurement in all these relationships is Chl a, which is 

closely associated with phytoplankton biovolume. Stressor-response analysis was applied to 

available data to estimate relationships between nutrient concentrations and different risk 

metrics. Because Chl a concentration is the critical parameter for all risk metrics, EPA developed 
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different stressor-response models associating Chl a concentration with each of the risk metrics 

(i.e., zooplankton biomass (ΔZ/ΔP), deep water DO concentration, and microcystin). The models 

then yielded candidate criteria for Chl a corresponding to each of the risk metrics (and their 

associated endpoints). A candidate Chl a criterion is defined as a protective concentration 

associated with a particular risk metric and/or with a particular designated use. The final 

criterion for a lake is then derived by comparing candidate criteria and selecting the criterion 

that protects the most sensitive use. N and P are estimated in field measurements as TN and TP, 

and so, EPA developed models relating TN and TP concentrations to Chl a concentrations that 

can translate each of the different Chl a criteria into recommended TN and TP criteria. 

Because different risk metrics have been identified for each of the three designated uses, these 

risk metrics lead to the derivation of different recommended numeric nutrient criteria. In 

general, a state’s water quality criteria for any single lake would need to protect the most 

sensitive use (i.e., the state should select the most stringent numeric nutrient criteria across all 

relevant uses and endpoints) (40 CFR 131.11(a)(1)). 

3 Analysis 

Because stressor-response analyses for each of the risk metrics differed substantially from one 

another, most of this section is organized by models for the different risk metrics—zooplankton 

biomass, deep water hypoxia, and microcystin—followed by models relating TN, TP, and Chl a. 

Because the same data were used to fit each of these models, all the data used in the analyses 

are discussed first. 

3.1 Data 

EPA analyzed data collected in the NLA in the summers (May–September) of 2007 and 2012 to 

support the derivation of recommended numeric nutrient criteria. The NLA data were collected 

from a random sample of lakes from the continental U.S. In 2007, lakes with surface areas larger 

than 4 hectares and, in 2012, lakes larger than 1 hectare were selected from the contiguous U.S. 

using a stratified random sampling design (US EPA 2012c). The final data set was supplemented 

by a small number of hand-picked lakes identified as being less disturbed by human activities 

(US EPA 2010b). The additional lakes were included to increase the number of least-disturbed 

lakes for which data were available, and by helping ensure the full range of conditions was 
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sampled, data from the additional lakes were expected to improve the accuracy of the 

estimated stressor-response relationships. The overall sampling design of the NLA was synoptic, 

but 10% of sampled lakes were randomly selected and resampled on a different day after the 

initial visit. The timing of the second visit varied among lakes, but on average, the second 

sample was collected approximately 46 days after the first. Approximately 20% of the lakes were 

sampled in both 2007 and 2012. The sampling day of the year was recorded for each visit and 

used in subsequent analyses to account for temporal changes in deep water DO concentration. 

Overall, data from approximately 1,800 different lakes are included in the data set, but the 

specific number of samples used to estimate each stressor-response relationship varies slightly 

based on data available at each lake. The specific number of samples is provided in the 

subsequent discussion of each model. Quality assurance project plans for the NLA are available 

in separate publications (US EPA 2009, 2012b). 

During each visit to a selected lake, an extensive suite of abiotic and biological variables was 

measured. Only brief details on sampling protocols are provided here regarding the parameters 

used to derive these criterion models; more extensive descriptions of sampling methodologies 

are available in the NLA documentation (US EPA 2007, 2011). A sampling location was 

established in open water at the deepest point of each lake (up to a maximum depth of 50 

meters [m]) or in the mid-point of reservoirs. In 2012, an additional sampling location for 

collection of microcystin, algae, and Chl a data was established in the littoral zone 

approximately 10 m away from a randomly selected point on the shoreline. 

At the open water site, a vertical, depth-integrated methodology was used to collect a water 

sample from the photic zone of the lake (to a maximum depth of 2 m). Multiple sample draws 

were combined in a rinsed, 4-liter (L) cubitainer. When full, the cubitainer was gently inverted to 

mix the water, and an aliquot was taken as the water chemistry sample. That subsample was 

placed on ice and shipped overnight to the Willamette Research Station in Corvallis, Oregon. A 

second aliquot was taken to use in characterizing the phytoplankton community and was 

preserved with a small amount of Lugol’s solution. A Secchi depth measurement was also 

collected at this site. Two zooplankton samples were collected with vertical tows for a 

cumulative tow length of 5 m using fine- (50-micrometer- [-µm-]) and coarse- (150-µm-) mesh 

Wisconsin nets. In lakes at least 7 m deep, one 5-m deep tow was collected with each mesh. In 
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shallower lakes, vertical tows over shorter depths were combined to reach the cumulative tow 

length of 5 m. 

At the littoral zone site, two grab water samples were collected 0.3 m below the surface where 

the lake was at least 1 m deep using a 2-L brown bottle. The first sample was split into two 

subsamples: one subsample for quantifying algal toxin concentration and the second subsample 

preserved with a small amount of Lugol’s solution and used to characterize the phytoplankton 

community. The second grab sample collected with the 2-L bottle was used to quantify Chl a 

concentration. 

3.1.1 Biological Data 

Phytoplankton biovolume from the field samples was measured in the laboratory. Samples 

collected from both open water and littoral zone locations were examined by taxonomists, who 

identified at least 400 natural algal units to species under 1,000× magnification. Observations 

were aggregated and abundance was calculated as cells per milliliter. In each sample, the 

dimensions of the taxa that accounted for the largest proportion of the observed assemblage 

were measured and used to estimate biovolume. Biovolumes of the most abundant taxa were 

based on the average of measurements from at least 10 individuals, while biovolumes of the 

less abundant taxa were based on somewhat fewer measurements. The biovolume was 

reported as cubic micrometers per milliliter (μm3/mL) (US EPA 2012a), which was converted to 

cubic millimeters per liter (mm3/L). Approximately 5% of the phytoplankton samples were 

randomly selected and reidentified and measured by a second taxonomy laboratory. These 

reidentified samples provided a basis for estimating laboratory measurement error. Biovolume 

measurements were converted to biomass using a density of 1 gram per milliliter (g/mL) 

(Holmes et al. 1969). 

Zooplankton samples from the coarse- and fine-mesh net tows were processed separately. In 

each sample, zooplankton specimens were examined and counted under 100–1,000× 

magnification in discrete subsamples until at least 400 individuals were identified. In the coarse-

mesh net samples, all taxa were identified and enumerated. In the fine-mesh net, only “small” 

taxa were identified and enumerated (Cladocera less than 0.2 millimeters [mm] long, copepods 

less than 0.6 mm long, rotifers, and nauplii). Zooplankton abundance was estimated based on 

the volume of sampled lake water used to identify the targeted count of 400 individuals. 

Measurements of at least 20 individuals were collected for dominant taxa (i.e., taxa 
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encountered at least 40 times in the subsample); at least 10 individuals were measured for taxa 

encountered from 20 to 40 times; and at least 5 individuals were measured for rare taxa 

(encountered less than 20 times in the subsample). Zooplankton biomass estimates were based 

on existing length and width relationships (Dumont et al. 1975, McCauley 1984, Lawrence et al. 

1987). Estimates from the coarse- and fine-mesh samples were added to yield a single 

zooplankton sample per lake visit. 

3.1.2 Chemical Data 

For both 2007 and 2012 data, TN, nitrate-nitrite (NOx), ammonia, and TP concentrations; true 

color, dissolved organic carbon (DOC) concentration, turbidity, and acid-neutralizing capacity 

(ANC) were measured in the laboratory from the open water sample at prespecified levels of 

precision and accuracy (US EPA 2012a). Typical laboratory methods included persulfate 

digestion with colorimetric analysis for TN and TP, nephelometry for turbidity, comparison to a 

calibrated color disk for true color, and automated acidimetric titration for ANC. To measure 

Chl a concentration, 250 mL of lake water was pumped through a glass fiber filter in the field 

and quantified in the laboratory to prespecified levels of precision and accuracy. Examples of 

lower reporting limits include 20 µg/L for TN, 4 µg/L for TP, and 0.5 µg/L for Chl a. 

Microcystin sample processing began with three sequential freeze/ thaw cycles to lyse 

cyanobacteria (Loftin et al. 2008). Processed samples were filtered using 0.45 µm polyvinylidene 

difluoride membrane syringe filters and stored frozen until analysis. The concentration of 

microcystin in the filtered water sample was measured with an enzyme-linked immunosorbent 

assay (ELISA) using an Abraxis kit for Microcystin-ADDA, which employs polyclonal antibodies 

that are unique to microcystins and other similar compounds. The binding mechanism of the 

Microcystin-ADDA assay is specific to the microcystins, nodularins, and their congeners; 

therefore, results from that assay could include contributions from any compound within the 

ADDA functional group (Fischer et al. 2001). The minimum reporting level for the assay was 0.1 

µg/L as microcystin-LR. 

3.1.3 Dissolved Oxygen and Temperature Profiles 

At the deepest point of each lake (or in the midpoint of reservoirs), a multiparameter water 

quality meter was used to measure profiles of DO concentrations, temperature, and pH at a 

minimum of 1-m depth intervals (see Section 3.2.2 for an examples of depth profiles). Profiles in 
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lakes less than 3 m deep were sampled at 0.5-m depth intervals. Water temperatures were 

converted to estimates of water density (Jones and Harris 1992), and density gradient was 

estimated between all available depths below 0.5 m as the difference in density between two 

successive measurements divided by the difference in the depths of the two measurements. 

Temperature gradients were computed with the same approach. Samples collected in the 

uppermost 0.5 m were excluded to limit the effects of surface warming on the gradient 

calculations. 

3.1.4 Mapped Data 

Lake physical characteristics, including lake surface area, geographic location (latitude and 

longitude), elevation, lake catchment area, and lake perimeter, were estimated from mapped 

data. From these characteristics, the following composite variables were calculated: (1) the 

drainage ratio, which is defined as the ratio of catchment area to lake surface area and 

characterizes the degree to which the lake catchment influences the lake; (2) the shoreline 

development, which is defined as the ratio between the perimeter of the lake and the perimeter 

of a circle with the same area as the lake and characterizes the geometric complexity of the lake 

shore; and (3) the lake geometry ratio, which is defined as area0.25/depth, or the ratio between 

fetch and lake maximum depth, and has been shown to differentiate lakes that stratify 

seasonally (low values of the geometry ratio) from lakes that are polymictic (Gorham and Boyce 

1989, Stefan et al. 1996). Variables quantifying the mean annual precipitation and mean annual 

air temperature at the lake location were extracted from 30-year averaged climatic data (Daly et 

al. 2008). 

3.2 Stressor-Response Models 

Stressor-response models estimate relationships between environmental stressors 

(e.g., increased nutrient concentrations) and responses, or risk metrics. In this section, stressor-

response models for zooplankton biomass, deep water hypoxia, and microcystin concentration 

are described. The stressor in these models is phytoplankton biovolume, quantified as Chl a. 

Models estimating relationships between TN, TP, and Chl a are also described. 
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3.2.1 Zooplankton Biomass 

Zooplankton occupy a key link in the lake food web, and the relationship between 

phytoplankton biovolume and zooplankton biomass provides insights into changes in the food 

web as lake productivity increases. 

3.2.1.1 Statistical analysis 

EPA specified a Bayesian network model to estimate the relationship between summer mean 

phytoplankton and zooplankton biomasses (Figure 4). A Bayesian network provides a unified 

framework for modeling the cascading relationships between different measurements and 

propagates estimation errors and model uncertainty correctly throughout the model (Qian and 

Miltner 2015; Yuan and Pollard 2018). 

Figure 4. Schematic of network of relationships for modeling zooplankton biomass. Gray-filled ovals: 
available observations; other nodes: modeled parameters; numbers in parentheses refer to equation 
numbers in the text. 

The first set of relationships in the network estimated seasonal mean phytoplankton biovolume 

based on measurements of Chl a concentration and of phytoplankton biovolume. The two 

measurements provided independent estimates of phytoplankton biovolume, each with 

different sources of error. Chl a is measured precisely from field samples, but the Chl a content 

of phytoplankton can vary depending on environmental conditions and species composition 

(Kasprzak et al. 2008), so that a measured Chl a concentration in one sample might indicate a 

slightly different phytoplankton biovolume than the same Chl a measured in another sample. 

Hence, Chl a concentration is modeled as being directly proportional to the seasonal mean 

phytoplankton biovolume in lake j (Pj), but the constant of proportionality, b, (i.e., the Chl a 
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content of phytoplankton in a sample) is allowed to vary among samples. The log-transformed 

version of this model equation is as follows: 

log(𝐶𝐶ℎ𝑙𝑙𝑖𝑖) = log�𝑃𝑃𝑗𝑗[𝑖𝑖]� + log(𝑏𝑏𝑖𝑖) (1) 

log(𝑏𝑏𝑖𝑖) ~𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑙𝑙(𝜇𝜇𝑏𝑏 ,𝜎𝜎𝑏𝑏) (2) 

where the value of bi for each sample, i, is drawn from a single log-normal distribution 

characterized by a mean, µb, and a standard deviation, σb. The mean value, µb, accounts for 

differences in the measurement units of Chl a and phytoplankton biovolume; however, in the 

model, both Chl a and phytoplankton biovolume measurements are standardized by subtracting 

their observed mean values and dividing by their standard deviation, so µb is zero. The multilevel 

expression of the model equation allows the mean Chl a content of phytoplankton cells 

estimated for each sample to vary, but imposes the constraint that estimates of phytoplankton 

Chl a content for each sample must be drawn from a common log-normal distribution (Gelman 

and Hill 2007). Measurements collected at the same lake on different days and collected on the 

same day in the littoral zone and in the middle of the lake were used to estimate seasonal mean 

phytoplankton biovolume. 

Direct measurements of phytoplankton biovolume provide an unbiased estimate of true 

phytoplankton biovolume. These direct measurements, however, are obtained by summing 

contributions from measurements taken from many different individual phytoplankton, each of 

which includes measurement error. Hence, the summed estimate of total biovolume includes a 

substantial amount of measurement error. That measurement error was explicitly modeled, and 

a second estimate of the seasonal mean phytoplankton biovolume was expressed as follows: 

log�𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜,𝑖𝑖�~𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(log�𝑃𝑃𝑗𝑗[𝑖𝑖]� , 𝑠𝑠1) (3) 

where Pobs,i is the observed phytoplankton biovolume in sample i. Final model estimates of Pj[i] 

were consistent with both Chl a and observed phytoplankton biovolume, and by combining the 

two measurements, the accuracy of the final estimate was maximized. 

Zooplankton abundance (A) and biomass (Z) were modeled as increasing functions of seasonal 

mean phytoplankton biovolume (or biomass, using the conversion factor of 1 g/mL). Previous 

studies in oligotrophic lakes found that zooplankton biomass increased as a constant proportion 

of phytoplankton biomass (Rognerud and Kjellberg 1984, del Giorgio and Gasol 1995). That is, 
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after log-transforming, the relationship between P and Z should approach the following at low 

concentrations of P: 

 log(𝑍𝑍) = log(𝑘𝑘) + log (𝑃𝑃) (4) 

where the slope of the relationship between log(Z) and log(P) approaches 1. In contrast, in 

eutrophic lakes, minimal changes in Z were observed with changes in P, and the slope between 

log(Z) and log(P) approached zero (Yuan and Pollard 2018). Those patterns guided the selection 

of the following functional form for modeling the relationship between log(Z) and log(P): 

 𝐸𝐸[log�𝑍𝑍𝑗𝑗�] = 𝑓𝑓1 + 𝑓𝑓2log (𝑃𝑃𝑗𝑗) − 𝑓𝑓3q log �1 + exp �− log�𝑃𝑃𝑗𝑗�−𝑐𝑐𝑝𝑝
𝑞𝑞

�� (5) 

where, in general, E[.] indicates the expected value of the variable enclosed in the square 

brackets. The coefficients f1, f2, f3, cp, and q were estimated from observations of Zj and the 

estimated seasonal mean phytoplankton concentration, Pj, estimated from measurements of 

phytoplankton biovolume and Chl a. The slope of this function approaches f2 at large values of P 

and approaches a slope of f2 + f3 at low values of P. A prior distribution for f2 + f3 was specified as 

a normal distribution centered at 1 with a standard deviation of 0.2, expressing the prediction 

(stated above) that, at low levels of phytoplankton (oligotrophic lakes), zooplankton biomass 

should increase as a constant proportion of phytoplankton biomass. 

A similar model was specified for zooplankton abundance (A) as follows: 

 𝐸𝐸[log�𝐴𝐴𝑗𝑗�] = 𝑎𝑎1 + 𝑎𝑎2 log�𝑃𝑃𝑗𝑗� +  𝑎𝑎3 log [1 + exp �− log (𝑃𝑃𝑗𝑗)−𝑐𝑐𝑝𝑝
𝑟𝑟

�] (6) 

where the parameters, a1, a2, a3, and r were estimated from the data, and the third term on the 

right side of the equation again introduces curvature in the fitted relationship. The change point 

for zooplankton abundance, cp, was estimated as being the same as for zooplankton biomass 

because of the strong influence of abundance on total biomass. In the case of zooplankton 

abundance, no a priori assumptions about the slope of the relationship at high or low levels of 

phytoplankton guided the choice of parameter values. 

Observed values of zooplankton abundance and biomass were then related to the estimated 

expected values as follows: 

 log�𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜,𝑖𝑖�~𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(E[log�𝐴𝐴𝑗𝑗[𝑖𝑖]�] , 𝑠𝑠2) (7) 

 log�𝑍𝑍𝑜𝑜𝑜𝑜𝑜𝑜,𝑖𝑖�~𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(E[log�𝑍𝑍𝑗𝑗[𝑖𝑖]�] , 𝑠𝑠3) (8) 
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Similar to the model equations for phytoplankton, variability in the observations of zooplankton 

abundance and biomass relative to estimated mean values were modeled as log-normal 

distributions with standard deviations of s2 and s3. These error terms included contributions 

from temporal, sampling, and measurement error. 

Because the strength of the interaction of the zooplankton assemblage with benthic resources 

was expected to differ between shallow and deep lakes (Benndorf et al. 2002, Scheffer and van 

Nes 2007) and exploratory data analysis indicated that lake depth was an important covariate 

(Yuan and Pollard 2018), different parameter values for a1, a2, a3, f1, f2, f3, and cp were estimated 

for each of three classes of lakes defined by depth. The curvature parameters q and r were fixed 

at 1. The number of lake classes was specified to balance between accounting for differences in 

lake depth and maintaining enough samples within each class to estimate relationships. Depth 

thresholds defining each class were selected to ensure that a similar number of samples was 

assigned to each class, yielding the following thresholds: less than 3.8 m, 3.8–8.0 m, and more 

than 8.0 m. 

All model equations were fit simultaneously to data collected at each lake, including revisits on 

different days, and littoral and mid-lake samples for phytoplankton. Weakly informative priors 

were specified for all model parameters except for f2 + f3 (Gelman 2006). Weakly informative 

prior distributions constrain parameter estimates away from extreme values, while allowing the 

data to determine the estimate for each parameter. All other statistical calculations were 

performed with R, an open-source statistical modeling software (R Core Team 2017). 

Hierarchical Bayesian models were fit using the rstan library, which implements the No-U-Turn 

sampler, a variant of a Hamiltonian Monte Carlo sampling approach (Duane et al. 1987, Stan 

Development Team 2016). 

3.2.1.2 Results 

Data collected at a total of 1,096 lakes were available for analysis, with approximately 330 lakes 

assigned to each depth class. Estimated mean phytoplankton biovolume within each sample was 

much more strongly associated with Chl a concentration than with measured phytoplankton 

biovolume, because of the high variability associated with measured phytoplankton biovolume 

(Figure 5).  
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Figure 5. Relationships between measured biovolume, Chl a, and estimated seasonal mean phytoplankton 
biovolume. Solid lines: 1:1 relationship (left panel), proportional relationship (right panel). 

Estimated relationships between phytoplankton biomass (as quantified by Chl a) and 

zooplankton abundance and biomass matched trends observed in the data (see Figure 6 for an 

example for lakes deeper than 8 m in left and middle panels, respectively). The relationship 

between zooplankton biomass and phytoplankton biomass also was consistent with the initial 

assumption that, in oligotrophic lakes with low levels of phytoplankton biomass, the slope 

approached 1, and in eutrophic lakes with high levels of phytoplankton biomass, the slope 

approached zero (right panel, Figure 6). 

