Inventory of U.S. Greenhouse Gas Emissions and Sinks 1990-2020: Updates Under Consideration for Post-Meter Emissions

This memo discusses updates under consideration for the 2022 *Inventory of U.S. Greenhouse Gas Emissions and Sinks* (GHGI) to include emission estimates for natural gas post-meter sources.

1 Current GHGI Methodology

Leak emissions beyond gas meters (e.g., such as from home heating, water heating, and stoves) and from natural gas-fueled vehicles are not currently included in the GHGI. The updates under consideration presented in this memo would incorporate estimates for post-meter emissions in the natural gas systems sector of the GHGI.

2 Background

Post-meter emissions are included in the 2019 Refinement to the 2006 Intergovernmental Panel on Climate Change (IPCC) Guidelines for National Greenhouse Gas Inventories under natural gas systems (IPCC 2019 refinements). Post-meter emission sources include certain leak emissions from residential and commercial appliances, industrial facilities and power plants, and natural gas fueled vehicles. The IPCC post-meter subsegments are as follows:

- Appliances in residential and commercial sectors Leakage from house piping and natural gas appliances such as furnaces, water heaters, stoves and ovens, and barbecues/grills.
- Leakage at industrial plants and power stations Leakage from internal piping.
- Natural gas fueled vehicles Emissions from vehicles with alternative fuels produced from natural gas
 e.g., LNG, CNG, propane. Emissions for natural gas-fueled vehicles include releases from dead volumes
 during fueling, emptying of gas cylinders of high-pressure interim storage units, for execution of
 pressure tests and relaxation of residual pressure from vehicles' gas tanks, or decommissioning.

3 Available Data

EPA reviewed multiple data sources to identify relevant emission factors (EF) and activity data. Each of the data sources are identified here and a brief summary is provided.

3.1 Emission Factor Sources

EPA reviewed post-meter emissions data from the following sources:

• IPCC 2019 – IPCC 2019 refinements contain emission factors for CH₄ and CO₂ for post-meter emissions from residential and commercial sector appliances, industrial plants and EGUs, and natural gas fueled vehicles.² The IPCC EFs for the residential and commercial sectors are appliance-based EFs (i.e., emissions per appliance). The industrial plants and EGUs EFs are based on consumption of natural gas in the industrial and electricity generation sectors (i.e., emissions per volume of gas consumption). Finally, the EFs for natural gas fueled vehicles are based on the number of natural gas vehicles (i.e., emissions per natural gas vehicle).

¹ 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Vol 2, Chapter 4, Section 4.2.

² 2019 IPCC Refinements, Vol 2, Chap 4, Table 4.2.4k.

- Research Studies EPA reviewed four research studies on post-meter emissions that were recently
 published in peer-reviewed scientific journals. All the studies focused on leak emissions from
 residential natural gas appliances and households.
 - An Estimate of Natural Gas Methane Emissions from California Homes (Fischer et al. 2018)³ –
 This study measured CH₄ leak emissions from 75 homes in California that use natural gas. The
 measurements captured passive house leak emissions, which included interior leaks and
 quiescent appliances (with only pilot lights burning), and steady-state operation of natural gas
 appliances.
 - Unburned Methane Emissions From Residential Natural Gas Appliances (Merrin and Francisco 2019)⁴ This study measured CH₄ leak emissions from residential natural gas appliances in Boston and Indianapolis. Natural gas space heating, water heating, and cooking appliances were measured in over 100 homes. The methane measurements were conducted during ignition, steady-state operation, and extinguishment phases of appliance operation.
 - Quantifying Methane Emissions from Natural Gas Water Heaters (Lebel et al. 2020)⁵ This study measured CH₄ leak emissions from natural gas water heaters in California. Water heaters from 64 northern California homes were measured during ignition, steady-state operation, and extinguishment phases of water heater operation.
 - Beyond-the-Meter: Unaccounted Sources of Methane Emissions in the Natural Gas
 Distribution Sector (Saint-Vincent and Pekney 2020)⁶ The authors performed a literature
 review on residential post-meter emissions data, which included assessing some of the above
 studies.
- California Air Resource Board (CARB) GHG Inventory California's GHG Inventory includes CH₄
 estimates from residential post-meter natural gas leaks. CARB uses CH₄ emissions data from the
 Fischer et al. 2018 study to estimate residential post-meter emissions.⁷
- International GHG Inventories EPA reviewed national GHG Inventory reports and found several that included post-meter estimates.
 - The Australian GHG Inventory uses appliance-based CH₄ EFs from the Merrin and Francisco
 2019 study to estimate residential appliance post-meter emissions.
 - The German GHG Inventory includes leak estimates from natural gas meters and fittings in the residential, commercial, and industrial sectors, and leak estimates from natural gas fueled vehicles. The CH₄ EFs used by Germany are based on local data and studies.

