

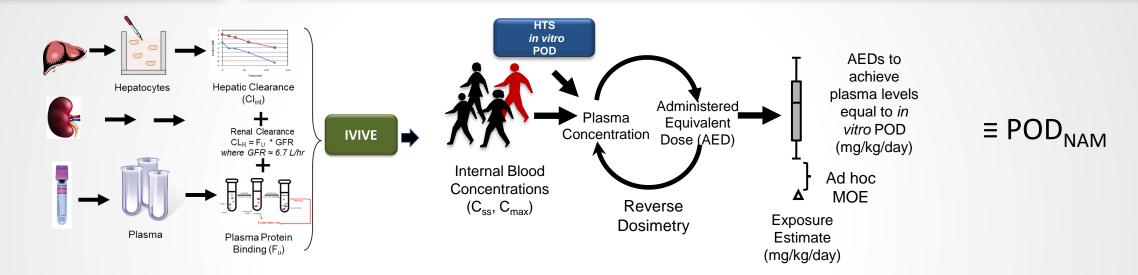
New Approach Methods - Toxicokinetics

Barbara A. Wetmore

Center for Computational Toxicology and Exposure
Office of Research and Development

Executive Meeting | Board of Scientific Counselors September 29-30, 2021

The views expressed in this presentation are those of the author(s) and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency.



Goals

- 1. Use new approach methods (NAMs) to characterize the toxicokinetic properties of a structurally diverse set of PFAS including:
 - Bioaccumulative potential
 - Half-life estimations
 - Biotransformation
 - Conversion of in vitro potencies to external administered doses
- 2. Refine structural categories based on toxicokinetic properties for grouping and read across
- 3. Develop targeted analytical chemistry methods that can be used to evaluate:
 - PFAS in vitro toxicokinetics, stability and disposition
 - Quality and stability of DMSO stocks

Approach

- Experimental TK data generated across ~130 PFAS
 - Plasma protein binding (Ultracentrifugation assay): F_u
 - Hepatocyte clearance (hepatocyte suspensions, loss of parent compound over time): Cl_{int}
 - Renal transport and clearance (MDCK-II model; transporters associated with PFAS uptake/efflux)
 - PFAS metabolite and biotransformation evaluations
 - Above work requires development of sensitive, targeted analytic methods for each PFAS
- Incorporate in vitro TK data in *in vitro-in vivo* extrapolation (IVIVE) approach to estimate steady state concentrations (C_{ss}); incorporation into httk; make available for QSAR development
- Evaluate PFAS in vitro disposition (distribution/binding to media, cells, plastics)
- Stock QC: Evaluate ORD PFAS stocks distributed to screening partners for quality and stability

Current Status

- QC of PFAS DMSO stocks complete
 - Over 470 unique stocks analyzed across multiple procurements
- Plasma protein binding data >95% complete
 - Methodologically challenging chemicals still being attempted
- Hepatic clearance data (NTP and EPA collaboration)
 - 85% complete; to be completed by FY22 Q1
 - More methodologically challenging than plasma work
- Renal transporter data
 - Phase 1: assay work 80% complete
 - Phase 2: Targeted mass spectrometric analysis of samples underway
 - To be completed in FY22
- PFAS biotransformation
 - Chemical selection, study design underway, data generation in FY22
- PFAS in vitro disposition
 - Chemical selection, proof of concept design underway; data generation in FY22

Contributors

Experimental Team:

M. Scott Clifton, CEMM

Matthew Henderson, CEMM

Marci Smeltz, CCTE

Brett Blackwell, CCTE

Anna Kreutz, ORISE/CCTE

Evgenia Korol-Bexell, ORISE/CCTE

Steven Lasee, ORISE/CCTE

Lucas Albrecht, ORAU/CCTE

Mathew Phillips, ORAU/CCTE

John Wambaugh, CCTE

ORD Colleagues:

Kathy Coutros, CCTE

John Cowden, CCTE

Michael DeVito, CCTE

Annette Guiseppi-Elie, CSS

Dale Hoff, CCTE

Michael Hughes, CCTE

Richard Judson, CCTE

Grace Patlewicz, CCTE

Ann Richard, CCTE

Antony Williams, CCTE

Russell Thomas, CCTE

- Supported by Chemical Safety for Sustainability -