The models show the gradual change in the shape of the biomass pyramid along the 

eutrophication gradient. In oligotrophic lakes, the slope of the relationship between zooplankton 

and phytoplankton biomass is near 1, indicating that small increases in phytoplankton biomass 

are reflected in a proportional increase in zooplankton biomass. As Chl a increases, however, 

the slope decreases, and the increase in zooplankton biomass per unit of increase in 

phytoplankton biomass [log(ΔZ)/log(ΔP)] approaches zero. In eutrophic lakes, increases in 

phytoplankton biomass do not result in comparable changes in zooplankton biomass. These 

changes along the eutrophication gradient are consistent with other similar studies, as reviewed 

in Yuan and Pollard (2018). 
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Figure 6. Estimated relationships between zooplankton and Chl a for lakes > 8 m deep. Left panel: Chl a vs. 
zooplankton abundance; middle panel: Chl a vs. zooplankton biomass; right panel: Chl a vs. slope of the 
relationship between zooplankton biomass and Chl a. Solid lines: mean relationships; shaded areas (left 
and middle panels): 90% credible intervals (bounded by the 5th and 95th percentiles of the distribution of 
possible mean relationships; dashed lines (right panel): 90% credible interval; open circles (left and middle 
panels): average of five samples nearest the indicated Chl a concentration; dotted horizontal line (right 
panel): one example value of threshold for deriving a Chl a criterion. 

3.2.1.3 Chl a criterion derivation 

Calculating candidate criteria for Chl a based on this response requires the specification of two 

parameters—the value of the slope between log(Z) and log(P) and the certainty level, as 

quantified by the credible interval (i.e., the Bayesian analog to a confidence interval).  

Considerations: Slope between log(Z) and log(P). The threshold slope of zero between log(Z) 

and log(P) is the limit beyond which changes in zooplankton biomass are not associated with 

changes in phytoplankton biomass. This threshold identifies the point at which a disconnect 

between phytoplankton and zooplankton production begins and increasing primary productivity 

in the lake escapes zooplankton grazer control, a condition which can exacerbate blooms. EPA 

therefore recommends a threshold of zero as the minimum value for this parameter. Higher 

threshold slopes may be selected for certain types of lakes in which a higher proportion of 

phytoplankton is expected to be consumed by zooplankton (e.g., oligotrophic), but quantifying 

the appropriate value for this slope requires the collection of additional data from these lakes. 

Graphically, this threshold defines the horizontal line on which the Chl a criterion will be based 

(see Figure 6). 

Considerations: Certainty level. The certainty level, as quantified by the credible interval, 

expresses the statistical uncertainty about the position of the mean relationship and is 

comparable to a confidence interval used in frequentist statistics. The percentile value selected 

as the certainty level (e.g., the 90% certainty level) specifies the probability that the mean 
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relationship is located within the estimated bounds of the corresponding credible interval (e.g., 

there is a 90% probability that the actual mean relationship is located within the bounds 

associated with the 90% credible interval). In practice, the bounds of the credible interval are 

calculated from percentiles of the posterior distribution of the mean relationship. For example, 

at any Chl a concentration, the criterion model provides a distribution of possible values of the 

slope between zooplankton and phytoplankton biomasses. The credible interval is centered at 

the median value of this distribution of slopes, and the bounds of the 90% credible interval are 

calculated as the 5th and 95th percentiles of this distribution. 

Basing the criterion value on the lower bound of the selected credible interval provides 

additional assurance that the calculated criterion is protective, given the data and model 

uncertainty. That is, more protective criteria are based on lower percentiles of the distribution 

of possible mean relationships (i.e., lower bounds of the credible interval). For example, if one 

selects a certainty level of 90%, the corresponding bounds for the 90% credible interval are 

computed as the 5th and 95th percentiles of the distribution of estimated mean relationships. 

Therefore, basing a criterion on the lower bound of the 90% credible interval implies there is a 

5% chance that the actual slope between log(Z) and log(P) is less than the selected threshold. 

That is, there is a 5% chance that the derived criterion value is greater than the concentration 

needed to achieve the desired condition, and therefore, a 5% chance that the criterion is under-

protective. More certainty on the criterion value is achieved by selecting greater certainty levels. 

For example, there is a 1% chance that a criterion based on the 98% certainty level would be 

under-protective. In statistical hypothesis testing, convention suggests that p-values of 1% or 5% 

are statistically significant results, which can also inform the selection of the certainty level.  

Selection of the certainty level as the basis for the criteria is a management decision, and a 

range of certainty levels (and associated credible intervals) from 50% to 99% is provided in the 

associated interactive tool (see below). The ecological effects of reduced grazer control of 

phytoplankton biomass associated with a slope threshold value of zero can be substantial and 

difficult to reverse; and therefore, conservative certainty levels (i.e., 90% - 99%) are 

recommended for this response.  

Chl a criterion derivation: Illustrative criteria for Chl a for different management decisions are 

shown in Table 2. The interactive tool, which uses posterior simulation with the estimated 

parameter distributions, computes candidate criteria for different combinations of the slope 
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threshold and the certainty level (https://nsteps.epa.gov/apps/chl-zooplankton). With this tool, 

a user can specify the value of the slope between log(Z) and log(P), lake depth, and the certainty 

level, and the associated criteria and stressor-response relationship are updated to reflect those 

selections. The tool provides transparent information regarding the effects of different levels of 

certainty and can provide a useful means of engaging with stakeholders regarding the risk 

management decisions underlying criterion development. 

Table 2. Illustrative Chl a criteria (μg/L) for different certainty levels and a slope threshold value of 0 for 
Δ(log Z)/Δ(log P). Values shown for each lake depth class. 

Depth class 

Certainty level < 3.8 m 3.2 – 8 m > 8 m 

90% 51 21 13 
99% 34 15 9 

3.2.2 Deep Water Hypoxia 

EPA specified a model for deep water DO that represents the temporal decrease in DO during 

summer stratification, while accounting for differences among lakes in eutrophication status, 

depth, and DOC concentrations (Yuan and Jones 2020a). 

3.2.2.1 Data 

EPA first restricted analysis to data collected from seasonally stratified lakes because hypoxic 

and anoxic conditions occur more consistently during stratified conditions. Lakes were identified 

that were likely to be seasonally stratified by computing the lake geometry ratio. This metric 

approximates the relative effects of lake fetch and depth on stability of stratification, and lakes 

with a geometry ratio less than 3 m-0.5 exhibit seasonal stratification (Gorham and Boyce 1989). 

Therefore, EPA restricted NLA data to lakes with geometry ratios less than that threshold. Lakes 

likely to be dimictic (i.e., mixing fully in the spring and in the fall and ice-covered in the winter) 

were also identified based on latitude and elevation. This classification approach adjusts the 

lake latitude by elevation, and then identifies lakes with adjusted latitudes greater than 40˚ N as 

dimictic (Figure 7) (Lewis 1983). Restriction to dimictic lakes allowed EPA to use a simple 

relationship based on annual mean temperature in the model to more accurately predict the 

first day of stratification, and thus, more accurately estimate model parameters (see below). 

The location of dimictic lakes also roughly corresponded with lakes that were likely to harbor 

https://nsteps.epa.gov/apps/chl-zooplankton
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cool- and cold-water fish. Finally, data were restricted to samples in which temperature profiles 

exhibited evidence of stratification (defined as a temperature gradient of at least 1 degree 

Celsius per meter [°C/m]). 

Figure 7. Locations of NLA lakes used to fit the DOm model. These lakes were designated as dimictic and 
were stratified at the time of sampling. 

Mean deep water DO concentrations (DOm) in the selected NLA lakes were computed from 

temperature and DO profiles. First, measurements collected at depths less than or equal to 

0.5 m were excluded to minimize the effects of surface warming. In some profiles, duplicate 

measurements of DO and/or temperature were collected at each depth, and in these cases, the 

average was used in computations. EPA used only profiles with measurements collected from at 

least half of the possible 1-m increments in the final analysis. 

The upper boundary of the metalimnion was identified as the shallowest depth at which the 

temperature gradient exceeded 1 °C/m (excluding the surface layer) (Figure 8) (Wetzel 2001). 

DOm for each lake profile was computed as the mean of DO measurements estimated at all 1-m 

increments deeper than the upper boundary of the metalimnion. That estimate of DOm 

necessarily includes some measurements in the metalimnion, which might increase the 

estimates of DOm relative to studies that can focus only on the hypolimnion. In the NLA data set, 

the upper boundary of the metalimnion could be determined for most profiles. In contrast, 

many lakes in the NLA data set were too shallow to maintain a hypolimnion with small vertical 

temperature gradients (Jones et al. 2011), and therefore, no approach for consistently defining 

the hypolimnion for all lakes was available (Quinlan et al. 2005). Furthermore, inclusion of the 
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metalimnion was consistent with the assumption that taxa can use this transitional region as a 

refuge from warmer temperatures in the mixed layer (Klumb et al. 2004). The depth of water 

below the thermocline was computed as the difference between the maximum depth recorded 

for each lake and the mean depth of the upper boundary of the metalimnion. Chl a and DOC 

measurements from each lake were also used in the analysis. Prior to statistical analysis, all 

measurements were standardized by subtracting their overall mean values and dividing by the 

standard deviation. This standardization had no effect on the final model results, but helped the 

Bayesian models converge more efficiently (Gelman and Hill 2007). 

Figure 8. Illustrative examples of depth profiles of temperature, temperature gradient, and DO. Dashed 
horizontal line: estimated depth of the bottom of the epilimnion. 

3.2.2.2 Statistical analysis 

EPA modeled the decrease in DOm as a linear function, an approximation that is appropriate for 

DOm concentrations higher than approximately 2 milligrams per liter (mg/L) (Burns 1995). This 

threshold reflects experimental evidence indicating that the rate of decrease of hypolimnetic DO 

is constant at relatively high ambient concentrations of DO, but can be affected by DO 

concentrations near zero (Cornett and Rigler 1984). The linearly decreasing function also 

precludes the possibility of episodic mixing events that transport DO from shallow waters to 

deeper depths of the lake. In some lakes, those mixing events are rare, but in other lakes (e.g., 

cold polymictic lakes), they might occur frequently. In the latter group of lakes, the model 

predicts DOm during extended periods of still weather, and the associated criteria would protect 
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aquatic life in those scenarios. Below, the statistical model is first described followed by a 

description of the approach for addressing DOm measurements less than 2 mg/L. 

Figure 9. Schematic of hypoxia model. Numbers in parentheses refer to equation numbers in the text. 

NLA data were fit to the following model equation: 

 𝐸𝐸[𝐷𝐷𝐷𝐷𝑚𝑚,𝑖𝑖] = 𝐷𝐷𝐷𝐷0,𝑗𝑗[𝑖𝑖] + 𝑉𝑉𝑉𝑉𝑉𝑉𝑗𝑗[𝑖𝑖]�𝑡𝑡𝑖𝑖 − 𝑡𝑡0,𝑘𝑘[𝑖𝑖]� (9) 

where DO0,j[i] is the value of DOm at the start of spring stratification in lake j corresponding to 

sample i, and volumetric oxygen demand (VODj) is the net imbalance in the volumetric oxygen 

budget for lake j, expressed as mg/L/day of DO (Burns 1995). That is, VOD estimates the rate of 

decrease in DOm per day. ti is the date that sample i is collected, and t0,k[i] is the date of the 

beginning of stratification for the lake-year k corresponding to sample i. Observed values of 

DOm,i were modeled as being normally distributed about the expected value, with a standard 

deviation of σ1. 

The first day of stratification (t0) was not measured for any of the lakes, and the precise day on 

which stratification occurs for a given lake and year depends on local wind speeds, 

temperatures, and lake morphology (Cahill et al. 2005). Previous work in northern temperate 

dimictic lakes found that the first day of stratification could be modeled as a function of mean 

annual temperature (Demers and Kalff 1993), so EPA specified the following relationship for t0: 

 𝑡𝑡0,𝑘𝑘 = 𝑏𝑏1 + 𝑏𝑏2𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑗𝑗[𝑘𝑘] + 𝑒𝑒𝑘𝑘 (10) 

where Tempj[k] is the mean annual air temperature at the location for lake j corresponding to 

lake-year k, and b1 and b2 are coefficients that are fit to the data. The published relationship in 
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Demers and Kalff (1993) provided initial estimates for b1 and b2, which were used to specify 

prior distributions for the two parameters. The error term ek is included in the model because 

the first day of stratification varies substantially in different years for a given lake because of 

differences in weather. Data published by Demers and Kalff (1993) indicated that the standard 

deviation of residual error for this relationship was approximately 12 days, so this value was 

used to specify the prior distribution for the standard deviation of ek. 

The initial concentration of DO at the time of stratification, DO0, was also not measured for any 

of the lakes. Deep water temperatures in many seasonally stratified lakes are determined by 

temperatures prior to initiation of stratification (Hondzo and Stefan 1993), and so, deep water 

lake temperatures at the time of stratification were approximated as the minimum annual air 

temperature at the lake location. Then, the saturated DO concentration at the minimum annual 

air temperature provided an estimate for DO0. Minimum air temperatures less than 4 degrees 

Celsius (˚C) were set to 4 ˚C, corresponding to water temperatures when the lake surface begins 

to freeze (Demers and Kalff 1993). 

Lake trophic status affects VOD because increased phytoplankton production in the epilimnion 

increases the quantity of organic material available for decomposition in the hypolimnion and in 

lake sediments (Hutchinson 1938). In many lakes, allochthonous sources also provide organic 

matter that fuels bacterial respiration and depletes oxygen in deep lake waters (Pace et al. 2004, 

Kritzberg et al. 2004). VOD has also been observed to decrease with increasing hypolimnion 

depth, a phenomenon attributed to a weaker overall influence of sediment oxygen demand as 

the volume of the hypolimnion increases (Cornett and Rigler 1980, Müller et al. 2012). Based on 

these mechanisms, EPA modeled VOD as a linear function of the long-term mean Chl a 

concentration and depth below the thermocline in the lake. To account for the effect of 

allochthonous organic matter, DOC was also included as a third predictor variable for VOD 

(Hanson et al. 2003, Cole et al. 2011). The model equation for VOD can then be written as 

follows: 

 𝐸𝐸[𝑉𝑉𝑉𝑉𝑉𝑉𝑗𝑗] = 𝑑𝑑1 + 𝑑𝑑2 log�𝐶𝐶ℎ𝑙𝑙𝑚𝑚𝑚𝑚,𝑗𝑗� + 𝑑𝑑3𝐷𝐷𝑚𝑚𝑚𝑚,𝑗𝑗 + 𝑑𝑑4log (𝐷𝐷𝐷𝐷𝐷𝐷𝑚𝑚𝑚𝑚,𝑗𝑗) (11) 

where d1, d2, d3, and d4 are model coefficients estimated from the data; log(Chlmn,j) is the long-

term mean of the log-transformed Chl a concentration lake, j; Dmn,j is the mean depth of the lake 

below the thermocline; and log(DOCmn,j) is the seasonal mean of log-transformed DOC 

concentration in the lake. Variability in VOD across individual lakes about the mean value 



28 

estimated from the predictor variables was modeled as a normal distribution. Because Chl a 

concentrations can vary substantially over the summer in a lake, the modeling approach used 

with the zooplankton model provided a distribution of possible long-term mean log(Chlmn) 

values for each lake, given one or more instantaneous measurements of Chl a concentration. 

More specifically, seasonal mean log(Chlmn) values for different lakes were modeled as a normal 

distribution as follows: 

 log�𝐶𝐶ℎ𝑙𝑙𝑚𝑚𝑚𝑚,𝑗𝑗�~𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑙𝑙(𝜇𝜇𝐶𝐶ℎ𝑙𝑙 , 𝑠𝑠𝐶𝐶ℎ𝑙𝑙,1) (12) 

Then, individual log-transformed measurements from each lake were assumed to be drawn 

from a normal distribution with a mean value equal to the long-term mean as follows: 

 log(𝐶𝐶ℎ𝑙𝑙𝑖𝑖) ~𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑙𝑙(log (𝐶𝐶ℎ𝑙𝑙𝑚𝑚𝑚𝑚,𝑗𝑗[𝑖𝑖]), 𝑠𝑠𝐶𝐶ℎ𝑙𝑙,2) (13) 

where Chli is the Chl a concentration measured in sample, i, associated with the mean log(Chlmn) 

concentration in lake j[i]. (Note that Equations (12) and (13) are not shown in Figure 9.) Within-

year variability of DOC and depth below the thermocline were substantially less than observed 

for Chl a, so long-term means for each of those parameters were estimated as the mean value 

of all available data for each lake. Weakly informative prior distributions were assigned to all 

parameters except for those that are noted above. Weakly informative prior distributions 

constrain parameter estimates away from extreme values, while allowing the data to determine 

the estimate for each parameter. 

As noted earlier, DOm approaches zero asymptotically over time and modeling that relationship 

with the linear model described above would introduce biases to the model. To account for the 

asymptotic relationship, EPA modeled samples with DOm less than 2 mg/L with methods used 

for measurements that are below a known detection limit. That is, the samples were modeled as 

if their “true” DOm values were unknown but their maximum values were 2 mg/L (Gelman and 

Hill 2007). This approach retained some information inherent in a sample with DOm less than 2 

mg/L (i.e., Chl a, lake depth, DOC, and sampling day are consistent with low DOm), but allowed 

the use of linear relationships in the model to estimate the rate of DO depletion. More 

specifically, the model fits a linear trend in time to DOm observed from lakes with similar Chl a, 

DOC, and depth. By assuming that measurements of DOm less than 2 mg/L are unknown, the 

estimates of the linear relationship are more strongly determined by the higher DOm 

concentrations, and samples with DOm less than 2 mg/L exert a weak influence that is still 

consistent with the overall relationship. Retaining samples with DOm less than 2 mg/L in the 
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model prevents biases that would be introduced by considering only lakes with relatively high 

DOm. 

3.2.2.3 Results 

A total of 477 samples collected at 381 lakes were available for analysis. DOm concentrations in 

165 samples were less than 2 mg/L and were modeled as unknown values that were less than 

2 mg/L. The asymptotic relationship can be seen in the plot of Chl a versus DOm (Figure 10), in 

which DOm decreases steadily up to a Chl a concentration of about 4 μg/L. At higher Chl a 

concentrations, the magnitude of the slope of the relationship between DOm and Chl a 

decreases and approaches zero. 

Figure 10. Chl a vs. DOm. DOm values. Gray-filled circles: values < 2 mg/L; solid line: nonparametric fit to 
the data shown only to highlight the asymptotic relationship.  

The majority of the estimates for the first day of stratification ranged from day 30 to day 120 

(Figure 11). In most lakes, the Demers and Kalff (1993) estimate for the first day of stratification 

was later than the value of t0 estimated by the model. This systematic difference is consistent 

with the fact that most of the lakes considered in Demers and Kalff (1993) were located north of 

the mean latitudinal location of the NLA lakes. The strong association between the Demers and 

Kalff (1993) estimates and the current estimates indicates that the overall formulation of the 

model, in which stratification day is a function of mean annual temperature, is valid. 
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Figure 11. Demers and Kalff (1993) predicted stratification day vs. model mean estimate. Solid line: the 1:1 
relationship. 

Relationships estimated between DOm and different predictors were consistent with the 

hypothesized effects of each of the predictors (Figure 12). DOm decreased strongly with 

increases in DOC and Chl a, reflecting the increased organic material available in lakes with high 

concentration of the two parameters. Conversely, DOm increased with increasing depth below 

the thermocline, consistent with observations in other studies. Substantial uncertainty is 

associated with the relationship between DOm and day of the year, reflecting the inherent 

uncertainty in estimating the first day of stratification for different lakes. 

The root mean square (RMS) error on model predictions for samples with DOm higher than 

2 mg/L was 1.5 mg/L. RMS error is defined as the square root of the average squared difference 

between predicted and observed values. Slightly greater residual variability in the observations 

about the mean predictions were observed at high values of DOm (Figure 13). 
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Figure 12. Relationships between individual predictors and DOm, holding other variables fixed at their 
mean values. Solid line: mean relationship; gray shading: 90% credible intervals. 

Figure 13. Model predicted DOm vs. observed DOm. Open circles: individual samples; solid line: 1:1 
relationship. 