³ Marc L. Fischer, Wanyu R. Chan, Woody Delp, Seongeun Jeong, Vi Rapp, Zhimin Zhu. An Estimate of Natural Gas Methane Emissions from California Homes. *Environmental Science & Technology* 2018, *52 (17)*, 10205–10213. https://pubs.acs.org/doi/10.1021/acs.est.8b03217.

⁴ Zachary Merrin, Paul W. Francisco. Unburned Methane Emissions from Residential Natural Gas Appliances. Environmental Science & Technology 2019, 53 (9), 5473-5482. https://doi.org/10.1021/acs.est.8b05323.

⁵ Eric D. Lebel, Harmony S. Lu, Simone A. Speizer, Colin J. Finnegan, Robert B. Jackson. Quantifying Methane Emissions from Natural Gas Water Heaters. *Environmental Science & Technology* 2020, 54 (9), 5737-5745. https://doi.org/10.1021/acs.est.9b07189.

⁶ Patricia M. B. Saint-Vincent, Natalie J. Pekney. Beyond-the-Meter: Unaccounted Sources of Methane Emissions in the Natural Gas Distribution Sector. *Environmental Science & Technology* 2020, *54* (1), 39-49. https://doi.org/10.1021/acs.est.9b04657.

⁷ CARB GHG Inventory Updates Documentation, 2019 Edition. Available online at:

https://ww3.arb.ca.gov/cc/inventory/pubs/reports/2000 2017/ghg inventory 00-17 method update document.pdf.

• The UK GHG inventory includes residential and commercial leak emissions that are based on country-specific EFs for natural gas consumption (i.e., kg CH₄/TJ).

3.2 Activity Data Sources

EPA reviewed the following sources of activity data:

- Residential sector Data available to estimate post-meter emissions from residential natural gas appliances are national counts of natural gas households. National data on housing counts, by fuel type and by specific end uses such as heating and cooking, are available from the U.S. Census Bureau's American Housing Survey (AHS) and Energy Information Administration's Residential Energy Consumption Survey (RECS).^{8,9} Both the datasets include national counts on number of housing units using natural gas for specific end uses such as space heating, water heating, cooking, clothes drying, pools and spa heating, and outdoor grills. The data do not include natural gas appliance counts.
 - O Housing Counts:
 - AHS. National data on housing counts, by fuel type, are available from the U.S. Census Bureau's AHS.¹⁰ National summary data are reported biennially by AHS starting with 1973.
 - RECS. In addition to the U.S. Census Bureau, national data on housing counts by fuel type are also available from the Energy Information Administration (EIA). The EIA periodically conducts the nationwide *Residential Energy Consumption Survey* (RECS). The RECS data are only available for 7 years in the 1990-2020 time-series (i.e., 1990, 1993, 1997, 2001, 2005, 2006, and 2015).
- Commercial sector Data available to estimate post-meter emissions from commercial natural gas
 appliances are national data on commercial buildings, by fuel types and end uses such as heating and
 cooking from EIA's Commercial Buildings Energy Consumption Survey (CBECS)¹¹ and commercial meter
 counts available from EIA. Natural gas appliance counts are unavailable.
 - Commercial building counts: The CBECS contains national data on commercial buildings by type of fuel and energy end use (i.e., space heating, water heating, and cooking). The CBECS does not contain information on number of natural gas appliances used in commercial buildings; however, the survey indicates the number of commercial buildings that use natural gas for a particular end use. The CBECS is only available for 1992, 1995, 1999, 2003, and 2012 (i.e., 5 years in the 1990-2020 time-series). Data for 2018 CBECS are not publicly released yet.
 - Commercial meter counts: National commercial appliance counts can be estimated by multiplying a default value of appliances per commercial natural gas meter by the number of commercial natural gas meters. Time-series data for commercial natural gas meters is used in the GHGI for estimating emissions from other sources.

⁸ U.S. Census Bureau's American Housing Survey (AHS). https://www.census.gov/programs-surveys/ahs.html.