The statistical model described for DOm is consistent with the mechanisms of DO depletion in 

the deep waters of a lake, in which available DO below the thermocline is progressively depleted 

after the initiation of spring stratification. The estimated effects of eutrophication, DOC, and 
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lake depth on the rate of oxygen depletion were consistent with trends observed in other 

studies. 

3.2.2.4 Chl a criteria derivation 

As described earlier, warm temperatures in the shallow mixed layer of a lake act together with 

deep water hypoxia to constrain the available habitat for cool- and cold-water taxa. Therefore, 

to derive criteria based on deep water hypoxia, estimates of changes in water temperature over 

the course of the summer are required to identify periods of time during which mixed layer 

temperatures are too high for different taxa. Those periods of time then determine when deep 

water DO concentrations need to be sufficiently high to support different organisms. 

Water temperature in the lake mixed layer depends on a variety of factors, including the local 

climate, solar insolation, lake morphology, and the day of the year (increasing in the spring and 

summer and decreasing in the fall). To identify temperatures in different lakes that were likely 

to limit available habitat for different fish, EPA first developed models to predict temperature in 

the shallow, mixed layer of different lakes. NLA data collected at all lakes in the conterminous 

U.S. were used to fit the model. At each lake, maximum temperature (excluding the top 0.5 m of 

the surface layer) observed in vertical profiles collected in each lake were modeled as a function 

of lake geographic location, elevation, and sampling day of the year with a generalized additive 

model (Wood 2006) of the following form: 

 𝐸𝐸[𝑇𝑇𝑖𝑖] = 𝑓𝑓1 + 𝑓𝑓2𝐸𝐸𝑙𝑙𝑇𝑇𝐸𝐸𝑗𝑗[𝑖𝑖] + 𝑠𝑠(𝑦𝑦𝑑𝑑𝑁𝑁𝑦𝑦𝑖𝑖 ,𝑑𝑑𝑓𝑓 = 7) + 𝑠𝑠�𝐿𝐿𝑁𝑁𝑡𝑡𝑗𝑗[𝑖𝑖],  𝐿𝐿𝑁𝑁𝐿𝐿𝑗𝑗[𝑖𝑖],𝑑𝑑𝑓𝑓 = 30� (14) 

where E[Ti] is the expected value of the maximum temperature in the lake observed in sample i. 

Elevj[i] is the elevation of the lake, j, corresponding to sample i. The variable ydayi is the day of 

the year that the sample was collected, and Latj[i] and Lonj[i] are the latitude and longitude of the 

lake. The relationship between temperature and elevation was modeled as a simple linear 

relationship, characterized by two regression coefficients, f1, and f2. Relationships between lake 

temperature and sampling day and between lake temperature and location were modeled as 

nonparametric splines, represented in Equation 14 as s(.), with the maximum degrees of 

freedom, df, as indicated. Observed values of Ti were assumed to be normally distributed about 

the modeled expected value. 

Lake temperature generally decreased with increased latitude, as would be expected (Figure 

14), but deviations from that latitudinal pattern were observed on the west coast of the U.S., 



33 

where lake temperatures were substantially lower than lakes at a similar latitude in the eastern 

U.S. This trend likely arises from the moderating influence of the coastal waters on air 

temperatures. Lake temperatures in eastern Texas and Louisiana were warmer than lake 

temperatures at the same latitudes elsewhere. Lake temperatures decreased with elevation, as 

expected, and exhibited a unimodal pattern with sampling day, with maximum temperatures 

occurring on average on Day 204, or July 22 (Figure 15). Overall, the model predicted lake 

temperature with an RMS error of 1.9 ˚C. 

Figure 14. Contours of modeled mean lake temperature computed at the overall mean elevation and 
mean sampling day. 

Figure 15. Relationship between lake temperature and sampling day (left panel) and elevation (right 
panel). Variables that are not plotted are fixed at their mean values. Gray shading: 90% confidence 
intervals; solid lines shows the mean relationships. 
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The pattern of temperature changes with time (see Figure 15) provides insight into the critical 

period during which the severity of deep water hypoxia can influence aquatic life in lakes. For 

most lakes, mixed layer temperatures increase in the spring and exceed critical temperatures for 

different species, at which point cool- and cold-water obligate species must move to deeper 

depths. Then, in the fall, decreasing mixed layer temperatures allow those species to move back 

to shallower waters. Models for DOm indicate that, in dimictic lakes after the onset of spring 

stratification, DOm decreases monotonically over time until fall turnover (see Figure 12). 

Therefore, the length of time between spring stratification and when mixed layer temperatures 

decrease below the critical temperature thresholds in the fall is a key factor for deriving a 

protective Chl a criterion. 

EPA used documented temperature thresholds defined for cool- and cold-water fish as 

examples of critical mixed layer temperatures (Coker et al. 2001). For cool-water species, EPA 

identified an illustrative temperature threshold of 24 °C. Walleye, striped bass, and yellow perch 

are examples of lake fish that are members of that group (McMahon et al. 1984). For cold-water 

species, EPA identified an illustrative temperature threshold of 18 °C. Lake trout and cisco are 

examples of cold-water obligate species (Marcus et al. 1984, Jacobson et al. 2008). (Note: These 

references are only examples of the types of information that can be used to inform decisions 

regarding the critical temperature for different fish species and different fish life stages.) Then, 

given a lake’s location and elevation, the lake temperature model predicts the day of the year 

that the mixed layer temperature would decrease below the critical temperatures. For cool-

water species, mixed layer temperatures decreased below the critical temperature of 24 °C on 

days 210–260 (Figure 16), taking into account the fact that the dimictic lakes considered in this 

analysis are located in the northern half of the country (see Figure 7). Lakes in which mixed layer 

temperatures increased above 24 °C at some point during the year were predominantly located 

in the eastern U.S., as high elevations and climate in the western U.S. moderate lake 

temperatures. For cold-water species, mixed layer temperatures decreased below the critical 

temperature of 18 °C on days 220–280 (Figure 17). Temperatures in many lakes in the southeast 

part of the U.S. rarely decrease below the critical threshold in the summer, but those lakes also 

generally do not harbor cold-water fish. 
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Figure 16. Days of the year that mixed layer temperatures decrease below the critical temperature for 
cool-water species. Small dots: lakes in which mixed layer temperatures never exceed 24 °C. 

Figure 17. Days of the year that mixed layer temperatures decrease below the critical temperature for 
cold-water species. Small dots: lakes in which mixed layer temperatures do not decrease below 18 °C 
during the summer; contours: effects of large differences in elevation across lakes in the western U.S. 

Criterion values for Chl a are calculated from the model equation for DOm, rewritten here: 

 𝐷𝐷𝐷𝐷𝑚𝑚 = 𝐷𝐷𝐷𝐷0 + [𝑑𝑑1 + 𝑑𝑑2 log(𝐶𝐶ℎ𝑙𝑙𝑚𝑚𝑚𝑚) + 𝑑𝑑3𝐷𝐷 + 𝑑𝑑4 log(𝐷𝐷𝐷𝐷𝐷𝐷𝑚𝑚𝑚𝑚)](𝑡𝑡 − 𝑡𝑡0) (15) 

Deep water DO concentrations depend not only on Chl a concentration, but also on the depth of 

the lake below the thermocline (D), DOC concentration (DOCmn), and length of time that has 

elapsed since the establishment of stratification (t – t0). A procedure for computing the day of 

the year, tcrit, at which mixed layer habitat is cool enough for different species to move to 

shallower water is also described above, highlighting the influence of lake location and elevation 
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as additional factors to consider. Based on these models, Chl a criteria for different lakes vary 

considerably depending on each lake’s specific characteristics. 

Prior to calculating a Chl a criterion, a threshold value for DOm must be selected. Existing EPA 

recommendations specify that the 7-day mean minimum DO concentration should be at least 

5 mg/L to support cold-water fish (US EPA 1986). This threshold is also consistent with DO 

concentrations that fish have been observed to avoid in field studies (Coutant 1985, Plumb and 

Blanchfield 2009). A thin layer of cool water with sufficient DO provides a critical refuge for fish 

during the warmest periods of the year, and fish have been observed to seek out those cool 

water refuges. Observations of fish in warm lakes during the summer have indicated that they 

will congregate in cold water refuges as shallow as 30 centimeters (cm) (Coutant and Carroll 

1980, Snucins and Gunn 1995, Baird and Krueger 2003, Mackenzie-Grieve and Post 2006). 

Hence, maintaining a DO concentration of at least 5 mg/L at a depth of 30 cm below the 

thermocline can provide a sufficient refuge for certain fish species and be protective of aquatic 

life. To convert this condition to a value of DOm, EPA considered a simplified case in which DO 

linearly decreases from saturated conditions above the thermocline (DO = 8.4 mg/L at 24 °C) to 

a concentration of zero at some deeper depth (Figure 18). The linear decrease in DO is 

consistent with a steady-state solution of the diffusion equation, assuming a constant eddy 

diffusivity (Stefan et al. 1995). Based on this DO profile and the requirement that DO is 5 mg/L at 

30 cm below the thermocline, an illustrative threshold value for DOm can be computed as 

1.6 mg/L for a lake that is 2 m deep below the thermocline. That is, when the temperature 

profile is as depicted in Figure 18, depth-averaged DO computed for the water column below 

the thermocline is 1.6 mg/L. Other thresholds for DOm specific to different species of fish and 

different depths can also be calculated. For example, the threshold value for DOm for a lake that 

is 10 m deep below the thermocline would be 0.3 mg/L. 
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Figure 18. Simplified DO profile used to compute threshold for DOm. Open circle: the targeted condition of 
DO at 5 mg/L, 30 cm below the thermocline. 

The influence of different factors on Chl a criterion can be visualized by computing criteria at 

median values of all covariates and then examining changes in criteria that occur with the 

change in a single covariate. The relationship between Chl a and DOm at median values for all 

other covariates are shown as solid lines in each panel of Figure 19. Lakes in which covariate 

values differ from the medians of the data set cause changes in the candidate Chl a criteria. For 

cool-water species, using the illustrative threshold temperature, the median number of days 

between spring stratification and release of the temperature constraint in the mixed layer was 

135 days. The 75th percentile of this day range, corresponding to lakes in warmer climates, was 

151 days, whereas the 25th percentile, corresponding to lakes in cooler climates, was 116 days. 

When the critical window for maintaining sufficient DO in the deeper waters decreases to 116 

days, the corresponding Chl a criterion increases to 11 µg/L, whereas in lakes in which the 

critical window is 151 days long, the Chl a criterion is 2 µg/L (left panel, Figure 19). 
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Figure 19. Effects of other predictors on Chl a criteria. Solid lines: relationship between Chl a and DOm at 
median values for all other variables; dashed line: DOm = 0.3 mg/L; dotted lines: 25th and 75th percentiles 
of days elapsed since stratification (left panel), 25th and 75th percentiles of mean DOC concentrations 
(middle panel), and depth below thermocline of 4 m and 20 m (right panel). 

Similar ranges of criteria can be calculated for changes in DOC and the lake depth below the 

thermocline. The median concentration of DOC in the available data was 5 mg/L, but in lakes in 

which DOC is 3 mg/L (the 25th percentile of observed DOC in the data), the Chl a criterion 

increases to 8 µg/L; and in lakes in which DOC is 7 mg/L (the 75th percentile), the Chl a criterion 

decreases to 2 µg/L (middle panel, Figure 19). Finally, the median lake depth below the 

thermocline was 9 m. In a deeper lake, with 20 m of water below the thermocline, the Chl a 

criterion increases to 7 µg/L; but in a shallower lake, with only 4 m of water below the 

thermocline, the Chl a criterion decreases to 3 µg/L (right panel, Figure 19). 

To better illustrate the possible range of criteria, EPA computed illustrative Chl a criteria for 

each of the dimictic lakes sampled in the NLA. Because those lakes represent a random sample 

of the population of lakes in the U.S., the resulting Chl a criteria are a representative distribution 

of criteria, providing insight into likely criteria for different types of lakes. For dimictic lakes 

harboring cool-water species (again, using the illustrative temperature threshold), the median 

Chl a criteria is 3.4 µg/L, and the range defined by the 25th and 75th percentiles is 1.3–10.6 

µg/L. For lakes harboring cold-water species, using the illustrative temperature threshold, the 

median Chl a criterion is 1.8 µg/L, with a range of possible values extending from 1–7.6 µg/L. 

In states where measurements of profiles of DO are available, these data can be readily 

modeled in conjunction with the national data (see Appendix B). In the example shown in 

Appendix B, modeling temporally resolved DO profiles from one state with the national data 

improved the precision of estimates of the first day of stratification. Because of this 
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improvement in model precision, the results of the combined state-national model are provided 

in the interactive criterion derivation tool. 

The interactive tool used for estimating candidate Chl a criteria is provided at 

https://nsteps.epa.gov/apps/chl-hypoxia. With this tool, the user can specify lake physical 

characteristics that influence the relationship between Chl a and DOm as well as management 

decisions about targeted conditions that affect the criterion.  

Considerations: Lake physical characteristics. Lake physical characteristics that are specified 

include the lake location (latitude and longitude) and lake elevation. That information is 

converted to an estimate of mean annual air temperature and, coupled with the model results, 

these data provide an estimate of the date of spring stratification. Note, though, that this 

estimate applied most accurately to dimictic lakes, and estimates of the first day of stratification 

for other type of lakes (e.g., polymictic) are more uncertain and may require additional data. 

Other lake physical characteristics that are specified are lake depth below the thermocline and 

average lake DOC concentration, factors that influence DOm. 

Water quality management decisions that influence the calculated criterion include parameters 

that define fish habitat (i.e., the critical maximum temperature for fish species in the lake, the 

threshold DO concentration, and the depth of the summer refugia) and the certainty level.  

Considerations: Fish habitat. The critical maximum temperature for fish species in the lake is 

used to calculate the average day of the year that temperature constraints are released in the 

epilimnion. That is, the annual temperature model (see Figure 15) is used to identify the date 

that fish can potentially move to oxygen-rich shallower waters. The threshold DO concentration 

for the fish (e.g., a DO concentration of 5 mg/L for cold-water fish) and the desired minimum 

thickness of the refugia (e.g., 30 cm) are used to compute the targeted condition for DOm. That 

targeted value of DOm is the minimum concentration required on the days prior to the release of 

temperature constraints.  

Considerations: Certainty level. The certainty levels, as with other criteria, provide additional 

assurance that the calculated criterion is protective, based on the data and model uncertainty. 

For example, selecting the 50% certainty level implies that, at the estimated Chl a criterion, only 

25% of predicted mean values of DOm, based on the data, were less than targeted value. In 

statistical hypothesis testing, convention suggests that p-values of 1% or 5% are statistically 

significant results, which can also inform the selection of the percentile, but selection of the 

https://nsteps.epa.gov/apps/chl-hypoxia
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certainty level as the basis for the criterion is ultimately a water quality management decision. 

More conservative certainty levels (e.g., higher percentiles) may be appropriate when applying 

this response in non-dimictic lakes in which the first day of stratification is more uncertain. 

The interactive tool uses posterior simulation with model parameter distributions to predict the 

DOm on the critical day prior to a release from temperature constraints in the surface layer for 

different Chl a concentrations. These model results can be used to help derive criteria for a 

specified threshold DOm. Samples with covariate values similar to those selected by the user are 

highlighted in the provided plots in the app. 

3.2.3 Microcystin Concentration 

The model for microcystin relates Chl a concentration to a distribution of microcystin 

concentrations. By specifying different targets for microcystin concentration, this model can 

inform the derivation of criterion values for the protection of drinking water uses or recreational 

uses. 

3.2.3.1 Statistical analysis 

A network of relationships can be specified that reflects current understanding of the linkage 

between lake eutrophication (as represented by Chl a) and increased concentrations of 

microcystin in individual samples (Figure 20). At the bottom of the diagram, cyanobacterial 

biovolume is directly associated with microcystin. Cyanobacterial biovolume is then expressed 

as the product of total phytoplankton biovolume and the proportion of the biovolume that is 

cyanobacteria (i.e., the relative biovolume of cyanobacteria), which clarifies the nature of the 

relationship between Chl a and cyanobacterial biovolume. More specifically, Chl a is directly 

proportional to phytoplankton biovolume (repeating the relationship used in the zooplankton 

model) (Kasprzak et al. 2008), and, as Chl a increases, the relative biovolume of cyanobacteria 

has been observed to increase (Downing et al. 2001). 
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Figure 20. Schematic showing relationship between different variables predicting microcystin. Numbers in 
parentheses: refer to equation numbers in the text. 

Each of the relationships in the network described above is expressed mathematically in the 

Bayesian network. First, phytoplankton biovolume, Pi, is modeled as being directly proportional 

to Chl a concentration (Chli), in sample i: 

 𝑃𝑃𝑖𝑖 = 𝑘𝑘𝑐𝑐,𝑖𝑖𝐶𝐶ℎ𝑙𝑙𝑖𝑖 (16) 

The reciprocal of the parameter kc,i is the average amount of Chl a per unit biovolume of 

phytoplankton. Because the Chl a content of phytoplankton can vary with environmental 

conditions and assemblage composition, different values of this parameter are estimated for 

each sample, i. The overall distribution of the set of values for kc,i is assumed to be log-normal 

with a mean value of µk and a standard deviation of σk. 

Exploratory analysis indicated that a quadratic function provided a reasonable representation of 

the relationship between the expected relative biovolume of cyanobacteria, pc, and Chl a as 

follows: 

 𝐸𝐸[𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑝𝑝𝑐𝑐,𝑖𝑖�] = 𝑓𝑓1 +  𝑓𝑓2𝑐𝑐ℎ𝑙𝑙𝑖𝑖 + 𝑓𝑓3𝑐𝑐ℎ𝑙𝑙𝑖𝑖2 (17) 

where f1, f2, and f3 are coefficients estimated from the data. 

Because laboratory replicates of Pi and pc,i were available, uncertainty associated with measuring 

phytoplankton and relative biovolume of cyanobacteria was estimated as follows: 

 log�𝐵𝐵𝐵𝐵𝑗𝑗�~𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(log�𝐵𝐵𝑖𝑖[𝑗𝑗]� , 𝑠𝑠1) (18) 

 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑝𝑝𝑝𝑝𝑐𝑐,𝑗𝑗�~𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑝𝑝𝑐𝑐,𝑖𝑖[𝑗𝑗]�, 𝑠𝑠2) (19) 
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where Bmj and pmc,j are the laboratory measurements of phytoplankton biovolume and 

proportion cyanobacteria, respectively, and the index j maps replicate measurements to the 

corresponding estimate of the true value of the measurement for sample i. These laboratory 

replicates are assumed to be normally distributed about their respective estimates of the 

transformed sample means, with standard deviations of s1 and ss, respectively. 

Cyanobacterial biovolume (C) can then be expressed as the product of the relative biovolume of 

cyanobacteria and total phytoplankton biovolume. After log-transforming, the expression is as 

follows: 

 log(𝐶𝐶𝑖𝑖) = log�𝑘𝑘𝑐𝑐,𝑖𝑖� + log�𝑝𝑝𝑐𝑐,𝑖𝑖� + log(𝐶𝐶ℎ𝑙𝑙𝑖𝑖) (20) 

where cyanobacterial biovolume in sample i is the sum of a log-transformed parameter kc, the 

log-transformed cyanobacterial relative biovolume in the sample, and the log-transformed Chl a 

concentration. 

The final component of the model relates cyanobacteria biovolume to microcystin. Initial 

exploration of the data indicated that microcystin increases at a rapid rate relative to 

cyanobacterial biovolume at high levels of cyanobacteria. At low levels of cyanobacteria, 

however, microcystin increases at a somewhat lower rate. To account for this change in rate, 

microcystin was modeled with a piecewise linear model as follows: 

 log (𝜇𝜇𝑀𝑀𝑀𝑀,𝑖𝑖) = 𝑔𝑔(log (𝐶𝐶𝑖𝑖)) (21) 

where the response variable in this relationship is μMC,i, the estimated mean concentration of 

microcystin in sample i. The function g(.) is the piecewise linear function, which is characterized 

by four parameters: the intercept, d1, and slope, d2, of the first segment; the point along the 

gradient at which the slope changes, cp; and the slope of the second segment, d3. 