⁹ Energy Information Administration's Residential Energy Consumption Survey (RECS). https://www.eia.gov/consumption/residential/.

¹⁰ The U.S. Census also publishes the *American Community Survey* (ACS), which contains national housing counts by type of house heating fuel. Unlike the AHS, ACS data are only available for natural gas space heating end use and don't include other end uses such as water heating, cooking, and clothes drying, and ACS data are only available from 2010 forward. EPA did not consider this data source for the update under consideration.

¹¹ EIA's Commercial Buildings Energy Consumption Survey - https://www.eia.gov/consumption/commercial/.

- Industrial plants and EGUs Annual national natural gas consumption data for industrial and electricity generation sectors are available from the *Monthly Energy Review* publications of the EIA.¹²
- Natural gas fueled vehicles National vehicle population estimates are available from EPA's Motor Vehicle Emission Simulator model (MOVES).¹³ The latest version of the MOVES model, MOVES3, contains natural gas vehicle fleet population estimates for 1990 and 1999-2020 and incorporates updated data on vehicle population, travel activity, and fuel supply information. Additionally, EIA's Alternate Fuel Data Center (AFDC) contains the Alternate Fuel Vehicle Inventory.¹⁴ This inventory contains natural gas fueled vehicle counts for 2004-2019 for cities participating in the U.S. Department of Energy's Clean Cities Coalition Network.¹⁵

4 Analysis of Available Data

This section presents the available emission factor data and activity data for the post-meter sub-segments – Appliances in residential and commercial sectors; Leakage at industrial plants and power stations; and Natural gas fueled vehicles.

4.1 Emission Factors

4.1.1 Residential Sector

Residential sector CH₄ EFs for natural gas leak emissions from house piping and appliances are shown in Table 1. All the residential sector EFs presented in Table 1 include leaks from natural gas appliances (e.g., during steady state operations); however, only a single source (Fischer et al. 2018) also accounts for passive leaks from residential natural gas piping (i.e., quiescent house leakage).

Data Source	CH₄ EF	EF Units	EF Includes Appliance Leaks?	EF Includes Passive House Leaks?
IPCC	4.0	Kg/appliance	Yes	Unspecified
CARB/Fischer et al. (2018)	2.54	Kg/NG House	Yes	Yes
Merrin and Francisco (2019)	0.43	Kg/NG House	Yes	No
Lebel et al. (2020)	1.42	Kg/NG Water Heater	Yes	No
2021 Australia GHGI (1990- 2019)	0.06 – 1.2	Appliance based ^a	Yes	No
2021 UK GHGI (1990-2019)	1.9	Kg/TJ natural gas	Yes	No

Table 1. Emission Factors – Post-Meter Leaks in Residential Sector.

Another study (Saint-Vincent and Pekney, 2020), not listed in Table 1 above, estimated national emissions using emissions data from other studies. This study combined passive house leak emissions data from the Fischer et al. study and appliance emissions from the Merrin and Francisco study. The implied CH₄ EF developed by this study is 2.41 kg/natural gas household (i.e., national emissions estimated by study divided by national number of households using natural gas).

^a The EFs were derived from the Merrin and Francisco 2019 study (CH₄ EFs for ovens, stoves, furnaces, and water heaters). The appliance based emission factors range from 0.06 kg/stove to 1.2 kg/tankless water heater.

¹² U.S. Energy Information Administration. April 2021 Monthly Energy Review. https://www.eia.gov/totalenergy/data/monthly/archive/00352104.pdf.

¹³ U.S. EPA's Latest MOVES Model: https://www.epa.gov/moves/latest-version-motor-vehicle-emission-simulator-moves.

¹⁴ Clean Cities Alternate Fuel Vehicle Inventory: https://afdc.energy.gov/data/10581.

¹⁵ Clean Cities Coalition Network: https://cleancities.energy.gov/coalitions/.

The California Air Resources Board (CARB) GHG Inventory developed an estimate for post-meter emissions using the Fischer et al. study. The EF calculated from the Fischer study accounts for passive house leak emissions and appliance leak emissions.

The most recent version of the Australian GHGI (1990-2019) uses residential appliance CH₄ EFs from the Merrin and Francisco study to estimate residential post-meter emissions. ¹⁶

The UK GHGI (1990-2019) estimates post-meter emissions in the residential and commercial sectors. ¹⁷ Leakages are estimated for a range of different appliances that use gas, combined with national statistics on natural gas consumption in the domestic and commercial sectors. The UK GHGI includes appliances used for space heating, water heating, and cooking in the residential sector and appliances (ovens and boilers) used in commercial catering and other service sectors.

IPCC 2019 also provided a residential sector post-meter CO₂ EF of 0.033 kg/appliance. None of the other data sources provided CO₂ emissions data.

4.1.2 Commercial Sector

Commercial sector CH₄ EFs for natural gas appliance leak emissions are shown in Table 2.

Table 2. Emission Factors – Post-Meter Leaks in Commercial Sector.

Data Source	CH ₄ EF	EF Units
IPCC	4.0	Kg/appliance

IPCC also provided a commercial sector post-meter CO_2 EF of 0.033 kg/appliance. The IPCC EFs are the same for both residential and commercial sectors.

4.1.3 Industrial Plants and EGUs

CH₄ EFs for natural gas leak emissions at industrial plants and EGUs are shown in Table 3.

Table 3. Emission Factors – Post-Meter Leaks from Industrial Plants and EGUs.

Data Source	CH ₄ EF ^a	EF Units
IPCC	11,326.7	Kg/billion cubic feet gas consumed
2021 Germany GHGI (1990-2019)	7,702.2 ^b	Kg/billion cubic feet gas consumed

^a Converted CH₄ EFs from kg/million cubic meters gas consumed to kg/billion cubic feet gas consumed using a conversion factor of 35.3147 cubic feet/cubic meter.

IPCC 2019 also provided a CO₂ EF of 3.3 Kg/million cubic meters gas consumed for post-meter leaks at industrial plants and EGUs.

4.1.4 Natural Gas Fueled Vehicles

IPCC 2019 default EFs for CH₄ and CO₂ are shown in Table 4. The IPCC EFs were derived from a German study and are also used in the German GHGI.

^b The original CH₄ EF from the German National Inventory Report (NIR) is 0.4 m³ CH₄/1,000 m³ natural gas consumption. The conversion assumed density of CH₄ to be 19.26 g/ft³ (0.68 kg/m³).

¹⁶ Australia. 2021 National Inventory Report (1990-2019), Volume 1, Table 3.49b. April 2021. Available online at: https://unfccc.int/documents/273478.

¹⁷ United Kingdom. 2021 National Inventory Report (1990-2019), Section 3, MS 19. April 2021. Available online at: https://unfccc.int/documents/273439.

Table 4. Emission Factors – Post-Meter Leaks from Natural Gas Fueled Vehicles.

Data Source	CH₄ EF	CO ₂ EF	EF Units
IPCC	0.33	0.0023	Kg/vehicle

4.2 Activity Data

4.2.1 Residential Sector

Activity data available for the residential sector post-meter estimates are the national number of households using natural gas as fuel. Table 5 contains a summary of available RECS and AHS housing units data (both total houses and houses using natural gas as a fuel) for the seven years for which RECS data are available and the most recent year (2019) that AHS data are available. National data in Table 5 represent occupied housing units.

Table 5. Summary of National Housing Data (millions of housing units).

Voor	EIA/RECS		Census	% Difference NG	
Year	Total Housing Units	NG Housing Units	Total Housing Units	NG Housing Units	Housing Units
1990	94.0	57.7	Not Available	Not Available	
1993	96.6	58.4	94.7	65.6	-0.3%
1997	101.5	61.9	99.5	60.5	-2%
2001	107.0	66.9	106.3	83.1	-3%
2005	111.1	69.5	108.9	86.6	-4%
2009	113.6	69.2	111.8	86.2	-2%
2015	118.2	68.6	118.3	80.3	17%
2019	Not Available	Not Available	124.1	84.7	

The AHS and RECS datasets also contain the number of housing units using natural gas for specific end use purposes such as space heating, water heating, cooking, clothes drying, outdoor grilling, and spa/pool heating. Natural gas appliance counts are not available in the AHS and RECS data. In Table 6 below, national appliance counts were estimated by assuming one appliance of each type per housing unit using natural gas for that appliance type. For example, if the data indicate 60,000 housing units that use natural gas for water heating, then the number of natural gas water heaters is assumed to be 60,000. Table 6 contains a summary of residential natural gas appliance counts from RECS and AHS for the seven years for which RECS data are available and the most recent year (2019) that AHS data are available.

Table 6. Summary of Estimated National Residential Appliance Data (millions of units).