The distribution of observed microcystin concentrations about the mean value was then 

modeled as a negative binomial distribution as follows: 

 𝑀𝑀𝑀𝑀𝑖𝑖~𝑁𝑁𝑁𝑁(𝜇𝜇𝑀𝑀𝑀𝑀,𝑖𝑖 ,𝜑𝜑) (22) 

where MCi is the microcystin observed in sample i and NB(.) is a negative binomial distribution 

with overdispersion parameter, ϕ. Because the negative binomial distribution specifies only 

nonnegative integer outcomes, before fitting the model, EPA multiplied microcystin 

measurements by 10 and rounded to the nearest integer. Microcystin measurements below the 
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detection limit of 0.1 µg/L were set to zero (Yuan and Pollard 2017). Weakly informative prior 

distributions were assigned to all parameters in the model. 

3.2.3.2 Results 

A total of 2,352 observations of microcystin, cyanobacterial and phytoplankton biovolume, and 

Chl a were available from the NLA data set for analysis. Those measurements were collected 

from 1,116 different lakes spanning the conterminous U.S. An additional 112 samples of 

laboratory replicates of phytoplankton and cyanobacterial biovolume measurements were 

available to quantify measurement variability. 

Three different relationships were estimated in the national model: (1) Chl a and phytoplankton 

biovolume, (2) Chl a and cyanobacterial relative biovolume, and (3) cyanobacterial biovolume 

and microcystin. (The relationship between phytoplankton biovolume, cyanobacterial relative 

biovolume, and cyanobacterial biovolume required no statistical estimation.) The observed 

relationship between Chl a and phytoplankton biovolume was accurately represented as a line 

with a slope equal to 1 on log-log axes (left panel, Figure 21), similar to the relationship 

estimated in the zooplankton model. 

Cyanobacterial relative biovolume exhibited an increasing relationship with Chl a (middle panel, 

Figure 21). The quadratic functional form allowed the model to represent the steepening of the 

relationship at higher concentrations of Chl a. Mean microcystin increased with cyanobacterial 

biovolume (right panel, Figure 21). The slope of the relationship increased at a cyanobacterial 

biovolume of 1.9 mm3/L, but the 90% credible interval on the location of this changepoint 

ranged from 0.5 to 5 mm3/L. At cyanobacterial biovolumes greater than the changepoint, the 

slope of the mean relationship was statistically indistinguishable from 1, whereas at 

cyanobacterial biovolumes less than the changepoint, the slope was 0.61, with the 90% credible 

interval ranging from 0.51 to 0.69. Overall, the credible interval about the cyanobacteria-

microcystin relationship was narrow compared to those estimated for the Chl a-cyanobacterial 

relative biovolume relationship as shown. 
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Figure 21. Modeled relationships for the microcystin model. Left panel: relationship between Chl a and 
phytoplankton biovolume; open circles: observed measurements of Chl a and phytoplankton biovolume; 
solid line: has a slope of 1. Middle panel: relationship between Chl a and cyanobacterial relative 
biovolume; open circles: average cyanobacterial relative biovolume in ~20 samples at the indicated Chl a 
concentration; solid line: estimated mean relationship; gray shading: 5th and 95th percentiles of the 
distribution of possible mean relationships (i.e., the 90% credible interval); vertical axis: has been logit-
transformed. Right panel: relationship between cyanobacterial biovolume and microcystin; open circles: 
average microcystin in ~20 samples at the indicated cyanobacterial biovolume; solid line: estimated mean 
relationship; gray shading: 90% credible intervals about the mean relationship; small filled circles: Chl a 
bins in which microcystin in all samples was zero. 

3.2.3.3 Chl a criteria derivation 

Chl a criteria to protect recreational uses and drinking water sources can be derived from the 

estimated network of relationships by combining the model equations for total phytoplankton 

biomass, cyanobacterial-relative biovolume, and microcystin and the uncertainty inherent in 

each of the relationships (Figure 22). More specifically, based on a threshold concentration for 

microcystin and an allowable exceedance frequency of that threshold, Equation (22) can be 

used to compute the mean predicted microcystin that would be associated with these values. 

Then, Equations (20) and (21) can be used to calculate the Chl a concentration associated with 

this mean microcystin. This model is based on instantaneous measurements of Chl a, 

cyanobacterial biovolume, and microcystin. To relate instantaneous Chl a concentrations to a 

seasonal mean Chl a concentration, EPA computed the variance of Chl a concentrations within 

lakes over the summer sampling season using repeat visits included in the NLA data set. Then, 

the variance was used to estimate the probability of exceeding an instantaneous Chl a 

concentration, based on the seasonal mean Chl a concentration. 

Threshold concentrations for microcystin have been published, and those targeted conditions 

can guide the use of the models to derive Chl a criteria. To protect sources of drinking water, the 

EPA uses a health advisory that recommends a threshold concentration for microcystin of 

0.3 µg/L for preschool children less than 6 years old (US EPA 2015b). This short-term health 
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advisory does not include consideration of exposure to other sources (i.e., a relative source 

contribution term). Typically, EPA would use an ambient water quality criterion (developed 

under Section 304(a) of the CWA) as the endpoint for the protection of human health. The 

criterion would include consideration of exposure through drinking water and fish consumed, if 

both are designated uses for a waterbody. The criteria also provide estimates for only fish 

consumption. Because human health criteria are not available for microcystins, EPA 

recommends using the drinking water health advisory, recognizing that this threshold is an 

underestimate of risk for water bodies where consumption of fish is an important route of 

exposure.  

Figure 22. Example of derivation of Chl a criterion to protect recreational uses based on targeted 
microcystin of 8 μg/L and exceedance probability of 1%. Top panel–open circles: observed values of 
microcystin and Chl a for samples in which microcystin was greater than the detection limit; solid line: 
predicted microcystin that will be exceeded 1% of the time for the indicated Chl a concentration; gray 
shading: 25th and 75th percentiles of the distribution of possible mean relationships (i.e., the 50% 
credible interval); solid vertical and horizontal line segments: candidate Chl a criterion based on targeted 
microcystin. Bottom panel: proportion of samples for which microcystin was not detected in ~100 samples 
centered at the indicated Chl a concentration. 
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The drinking water health advisory applies to finished drinking water, but national ambient 

water quality criteria are designed to protect sources of drinking water. Human health criteria 

focus on water sources prior to treatment for two main reasons. First, the ability of treatment 

technologies to remove microcystin is too variable (Hoeger et al. 2005, Westrick et al. 2010, US 

EPA 2015c) for EPA to set a national recommendation for a protective ambient source water 

concentration that would yield a protective concentration after treatment. Second, consistent 

with the core statutory objective of the CWA Section 101(a) “ to restore and maintain the 

chemical, physical, and biological integrity of the Nation’s waters”, the criteria are premised on 

the position that ambient waters should not be contaminated to a level where the burden of 

achieving health objectives is shifted away from those responsible for pollutant discharges and 

placed on downstream users such as drinking water utilities to bear the costs of upgraded or 

supplemental water treatment. EPA is aware that states or authorized tribes express water 

quality standards for protecting drinking water sources as either protecting the ambient source 

water before treatment or after treatment. If a state or authorized tribe applies the health 

advisory standard to drinking water after treatment, then they can account for the expected 

treatment in their facilities and select a higher microcystin concentration in the ambient source 

water that would result in the targeted microcystin concentration in the finished drinking water. 

Doing so will result in a concentration of Chl a in the ambient source water that will protect 

human health from the effects of microcystin in the finished drinking water. To protect 

recreational uses, EPA recommends a threshold concentration for microcystin of 8 µg/L to 

protect children (US EPA 2019). This threshold was based on incidental ingestion of water during 

recreation. 

After selecting the designated use of interest, calculating the corresponding Chl a criterion 

requires two additional management decisions: selection of the allowable exceedance 

probability of the threshold and selection of a certainty level. These decisions are combined with 

a posterior simulation using the estimated distributions of the model parameters to estimate 

Chl a criteria.  

Considerations: Allowable exceedance probability. The allowable exceedance probability can 

be interpreted directly in terms of environmental outcomes as the probability of observing a 

specified microcystin in a sample for a given seasonal mean Chl a concentration. For example, 

after accounting for model uncertainty by selecting a 50% certainty level, microcystin in lakes 
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with a seasonal mean Chl a concentration of 22 μg/L would be expected to exceed a threshold 

of 8 μg/L in 1% of samples (Table 3) (solid vertical line in Figure 22). With daily sampling, one 

interpretation of this result is that on average, microcystin would exceed the threshold 1 day 

out of every 100, so 1 day during the swimming season for many states would not support 

recreational use of the lake. 

The frequency component of the recreational cyanotoxin criteria is specified in terms of 

excursions of the criterion magnitude during 10-day assessment windows (US EPA 2019), in 

which a water body is considered impaired for recreation when more than three excursions 

occur in 1 year. If we assume initially that daily samples are independent events, we can 

calculate the probability of at least one exceedance of the criterion magnitude in a 10-day 

window, and then compute a seasonal probability associated with greater than three excursions 

within all 10-day windows during a 100-day season. For example, if our single day exceedance 

probability is 0.05, there is a 62% chance that we will observe greater than three excursions 

during a 100-day season (Figure 23).  

The initial assumption that daily samples of microcystin are independent from one another is 

conservative, as we would expect that a day with a high concentration of microcystin would be 

more likely to be followed by another day with high concentrations. That is, cyanobacterial 

blooms and the associated increases in microcystin concentration are likely to be clumped in 

time. This tendency for temporal autocorrelation may lower the computed seasonal 

probabilities, as we would expect somewhat fewer excursions during 10-day assessment 

windows if daily observations of elevated microcystin occur in groups. Overall, this information, 

or similar calculations tailored to conditions within a particular lake can further inform the 

selection of exceedance probability when deriving the candidate criterion. 
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Figure 23. Probability of the indicated number of excursions observed in 10-day assessment windows 
during a 100-day season for different single day exceedance probabilities. 

Considerations: Certainty level. The certainty level, as quantified by the credible interval, 

expresses the uncertainty in the model predictions of different exceedance probabilities. So, the 

shaded area in Figure 22 shows the range over which at least 50% of the possible curves would 

be located that describe microcystin concentrations that have a 1% probability of exceedance. 

Selection of a higher certainty level yields more conservative criteria in terms of model 

uncertainty. An interactive tool allowing the user to examine Chl a criteria associated with 

different combinations of microcystin threshold, probability of exceedance, and certainty level is 

available at https://nsteps.epa.gov/apps/chl-microcystin. 

Table 3. Illustrative Chl a criteria (μg/L) for different exceedance probabilities using a 50% certainty level 
and a microcystin threshold of 8 μg/L. 

Probability of exceedance Candidate Chl a criterion (μg/L)  

1% 22 

5% 31 
10% 39 

3.2.4 Phosphorus-Chlorophyll a 

A TP measurement is composed of P contained within different compartments, including P 

bound in phytoplankton, P bound to suspended sediment, and dissolved P (i.e., chemically 

dissolved P and P bound to particles small enough to pass through a filter) (Effler and O’Donnell 

2010). In many lakes, much of measured TP is associated with phytoplankton, and so, 

https://nsteps.epa.gov/apps/chl-microcystin
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differences in phytoplankton biomass among lakes can be associated with differences in both 

Chl a and TP, yielding a strong correlation between the two (Lewis and Wurtsbaugh 2008). In 

other lakes, high concentrations of suspended sediment can contribute to TP and affect 

observed TP-Chl a relationships (Jones and Knowlton 2005). When TP-Chl a relationships are 

being estimated, lakes with high concentrations of suspended sediment show low Chl:TP ratios 

relative to the average pattern (Hoyer and Jones 1983, Jones and Knowlton 2005). 

EPA modeled the relationship between TP and Chl a by explicitly accounting for the 

contributions of different compartments to observed TP, resulting in the positions of TP and 

Chl a in the model equation being reversed from the typical model formulations. The model 

explained variations in TP in various compartments, rather than explaining variation in Chl a 

(Yuan and Jones 2020b). 

3.2.4.1 Statistical analysis 

EPA specified a model that estimates contributions to TP from different compartments, where 

TP is modeled as the sum of contributions from dissolved P, P bound to nonphytoplankton 

sediment, and P bound in phytoplankton (Figure 24). 

Figure 24. Schematic representation of compartment model for TP. Pdiss: dissolved P; Chl: Chl a; Turb: total 
turbidity; Turbnp: turbidity attributed to nonphytoplankton sources. Shaded box for Turbnp: a variable 
inferred by the model; numbers in parentheses: refer to equation numbers in the text. 

Direct measurements of nonphytoplankton sediment were not collected during the NLA. 

Instead, turbidity measurements were available that are associated with total suspended solids 

and include contributions from both nonphytoplankton and phytoplankton components. 

Because an estimate of nonphytoplankton sediment is needed to model TP, turbidity is modeled 

as the sum of two components: (1) turbidity that is directly associated with phytoplankton 

biomass, or autochthonous suspended sediment (Turbaut) and (2) turbidity associated with all 
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other sources, or nonphytoplankton turbidity (Turbnp). The second component of turbidity 

includes turbidity associated with allochthonous sediment and sediment resuspended from the 

lake basin (Hamilton and Mitchell 1996). EPA modeled Turbaut as being directly proportional to 

Chl a (Jones et al. 2008), a measure of algal biomass and, therefore, the components of turbidity 

were expressed as follows: 

 𝐸𝐸[𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇] = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛 + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛 + 𝑓𝑓𝑓𝑓ℎ𝑙𝑙 (23) 

where E[Turb] indicates that the model applies to the expected value of turbidity (Turb). The 

amount of Turbaut associated with each unit of Chl a is expected to vary with algal composition. 

For example, small phytoplankton species would tend to scatter light differently than larger 

species. Assuming that algal composition changes with trophic conditions (Godfrey 1982), the 

change in algal composition can be modeled by expressing the coefficient f as an unknown 

function of Chl a. Also, assuming that f(Chl) can be modeled as a power function (f = bChlm), the 

product of f(Chl) and Chl a can be written as follows as bChlk without any loss of generality: 

 𝐸𝐸[𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇] = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛 + 𝑓𝑓(𝐶𝐶ℎ𝑙𝑙)𝐶𝐶ℎ𝑙𝑙 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛 + 𝑏𝑏𝐶𝐶ℎ𝑙𝑙𝑘𝑘 (24) 

where the exponent, k, is equal to m+1. 

Exploratory analysis indicated that concentrations of Turbnp varied with different lake 

characteristics, but the predictor that accounted for the most variability was lake depth. 

Therefore, 30 classes of lakes based on maximum depths were defined, and the value of Turbnp 

within each of the classes was modeled as a log-normal distribution about a mean value specific 

to that depth class as follows: 

 log�𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛�~𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝜇𝜇𝑎𝑎,𝑖𝑖 ,  𝜎𝜎𝑎𝑎) (25) 

where µa,i is the mean value of log(Turbnp) for depth class i, and σa is the standard deviation of 

the distribution of individual measurements of Turbnp. The set of values for µa,i was then 

assumed to be drawn from a single normal distribution as follows: 

 𝜇𝜇𝑎𝑎,𝑖𝑖~𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝜇𝜇,  𝜎𝜎𝜇𝜇) (26) 

where µ and σµ are the mean and standard deviation of this distribution. The mean distribution 

loosely constrains the possible values of µa,i , while allowing lakes with smaller amounts of data 

to “borrow information” from lakes with larger amounts of data (Gelman and Hill 2007). 
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Finally, sampling variability for Turb was assumed to be log-normally distributed as follows: 

 log(𝑇𝑇𝑇𝑇𝑁𝑁𝑏𝑏) ~𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑙𝑙(𝐸𝐸[log(𝑇𝑇𝑇𝑇𝑁𝑁𝑏𝑏)],𝜎𝜎𝑇𝑇) (27) 

where E[log(Turb)] is the expected value of log(Turb) expressed in Equation (24). 

EPA used results from the model for turbidity simultaneously to estimate contributions to 

different components of TP. Recall that TP is modeled as being composed of contributions from 

dissolved P (Pdiss), P bound to suspended sediment, and P bound to phytoplankton. Based on this 

assumption, the following model equation can be written: 

 𝐸𝐸[𝑇𝑇𝑃𝑃] = 𝑃𝑃𝑑𝑑𝑖𝑖𝑜𝑜𝑜𝑜 +  𝑙𝑙1𝑇𝑇𝑇𝑇𝑁𝑁𝑏𝑏𝑚𝑚𝑛𝑛 + 𝑙𝑙2𝐶𝐶ℎ𝑙𝑙 (28) 

where the concentration of P bound to nonphytoplankton suspended sediment is modeled as 

being directly proportional to Turbnp, and P bound to phytoplankton is modeled as being directly 

proportional to Chl a. The coefficient g1 quantifies the P content of Turbnp, while the coefficent 

g2 expresses P concentration relative to Chl a concentration. P content is expected to vary with 

the level of turbidity and the composition of the phytoplankton assemblage, so, similar to the 

model for turbidity, the coefficients g1 and g2 were allowed to vary as power functions of Turbnp 

and Chl a, respectively. So, the final model equation can be written as follows: 

 𝐸𝐸[𝑇𝑇𝑃𝑃] = 𝑃𝑃𝑑𝑑𝑖𝑖𝑜𝑜𝑜𝑜 +  𝑑𝑑1𝑇𝑇𝑇𝑇𝑁𝑁𝑏𝑏𝑚𝑚𝑛𝑛𝑚𝑚 + 𝑑𝑑2𝐶𝐶ℎ𝑙𝑙𝑚𝑚 (29) 

Exploratory analysis indicated that dissolved P was associated with lake depth, so, similar to 

Turbnp, different values of Pdiss were estimated for each of 30 lake depth classes as follows: 

 log�𝑃𝑃𝑑𝑑𝑖𝑖𝑜𝑜𝑜𝑜,𝑚𝑚𝑚𝑚,𝑖𝑖�~ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑙𝑙(𝜇𝜇𝑑𝑑𝑖𝑖𝑜𝑜𝑜𝑜,  𝜎𝜎𝑑𝑑𝑖𝑖𝑜𝑜𝑜𝑜) (30) 

where Pdiss,mn,i is the mean dissolved P concentration in lake depth class i, and the overall mean 

value of log(Pdiss,mn,i) is µdiss with a standard deviation of σdiss. 

Exploratory analysis also indicated that the P associated with each unit of Turbnp and Chl a (i.e., 

the values of the coefficients d1 and d2) varied most strongly with geographic location. Because 

of that trend, different values for these coefficients were estimated for different Level III 

ecoregions. Ecoregion-specific values for these parameters were assumed to be drawn from log-

normal distributions as follows: 

 log�𝑑𝑑1,𝑖𝑖�~ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑙𝑙(𝜇𝜇𝑑𝑑1,  𝜎𝜎𝑑𝑑1) 

 log�𝑑𝑑2,𝑖𝑖�~ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑙𝑙(𝜇𝜇𝑑𝑑2,𝜎𝜎𝑑𝑑2) (31) 
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where the index, i, refers to values of each parameter for different ecoregions. 

Finally, sampling variation for TP was assumed to be log-normally distributed as follows: 

 log(𝑇𝑇𝑃𝑃) ~ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑙𝑙(𝐸𝐸[log(𝑇𝑇𝑃𝑃)],𝜎𝜎𝑇𝑇𝑃𝑃) (32) 

All the relationships described in this section on statistical analysis were fit simultaneously to 

the available data with a hierarchical Bayesian model (Stan Development Team 2016). Prior 

distributions for all model parameters were assumed to be weakly informative. 

3.2.4.2 Results 

Observations of turbidity were correlated with Chl a, and a distinct lower boundary in the 

scatter of data was evident (Figure 25). The model relationship defining this lower boundary can 

be computed by setting Turbnp to zero in Equation (24). Then, after log-transforming, the 

equation can be written as log(𝑇𝑇𝑇𝑇𝑁𝑁𝑏𝑏) = log(𝑏𝑏) + 𝑘𝑘𝑙𝑙𝑁𝑁𝑙𝑙(𝐶𝐶ℎ𝑙𝑙). In other words, when Turbnp is 

negligibly small, the relationship between Turbaut and Chl a is a straight line in the plot of 

log(Chl) vs. log(Turb) (solid line in Figure 25). Deviations in sampled values above that line show 

the contribution of Turbnp to the overall turbidity measurement. Mean values of b and k 

estimated from the model were 0.67 (0.62, 0.73) and 0.67 (0.65, 0.69) (90% credible intervals 

shown in parentheses). Based on the functional form that was assumed for the relationship 

between turbidity and Chl a, the contribution of phytoplankton to turbidity (i.e., Turbaut/Chl a) 

was estimated as being proportional to Chl-0.33. That is, as Chl a increases, the amount of 

turbidity associated with each unit of Chl a decreases, a trend that is consistent with a shift from 

small-bodied, diatom-dominated assemblages to colonies of cyanobacteria cells (Scheffer et al. 