Year	Based on EIA/RECS	Based on Census/AHS
1990	157	NA
1993	156	149
1997	164	159
2001	179	170
2005	185	176
2009	185	174
2015	189	176
2019	NA	181

4.2.2 Commercial Sector

Activity data to estimate emissions from post-meter leaks in the commercial sector are available in EIA's CBECS. EIA's CBECS contains data on the number of commercial buildings that use natural gas for specific end uses such as space heating, water heating, and cooking but does not indicate the number of appliances at commercial buildings. The commercial buildings included in the CBECS are categorized by their primary business activity. The commercial building categories covered by the CBECS include education, food service, health care, lodging, mercantile, offices, religious worship, public services, and others (e.g., laboratories, manufacturing with retail space, data centers, and crematoriums).

The CBECS data are only available for 1992, 1995, 1999, 2003, and 2012. Data from the 2018 CBECS are yet to be published. Table 7 presents the national summary for the available years of CBECS data. The CBECS data do not contain commercial appliance counts. National appliance counts can be estimated by assuming one appliance of each type per commercial building using natural gas for that appliance type. For example, if the data indicate 100,000 commercial building use natural gas for water heating, then the number of natural gas water heaters is assumed to be 100,000. The estimated natural gas appliance counts are also shown in Table 7, below. In addition, the number of commercial natural gas meters are also shown in Table 7 for the years CBECS data are available. Using the derived appliance counts and the commercial meter counts, EPA developed estimates for appliances per commercial meter.

	1992	1995	1999	2003	2012
All commercial buildings	4,806	4,579	4,657	4,645	5,557
Commercial buildings using natural gas as f	uel for t	he follov	ving end	uses:	
Primary space-heating energy source	2,276	2,106	2,189	1,999	2,322
Water-heating energy source	1,647	1,577	1,520	1,445	1,758
Cooking energy source	431	448	505	457	740
Cooling energy source	106	65	142	17	12
Estimated Appliance Count	4,460	4,196	4,356	3,918	4,832
Commercial Meter Count – 2021 GHGI	4,409	4,636	5,010	5,152	5,356
Estimated Appliances/Commercial Meter ^a	1	1	1	1	1

Table 7. Summary of CBECS Data (1000s).

4.2.3 Industrial Plants and EGUs

Activity data available to estimate post-meter leak emissions from industrial plants and EGUs are national natural gas consumption for the industrial and electric power sectors. EIA provides national data on consumption of natural gas by the industrial and electric power sectors for the entire time-series (1990-2020); see Table 8.

Table 8. Summary of Natural Gas Consumption By Industrial and Electric Power Sectors (BCF).

Year	Industrial Sector	Electric Power Sector
1990	8,255	3,245
1991	8,360	3,316
1992	8,698	3,448
1993	8,872	3,473
1994	8,913	3,903
1995	9,384	4,237

¹⁸ Preliminary 2018 CBECS data are not yet published. Website indicates detailed tables will be available in spring/summer 2021.

^a All values rounded to the closest integer. The actual values range from 0.76 to 1.01 appliances/meter.

Year	Industrial Sector	Electric Power Sector
1996	9,685	3,807
1997	9,714	4,065
1998	9,493	4,588
1999	9,158	4,820
2000	9,293	5,206
2001	8,463	5,342
2002	8,640	5,672
2003	8,273	5,135
2004	8,354	5,464
2005	7,713	5,869
2006	7,669	6,222
2007	7,881	6,841
2008	7,890	6,668
2009	7,443	6,873
2010	8,112	7,387
2011	8,317	7,574
2012	8,622	9,111
2013	8,909	8,191
2014	9,158	8,146
2015	9,098	9,613
2016	9,274	9,985
2017	9,533	9,266
2018	10,112	10,590
2019	10,268	11,288
2020	10,086	11,616

4.2.4 Natural Gas Fueled Vehicles

Activity data required to estimate post-meter leak emissions for natural gas fueled vehicles are the national population of natural gas fueled vehicles. EPA evaluated data from MOVES3 and AFDC. MOVES3 includes the annual compressed natural gas (CNG) vehicle population for 1990 and 1999 through 2020. The population of vehicles running on liquefied natural gas (LNG) or renewable natural gas (RNG) are not available in MOVES3. CNG vehicle counts from MOVES3 include buses (transit and school buses), refuse trucks, single-unit trucks, and combination trucks (i.e., heavy-duty vehicles). Currently, there is only a single OEM that offers a factory built CNG light-duty vehicle in the U.S. market. However, there are options for after-market CNG conversions for passenger automobiles. Converted passenger automobile counts are not included in MOVES3.