1997). 
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Figure 25. Turbidity vs. Chl a. Solid line: the limiting relationship between Chl a and turbidity when 
contribution of allochthonous sediment is negligible. 

Estimates of Turbnp and mean dissolved P both exhibited decreasing relationships with increasing 

depth (Figure 26). Turbnp decreased from approximately 1.4 nephelometric turbidity units (NTU) 

in shallow lakes to nearly zero in deep lakes, while Pdiss varied from approximately 2.6 µg/L in 

shallow lakes to 1.6 µg/L in deep lakes. Both of these relationships are consistent with a 

mechanism by which fine sediment from the lake bottom is likely to be collected in surface 

water samples in shallow lakes. In the case of Pdiss, the trend indicates that measurements of 

dissolved and particulate components of TP are determined by filter size and P bound to 

sediment fine enough to pass through the filter contributes to estimates of dissolved P. 

Figure 26. Relationship between Turbnp, Pdiss, and lake depth. Open circles: mean estimate of parameter 
value in each of 30 lake depth classes. 
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The quantity of P bound to nonphytoplankton suspended sediment expressed by the coefficient 

d1 exhibited substantial geographic variation (Figure 27). Coherent spatial patterns could be 

discerned in the variation of d1 among different states, with relatively high levels of P content in 

the upper Midwest region of the country (e.g., Montana, North Dakota, and South Dakota) as 

well as in parts of the western mountains. Comparatively lower levels of P content were 

observed in the northeast region of the U.S. Mechanisms for these large-scale variations in P 

content are likely related to the underlying geology of soils in each region (Olson and Hawkins 

2013). Values of d2, the amount of P within phytoplankton, spanned a much narrower range 

than estimated for d1, only ranging from 1.6 to 4.5 per unit of Chl a. The relative difference in 

regional variability in the coefficients indicates that spatial differences in the amount of P bound 

to nonphytoplankton suspended sediment account for more of the variability in TP-Chl a 

relationships than spatial differences in P within phytoplankton, and the amount of P residing in 

phytoplankton is relatively constant. The effects of differences in the amount of P bound to 

nonphytoplankton sediment can be taken into account by computing ecoregion-specific TP 

criteria. 

Figure 27. Ecoregion-specific values of loge(d1), P bound to nonphytoplankton suspended sediment. 
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Limiting relationships that estimate the P content of phytoplankton biomass and Turbnp can also 

be calculated (Figure 28). For phytoplankton biomass, the limiting relationship is calculated by 

setting Pdiss and Turbnp in Equation (29) to zero, yielding the following log-transformed 

relationship: log(𝑇𝑇𝑃𝑃) = log(𝑑𝑑2) + 𝐿𝐿 𝑙𝑙𝑁𝑁𝑙𝑙(𝐶𝐶ℎ𝑙𝑙). Different values of d2 were estimated for each 

ecoregion, but the distribution of those values is characterized by an overall mean value of 2.5 

(2.0, 3.1), while the mean value of the parameter n was 0.87 (0.82, 0.92). The straight line based 

on the two parameter values represents P associated with phytoplankton biomass, as quantified 

by Chl a, and it tracks the lower limit of the observed data (solid line, right panel, Figure 28). As a 

limiting relationship, one would expect that the majority of values of TP would be greater than 

this line indicates, but variability associated with the value of d2 causes some values of TP to fall 

below the limit. 

For Turbnp, setting Pdiss and Chl a to zero yields the following relationship: log(𝑇𝑇𝑃𝑃) = log(𝑑𝑑1) +

𝑁𝑁log (𝑇𝑇𝑇𝑇𝑁𝑁𝑏𝑏𝑚𝑚𝑛𝑛). The mean value of the coefficient d1 was 31 (23, 40), and the value of the 

exponent m was 0.35 (0.32, 0.40) (left panel, Figure 28). Overall, the RMS error for predicting 

loge(TP) was 0.52 for the model. 

Figure 28. TP versus Turbnp and Chl a. Solid lines: the limiting relationship between the indicated variable 
and TP; gray shaded areas: the 90% credible intervals about the mean relationship. 

3.2.4.3 Phosphorus criteria 

Two relationships between Chl a and TP that can be inferred from the TP model inform the 

derivation of TP criteria. First, the limiting relationship between Chl a and TP estimated from the 

model quantifies the amount of P that is bound to phytoplankton (see Figure 28). This 

relationship predicts TP concentration in samples in which suspended sediment and dissolved P 
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concentrations are very low and defines the minimum value of TP that is associated with a 

targeted Chl a concentration. This limiting relationship can also be interpreted as the Chl a yield 

of P (Yuan and Jones 2019) and could be used to predict the change in Chl a that would 

potentially result from a change in the amount of biologically available P in the water column 

(Reynolds and Maberly 2002). 

A second relationship between TP and Chl a accounts for contributions from P bound to 

nonphytoplankton sediment. If lake depth is specified, then the relationship estimated between 

lake depth and nonphytoplankton sediment can be used to estimate an average contribution to 

TP from these other compartments in the water column (see Figure 26). The resulting 

relationship then provides an estimate of the ambient TP concentration one would expect to 

observe as a function of Chl a, and therefore, provides a TP criterion value. 

The prediction of ambient TP that accounts for contributions from nonphytoplankton sediment 

provides an estimate of the mean TP concentration that one would expect to observe for a 

given Chl a (Figure 29). As such, this ambient TP concentration provides a criterion. (Illustrative 

examples for TP criteria are shown in Table 4.) Note that contributions of Pdiss are not included in 

predictions of ambient TP criteria. In many lakes Pdiss is composed of more biologically available 

forms of P (e.g., soluble reactive P), and so, concentrations of Pdiss should be near zero in lakes in 

which reductions in P loading would be expected to influence phytoplankton abundance. 

Figure 29. Example of deriving TP criteria for a Chl a target of 10 µg/L for data from one ecoregion 
(Southeastern Plains). Open circles: all data; filled circles: data from the ecoregion; solid line: limiting TP-
Chl a relationship from compartment model; dashed line: ambient TP-Chl a relationship taking into 
account contributions from nonphytoplankton sediment for a 3-m deep lake; solid horizontal and vertical 
line segments: Chl a target and associated TP criterion; shaded areas: 80% credible intervals. 
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Table 4. Illustrative example of TP criteria corresponding to data shown in Figure 29. Example TP criteria 
for illustrative Chl a targets. TP criteria calculated for a 3-m deep lake. 

Chl a target  80% certainty level 50% certainty level 

10 μg/L 21 22 
15 μg/L 28 30 

The interactive tool for computing different TP criteria associated with Chl a is available at 

https://nsteps.epa.gov/apps/tp-tn-chl. This tool allows the user to specify the targeted Chl a 

concentration and the physical characteristics of the lake.  

Considerations: Targeted Chl a concentration. The targeted Chl a concentration is the final 

criterion value derived for the lake(s) of interest after consideration of the different designated 

uses.  

Considerations: Lake characteristics. Users can select the lake depth to be used when 

computing TP criteria. The coefficients d1 and d2 characterize the amount of P associated with 

nonphytoplankton suspended sediment and phytoplankton, respectively, and these coefficients 

vary among ecoregions (Figure 27). Therefore, users also can select an ecoregion for computing 

TP criteria. Data selected for an ecoregion are highlighted in the provided plots. 

Considerations: Certainty level. Users can select a certainty level (as quantified by the credible 

interval) to account for the effects of model uncertainty on the calculated criteria. Basing 

criteria on the lower bound of the credible interval provides additional assurance that the 

calculated criterion is protective, given the data and model uncertainty. For example, selecting a 

certainty level of 50% dictates that the 25th percentile of the distribution of mean relationships 

is used to compute the lower bound of the envelope of possible relationships. A criterion based 

on this lower bound implies that only 25% of predicted TP concentrations at the selected Chl a 

concentration were less than the criterion value. In statistical hypothesis testing, convention 

suggests that p-values of 1% or 5% (corresponding to certainty levels of 99% and 95%, 

respectively) are statistically significant results. Those practices can also inform the selection of 

the percentile, but selection of the certainty level as the basis for the criterion is ultimately a 

water quality management decision. 

https://nsteps.epa.gov/apps/tp-tn-chl
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3.2.5 Nitrogen-Chlorophyll a 

Similar to the model for TP, each TN measurement is composed of N contained within three 

compartments: N bound in phytoplankton, dissolved inorganic N (i.e., nitrate, nitrite, and 

ammonia), and dissolved organic N (DON). Unlike the TP model, exploratory analysis indicated 

that the N content of inorganic suspended sediment was negligible (Yuan and Jones 2019). 

3.2.5.1 Statistical analysis 

Field measurements of the difference between TN and dissolved inorganic nitrogen (DIN = NOx + 

ammonia) were modeled as follows: 

 𝐸𝐸[𝑇𝑇𝑇𝑇 − 𝐷𝐷𝐷𝐷𝐷𝐷] = 𝑓𝑓1𝐶𝐶ℎ𝑙𝑙𝑘𝑘1 + 𝐷𝐷𝐷𝐷𝐷𝐷 = 𝑓𝑓1𝐶𝐶ℎ𝑙𝑙𝑘𝑘1 + 𝑓𝑓2𝐷𝐷𝐷𝐷𝐷𝐷  (33) 

where variations in the observations of total N minus dissolved inorganic N (TN-DIN) are 

attributed to two compartments: N bound in phytoplankton, modeled as f1Chlk1 and DON. 

Exploratory analysis indicated that DON was closely associated with DOC, as they often originate 

from the same watershed sources (Berman and Bronk 2003), so the concentration of DON was 

modeled as being directly proportional to DOC. 

As with the TP model, exploratory analysis indicated that the parameters f1 and f2 varied most 

strongly with geographic location. Because of those trends and to facilitate the use of this model 

with local data sets, different values of f1, and f2 were specified for each Level III ecoregion: 

 log�𝑓𝑓1,𝑖𝑖�~ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁�𝜇𝜇𝑓𝑓1,𝜎𝜎𝑓𝑓1� 

 log�𝑓𝑓2,𝑖𝑖�~ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁�𝜇𝜇𝑓𝑓2,𝜎𝜎𝑓𝑓2� (34) 

where the parameters µf1 and µf2 estimate the mean values of the distribution of f1 and f2 while 

σf1 and σf2 estimate the standard deviations. 

The sampling distribution of TN-DIN was assumed to be log-normally distributed as follows: 

 log(𝑇𝑇𝑇𝑇 − 𝐷𝐷𝐷𝐷𝐷𝐷) ~𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝐸𝐸[log (𝑇𝑇𝑇𝑇 − 𝐷𝐷𝐷𝐷𝐷𝐷)],  𝜎𝜎𝑇𝑇𝑇𝑇) (35) 

where σTN is the standard deviation of observed values of log(TN-DIN) about their expected 

value. 

3.2.5.2 Results 

A total of 2466 samples collected from 1875 lakes were available for analysis. Values for the 

coefficient, f1, quantifying phytoplankton N content ranged from 11 to 43 in different ecoregions 
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with an overall mean value of 18.3 (14.9, 22.3). The values estimated for f2 spanned a greater 

range among ecoregions with a minimum value of 35 and a maximum value of 103. The overall 

mean value of f2 was 64.9 (61.0, 68.9). The broad range in values of f2 indicates that strong 

differences exist among different locations regarding the nature of the relationships between 

DOC and DON. The mean value of the exponent, k1, was 0.90 (0.86, 0.94). 

To visualize the variability in phytoplankton N among ecoregions, the concentration of N bound 

in phytoplankton at the overall mean Chl a concentration of 9.3 μg/L is mapped (Figure 30). 

With the exception of one high value of 320 μg/L estimated for the Sand Hills, Nebraska 

ecoregion, N-content of phytoplankton exhibited only small variations among ecoregions. N 

content ranged from 83 – 185 μg/L with a median value of 136 μg/L. Coherent spatial patterns 

in the N-content of phytoplankton were not evident. 

Figure 30. Variation in the concentration of N bound in phytoplankton among Level III ecoregions at the 
overall mean Chl a = 9.3 μg/L. Gray scale shows N concentrations in μg/L. 

Estimated DON concentrations at the overall mean DOC concentration of 5.6 mg/L ranged from 

194 – 570 μg/L with a median concentration of 365 μg/L (Figure 31). Variations in DON among 

ecoregions were substantially greater than observed for phytoplankton N. Spatial patterns were 
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also evident, with higher concentrations of DON in the upper Midwest regions of the U.S. and 

lower concentrations in the mountains in the western and eastern regions of the country. 

Figure 31. Variation in DON among Level III ecoregions at an overall mean DOC = 5.6 mg/L. Gray scale 
shows N concentrations in μg/L. 

EPA calculated limiting relationships that estimate the N content of phytoplankton biomass with 

a procedure identical to that used for TP (Figure 32). In this case, the limiting relationship was 

calculated by setting the contribution from DON in Equation (33) to zero, yielding the following 

log-transformed relationship: log(𝑇𝑇𝑁𝑁 − 𝐷𝐷𝐷𝐷𝑁𝑁) = log(𝑓𝑓1) + 𝑘𝑘 𝑙𝑙𝑁𝑁𝑙𝑙(𝐶𝐶ℎ𝑙𝑙). The straight line based 

on those two parameter values represents N associated with phytoplankton biomass, as 

quantified by Chl a, and it tracks the lower limit of the observed data (solid line, left panel Figure 

32). 

Similarly, setting DIN and Chl a to zero in Equation (33) yields the following limiting relationship 

for DON: log(𝑇𝑇𝑁𝑁) = log(𝑓𝑓2) + log(𝐷𝐷𝐷𝐷𝐶𝐶) (solid line, right panel Figure 32). The mean value of f2 

indicates that, on average, the concentration of DON was 0.065 times that of DOC. Overall, the 

RMS prediction error for loge(TN-DIN) was 0.37. 
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Figure 32. TN-DIN vs. Chl a and DOC. Solid lines: the limiting relationship between each variable and TN-
DIN; shaded area: the 95% credible intervals about this mean relationship. 

3.2.5.3 Nitrogen criteria 

The prediction for the ambient concentration of TN-DIN accounts for the increase in TN-DIN one 

would expect with increased Chl a, but also includes contributions from DON (as estimated by 

DOC) in the lake. Mean predictions for TN-DIN can be computed for different values of Chl a that 

include average contributions from other sources of N in the water column. The value of this 

ambient TN-DIN concentration that is associated with a targeted Chl a concentration then 

provides a criterion for TN-DIN (Figure 33, Table 5).  

Criteria for N concentrations are commonly expressed in terms of TN rather than TN-DIN. To 

convert a criterion for TN-DIN to a criterion for TN, the availability of DIN for phytoplankton 

uptake can be considered. More specifically, the components of DIN (NOx and ammonia) are 

easily assimilated by phytoplankton and, when excess concentrations of DIN are observed in a 

lake, it may indicate that factors other than N availability are limiting phytoplankton growth. 

Therefore, controlling phytoplankton growth by reducing available N would first require that 

DIN concentrations are reduced to near zero and, when that occurs, criteria expressed for TN-

DIN would be the same as those for TN. Furthermore, examination of NLA data indicated that 

DIN concentrations were below the detection limit in 72% of samples, so TN-DIN was equivalent 

to TN in most samples. Hence, in most cases TN monitoring data can be assessed relative to TN-

DIN predictions from the criterion models. 
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Figure 33. Illustrative example of deriving TN criteria for a Chl a target of 10 µg/L for one ecoregion 
(Southeastern Plains). Open circles: all data; filled circles: data from selected ecoregion; solid line: limiting 
TN-DIN vs. Chl a relationship from compartment model; dashed line: mean ambient TN-DIN vs. Chl a 
relationship taking into account mean DOC observed within the selected ecoregion: shaded area: 80% 
credible intervals; horizontal and vertical solid line segments: Illustrative Chl a target and associated TN 
criterion. 

Table 5. Illustrative example of TN criteria corresponding to data shown in Figure 33. 

Chl a target 80% certainty level 50% certainty level 

 10 μg/L 380 390 

15 μg/L 440 450 

The same interactive tool for computing different TP criteria also provides TN criteria associated 

with Chl a (https://nsteps.epa.gov/apps/tp-tn-chl). This tool allows the user to specify the 

targeted Chl a concentration, DOC concentration, and an ecoregion of interest. Finally, users can 

select the certainty level (or, credible interval) to account for the effects of model uncertainty 

on the calculated criteria. Data selected for an ecoregion are highlighted in the provided plots. 

3.3 Duration and Frequency 

The duration component of a water quality criterion is the length of time over which discrete 

water samples are averaged to assess the condition of the water body. The frequency 

component defines the number of times over a given time period that the specified magnitude 

of the criterion can be exceeded while the water body is still assessed as being in compliance 

with the criterion and maintaining designated uses. In conjunction with the magnitude of the 

criterion, these additional components define a water quality criterion. 

https://nsteps.epa.gov/apps/tp-tn-chl
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Specification of duration and frequency components of numeric nutrient criteria is complicated 

by the fact that the ecological effects of elevated nutrient concentrations usually arise from a 

sequence of events. For example, higher nutrient concentrations increase the abundance of 

phytoplankton. Over time, higher abundances of phytoplankton then increase the amount of 

organic material in the deeper waters of a lake, and decomposition of the stored organic 

material can reduce the concentrations of DO. In this case, the duration and frequency of 

exceedance of a Chl a concentration in the mixed layer of the lake is related only indirectly to 

the ecological effect of decreased DO and the ultimate reductions in the amount of habitat for 

cool- and cold-water species. Contrast this example with the specification of duration and 

frequency of toxic pollutants, for which the length of time and frequency of exposure to the 

pollutant can be directly linked to effects on different organisms (e.g., mortality). A second 

consideration arises from the variability of environmental measurements, for which estimates of 

mean concentrations of Chl a, TN, and TP can only be estimated from a finite number of 

samples. So, when specifying duration and frequency components of the recommended 

numeric nutrient criteria, EPA considered both the timescale of the ecological responses and the 

statistical uncertainty in estimating mean values. 

The recommended duration for Chl a criteria derived from the models described in this 

document is a growing season (typically summer) geometric mean value, consistent with the 

summary statistic used for Chl a in the stressor-response analyses. The geometric mean was 

selected to account for the fact that Chl a measurements are frequently log-normally 

distributed. EPA used seasonal mean Chl a concentrations integrated over the photic zone for 

analysis because timescales of ecological responses to increased nutrient concentrations are 

long. For example, as described earlier, some of the increase in deep water oxygen demand 

arises from accrual of organic material over long time periods while other oxygen demand arises 

from recently created organic matter that settles through the water column. Mean Chl a 

concentration in the lake is associated with mechanisms acting at both timescales, providing a 

measure of the average amount of organic material supplied by the photic zone. Similarly, 

systematic changes in zooplankton composition would be expected to occur at longer, seasonal 

timescales. For the microcystin model, the basic unit of analysis was an individual sample, in 

which the model predicted the probability of different microcystin concentrations in a sample, 

given the sample’s Chl a concentration. When estimating the relationship for computing criteria, 

however, EPA computed probabilities of different individual Chl a concentrations as a function 
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of seasonal mean Chl a concentration, again linking seasonal mean Chl a concentration to the 

probability of deleterious effects. The long timescale of ecological response also supports the 

use of other durations that characterize average Chl a over long period of time. For example, in 

lakes with very long growing seasons, annual average Chl a may also be appropriate. 

The unit of analysis for models relating Chl a to TN and TP concentrations was also the individual 

sample, in that TN and TP concentrations measured within a water sample were described as 

the sum of phytoplankton-bound N and P and other compartments in the sample containing 

those nutrients. Because the models are expressed as simple sums of components, each one 

remains applicable even if expressed in terms of seasonal averages. Hence, seasonal geometric 

mean Chl a criteria can be converted to seasonal geometric mean TN and TP criteria using the 

same model, and the recommended durations for TN and TP criteria are also seasonal mean 

values. 

EPA recognizes that seasonal geometric mean concentrations of Chl a, TN, and TP calculated in 

different years can vary about their long-term means, and the frequency components of the 

criteria can be used to account for this variability. For example, in a year with particularly high 

precipitation one might observe higher than average loads of TP to downstream lakes. Similarly, 

in a year with longer than average periods of sunshine one might observe higher rates of 

accumulation of phytoplankton biomass and higher concentrations of Chl a. Sampling variability 

and within-year temporal variability also can cause large variations in estimated seasonal 

averages. Hence, in lakes in which long-term mean concentrations of Chl a, TN, and TP are 

below the criteria, some seasonal mean concentrations might still exceed the criterion 

magnitude. Variability in estimated seasonal mean concentrations can be addressed by 

estimating interannual and sampling variability and incorporating it into the expression of the 

criteria or in the assessment methods. More specifically, states may calculate adjusted criterion 

magnitudes that are associated with allowable frequencies of exceedance based on the 

observed variability of nutrient concentrations. For example, seasonal mean concentrations of 

TP would be expected to exceed a criterion magnitude that is equal to the long-term mean in 

approximately 50% of the years, whereas less frequent exceedances of a higher criterion 

magnitude would be expected. Appendices D and E provide examples of calculations that 

identify different combinations of criterion magnitudes and frequencies. 
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4 Characterization 

In an ecological risk assessment, during the risk characterization phase, the results from the 

analysis are evaluated and the risk to ecological endpoints is described. In this section, general 

issues associated with applying the criterion models are considered, so a broader scope of topics 

is considered than is typically addressed during risk characterization. The topics include a 

discussion of other measures of effect and exposure that were not used in the criterion models, 

comparisons of current models with past models linking nutrients to Chl a, and limitations of the 

criterion models. Specific topics associated with deriving criteria in states and authorized tribes 

are also considered, including methods for incorporating local monitoring data into the national 

models, methods for developing statewide criteria, and the specification of duration and 

frequency components for the criteria. 

4.1 Other Measures of Effect and Exposure 

A variety of other measures of effect and exposure could be used for deriving nutrient criteria 

associated with each of the pathways described in Figure 1 and Figure 2. In selecting the 

responses for analysis, EPA considered (1) available data, (2) the current state of scientific 

understanding of each pathway, and (3) the degree to which a pathway and a response could be 

applied broadly to most lakes. For many possible measures of effect and exposure, data 

availability was a key consideration. For aquatic life, direct measurements of fish assemblage 

composition and biomass were not collected during the NLA, and the lack of those data limited 

the potential for considering several pathways such as evaluating alterations in fish assemblage 

composition because of reduced visibility. Lake benthic communities also exhibit changes along 

a eutrophication gradient (Vadeboncoeur et al. 2003), but none of those data were available. 

For recreational and drinking water source uses, the effects of other cyanotoxins (e.g., 

cylindrospermopsin, saxitoxin, anatoxin) might be important for certain lakes, but continental-

scale data for those other cyanotoxins were not available at the time of this analysis. In certain 

lakes, cyanobacterial blooms have also been observed at depths below the surface layer 

(Jacquet et al. 2005), but observations of phytoplankton at those depths were not available. 

Similarly, organic matter generated by increased primary productivity can increase the 

concentrations of disinfection by-products during the drinking water treatment process 

(Graham et al. 1998, Galapate et al. 2001), and chemicals produced during blooms of certain 
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algal species can introduce unpleasant taste and odors to drinking water (Graham et al. 2010). 

However, continental-scale data pertaining to disinfection by-product precursors or taste and 

odor chemicals were not available. 

Insufficient scientific understanding of a causal pathway also limited consideration of certain 

measures of effect and exposure. For example, scientific consensus is currently lacking on the 

precise level of cyanobacteria that is harmful to aquatic life. That information gap limited the 

utility of using cyanobacterial abundance as a final response measurement, despite the fact that 

increased cyanobacterial abundance occurs frequently with nutrient pollution (Dolman et al. 

2012). (Note, however, that cyanobacterial abundance measurements quantify a key step in the 

model linking Chl a to microcystin.) Similarly, increased levels of cyanobacteria can cause rashes 

on people who contact the water (Pilotto et al. 1997, Zhang et al. 2015, US EPA 2015b), 

potentially affecting the use of a lake for recreation. However, precise quantitative relationships 

between the occurrence of rashes and cyanobacterial abundance are not currently available. 

For certain measures of effect or exposure, data were available, but other factors limited the 

degree to which the response could be applied. For example, Secchi depth data were available 

in the NLA data set, and that measure of transparency could have informed an assessment of 

the aesthetic appeal of different lakes for recreation. That is, increased nutrient concentrations 

cause increases in the abundance of phytoplankton that reduce water clarity and decrease the 

aesthetic appeal of a lake (Carvalho et al. 2011, Keeler et al. 2015). Aesthetic considerations 

have been used by others as a basis of water quality criteria (Heiskary and Wilson 2008) and 

may be recommended for oligotrophic lakes in which maintaining historically high levels of 

water clarity is a management objective (see, for example, https://www.epa.gov/tmdl/lake-

tahoe-total-maximum-daily-load-tmdl). However, the aesthetic expectations for the national 

population of lakes depends on geographic location (Smeltzer and Heiskary 1990), and user 

perception survey data at the continental scale of this analysis were not available. Similarly, 

reducing the frequency of phytoplankton blooms has been cited as a motivation for controlling 

nutrient loads (Bachmann et al. 2003), but aesthetic expectations regarding bloom frequency 

were not available at the national scale. 

https://www.epa.gov/tmdl/lake-tahoe-total-maximum-daily-load-tmdl
https://www.epa.gov/tmdl/lake-tahoe-total-maximum-daily-load-tmdl
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4.2 Incorporating State Data 

State water quality managers are often interested in exploring relationships between 

environmental factors and biological responses using locally collected monitoring data. In many 

cases, leveraging knowledge from broader regional scales (e.g., national scale) can enhance local 

understanding. This document describes recommended numeric nutrient criterion models 

based on national data that link designated uses to Chl a, TN, and TP. The NLA data set provided 

a comprehensive set of measurements collected from large numbers of sites with identical 

protocols (US EPA 2011, Pollard et al. 2018), and the availability of consistent measures from 

lakes spanning broad gradients facilitated the calculation of accurate national estimates of 

relationships of interest. However, the number of samples is limited within the national data set 

that is available to estimate relationships within any single state, and uncertainty in estimating 

relationships specific to a single state is higher than that associated with the national models. In 

contrast, monitoring conducted by state agencies can yield more intensive temporal sampling 

over more sites, and hence, relationships estimated from those data can assist local 

management decisions within that state. Data collected at the state level, however, can be 

limited in the parameters that are measured, and the range of environmental conditions 

sampled is limited by conditions occurring within the state boundaries. 

All the recommended criterion models described in this document are formulated to facilitate 

consideration of state data. State-specific values for certain coefficients in each model (e.g., 

Figure 34 in Appendix A) have been estimated, and local state, monitoring data can be used to 

refine the estimates of state-specific coefficients, while remaining consistent with national 

trends. Appendices A, B, and C discuss three examples of case studies in which state monitoring 

data have been combined with national data to refine recommended criteria. State monitoring 

data sets are each unique, and EPA is available to assist states in combining their monitoring 

data with the national models. 

4.3 Existing Nutrient-Chlorophyll a Models 

Empirically estimated relationships between TP and Chl a concentrations have provided a basis 

for lake water quality management for over four decades. This relationship was initially 

identified in Connecticut and Japanese lakes (Deevey 1940, Sakamoto 1966), and subsequently 

extended to a broad range of temperate lakes in the mid-1970s (Dillon and Rigler 1974, Jones 
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and Bachmann 1976, Carlson 1977). Those early analyses regressed Chl a on TP concentrations 

and reported similar coefficients showing the ratio of Chl:TP increased with lake trophic state. 

Over time, many studies have explored the veracity of that relationship and assessed sources of 

residual variation, testing the limits of applicability to different regions and lake types (Prairie et 

al. 1989, McCauley et al. 1989, Jones and Knowlton 2005, Filstrup et al. 2014b). Variations in the 

relationship have been attributed to differences in lake depth (Pridmore et al. 1985), TN:TP ratio 

(Smith 1982, Prairie et al. 1989, Molot and Dillon 1991), grazing by zooplankton and mussels 

(Mazumder 1994, Mellina et al. 1995), landscape characteristics (Wagner et al. 2011), and light 

limitation (Hoyer and Jones 1983, Knowlton and Jones 2000, Havens and Nürnberg 2004). 

Regional studies have evaluated the relationship as influenced by edaphic and climatic factors in 

locations such as Canada (Prepas and Trew 1983), Argentina, (Quirós 1990), the United Kingdom 

(Spears et al. 2013), and Europe (Phillips et al. 2008). Recently, lake classifications have 

improved the precision and accuracy of this relationship (Yuan and Pollard 2014). 

As described in Sections 3.2.4 and 3.2.5, EPA reformulated the nutrient-chlorophyll models to 

account for variations in TP and TN, rather than in Chl a. The new models better account for 

variability in measurements of TP and TN and are consistent with an understanding of the 

components of TP and TN in the water column. The reformulated models cannot be directly 

compared with earlier studies, including those cited previously. Estimates of N and P content of 

phytoplankton, however, are consistent with values reported elsewhere (Yuan and Jones 2019). 

4.4 Limitations and Assumptions 

The recommended models for deriving numeric nutrient criteria are limited by the nature of the 

data that underlie the analysis. First, nutrient data for each lake consisted of samples collected 

at a single point, resulting in no information on within-lake spatial variability in nutrient 

concentrations being included in the analyses. Nutrient concentrations within particular lakes 

can vary considerably across different locations (Perkins and Underwood 2000), resulting in 

criteria based on samples collected at the deepest point or midpoint of the reservoir that might 

not be applicable to samples collected elsewhere. When deriving their criteria, states may 

specify assessment methodologies to collect samples from different locations in the same lake 

to address this issue and analyze those local data to account for spatial variability. 
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Similarly, nutrient and response data used in the current analysis were collected only in the 

summer, so monitoring data assessed with respect to these recommended criteria may also be 

limited to summer data. Nutrient concentrations in some lakes can vary considerably between 

summer and winter (Søndergaard et al. 2005), and states may specify assessment protocols to 

ensure that only data collected in the summer are compared with criterion concentrations. In 

other locations, much longer growing seasons exist, and annual average nutrient and Chl a 

concentrations are comparable to summer averages. 

As noted earlier, most of the statistical criterion models described here combine the effects of 

spatial, temporal, and sampling variability and estimate a single value for each model that is 

applicable to all lakes in the data set. The components of variability, however, might differ 

across lakes and affect the resulting criteria. For example, spatial variability in complex, dendritic 

reservoirs can be much greater than in simple, circular lakes (Gloss et al. 1980). In most cases, 

local monitoring data can inform and potentially improve the parameter estimates both for 

specific locations and for groups of lakes. Segmenting lakes with complex morphology into 

discrete, more homogeneous areas may also help address issues with spatial variability. 

The uncertainty estimated for each modeled relationship is associated with the number of 

samples used in the model, and consideration of sample size can affect the interpretation of the 

resulting criteria. For example, the number of NLA samples within a single Level III ecoregion can 

be small. The hierarchical structure of the model does improve the precision of model estimates 

in those ecoregions, but the precision of TP and TN criteria specific to ecoregions with small 

amounts of data could be further improved by including state monitoring data. Additional 

national-scale data such as that from the 2017 NLA may also be incorporated as they become 

available to improve model precision. 

Recommended criteria based on the drinking water health advisories for microcystin 

incorporate some conservative assumptions that affect the final values. The recommended 

criteria are intended to reflect the ambient water quality conditions that protect a drinking 

water use before treatment. They do not, however, account for the varying levels of treatment a 

drinking water facility can implement to remove microcystin before generating finished drinking 

water, the condition of the water to which the cyanotoxin health advisories apply. As a 

precautionary step, a drinking water facility may implement treatment protocols that minimize 

the breakage of cyanobacteria cells (Chow et al. 1999, Westrick et al. 2010) which, in turn, 
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would minimize the release of intracellular microcystin into the treated water. EPA based the 

recommended models on the total microcystin present in the NLA samples, both dissolved in 

the water and within cyanobacterial cells, which necessitated the lysis of cyanobacterial cells 

prior to microcystin quantification. In contrast, breakage of cyanobacterial cells is a process that 

some drinking water treatments for cyanotoxins are designed to limit. Criteria based on the 

national models provide protective water quality conditions in the source water, but 

concentrations of microcystin that slightly exceed health advisory values can be further reduced 

in the finished drinking water through carefully engineered and operated source water 

treatment processes. 

Recommended criteria derived using the models described here provide concentrations that, 

when exceeded, are associated with a loss of support for designated uses, but the models do 

not provide information regarding appropriate remediation actions. Indeed, among lakes in 

which the criteria are exceeded, appropriate remediation actions will likely differ. In some lakes, 

the magnitude of N loading from anthropogenic sources is small, while P loading is large, and 

cyanobacteria supply N to the system via fixation (Schindler et al. 2008). In those lakes, 

reductions in P loading might be the appropriate water quality management action. In other 

lakes, ample supplies of N from anthropogenic sources are available, and management actions 

might need to focus on reducing both N and P loading (Ferber et al. 2004). In some lakes, excess 

N in the form of inorganic nitrogen (NOx or ammonia) is abundant, and the presence of high 

concentrations of DIN might provide insights into the effects of different management 

interventions. For example, DIN is readily taken up by phytoplankton, so the presence of large 

concentrations of DIN might indicate that other factors, such as light availability, limit 

phytoplankton growth. In those cases, initial reductions of N loading to reduce NOx might be 

necessary before the effects of N control can be observed. 

4.5 Deriving State-Specified Criteria 

Criteria derived from the recommended national models vary with differences in lake 

characteristics (e.g., depth and ecoregion), and specifying a single set of criteria applicable to all 

lakes in a state might not account for those variations. Methods for deriving criteria that 

account for natural variations among water bodies are already available, and these methods can 

be applied to ensure that appropriate criteria are applied to different types of lakes. First, states 

can classify water bodies and derive different criteria for each class of water body. The 
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recommended national models facilitate the classification of lakes by providing specific insights 

into the factors that most affect the derivation of protective numeric nutrient criteria. 

Furthermore, the national models can be used to compute criteria for different lakes in a state 

to provide information about the types of lakes for which criterion magnitudes are most similar. 

For example, different recommended criteria for TP and TN are associated with different Level 

III ecoregions; however, among the ecoregions within one state, the difference in criterion 

magnitudes might be small enough to specify a single set of criteria applicable to multiple 

ecoregions. Second, site-specific criteria can be specified for a small number of lakes with 

characteristics that differ substantially from the rest of the lakes in a state. Here, too, the 

recommended national models provide the means of deriving these criteria for individual lakes. 
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A-1 

Appendix A: State Case Study: Chlorophyll a-Microcystin 

This case study in Iowa describes chlorophyll a (Chl a) and microcystin data collected by the 

Iowa Department of Natural Resources (IDNR) that are combined with national data to estimate 

a stressor-response relationship for the state (Yuan and Pollard 2019). 

A.1 Data 

Chl a measurements in Iowa were collected as part of an ambient lake monitoring program 

conducted by IDNR. Water samples were collected with an integrated water column sampler 

above the thermocline, when present, to a maximum depth of 2 meters (m) at the deepest 

point of each lake. Lake water samples were collected in the summer (May–September). An 

aliquot of the water sample was analyzed for Chl a in the laboratory by non-acidified 

fluorometry after filtering water samples through GF/C filters. In a separate IDNR monitoring 

program, microcystin concentrations are sampled regularly at swimming beaches in Iowa during 

the summer. This sampling effort includes state park beaches and locally managed beaches 

across the state. Microcystin was quantified in composite water samples collected at nine 

different locations on three transects spanning the swimming beach. On each transect, samples 

were collected at depths of 0.15, 0.5, and 1.0 m. Chl a and microcystin samples were matched 

by lake and sampling date for use in the analysis. To maximize the available data, microcystin 

and Chl a measurements collected within 1 day of each other were included as matched 

samples. 

A.2 Statistical Analysis 

The structure of a statistical model that accommodates data collected at different spatial scales 

must be defined to ensure that the available data appropriately inform model estimates. 

Consider the case of a large national data set of approximately 1,000 samples and a state data 

set of approximately 50 samples. If the two data sets were pooled, the national data would 

dominate the state data simply because of the larger sample size, and the state data would 

exert a weak influence on the model. In any single state, however, only about 20 samples from 

the national data might be available, and we would expect the state data to dominate 
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estimates. Defining a hierarchical structure in the model helps ensure that each data set exerts 

the appropriate influence on the model results (Gelman and Hill 2007). 

A second issue that arises from combining data sets is that different measurements are often 

collected in the different data sets. This problem is addressed in the national models by 

modeling a comprehensive network of relationships between different parameters to take 

advantage of the many different measurements available in the National Lakes Assessment 

(NLA) data (Qian and Miltner 2015). Then, state data sets in which only a subset of 

measurements were collected could still be feasibly modeled by informing specific aspects of 

the network. 

State data from Iowa were included in the national model and inform estimates of relationships 

in the same network. As mentioned earlier, however, only Chl a and microcystin measurements 

were available in the Iowa state data set. To prevent over-specifying the model, EPA selected 

one of the relationships in the network that could be refined with data from the state. The 

relationship between Chl a and the relative biovolume of cyanobacteria relied most heavily on 

empirical calibration, so it was selected for refinement with state data. More specifically, the 

national model was revised so that model coefficients specific to each state were estimated 

(Equation (17)). 

 𝐸𝐸[𝑙𝑙𝑁𝑁𝑙𝑙𝑙𝑙𝑡𝑡�𝑇𝑇𝑐𝑐,𝑖𝑖�] = 𝑓𝑓1,𝑘𝑘[𝑖𝑖] +  𝑓𝑓2,𝑘𝑘[𝑖𝑖]𝑐𝑐ℎ𝑙𝑙𝑖𝑖 + 𝑓𝑓3,𝑘𝑘[𝑖𝑖]𝑐𝑐ℎ𝑙𝑙𝑖𝑖2 (36) 

where different values of each of the coefficients were estimated for each state in the United 

States, k. The values of the coefficients for each state were constrained by normal distributions 

defined by the parameters, µf and σf. For example, the set of state-specific coefficients for f1 

were drawn from a single normal distribution as follows: 

 𝑓𝑓1~𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑙𝑙(𝜇𝜇𝑓𝑓1 ,𝜎𝜎𝑓𝑓1) (37) 

Identical expressions can be written for the set of f2 values and f3 values. These distributions 

constrained the range of possible values so estimates of those parameters computed with 

relatively small sample sizes within individual states can “borrow” information from estimates 

computed from other states (Gelman and Hill 2007). 

Iowa state data were included in the model by noting that the data should inform estimates of 

the coefficients only in the state of Iowa. That is, estimates of f1, f2, and f3 from Equation (36) in 

Iowa are based on both the Iowa state data set and NLA data collected in Iowa. In other states, 
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estimates of the coefficients are based only on NLA data. The influence of Iowa state data on the 

national distributions of the coefficients (as characterized by µf and σf) is limited because the 

data affect only one element of the overall distributions of coefficients. Within the state of Iowa, 

however, the coefficients can be fit to maximize the predictive accuracy of the overall 

relationship linking Chl a to microcystin for both Iowa data and NLA data collected in Iowa, while 

remaining consistent with the range of possible values observed across all states. 

One final difference in fitting the Iowa state data is that several sources of variability modeled 

separately in the national model (e.g., s1 and s2 in equations (18) and (19)) are combined into 

one estimate of residual variability. This combination of error terms reflects the data available 

from Iowa, in which no laboratory replicates or direct measurements of cyanobacterial 

biovolume were available. Hence, one lumped source of variability was estimated. 

For comparison, a simple bivariate model was fit using only IDNR data, in which microcystin 

concentration was modeled as a quadratic function of Chl a. 

A.3 Results 

A total of 556 samples of Chl a were measured at 28 lakes in Iowa. In some lakes, microcystin 

concentrations were sampled at different beaches, so 686 observations of microcystin were 

matched to the Chl a measurements. 

In the revised national model with state-specific relationships between Chl a and the relative 

biovolume of cyanobacteria, coefficients varied substantially among states. Because coefficient 

values for quadratic relationships are not easily interpreted, the predicted mean cyanobacterial-

relative biovolume at a Chl a concentration of 20 microgram per liter (µg/L) is plotted to 

visualize the range of variation among states (Figure 34). For comparison, among all the national 

data, mean cyanobacterial-relative biovolume was 0.18 at Chl a concentration of 20 µg/L. 