The AFDC provides an annual alternate fuel vehicle inventory for 2004-2019 compiled from the Clean Cities Coalition. The AFDC data is not available at the national-level. The alternate fuel vehicle inventory only includes the cities that are part of the Clean Cities Coalition. An estimated 79 percent of the national population lives inside the boundaries of the Clean Cities Coalition Network. Table 9 summarizes the MOVES3 and AFDC data.

¹⁹ https://ngvamerica.org/vehicles/.

²⁰ MOVES population and activity technical report is available online at: https://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=P1011TF8.pdf.

Table 9. Summary of Vehicle Populations from MOVES3 and Clean Cities Alternate Fuel Vehicle Inventory.

Voor	MOVES3	Clean Cities Alternate Fuel Vehicle Inventory			
Year	CNG Vehicles	CNG Vehicles	LNG Vehicles	RNG Vehicles	All Natural Gas Vehicles
1990	6	NA	NA	NA	NA
1999	10,139	NA	NA	NA	NA
2000	13,063	NA	NA	NA	NA
2001	15,787	NA	NA	NA	NA
2002	19,229	NA	NA	NA	NA
2003	20,963	NA	NA	NA	NA
2004	22,364	76,257	0	0	76,257
2005	23,695	49,271	1,873	0	51,144
2006	24,093	57,458	2,271	0	59,729
2007	25,028	55,021	1,731	0	56,752
2008	26,959	51,121	2,053	0	53,174
2009	30,289	44,317	2,038	0	46,355
2010	30,708	42,911	3,410	0	46,321
2011	33,557	48,157	4,315	0	52,472
2012	37,925	59,521	3,411	0	62,932
2013	42,311	79,616	3,645	0	83,261
2014	50,317	68,479	2,992	313	71,784
2015	60,132	107,283	3,974	366	111,623
2016	69,897	98,388	4,924	1,157	104,469
2017	80,021	97,271	5,070	1,734	104,075
2018	89,033	82,266	5,100	1,677	89,043
2019	98,535	100,938	4,917	4,922	110,777
2020	107,519	NA	NA	NA	NA

NA = not available

5 Time Series Considerations

• Emission Factors: Currently, there is no time series information on emission factors available for postmeter emissions. The emission factors in the update under consideration would be held constant over the time series.

• Residential Activity Data:

- U.S. Census Bureau's American Housing Survey (AHS) National house count data by type of fuel and fuel end use purpose are available from AHS. National summary data from the AHS are published biennially (published every odd year). Data for missing years can be gap filled as the average value of the two most recent years for which data are available (i.e., years immediately before and after the missing year).
- Energy Information Administration's Residential Energy Consumption Survey (RECS) National housing count data by type of fuel and fuel end use purpose are only available for 7 years in the 1990-2020 time series (1990, 1993, 1997, 2001, 2005, 2009, and 2015).
- Commercial Activity Data National data on number of commercial buildings by type of fuel and fuel
 end use purpose are available from EIA's CBECS. EIA's CBECS data are only available for 5 years in the
 1990-2020 time series (1992, 1995, 1999, 2003, and 2012). Data from the 2018 CBECS are not yet
 publicly released. EPA estimated the number of appliances per commercial meter using data from the

CBECS and the commercial meter counts data available from the 2021 GHGI (see Table 7). The data indicate 1 appliance/commercial meter for all years with CBECS data. In the update under consideration EPA would apply the same value (1 appliance/commercial meter) for all time-series years without CBECS data.

- Industrial and Power Plants Activity Data –EIA's natural gas consumption data for the industrial and electric power sectors are available for the entire time series.
- Natural Gas Vehicles Activity Data:
 - MOVES3 National Vehicle Population National vehicle counts are available from MOVES3 for 1990 and 1999-2020. EIA's data on annual natural gas consumption for vehicular fuel for 1990-1999 can be used to gap fill MOVES3 vehicle counts for 1991-1998. EPA calculated the ratio of natural gas vehicle fuel consumption in each of the missing years (i.e., 1991-1998) to natural gas vehicle fuel consumption in 1999. The 1999 vehicle count from MOVES3 was then multiplied by the year specific ratio to gap fall MOVES3 vehicle counts for 1991-1998.
 - Alternate Fuel Vehicle Inventory EIA's alternate fuel vehicle inventory contains natural gas vehicle counts for 2004-2019. However, this dataset only covers the jurisdictions (i.e., cities and counties) that are part of the Clean Cities Coalition. The alternate fuel vehicle inventory does not include national vehicle counts. EIA's data on annual natural gas consumption for vehicular fuel for 1990-2004 could be used to gap fill the alternate fuel vehicle inventory for 1990-2003. The ratios of natural gas vehicle fuel consumption in each of the missing years (i.e., 1990-2003) to 2004 could be multiplied by the 2004 vehicle count to estimate vehicle counts for 1990-2003.

6 Preliminary National Emissions Estimates

EPA estimated preliminary national post-meter emissions using the emission factors and activity data described in sections 3 and 4, above.

EPA estimated preliminary national estimates from post-meter leaks in the residential sector using each of the CH₄ EFs under consideration (see Table 1). The activity data are from the latest version of the *American Housing Survey* (AHS 2019). Table 10 presents preliminary CH₄ estimates for 2019 using the different EFs.

Table 10. Preliminary Estimates -	- Dost-Mater I	aaks Eram	Residential Sector
Table 10. Freilillial v Estillates -	- PUSL-IVIELEI L	.eaks riviii	nesidellilai sectol.

CH₄ EF Source	2019 CH ₄ (metric tons)
IPCC ^a	724,476
CARB/Fischer et al. (2018)	215,119
Merrin and Francisco (2019)	36,435

^a National natural gas appliance counts estimated from 2019 AHS data by assuming one appliance per house with a specific natural gas use.

For comparison, we also calculated 2019 CH_4 from residential appliances using the U.K. emission factor of 1.9 kg/TJ of residential natural gas use applied to 5,486,205 TJ natural gas consumed for residential purposes in the U.S., which resulted in a 2019 estimate of 10,443 metric tons of CH_4 .

Because it represents total emissions of methane from households and was developed from data collected in the U.S., EPA is considering use of the CARB emission factor to quantify national emissions from this source.²¹

²¹ The CARB EF (2.54 kg/NG house) was obtained from the Fischer et. al (2018) study.

EPA also estimated preliminary post-meter leak emissions from the commercial sector, industrial plants and EGUs, and natural gas fueled vehicles. Table 11 presents national preliminary CH₄ estimates for 1990-2020. In the table below, post-meter emissions from the residential sector were estimated using the CARB EF (see Table 1) and natural gas housing unit counts available from the AHS. EPA estimated post-meter appliance leak emissions from the commercial sector using the national number of commercial meters, an estimated value of 1 appliance per commercial meter (see Table 7), and the IPCC CH₄ EF (see Table 2). EPA estimated preliminary national emissions from post-meter leaks at industrial plants and EGUs using natural gas fuel consumption data from EIA (see Table 9) and the IPCC CH₄ EF (see Table 3). EPA estimated post-meter emissions from natural gas fueled vehicles using national vehicle fleet data from MOVES3 (see Table 9) and the IPCC CH₄ EF (see Table 4).

Table 11. Preliminary Estimates – Post-Meter Leaks From Commercial Sector, Industrial Plants and EGUs, and Natural Gas Fueled Vehicles.

Voor	CH ₄ (metric tons)					
Year	Residential	Commercial	Industrial Plants & EGUs	Natural Gas Vehicles		
1990	164,784	16,945	130,251	0.002		
1991	163,991	17,429	132,253	0.1		
1992	165,307	17,639	137,570	0.6		
1993	166,619	17,860	139,825	0.7		
1994	169,730	18,136	145,161	0.8		
1995	172,837	18,546	154,276	1.2		
1996	163,197	18,881	152,819	1.6		
1997	153,554	19,046	156,069	2.2		
1998	156,925	20,178	159,496	2.4		
1999	160,295	20,041	158,324	3.0		
2000	185,705	20,043	164,232	3.9		
2001	211,113	19,986	156,366	4.7		
2002	212,913	20,258	162,110	5.8		
2003	214,713	20,609	151,867	6.3		
2004	217,308	20,560	156,513	6.7		
2005	219,903	20,792	153,838	7.1		
2006	222,901	21,094	157,335	7.2		
2007	225,897	21,235	166,758	7.5		
2008	222,343	21,777	164,897	8.1		
2009	218,788	21,289	162,144	9.1		
2010	198,253	21,206	175,553	9.2		
2011	177,717	21,279	179,988	10.1		
2012	178,517	21,426	200,860	11.4		
2013	179,317	21,490	193,679	12.7		
2014	191,651	21,654	195,999	15.1		
2015	203,986	21,815	211,942	18.0		
2016	207,553	21,899	218,145	21.0		
2017	211,120	22,000	212,931	24.0		
2018	213,121	22,073	234,483	26.7		
2019	215,119	22,187	244,160	29.6		
2020	215,119	22,187	245,816	32.3		

7 Requests for Stakeholder Feedback

EPA seeks stakeholder feedback on the update under consideration discussed in this memo and the questions below.