Systematic changes in cyanobacterial-relative biovolume with latitude or longitude were not 

evident, but some regional differences were observed. For example, cyanobacterial-relative 

biovolume for a Chl a concentration of 20 µg/L in Northeast states was generally lower than 

elsewhere, whereas in Midwest states, it was somewhat higher. 



A-4 

Figure 34. Variation in the relationship between Chl a and cyanobacterial-relative biovolume among 
states. PropCyano: predicted mean relative biovolume of cyanobacteria at an illustrative Chl a = 20 μg/L. 

As described previously, the relationship between Chl a and cyanobacterial relative biovolume 

in Iowa was adjusted to maximize the accuracy of the predicted microcystin. Inclusion of Iowa 

data reduced the magnitude of the slope of the relationship between Chl a and cyanobacterial-

relative biovolume but increased the intercept (Figure 35). So, higher values of cyanobacterial-

relative biovolume were observed at Chl a concentrations less than about 10 µg/L. At higher Chl 

a concentrations, inclusion of Iowa state data did not substantively change the predicted 

cyanobacterial-relative biovolume. Overall, in Iowa, the estimated relationship between 

cyanobacterial-relative biovolume and Chl a was statistically indistinguishable from a constant 

value (Figure 35). The addition of the state data also narrowed the range of the credible 

intervals, as would be expected. 
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Figure 35. Comparison of Chl a/cyanobacterial-relative biovolume relationships in Iowa. Filled gray: 90% 
credible intervals for estimate of relationship using only NLA data collected in Iowa; solid and dashed 
lines: mean and 90% credible intervals for estimate of relationship using both Iowa state and NLA data. 

The predicted mean relationship between Chl a and microcystin in Iowa from the state-national 

model closely followed the observed data (left panel, Figure 36), exhibiting a slight increase in 

slope as Chl a concentration increased. The 90% prediction intervals shown in the plot were 

based on the mean values of repeated random draws of 15 samples from the predicted 

distribution to replicate the plotted observed data. The intervals were broad and included most 

of the estimated mean values. The curvature observed in the simple bivariate fit between Chl a 

and microcystin using only Iowa data was opposite of that observed from the state-national 

model, predicting that the rate of increase in microcystin was lower at high Chl a concentrations 

than at low Chl a concentrations (right panel, Figure 36). The 90% prediction intervals of this fit 

also included most of the observed mean values, but qualitatively, the simple bivariate model 

did not match the observed data as closely as did the state-national model. 
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Figure 36. Comparison of predicted relationship between Chl a and microcystin for the state-national 
model (left panel) and a model using only Iowa state data (right panel). Open circles: average microcystin 
concentration computed in ~15 samples at the indicated Chl a; solid lines: mean relationship; dashed 
lines: 5th to 95th percentiles of distribution of means of 15 samples drawn from predicted distribution. 

Three features inherent to the model combining state and national data are likely responsible 

for the improved predictions of observations in the Iowa data set. First, the network of 

relationships specified in the national model define a nonlinear function linking Chl a to 

microcystin that yielded a curved mean response (left panel, Figure 36). When only Iowa data 

are available, no information regarding the functional form of the relationship between Chl a 

and microcystin is known. Hence, it is difficult for the model to identify the correct shape of the 

curve. Indeed, the concavity of the mean relationship identified by the model using only Iowa 

data (right panel, Figure 36) was opposite of that estimated in the combined state-national 

model. Second, the network of relationships in the state-national model provided information 

regarding unobserved variables and relationships that could be used in lieu of direct 

observations. In this example, the relationships between Chl a and total phytoplankton 

biovolume and between cyanobacterial biovolume and microcystin were supplied by the 

national model. The Iowa-only model lacked the benefit of the additional information, and 

hence, for this model a direct relationship between Chl a and microcystin had to be estimated 

that aggregated the different causal linkages. Finally, the hierarchical structure of the national 

model placed constraints on the range of possible values for parameters estimated within each 

state. These constraints limited model parameters for the state data set to values that were 

generally consistent with national parameters. 
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A.4 Criteria Derivation 

Derivation of a recommended Chl a criterion based on decisions such as allowable exceedance 

rate, targeted microcystin, and model uncertainty follows an identical process as described for 

the national model. The model based on both IDNR data and NLA data yields a slightly different 

relationship from the model estimated from only the national data (Figure 37). Slightly greater 

uncertainty accompanies the estimate of the mean relationship in the Iowa-NLA model than the 

estimate in the NLA-only model (see Figure 22), and that uncertainty is reflected in a broader 

range of possible Chl a criteria. In the example shown in Figure 37, to maintain a maximum 

exceedance rate of 1% of microcystin of 8 µg/L, the Chl a criterion associated with the bound of 

the 50% credible interval was 14 μg/L. 

Figure 37. Microcystin and Chl a measurements in Iowa. Top panel–open circles: observed values of 
microcystin and Chl a for samples in which microcystin was greater than the detection limit; solid line: 
predicted microcystin that will be exceeded 1% of the time for the indicated Chl a concentration; gray 
shading: 50% credible interval about mean relationship; horizontal and vertical line segments: candidate 
Chl a criteria based on targeted microcystin. Bottom panel: proportion of samples for which microcystin 
was not detected in ~100 samples centered at the indicated Chl a concentration. 
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Appendix B: State Case Study: Chlorophyll a–Hypoxia 

This case study in Missouri describes national and state data that are combined to refine 

estimates of the relationship between chlorophyll a (Chl a) and deep water hypoxia. As 

described in Section 3.2.2, mean concentrations of dissolved oxygen below the thermocline 

(DOm) decrease with time during the period of summer stratification. The sampling design of the 

NLA allowed for one visit to most of the lakes, so estimating temporal changes in deep water 

DOm in the national model required a space-for-time substitution. State monitoring data 

collected during multiple visits to a smaller number of lakes provided an opportunity to directly 

estimate temporal changes in DOm and to compare the relationship between eutrophication and 

the rate of oxygen depletion with estimates from NLA data. 

B.1 Data 

The Missouri data considered in this case study were collected an average of 3–4 times per year 

by the University of Missouri (MU) from 1989 to 2007 as part of a statewide monitoring effort. 

Samples were collected near the dam for each reservoir (herein referred to as lakes for 

simplicity), where vertical profiles for temperature and DO concentration were measured (YSI 

model 51B or 550A meters). Composite water samples from a depth of approximately 0.25 

meter (m) were transferred to high density polyethylene containers, placed in coolers on ice, 

and transported to the MU Limnology Laboratory. There, a 250-milliliter aliquot was filtered 

(Pall A/E) for determination of total Chl a via fluorometry following pigment extraction in heated 

ethanol (Knowlton et al. 1984, Sartory and Grobbelaar 1984). A total of 198 measurements of 

DOm were available for analysis, collected at 20 different lakes over 62 unique lake-year 

combinations. 

B.2 Statistical Analysis 

The same model equations used in the national model were applied to data collected in 

Missouri: 

 𝐸𝐸[𝐷𝐷𝐷𝐷𝑁𝑁,𝑙𝑙] = 𝐷𝐷𝐷𝐷0 + 𝑉𝑉𝐷𝐷𝐷𝐷𝑘𝑘[𝑙𝑙]�𝑡𝑡𝑙𝑙 − 𝑡𝑡0,𝑗𝑗[𝑙𝑙]� (38) 



B-2 

where DO0 is the value of DOm at the start of spring stratification, volumetric oxygen demand 

(VOD)k is the net imbalance in the volumetric oxygen budget for lake k corresponding to sample 

i expressed as milligrams per liter per day of DO (Burns 1995), ti is the date that sample i is 

collected, and t0,j is the date of the beginning of stratification for lake-year j. Observed values of 

DOm were assumed to be normally distributed with a standard deviation of σ1 about the 

expected value. Note that, like the national model, VOD is assumed to be constant for each lake, 

but the date of the beginning of stratification varied by year and lake. The model equation 

specifying the relationship between Chl a, dissolved organic carbon (DOC), and lake depth and 

VOD was the same equation used in the recommended national model (see Equation (11)). As 

with the national model, saturation DO concentrations at the minimum temperature in Missouri 

were used to set the value of DO0. 

The treatment of DO measurements less than 2 milligrams per liter (mg/L) in the Missouri data 

differed from the approach used in the NLA. From 2 to 14 measurements of DOm greater than 

2 mg/L were available in the Missouri data set for each of the lake-years included in the model, 

so data were available to directly estimate temporal changes in DOm. Because data were 

available at each lake before DOm approached zero, measurements of DOm that were less than 

2 mg/L could be excluded without biasing the model results. 

Two models were run to explore the effects of combining Missouri data with the national 

model. In the first model, only Missouri data were used, and in the second model, both Missouri 

and NLA data were used to estimate the parameter values. 

B.3 Results 

The range of values spanned by each of the covariates differed between the two data sets. 

Missouri measurements were collected over a broader range of days than the NLA, whereas 

lakes sampled by the NLA covered a broader range of Chl a concentrations (Figure 38). 

Variations in DOC concentrations and depths below the thermocline were also narrower in the 

Missouri data than in the NLA data. Those differences in the range of observations were 

reflected in the strength of correlation between each covariate and DOm. For Missouri, sampling 

day was most strongly correlated with DOm, whereas for the NLA, sampling day exhibited the 

weakest correlation with DOm. Instead, in the NLA data, Chl a, DOC, and the depth below the 

thermocline were all more strongly correlated with DOm. 
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Figure 38. Observed DOm vs. Chl a, sampling day, DOC, and depth below the thermocline. Open circles: 
NLA data; filled circles: Missouri. 

The first day of stratification for Missouri lakes was generally earlier than for most of the 

dimictic lakes considered in the national model (Figure 39), a finding that is consistent with the 

fact that Missouri is located at the southern end of the geographic distribution of dimictic lakes 

(see Figure 7). Both the Missouri-only model and the NLA-only model yielded similar estimates 

of the relationship between Chl a and VOD (d2 in Equation (11)) (Figure 40), and the estimate 

based on the combined data sets improved further on the precision. Estimates of coefficients 

characterizing the relationship between VOD and depth below the thermocline (d3) and DOC (d4) 

were much more precise in the NLA-only data set than in the Missouri-only data set. Hence, the 

estimate based on the combined data set mainly reflects the trends in the NLA data. 
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Figure 39. Estimated first day of stratification for Missouri lakes (left panel) and NLA lakes (right panel). 

Figure 40. Model coefficients estimated for models for Missouri data, NLA data, and combined data. Thick 
line segment: 50% credible intervals; thin line segment: 90% credible intervals; vertical dashed line: 
coefficient value of zero. 

Qualitatively, the model accurately represented the decrease in DOm over time in different lakes 

(Figure 41). The effects of differences in the timing of spring stratification was manifested as 

differences in the vertical position of each line, and in some lakes, substantial variation was 

observed across years. 
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Figure 41. Relationships between day of year and DOm for six Missouri lakes. Different line and symbol 
colors in each panel correspond to data collected within different years with at least three samples. Open 
gray circles: other samples collected at each lake. 

B.4 Criteria Derivation 

The utility of combining Missouri and NLA data to inform decision-making is evident when one 

considers the predicted relationship between Chl a and DOm calculated using parameter 

estimates from the Missouri data and from the combined Missouri-NLA data set (Figure 42). In 

the example shown, the relationship is calculated based on illustrative values for other 

covariates (depth below thermocline at 10 m, DOC at 1.6 mg/L, and time between spring 

stratification and sampling at 130 days). Because use of both data sets improves the precision of 

model parameters, the resulting mean relationship is also estimated with increased precision 

and a targeted Chl a concentration can be identified with greater confidence. In this example, 

the 50% credible interval for the targeted Chl a concentration corresponding to an illustrative 

threshold of DOm = 0.1 extends from 5.5–8.9 µg/L when the combined model is used. When 

using only Missouri data, the interval expands to 4.5–9.7 µg/L. 
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Figure 42. Relationship between Chl a and DOm in an illustrative lake with depth below thermocline at 
10m, DOC at 1.6 mg/L, and 130 days after spring stratification. Gray shading: 50% credible intervals about 
mean relationship from combined Missouri-NLA model; dashed line: 50% credible intervals about mean 
relationship from Missouri-only model; dotted line: DOm = 0.1 mg/L. 
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Appendix C: State Case Study: Total Nitrogen–Chlorophyll a 

This case study in Iowa examines how combining locally collected measurements of total 

nitrogen (TN) and chlorophyll a (Chl a) with the national models can refine predictions 

calculated from these local data sets. 

C.1 Data 

Data used for this case study were collected by the Iowa Department of Natural Resources 

(IDNR) as part of their routine monitoring program. For each lake in the data set, TN, nitrate-

nitrite, Chl a, and dissolved organic carbon (DOC) values were measured. A total of 968 

observations collected at 31 different lakes were available for analysis. 

C.2 Statistical Analysis 

The same model formulation provided in Equation (33) was applied to the IDNR data, expressing 

TN-dissolved inorganic nitrogen (-DIN) as the sum of a phytoplankton compartment, modeled as 

f1Chlk, and a dissolved organic nitrogen (DON) component, modeled as f2DOC: 

 𝐸𝐸[𝑇𝑇𝑁𝑁 − 𝐷𝐷𝐷𝐷𝑁𝑁] = 𝑓𝑓1𝐶𝐶ℎ𝑙𝑙𝑘𝑘 + 𝐷𝐷𝐷𝐷𝑁𝑁 = 𝑓𝑓1𝐶𝐶ℎ𝑙𝑙𝑘𝑘 + 𝑓𝑓2𝐷𝐷𝐷𝐷𝐶𝐶 (39) 

DOC measurements were available only at a small proportion of Iowa lakes, so EPA simplified 

the national model to the following form for modeling Iowa data: 

 𝐸𝐸[𝑇𝑇𝑁𝑁 − 𝐷𝐷𝐷𝐷𝑁𝑁] = 𝑓𝑓1𝐶𝐶ℎ𝑙𝑙𝑘𝑘 + 𝑇𝑇 (40) 

where u is a lake-specific constant representing the contributions of DON in each lake to 

observed values of TN-DIN. Recall also that, in the national model, the coefficient f1 varied 

across states. With the IDNR data set, multiple samples were collected from each lake, so the 

model could be refined further to estimate a value of f1 for each lake as follows: 

 log�𝑓𝑓1,𝑗𝑗�~ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑙𝑙�𝜇𝜇𝑓𝑓1,𝐼𝐼𝐼𝐼,𝜎𝜎𝑓𝑓1� (41) 

where the index, j, refers to different lakes, and the mean value μf1,IA is computed for data 

collected in Iowa. 
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To examine the effects of considering local state data in the context of the national model, two 

models were fit. In the first model, only IDNR data were used to estimate the coefficients. In the 

second model, relationships were fit to both the IDNR data and NLA data simultaneously. The 

exponent k was modeled as being the same in both the IDNR and NLA data, while the 

coefficients f1 for each lake were estimated with IDNR data and NLA data collected within Iowa, 

and the value of μf1,IA was constrained by the national distribution among all the states in the 

NLA data. 

C.3 Results 

Data collected during the NLA in Iowa and by IDNR spanned similar ranges of Chl a, TN-DIN, and 

DOC (Figure 43). The limiting relationship between Chl a and TN-DIN estimated using only IDNR 

data approximated the lower edge of the cloud of points (gray shading) but were estimated with 

more uncertainty than when estimated using both IDNR and NLA data (solid lines). The mean 

limiting relationships between Chl a and TN-DIN estimated with the two models were 

statistically indistinguishable from one another. 

Figure 43. Chl a vs. TN-DIN in Iowa. Open circles: data collected by Iowa DNR; filled circles: data collected 
by NLA in Iowa; solid lines: 95% credible intervals for limiting relationships between Chl a and TN-DIN 
estimated using both NLA and IDNR data; shaded gray area: 95% credible intervals for limiting 
relationships estimated using only IDNR data. 

The root mean square (RMS) prediction error of log(TN-DIN) measurements in the IDNR data 

was the same for the models using only IDNR data (RMS = 0.27) and the combined Iowa – NLA  

data (RMS = 0.27), indicating that imposing national constraints on the parameter values did not 

improve the accuracy of predictions at the scale of the local state data. Uncertainty about  
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estimates of the relationship between TN-DIN and Chl a for individual lakes was very similar 

(example shown in Figure 44), indicating that a sufficient number of samples was available for 

each lake to estimate the relationship without the information provided by the national model. 

 
Figure 44. Chl a vs. TN-DIN in Beeds Lake, Iowa. Open circles: observed data; gray shading: 90% credible 
intervals for predicted relationship based on only IDNR data; solid lines: 90% credible intervals for 
predicted relationship using both IDNR and NLA data. 

C.4 Criteria Derivation 

Because of the higher number of samples collected within each lake in the IDNR data set, unique 

relationships between TN-DIN and Chl a for each lake could be calculated, and those 

relationships, in turn, can be used to derive numeric nutrient criteria (Figure 45). Variations 

across lakes in DON and in the coefficients of the modeled relationship yield differences in the 

estimated relationship between TN-DIN and Chl a. Then, resulting TN ambient criterion differ as 

well. For an illustrative target Chl a concentration of 15 micrograms per liter (μg/L), the mean 

ambient TN criterion for the lake shown in the left panel of Figure 45 was 750 µg/L, while the TN 

criterion for the lake in the right panel was 1260 µg/L. 
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Figure 45. Lake-specific criteria derivation using combined Iowa-NLA model for two different lakes in 
Iowa. Open circles: observed values of TN-DIN and Chl a in Iowa for each lake; gray shading: 50% credible 
intervals about the mean relationship; solid line: mean relationship calculated using mean DOC 
concentration in lake; horizontal and vertical line segments: TN criterion calculation for illustrative Chl a 
target of 15 µg/L. 
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Appendix D: Operational Numeric Nutrient Criteria 

Operationally, chlorophyll a (Chl a), total nitrogen (TN), and total phosphorus (TP) criteria can be 

specified to account for the effects of sampling and temporal variability on observed mean 

concentrations (Barnett and O’Hagan 1997). In most cases, the condition of a lake will be 

assessed by examining a small number of samples and the uncertainty in the estimation of the 

true seasonal mean value from those data will be determined by the number of samples, the 

temporal variability of nutrient concentrations in the lake, and the inherent sampling variability 

of the measurement. By examining historical data from many different lakes, sampling 

variability associated with Chl a, TN, and TP can be estimated and “operational” criteria can be 

specified to account for this variability with adjusted criterion magnitudes and by adopting a 

frequency component that allows for some excursions of the specified magnitude. 

Ambient monitoring of nutrient concentrations provides the basis for determining whether a 

lake complies with the specified numeric nutrient criteria. Because of logistical and resource 

restrictions, the number of water quality samples available at different lakes can vary from a 

single grab sample to weekly or monthly samples throughout the sampling season. Statewide 

monitoring designs also vary in how often a lake is visited in different years. For example, a 

typical rotating basin design might sample the same lake once every 5 years, whereas other 

lakes might be sampled every year. Because of the differences in the frequency of sample 

collection, a statistical analysis of available monitoring data might be necessary to accurately 

assess compliance with the numeric nutrient criteria. This appendix describes a statistical 

approach for deriving operational or realizable criteria magnitude, duration, and frequency 

components. 

This document provides tools to compute numeric nutrient criteria expressed as seasonal mean 

values. Those criteria implicitly assumed that a large number of samples are available for 

characterizing the condition of each lake and that the uncertainty in the computation of the 

mean value is small (Barnett and O’Hagan 1997), a condition that is usually not satisfied by 

routine monitoring data. Operational criteria incorporate statistical uncertainty in estimating 

environmental conditions from a much smaller number of samples. The statistical approach 
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recommended here requires that one estimate the sampling and temporal variability of nutrient 

concentrations within lakes for which criteria are specified. 

A variety of approaches are available that account for within-lake variability when defining 

operational criteria, but they should all be designed to consider that nutrient concentrations 

vary in space (e.g., at different points on a lake) and in time. Both sources of variability account 

for a distribution of nutrient concentrations that will arise when a lake is repeatedly sampled. 

For example, if a single sample of TP was collected from one lake every year, over 10 years, the 

distribution of values might be as shown in Figure 46, in which observed concentrations range 

from 30 to 80 micrograms per liter (µg/L). Given this example, the water quality management 

question is whether the lake complies with its specified numeric nutrient criteria. Here, if the 

criterion is 60 µg/L, a methodical approach for assessing compliance can enhance the utility of 

the criterion. This section provides one example of an approach for accounting for sampling 

variability and defining “operational” nutrient criteria. 

Figure 46. Example distribution of 10 TP measurements. Note that the horizontal axis is log-scaled. 

Estimates of variability of measurements within lakes are needed to inform decisions on 

operational criteria, and those estimates can be computed from historical data. For this 

example, EPA analyzed TP data extracted from the Storage and Retrieval Data Warehouse 

(STORET) that had been collected in the summers from 1990 to 2011. From those data, lakes 

were identified in the United States with at least 5 years of nutrient data, yielding 25,056 

samples collected from 846 different lakes. In this illustrative example, all available data were 

used, but screening data to identify lakes with relatively lower levels of anthropogenic nutrient 
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loading may be advisable. A statistical model was then used to estimate variance in nutrient 

measurements across different samples collected in the same year and from the same lake 

(within-lake variability). A model was fit to TP measurements that explicitly estimated intra-

annual and interannual variability as follows: 

 log (𝑇𝑇𝑃𝑃 𝑖𝑖) = 𝑁𝑁𝑗𝑗[𝑖𝑖] + 𝑏𝑏𝑘𝑘[𝑖𝑖] + 𝑁𝑁𝑖𝑖 (42) 

where TPi is measured in sample i at site j and in year k. So, observed TP in a sample is modeled 

as being log-normally distributed about a mean value that is the sum of an overall site mean (aj) 

and a random effect of year (bk). The random effect of year is assumed to be normally 

distributed with a mean value of 0 and a standard deviation of syear, and the intra-annual 

variance (ri) is modeled as a normal distribution with a mean of 0 and a standard deviation of 

ssample. Intra-annual variance not only includes contributions from traditional sources of sampling 

variability (e.g., measurement uncertainty), but also includes variability that could be attributed 

to differences in TP concentrations among different locations in a lake and differences in TP 

concentrations one might observe over the course of a single sampling season. Hence, intra-

annual variance was expected to differ among different lakes, so, the overall distribution of 

different values of ssample was modeled as a half-Cauchy distribution (Gelman 2006). 

Fitting this model to the TP data collected from STORET yielded a mean estimate of 0.15 for the 

standard deviation of intra-annual variability of log(TP). Among different lakes in the data set, 

this value ranged from 0.10 to 0.27, so sampling variability varied substantially among the lakes 

in the data set. Estimating intra-annual variability from local data collected in the lake of interest 

would help ensure that the estimate correctly reflects variability in the lake. The mean standard 

deviation of inter-annual variability was 0.11. 

Once intra- and inter-annual variability for the lake or lakes of interest has been estimated, this 

information can be combined with the criterion for that lake to estimate a distribution of 

nutrient concentration values that would be observed if the lake complied with the criterion. For 

example, if the standard deviation of the intra-annual variability of log(TP) in a particular lake is 

estimated as 0.15 and the inter-annual variability is estimated as 0.11, the combined variability 

is the square root of 0.152 + 0.112, or 0.19. For illustrative purposes, if we assume the TP 

criterion for the lake is 60 µg/L, we can infer the characteristics of the cumulative distribution of 

single observations of TP that would be observed at the lake if it were exactly complying with its 

criterion (Figure 47). Then, based on this distribution, operational criteria can be derived. For 
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example, one might define an operational criterion that corresponds with the 10th percentile of 

the distribution (TP = 34 µg/L) and assert that a single TP observation below that value indicates 

the probability that the mean TP concentration in the lake is greater than 60 µg/L is less than 

10%. That is, a lake with an observation below that threshold is likely in compliance with the 

criterion. Conversely, one might define a criterion at the 90th percentile of the distribution (TP = 

105 µg/L) and assert that a single TP observation that exceeds that value indicates the 

probability that the mean TP concentration is lower than 60 µg/L is less than 10%. That is, any 

lakes with an observation that exceeds that threshold is likely to be out of compliance with the 

criterion. Different water quality management outcomes (e.g., additional sampling) could be 

triggered at different threshold concentrations. Also, different operational criteria can be 

developed depending on probabilities of error that are acceptable to environmental managers. 

Figure 47. Example of defining an operational criterion magnitude. Solid line: the cumulative probability of 
observing a single sample TP lower than or equal to the indicated value if the true annual mean was 
exactly equal to the criterion (TP = 60 µg/L); dashed line: the cumulative probability for the average of 
four samples; black arrows: operational criteria for one sample; gray arrows: operational criteria 
associated with the mean of four samples. 

This analysis also highlights the relative benefits of collecting additional samples from each lake. 

More specifically, the combined standard error (s.e.) on the estimate of a summer mean 

concentration is as follows: 

 𝑠𝑠. 𝑒𝑒. = �𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
2

𝑁𝑁
+ 𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖2  (43) 
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where N is the number of samples collected, ssample is the sampling variability of the nutrient 

concentration (estimated as an intra-annual standard deviation), and sinterannual is the inter-

annual standard deviation. Hence, additional samples increase the precision with which the 

annual average nutrient concentration can be estimated by reducing the effect of intra-annual 

variability. In Figure 47, the dashed line shows the cumulative probability distribution of mean 

values computed using four samples. Because of the reduction in the standard error, 

assessments for compliance can be made with much greater confidence. The same 10% 

probabilities used above for single samples yield operational criteria of 41 µg/L and 89 µg/L, 

when applied to the case of the mean of four measurements (gray arrows in Figure 47). 

Information and procedures regarding the use of operational criteria in assessment might be 

described in a state’s assessment methodology to accompany criteria specified in the water 

quality standards. 
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Appendix E: Example Workflow for Deriving Lake Nutrient 

Criteria 

To further assist states and authorized tribes, an example workflow for deriving numeric 

nutrient criteria for a lake or reservoir is illustrated in this appendix by working through the case 

for a hypothetical Lake XYZ. The location of the lake is selected for illustrative purposes only, 

and the characteristics of Lake XYZ (e.g., depth, ecoregion, location, elevation) do not 

correspond to an actual location in the United States. Frequently Asked Questions (FAQs) are 

also included in each of the steps. 

E.1 Identify Designated Uses 

Designated uses for Lake XYZ are aquatic life protection and recreation. For aquatic life, a 

reproducing population of cool water fish are present. For recreation, swimming in the lake is a 

common summer activity. 

E.2 Compile Data 

The maximum depth of Lake XYZ is 10 meters (m), and on average, the thermocline in the 

summer is located 3 m below the surface. Mean dissolved organic carbon (DOC) concentration is 

5 milligrams per liter (mg/L). The lake is located at 42.5 °N, 83.5 °W at an elevation of 1500 m. 

The lake is located in Ecoregion 55, the Eastern Cornbelt Plains. Cool-water fish species in the 

lake can tolerate temperatures up to 19° Celsius (C) and dissolved oxygen (DO) down to 4 mg/L. 

FAQs: 

1. How do I measure depth below the thermocline? 

Depth below the thermocline is best estimated by examining vertical profiles of 

temperature and estimating the depth of the thermocline as the shallowest depth 

where the temperature gradient exceeds 1° C/m. Depth below the thermocline can then 

be calculated as the difference between maximum depth and thermocline. 

2. What do I do with multiple measurements of depth? 

Lakes vary in depth depending on location, but to be consistent with measurements 

collected by the National Lakes Assessment, depth can be recorded as the maximum 
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depth in natural lakes and the midpoint of reservoirs. Thermocline depth varies with the 

day of sampling, so if data from different days are available, a seasonal average 

thermocline depth can be used in the models.  

3. How do I develop statewide criteria from lake-specific numbers? 

The models provide a way to calculate criterion values based on factors that may vary 

among lakes in a state (e.g., depth, ecoregion, DOC). Different options are available for 

computing statewide criteria depending on how much these factors vary within a state, 

ranging from lake-specific criteria to a single set of criterion values that applies to all 

lakes. Analysis to examine the range of nutrient criteria associated with different lakes 

in a state can inform these decisions. For example, if a large range of lake depths are 

found in a state, and criterion values differ widely among those lakes, then specifying 

criteria by depth class may be appropriate. The criterion models provide a tool for 

directly quantifying the effects of differences in lake characteristics on criterion values. 

4. How do I derive criteria when data needed by the models are missing? 

Data for specific parameters (e.g., DOC) may not be available for every lake, but often 

information regarding the distribution of parameter values within a state or ecoregion 

can be estimated. For example, if the mean and standard deviation of DOC in a state or 

ecoregion can be computed, then this distributional information can be used to specify 

a range of lake nutrient criteria. 

E.3 Management Decisions 

For comparison, criterion values were calculated at three certainty levels: 50%, 80%, and 90%. 

Decisions were also required to determine the desired allowable probability of microcystin 

exceeding the recreational threshold of 8 micrograms per liter (µg/L), the size of the cool-water 

refuge, and the zooplankton slope threshold. A value of 1% was selected for the probability of 

exceeding the microcystin threshold, the cool-water refuge size was set at 0.3 m, and the 

zooplankton slope threshold was set at 0. The resulting candidate criteria are shown in the 

tables below (Table 6). 
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Table 6. Illustrative candidate Chl a criteria (µg/L) for Lake XYZ. 

Certainty level 
Aquatic life 

Recreation 
Zooplankton biomass Hypoxia 

50% 21 15 22 

80% 14 12 9 
90% 13 11 6 

The tabulated values provide insights into both the most sensitive use in the lake and the 

uncertainty in chlorophyll a (Chl a) criteria associated with protecting that use. The candidate 

Chl a criterion for hypoxia is the lowest among uses at a certainty level of 50%, whereas 

candidate Chl a criteria for recreation are the lowest among uses for certainty levels of 80% and 

90%. Among certainty levels, the range of Chl a criterion values is greatest for recreation, 

indicating that the sensitivity of certainty level to different criterion values is low relative to the 

other responses and uses. That is, small changes in the Chl a criterion are associated with small 

changes in the certainty level for this response. For hypoxia, the range of criterion values is 

narrow, indicating higher sensitivity. Here, small changes in the Chl a criterion are associated 

with relatively large changes in certainty level. Finally, the food web implications associated with 

lakes in which Chl a exceeds the level at which log(Z)/log(P) = 0 over the long term may be 

substantial and difficult to reverse, and therefore, the use of the 90% certainty level is 

recommended for this response to provide assurance that the candidate Chl a criterion for this 

response is protective. Based on these considerations, a final Chl a criterion of 12 µg/L might be 

selected. This value is slightly less than the 90% certainty level for the zooplankton biomass 

endpoint and corresponds to the 80% certainty level for the hypoxia endpoint. The value also 

corresponds with the 72% certainty values for recreation. This Chl a criterion value is used to 

compute the total phosphorus (TP) and total nitrogen (TN) criteria in Table 7. 

Table 7. Criteria for TP and TN corresponding to a Chl a criterion of 12 µg/L 

Certainty level TP (µg/L) TN (µg/L) 

50% 25 560 
80% 24 540 

90% 36 570 
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More generally, criteria could also be derived that are protective of different designated uses 

and applied to different lakes depending on the applicable uses, while ensuring that, for each 

lake, the most sensitive use is protected. 

FAQs 

1. How do I select the certainty level? 

The certainty level, or credible interval, specifies a range of possible criterion values 

within which the actual value lies with the specified probability. For example, the 50% 

certainty level implies that there is a 50% chance that the actual value is within the 

specified bounds (i.e., the 50% certainty level is bounded by the 25th and 75th percentiles 

of distribution of possible criteria). In other words, the selection of 50% certainty level 

indicates that 25% of possible criterion values lie on either side of the model’s best 

prediction. Because the criterion is based on the lower bound of the 50% certainty level, 

there is a 25% chance that the derived criterion value is greater than the concentration 

needed to achieve the desired condition. That is, there is a 25% chance that the criterion 

is under-protective. More certainty on the criterion value is achieved by selecting 

greater certainty levels. For example, there is only a 5% chance that a criterion based on 

the 90% certainty level would be under-protective. The R Shiny apps provide 

transparent information regarding the effects of different levels of certainty and can 

provide a useful means of engaging with stakeholders regarding the risk management 

decisions underlying criterion development. 

2. How do I select a slope threshold for the zooplankton model? 

A value of zero for the slope threshold for the zooplankton model identifies the point at 

which changes in zooplankton biomass are not associated with changes in 

phytoplankton biomass. In other words, on average there is no increase in zooplankton 

biomass given a corresponding increase in their food source, phytoplankton. At this 

point the food web in a lake may be out of balance, an indication that aquatic life use 

may not be supported. States and authorized tribes may opt to select a higher threshold 

to provide additional assurance that aquatic life is protected in their lakes.  

3. How do I select a refuge depth for the hypoxia model? 

Limited data are available on the refuge depth that is necessary to protect cool- and 

cold-water fish from the combined effects of hypoxia and increased temperature. The 
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studies cited in the criterion document include studies conducted in lakes with both 

deep water hypoxia and warm surface layer temperatures, and studies conducted in 

lakes with cool water inflows where fish have been observed to congregate. A minimum 

refugia depth of 0.3 m is identified in some of these studies. But the final selection for 

the refuge depth may also consider other factors, including the likelihood of a prolonged 

stable stratification in a lake with no mixing events and the likelihood of elevated 

temperatures in the surface layer through the end of the summer. States and authorized 

tribes may opt to select a larger refuge depth to provide additional assurance that 

aquatic life is protected in their lakes. 

4. How do I select the exceedance probability for microcystin? 

The exceedance probability for microcystin can be interpreted directly in terms of the 

environmental outcome. That is, if mean Chl a concentration in a lake is maintained at 

the calculated criterion value, then the exceedance probability can be expressed in 

terms of the number of days of exceedance. For example, a 1% exceedance probability 

suggests that on average, microcystin will exceed the threshold concentration 1 day out 

of 100, so on average, 1 day in the swimming season for most states would not support 

recreational use of the lake. Furthermore, in Section 3.2.3.3, a method is described for 

translating the 1-day exceedance probability to a seasonal probability for a specified 

number of excursions during 10-day assessment windows [as specified in the 

recreational cyanotoxin criteria, (US EPA 2019)], and this information can further inform 

selection of the exceedance probability. As with the certainty level, the R Shiny app 

provides a transparent means of communicating the effects of different exceedance 

probabilities to interested stakeholders. 

5. How do I interpret slider values that do not yield criterion values? 

Certain combinations of slider selections do not yield numeric criteria in the R Shiny 

apps and instead will return an error message. An example of this scenario occurs in the 

zooplankton model when a high slope threshold is selected with a high certainty level. 

When a desired slider combination does not yield a criterion value, consult with EPA to 

refine the model and possibly incorporate site-specific information. 
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E.4 Accounting for Interannual and Sampling Variance 

Criterion values can account for sampling and temporal variability to increase the accuracy of 

compliance monitoring and to account for allowable exceedance frequencies of the criteria for 

Chl a, TN, and TP. Appendix D describes the statistical calculations for deriving operational 

criterion magnitudes and examples of those computations are shown below for the Chl a 

criterion. Based on the comparison of criterion values above, 12 µg/L was selected as the Chl a 

criterion. Intensive monitoring data at lakes similar to Lake XYZ indicate that the within-year 

standard deviation of loge(Chl a) in Lake XYZ is 0.8, while among-year standard deviation is 0.2. 

Given this information, the criterion magnitude can be adjusted to account for an allowable 

exceedance frequency. Here, to illustrate the approach, criterion magnitudes are calculated that 

can be exceeded once every 3 years. 

To assess whether the lake is in compliance with a criterion value, we adjust the criterion 

magnitude as follows. First, calculate the combined standard deviation of Chl a measurements: 

 𝑠𝑠𝑐𝑐𝑜𝑜𝑚𝑚𝑏𝑏 =  �𝑠𝑠𝑤𝑤𝑖𝑖𝑎𝑎ℎ𝑖𝑖𝑚𝑚−𝑦𝑦𝑖𝑖𝑎𝑎𝑟𝑟2 + 𝑠𝑠𝑎𝑎𝑚𝑚𝑜𝑜𝑚𝑚𝑎𝑎−𝑦𝑦𝑖𝑖𝑎𝑎𝑟𝑟2 = �0.82 + 0.22 = 0.82 (44) 

For a once in 3 years exceedance frequency, calculate Chl a concentration that will be exceeded 

one-third of the time, assuming that Chl a measurements are log-normally distributed, with a 

mean value equal to the log-transformed criterion value, and a standard deviation equal to the 

combined standard deviation calculated above: 

 log (𝐶𝐶1 𝑖𝑖𝑚𝑚 3) = log (𝐶𝐶) + 𝑧𝑧0.67𝑠𝑠𝑐𝑐𝑜𝑜𝑚𝑚𝑏𝑏 = log(12) + 0.44(0.82) (45) 

Where C1 in 3 is the criterion value adjusted to an allowable one exceedance every 3 years, C is 

the criterion value of 12 µg/L, scomb is computed above, and z0.67 is the 67th percentile of the 

standard normal distribution (i.e., a 1 in 3 year frequency of exceedance). This calculation yields 

a value of 17 µg/L that is exceeded once every 3 years (assuming that a single sample of Chl a is 

collected each year and the mean Chl a concentration in the lake is equivalent to the criterion 

value of 12 µg/L). That is, if Lake XYZ was conforming exactly with the applicable criterion, then 

we would expect to see Chl a concentrations exceeding 17 µg/L in one-third of the years. 

If several samples are combined to estimate each seasonal mean, the calculation for scomb is 

adjusted to account for this averaging as follows: 
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 𝑠𝑠𝑐𝑐𝑜𝑜𝑚𝑚𝑏𝑏 =  �
𝑠𝑠𝑤𝑤𝑖𝑖𝑎𝑎ℎ𝑖𝑖𝑚𝑚−𝑦𝑦𝑖𝑖𝑎𝑎𝑟𝑟2

𝑁𝑁
+ 𝑠𝑠𝑎𝑎𝑚𝑚𝑜𝑜𝑚𝑚𝑎𝑎−𝑦𝑦𝑖𝑖𝑎𝑎𝑟𝑟2 = �0.82

4
+ 0.22 = 0.6 (46) 

Note: the numerical example shows the computation when four samples are averaged. Based 

on this adjustment, C1 in 3 for seasonal means computed as the average of four samples is 16 

µg/L. 

E.5 Incorporating State Data in National Models 

Regular monitoring has been conducted at Lake XYZ and other lakes, in which a variety of water 

quality measurements are collected, and the state agency is interested in determining whether 

the state monitoring data can be combined with the national models to improve the accuracy 

and precision of the derived criteria. Several factors should be considered when making this 

decision: 

1. National models provide applicable criteria. 

The criteria provided by the national criterion models apply to most lakes and reservoirs 

of the United States. The criterion models estimate relationships between 

measurements (e.g., Chl a and microcystin) that do not vary strongly with geographic 

location, and therefore, incorporation of state data may not appreciably change 

criterion values. 

2. Assess the inventory of observed data. 

The measurements that are available in a state or tribal dataset should be compared 

with the variables that are included in the national models. Measurements of endpoint 

variables (i.e., microcystin, depth-averaged DO, zooplankton biomass, TP, and TN) and 

measurements of variables that account for large proportions of variability in these 

endpoints (i.e., Chl a, DOC, phytoplankton biomass, turbidity) need to be available for 

combining state and national data.  

3. Consider the likelihood of changes to national models. 

Several factors determine the degree to which state data influence national 

relationships. Of these, two can be evaluated a priori. First, the number of samples 

collected for each parameter in the state data set should be no less than approximately 

10% of the size of the national dataset. Second, relationships among variables can be 

more or less precise relative to the national data, depending on factors such as 
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differences in sampling protocols; however, state data that feature more precise 

relationships among variables of interest are more likely to influence the national 

model. 

4. Consult with EPA on statistical techniques for incorporating local monitoring data with 

national models. 

Due to wide variations in the types of data that are collected, sampling protocols, and 

database formats, the process of combining state and national data is unique for each 

dataset. Therefore, EPA is ready to provide technical assistance to any state or 

authorized tribe that is interested in combining their data with the national criterion 

models as resources allow. Please contact your regional nutrient coordinator to request 

technical support through EPA’s Nutrient Scientific Technical Exchange Partnership and 

Support (N-STEPS) program. 
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