- 1. EPA seeks additional data sources to be considered for post-meter emissions (emission factor and activity data sources).
- 2. EPA seeks stakeholder feedback on time series data for post-meter emission sources. Are data available that would allow the GHGI to reflect changes over time in average emissions per emission source for post-meter?

Appendix A - Measurement Methodologies from Data Sources Considered for Updates

Emission			Location &					
Source	Measurement and/or Calculation Type	# Sources	Representativeness	EF Calculation Method				
	Estimate of Natural Gas Methane Emissions from California Homes (Fischer et al. 2018)							
Quiescent	· · · · · · · · · · · · · · · · · · ·							
-•	ventilate the house, while measuring both the indoor and outdoor	family detached homes that	located in Northern	from whole-house and NG appliances				
emissions	air CH ₄ concentrations over time. Once indoor CH ₄ concentration	use NG for at least two of the	California and	using measurement results and				
Cilissions	reached steady state, the enhancement of indoor CH ₄ relative to	following purposes: space	Central Valley and	Bayesian Markov chain Monte Carlo				
	outdoor air combined with the known volumetric flow rate of air	heating, water heating,	45 homes were	sampling combined with California				
	was used to estimate indoor CH ₄ emissions. CH ₄ was measured with	cooking, and clothes drying.	located in Southern	housing statistics and gas use				
	a portable gas analyzer.	esoning, and electrics arying.	California.	information. EFs were derived by				
Appliance	Methane emissions were measured during steady operation for two			using state-level estimates from the				
emissions	NG appliances in each home. Measurements were made using the			study and the number of natural gas				
Cimosions	same portable gas analyzer used for whole-house measurements.			homes in CA.				
	Each appliance was operated for 10–15 min before the							
	measurement.							
Unburned Methane Emissions From Residential Natural Gas Appliances (Merrin and Francisco 2019)								
Appliance	Gas concentrations were measured during appliance ignition,	Space heating, water heating,	72 sites in Boston,	Annual CH ₄ emissions from an				
emissions	operation, extinguishment, and cool down. Appliances were tested	and cooking appliances were	MA and	appliance type were calculated by				
	using a Picarro portable gas concentration analyzer (ppm of CH ₄ ,	tested (furnaces, boilers,	Indianapolis, IN. 28	combining average measured				
	CO ₂ , and water vapor; sample temperature and pressure). Cooktop	stoves, ovens, water heaters,	Additional sites in IL	concentration, calculated exhaust				
	burners were tested using "CO Hot Pot" (device mimics cooking	outdoor grills, and space	and NY.	flow, and appliance usage				
	vessel and has sampling port for measurements).	heaters from 100 residential		assumptions (days used per year,				
		sites in MA, IN, IL, and NY		activations per day, average				
		were tested.		operational duration in mins, etc.).				
	Quantifying Methane Emissions from Natural Gas Water Heaters (Lebel et al. 2020)							
NG water	Developed a high-flow sampling system to capture and measure the	Emissions data were collected	64 single-family	The measured emissions data were				
heaters	0.000	from 35 residential water	homes with natural	combined with the usage data to				
	was taken 30 or more feet upwind from the WH exhaust each hour.	heaters. Usage data were	gas water heaters	estimate annual emissions.				
	The concentrations of CH ₄ and CO ₂ were measured using a Cavity	collected from 46 residential	in Northern					
	Ring-Down Spectrometer G2210-i (Picarro Inc.).	water heaters.	California. Water					
			heaters included					
	Emissions were measured: (1) before the appliance was turned on;		both storage and					
	(2) as the appliance was turning on, producing a pulse of CH ₄ ; (3)		tankless type.					
	until the concentration profile reached a steady concentration to							
	measure incomplete combustion for a minimum of 2 min and							
	multiple replicates; and (4) as the water heater turned off which							
	typically created a second pulse of CH ₄ .							